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Structural properties of the sets of positively curved Riemannian
metrics on generalized Wallach spaces

N.A. Abiev∗

Institute of Mathematics NAS KR, Bishkek, Kyrgyz Republic
(E-mail: abievn@mail.ru)

In the present paper sets related to invariant Riemannian metrics of positive sectional and (or) Ricci
curvature on generalized Wallach spaces are considered. The problem arises in studying of the evolution
of such metrics under the influence of the normalized Ricci flow. For invariant Riemannian metrics of the
Wallach spaces which admit positive sectional curvature and belong to a given invariant surface of the
normalized Ricci flow equation we establish that they form a set bounded by three connected and pairwise
disjoint regular space curves such that each of them approaches two others asymptotically at infinity.
Analogously, for all generalized Wallach spaces with coincided parameters the set of Riemannian metrics
which belong to the invariant surface of the normalized Ricci flow and admit positive Ricci curvature
is bounded by three space curves each consisting of exactly two connected components as regular curves.
Mutual intersections and asymptotical behaviors of these components are studied as well. We also establish
that curves corresponding to Kähler metrics of spaces under consideration form separatrices of saddles of
a three-dimensional system of nonlinear autonomous ordinary differential equations obtained from the
normalized Ricci flow equation.

Keywords: generalized Wallach space, Riemannian metric, Kähler metric, normalized Ricci flow, sectional
curvature, Ricci curvature, dynamical system, singular point.

2020 Mathematics Subject Classification: 53C30, 53E20, 37C10.

Introduction

The paper is devoted to the study of structural properties of two important sets responsible for
positivity of the sectional and the Ricci curvatures of invariant Riemannian metrics on the Wallach
spaces and generalized Wallach spaces. The Wallach spaces

W6 := SU(3)/Tmax, W12 := Sp(3) / Sp(1)×Sp(1)×Sp(1), W24 := F4/Spin(8) (1)

are well-known and admit invariant Riemannian metrics of positive sectional curvature as it was shown
in [1]. As for generalized Wallach space, firstly, recall its definition and basic properties (see [2, 3]).
Let G/H be a homogeneous almost effective compact space with a (compact) semisimple connected
Lie group G and its closed subgroup H. Denote by g and h the corresponding Lie algebras of G
∗Corresponding author. E-mail: abievn@mail.ru
Received: 2 April 2024; Accepted: 10 September 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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and H. Then [· , ·] is a corresponding Lie bracket of g whereas B(· , ·) is the Killing form of g. Note
that 〈· , ·〉 = −B(· , ·) is a bi-invariant inner product on g. In this way invariant Riemannian metrics
on G/H can be identified with Ad(H)-invariant inner products on the orthogonal complement p of h
in g with respect to 〈· , ·〉. Compact homogeneous spaces G/H whose isotropy representation admits
a decomposition into a direct sum p = p1 ⊕ p2 ⊕ p3 of three Ad(H)-invariant irreducible modules p1,
p2 and p3 satisfying [pi, pi] ⊂ h for each i ∈ {1, 2, 3} were called generalized Wallach spaces in the
terminology of [3]. The main characteristic of these spaces is that every generalized Wallach space
can be described by a triple of real parameters ai := A/di ∈ (0, 1/2], i = 1, 2, 3, where di = dim(pi)
and A is some important positive constant (see [2] for details). It should be also noted that not every
triple (a1, a2, a3) ∈ (0, 1/2] × (0, 1/2] × (0, 1/2] corresponds to some generalized Wallach spaces. An
interesting fact is the fact that the Wallach spaces (1) are partial cases a1 = a2 = a3 = a of generalized
Wallach spaces with a = 1/6, a = 1/8 and a = 1/9 respectively (see [4]).

As noted above for a fixed bi-invariant inner product 〈·, ·〉 on the Lie algebra g of the Lie group
G, any G-invariant Riemannian metric g on G/H can be determined by an Ad(H)-invariant inner
product

(·, ·) = x1〈·, ·〉|p1 + x2〈·, ·〉|p2 + x3〈·, ·〉|p3 , (2)

where x1, x2, x3 are positive real numbers (a detailed exposition can be found in [2,3,5] and references
therein). In [2] the explicit expressions Ricg = r1 Id|p1 + r2 Id|p2 + r3 Id|p3 and Sg = d1r1+d2r2+d3r3
were derived for the Ricci tensor Ricg and the scalar curvature Sg of the metric (2) on generalized
Wallach spaces, where

ri :=
1

2xi
+

1

2ai

(
xi
xjxk

− xk
xixj

− xj
xixk

)
(3)

are the principal Ricci curvatures, {i, j, k} = {1, 2, 3}.
Knowing Ricg and Sg allowed us to initiate in [6,7] the study of the normalized Ricci flow equation

∂

∂t
g(t) = −2 Ricg +2g(t)

Sg
n

(4)

introduced by R. Hamilton in [8] on generalized Wallach spaces. Since then studies related to this topic
were continued in [9–14] concerning classifications of singular (equilibria) points of (4) being Einstein
metrics and their bifurcations. The authors of [15–17] studied an interesting and quite complicated
surface of bifurcations of (4) defined by a symmetric polynomial equation in three variables a1, a2, a3
of degree 12. In the sequel authors of [4,18] considered the evolution of positively curved Riemannian
metrics under the influence of (4) on an interesting class of generalized Wallach spaces with coincided
parameters a1 = a2 = a3 := a ∈ (0, 1/2) generalizing some results of [19, 20]. In this case (4) can be
reduced to the following system of three autonomous ordinary differential equations (see [4]):

dxi
dt

= fi(x1, x2, x3) :=
xi
xj

+
xi
xk

+ 2a

(
xj
xk

+
xk
xj
− 2

x2i
xjxk

)
− 2 (5)

with {i, j, k} = {1, 2, 3}.
In [4] it was proved that (4) deforms all generic metrics with positive sectional curvature into metrics

with mixed sectional curvature on each Wallach space in (1) (Theorem 1 in [4]) and all generic metrics
with positive Ricci curvature will be deformed into metrics with mixed Ricci curvature forW12 andW24

(see Theorem 2 in [4]), where given metric is said to be generic if xi 6= xj 6= xk 6= xi for i, j, k ∈ {1, 2, 3}.
According to Theorems 3 and 4 in [4] and Theorem 3 in [18] positiveness of the Ricci curvature will be
preserved for all generic metrics at a ∈ (1/6, 1/2) and for a special kind of metrics satisfying xk < xi+xj
at a = 1/6 (the equalities xk = xi + xj correspond to Kähler metrics), whereas all positively curved
metrics will be deformed into metrics with mixed Ricci curvature if a ∈ (0, 1/6). In [4,18] we used the
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description S :=
{

(x1, x2, x3) ∈ (0,+∞)3 | γ1 > 0, γ2 > 0, γ3 > 0
}
\
{

(r, r, r) ∈ R3 | r > 0
}
of the set

of Riemannian metrics with positive sectional curvature on the Wallach spaces (1) given in [21], where

γi := (xj − xk)2 + 2xi(xj + xk)− 3x2i , {i, j, k} = {1, 2, 3}. (6)

Analogously, R :=
{

(x1, x2, x3) ∈ (0,+∞)3 | λ1 > 0, λ2 > 0, λ3 > 0
}
\
{

(r, r, r) ∈ R3 | r > 0
}

is the
set of all Riemannian metrics of positive Ricci curvature on every generalized Wallach spaces with
a1 = a2 = a3 := a ∈ (0, 1/2), where

λi := xjxk + a
(
x2i − x2j − x2k

)
, {i, j, k} = {1, 2, 3} (7)

in accordance with (3).

The present paper is devoted to detailed proof of our observations in [4, 18] concerning structural
properties of surfaces and curves obtained from (6) and (7). For each i = 1, 2, 3 introduce the surfaces
(cones) Γi := {(x1, x2, x3) ∈ (0,+∞)3 | γi = 0} and Λi := {(x1, x2, x3) ∈ (0,+∞)3 | λi = 0}.

Denote by Σ the surface defined by the equation V = 1, where V := x1x2x3. Introduce also space
curves si := Σ ∩ Γi, ri := Σ ∩ Λi. The main result of this paper is contained in the following two
theorems.

Theorem 1. The following assertions hold for all indices with {i, j, k} = {1, 2, 3}:

1 For each Wallach space in (1) the set of invariant Riemannian metrics (2) which belong to the
invariant surface Σ of the differential system (5) and admit positive sectional curvature is bounded
by the pairwise disjoint regular space curves s1, s2 and s3 in Σ such that each sk is connected
and can be parameterized as

xk = t−1α−2, xi = tα, xj = α,

where

α = α(t) :=

 3

√(
−t− 1 + 2

√
t2 − t+ 1

)
t−1(t− 1)−2, if t > 0, t 6= 1,

3
√

6/2, if t = 1,

and α(t) > 0 for all t > 0.

2 Every invariant curve Ik of the differential system (5) given by the equations xi = xj = p,
xk = p−2, p > 0, intersects the only border curve sk at the unique point with coordinates
xi = xj = p0, xk = p−20 approaching at infinity the other two curves si and sj as close as we like,
where p0 = 3

√
6/2.

The results of Theorem 1 are illustrated in the left panel of Figure 1, where the curves s1, s2 and
s3 are depicted respectively in red, teal and blue colors, the invariant curves I1, I2, I3 are all yellow
colored.
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Figure 1. The curves s1, s2, s3 (the left panel); the curves r1, r2, r3, l1, l2, l3 and singular points
o0,o1,o2,o3 corresponding to a = 1/6 (the right panel)

Theorem 2. The following assertions hold for all indices with {i, j, k} = {1, 2, 3}:
1 For every generalized Wallach space with a1 = a2 = a3 = a ∈ (0, 1/2) the set of invariant

Riemannian metrics (2) which belong to the invariant surface Σ of the differential system (5)
and admit positive Ricci curvature is bounded by the space curves r1, r2 and r3 in Σ such that
each rk consists of two regular connected components rki and rkj parameterized by equations

xk = t−1β−2, xi = tβ, xj = β (8)

and
xk = t−1β−2, xj = tβ, xi = β (9)

respectively, where

β = β(t) :=
6

√
(t4 − a−1t3 + t2)−1 > 0,

t ∈ (0, a].
2 Every pair of the curves ri and rj admits a unique common point Pij with coordinates
xi = xj = a

1
3 , xk = a−

2
3 which belong to the components rij and rji; In addition, every in-

variant curve Ik of the system (5) meets the components rij and rji of ri and rj exactly at the
point Pij approaching their another components rik and rjk at infinity as close as we like.

3 For every a ∈ (0, 1/2) all singular (equilibria) points of the differential system (5) belong to the
set Σ ∩R.

4 Kähler metrics xk = xi + xj of generalized Wallach spaces with a = 1/6 form separatrices lk of
saddles of (5) in Σ which can be defined by parametric equations

xk = t−1φ−2, xi = tφ, xj = φ, (10)

where φ = φ(t) := 3

√
(t2 + t)−1, t > 0.

Mathematics Series. No. 4(116)/2024 7
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The results of Theorem 2 are illustrated in the right panel of Figure 1 for the case a = 1/6, where
the curves r1, r2 and r3 are depicted respectively in magenta, aquamarine and burlywood colors, the
curves l1, l2 and l3 are depicted by cyan colored curves and yellow colored points correspond to singular
points of (5).

It should be noted that we will consider only Riemannian metrics satisfying the unit volume condi-
tion V := x1x2x3 = 1 (see [4, 6]). In general, surfaces V = c, where c > 0, play the significant role for
study (5) on generalized Wallach spaces. It is known that any set determined by the equation V = c is
invariant under (5), moreover V = c is its first integral. Surfaces V = c will also be unstable (or stable)
manifolds of (5) and contain leading directions of motions of its trajectories (see [22]). Since the right
hand sides of (5) are all homogeneous, namely fi(cx1, cx2, cx3) = fi(x1, x2, x3) for any c, we can pass
to a new differential system of the same form as the original one, but with x̃1x̃2x̃3 = 1. Actually this is
reachable by replacings xi(t) = x̃i(τ) 3

√
c and t = τ 3

√
c. Therefore without loss of generality we assume

that the invariant surface is given by V ≡ 1.

1 Proofs of Theorems 1 and 2

Observe that the expressions for γi and λi in (6) and (7) are symmetric under the permutations
i→ j → k → i. Therefore it suffices to consider representatives only at fixed (i, j, k), where {i, j, k} =
{1, 2, 3}.

1.1 Proof of Theorem 1

Proof. (1) The curves s1, s2, s3 are pairwise disjoint and form the boundary of the set Σ ∩ S. For
each Wallach space in (1) the set S of Riemannian metrics (2) admitting positive sectional curva-
ture is bounded by the pairwise disjoint cones Γ1, Γ2 and Γ3 (these cones are depicted in the left
panel of Figure 2 in red, teal and blue colors respectively). Although this fact was proved in [22]
we repeat here the sketch of reasonings for convenience of the readers. Indeed the equation γk = 0

defines two connected components xk = 3−1
(
xi + xj − 2

√
x2i − xixj + x2j

)
and xk = Φk(xi, xj) :=

3−1
(
xi + xj + 2

√
x2i − xixj + x2j

)
of the cone Γk. Since the first of them gives xk < 0 for all xi, xj > 0

then γk > 0 is equivalent to 0 < xk < Φk(xi, xj) meaning that S is bounded by the plane xk = 0
and the positive part Γk of the cone γk = 0. By symmetry we have the same for Γi and Γj . Thus
∂(S) = Γ1 ∪ Γ2 ∪ Γ3 and hence ∂(Σ ∩ S) = s1 ∪ s2 ∪ s3.

Consider now the pair (i, j). The equations γi = 0 and γj = 0 defining the surfaces Γi and Γj can
admit only the following two family of common solutions xi = xj , xk = 0 and xi = xk, xj = 0. But we
need in positive solutions only. Hence Γi ∩ Γj = ∅ for all positive x1, x2, x3. By symmetry the same
assertions hold for the pairs (i, k) and (j, k).

Parameterizations of the curves s1, s2 and s3. Due to symmetry fix any unordered triple (i, j, k).
The parametric representation xk = t−1α−2, xi = tα, xj = α of the curve sk can be obtained putting
xk = x−1i x−1j in γk = 0. Then we have the following polynomial equation of degree 6 in two variables
xi and xj : x2ix

2
j (xi − xj)2 + 2xixj(xi + xj)− 3 = 0.

Substituting xi = txj , xj = 3
√
u into the obtained equation and solving it with respect to u we find

its two different roots u1 :=
(
−t− 1 + 2

√
t2 − t+ 1

)
t−1(t−1)−2, u2 :=

(
−t− 1− 2

√
t2 − t+ 1

)
t−1(t−

1)−2, where t > 0, t 6= 1, but the second of them, taken with the minus sign, gives only negative values
of xi and xj .

Denote α̃(t) = 3
√
u1(t) > 0. Note that limt→0+ α̃(t) = +∞ and limt→+∞ α̃(t) = 0. This predicts

the behavior of the curve sk for values t → 0+ and t → +∞ of the parameter t: limt→+∞ xj(t) = 0,
limt→+∞ xi(t) = limt→+∞ xk(t) = +∞ and limt→0+ xi(t) = 0, limt→0+ xj(t) = limt→0+ xk(t) = +∞.
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Connectedness of the curves s1, s2 and s3. Note also that limt→1+ α̃(t) = limt→1− α̃(t) = p0 := 3
√

6/2.
Hence assigning α(1) := p0 and

α(t) :=

{
α̃(t), if t > 0, t 6= 1,

p0, if t = 1

we define a continuous function α : G → G on G := (0,+∞). Therefore in the standard topology of
R3 the set (curve) sk = F (G) ⊂ G3 must be connected as a continuous image of the connected set G
under a function F : G → G3 with continuous coordinate components xi, xj , xk : G → G such that
xi(t) = tα(t), xj(t) = α(t) and xk(t) = t−1α(t)−2.

Smoothness of the curves s1, s2 and s3 can be proved using their parametric equations. But we
prefer another way. Due to symmetry it suffices to prove smoothness of the curve si = Σ∩Γi. Since Σ
and Γi are smooth (regular) surfaces it remains to show that their intersection is transversal, in other
words their gradient vectors ∇V = (x2x3, x1x3, x1x2) =

(
x−11 , x−12 , x−13

)
and ∇γi = (γi1, γi2, γi3) are

linearly independent along si, where

γij :=
∂γi
∂xj

=

{
xi + xj − xk, if j 6= i,

−3xi + xj + xk, if j = i,

for i, j ∈ {1, 2, 3}. Due to symmetry fix any i and suppose by contrary that ∇γi = c∇V for some real
c 6= 0. This means that the equalities γij = cx−1j hold for j ∈ 1, 2, 3. Then for j 6= i and k 6= i we
obtain equalities (xi + xj − xk)xj = (xi + xk − xj)xk = c equivalent to (xj − xk)(xi + xj + xk) = 0
which is impossible for xi 6= xj 6= xk 6= xi. Actually we proved the more strong fact that the normal
vectors ∇V and ∇γi are linearly independent not only along si, but everywhere where the surfaces Σ
and Γi are defined excepting points (x1, x2, x3) with non positive or coincided components.

(2) Intersections of s1, s2, s3 with I1, I2, I3. Due to symmetry it suffices to take the invariant curve Ik
of the system (5) defined as xi = xj = p, xk = p−2, p > 0. Consider the curve sk. The question is
whether Ik will cross the curve sk or not. It suffices to answer this question for Ik and the surface
Γk because existing of a point Z in (0,+∞)3 such that Z ∈ Ik ∩ Γk implies Z ∈ Ik ⊂ Σ and hence
Z ∈ Σ ∩ Γk = sk. Thus substituting xi = xj = p, xk = p−2 into the equation γk = 0 of Γk, we obtain
the equation γk = (4p3 − 3)p−4 = 0 which can admit the single root p = p0 = 3

√
6/2 providing the

unique common point xi = xj = p0, xk = p−20 of Ik with sk.

Consider now any curve si such that i 6= k. Then we obtain an incompatible system of equations
xi = xj = p, xk = p−2 and γi = 0 because of γi = p−4 6= 0. Moreover, si asymptotically tends to Ik as
p→ +∞ according to limp→+∞ γi = limp→+∞ p

−4 = 0. The same result holds for sj by symmetry in
the equation of Ik. Theorem 1 is proved.
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Figure 2. The cones Γ1,Γ2,Γ3, Λ1,Λ2,Λ3 and the planes xk = xi + xj for {i, j, k} = {1, 2, 3} (the left
panel); Crossing r2 and r3 by r1 (the right panel)

1.2 Proof of Theorem 2

To prove Theorem 2 we need the following Lemma containing auxiliary results.

Lemma 1. For every generalized Wallach space with a ∈ (0, 1/2) the set R is bounded by the
conic surfaces Λ1, Λ2 and Λ3. Each pair Λi and Λj has intersections along two different straight lines
xi = xj = u, xk = 0 and xi = xj = av, xk = v, where u, v > 0.

The cones Λ1, Λ2 and Λ3 are depicted in the left panel of Figure 2 in magenta, aquamarine and
burlywood colors respectively.

Proof of Lemma 1. Consider the surface Λk. Since D := x2i − a−1xixj + x2j is symmetric with
respect to xi and xj it can be considered as a quadratic polynomial in xj without loss of generality.
Then D ≤ 0 if mxi ≤ xj ≤Mxi and D > 0 if 0 < xj < mxi or xj > Mxi, where

m = m(a) :=
(

1−
√

1− 4a2
)

(2a)−1, M = M(a) :=
(

1 +
√

1− 4a2
)

(2a)−1. (11)

It is easy to see that 0 < m(a) < M(a) for all a ∈ (0, 1/2).
Depending on the sign of D the inequality λk > 0 admits the positive solution xk >

√
D if D > 0

and any xk > 0 can satisfy λk > 0 if D ≤ 0. This means that besides the planes x1 = 0, x2 = 0
and x3 = 0 the set R is bounded by two disjoint connected components Λkj and Λki of the surface
Λk = Λki∪Λkj defined by the same equation xk = Ψ(xi, xj) :=

√
x2i − a−1xixj + x2j but on the different

domains
{

(xi, xj) ∈ R2
∣∣ xi > 0, 0 < xj < mxi

}
and

{
(xi, xj) ∈ R2

∣∣ xi > 0, xj > Mxi
}
respectively.

Due to symmetry the same properties hold for the surfaces Λi and Λj as well. Thus ∂(R) =
Λ1 ∪ Λ2 ∪ Λ3.

By the same reason it suffices to analyze only Λi∩Λj . Assume that some triple (x1, x2, x3) satisfies
both of λi = 0 and λj = 0. Then λi − λj = 0 and λi + λj = 0 imply the system of equations
(xi − xj) (xk − 2a(xi + xj)) = 0 and xk (xi + xj − 2axk) = 0. In what follows that the system of the
equations λi = 0 and λj = 0 can admit only the following two different families of one-parametric
solutions xi = xj = u, xk = 0 and xi = xj = av, xk = v with parameters u, v > 0. Lemma 1 is proved.
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Proof of Theorem 2. (1) Clearly ∂(Σ∩R) = r1 ∪ r2 ∪ r3 directly follows from ∂(R) = Λ1 ∪Λ2 ∪Λ3

proved in Lemma 1. Intersecting both of the connected components Λki and Λkj of the cone Λk the
surface Σ forms components rki = Σ ∩ Λki and rkj = Σ ∩ Λkj of the curve rk such that rk = rki ∪ rkj
and rki ∩ rkj = ∅.

Smoothness of the components of r1, r2 and r3. Consider the curve rk. We claim that the gra-
dient vectors ∇V =

(
x−11 , x−12 , x−13

)
and ∇λk = (λk1, λk2, λk3) of the surfaces Σ and Λk are linearly

independent for all positive x1, x2, x3 such that x1 6= x2 6= x3 6= x1, where

λkj :=
∂λk
∂xj

=

{
xi − 2axj , if j 6= k,

2axk, if j = k,

for k, j ∈ {1, 2, 3}. Indeed supposing ∇λk = c∇V , where c is a nonzero real number, we obtain
immediately an unreachable equality (xj − xi)(xj + xi) = 0. In what follows that each component rk1
and rk2 of the curve rk is a smooth curve as a transversal intersection of two smooth surfaces.

Connectedness of the components of r1, r2, r3. The variable xk can be eliminated from the system
of equations xixjxk = 1 and λk = 0 to obtain the equation

ax2ix
2
j

(
x2i + x2j

)
− x3ix3j − a = 0

of the projection of the curve rk onto the coordinate plane (xi, xj). By the same way as in Theorem 1
substituting xi = txj , xj = 3

√
u into the last equation and solving it with respect to u we obtain the

parametric equation
xk = t−1β−2, xi = tβ, xj = β

of the curve rk, where β = β(t) :=
(
t4 − a−1t3 + t2

)− 1
6 > 0. It is easy to see that the numbers

m = m(a) and M = M(a), 0 < m < M , given in (11) are different real roots of the polynomial
t2 − a−1t+ 1 for all a ∈ (0, 1/2). Therefore β can be rewritten in the form

β = β(t) :=
(
t2(t−m)(t−M)

)− 1
6 .

In what follows that the function β(t) is well defined, continuous and positive valued for t ∈ (0,m) ∪
(M,+∞). We conclude now that the components rki and rkj of rk are respectively continuous images
of the connected sets (0,m) and (M,+∞) under a vector-function with coordinates xi(t), xj(t) and
xk(t). Therefore rki and rkj are connected too.

Note that the components rki and rkj are symmetric under the permutation i→ j → i. Therefore
we can parameterize them on the same interval but using different formulas (8) and (9) respectively.
For simplicity we choose the interval (0,m).

Intersections of r1, r2 and r3. Consider the pair r1 and r2. By Lemma 1 the only common line of the
surfaces Λ1 and Λ2 which consists of points with nonzero coordinates is the straight line x1 = x2 = av,
x3 = v, v > 0. This line intersects the surface Σ at a unique point, denote it P12. Indeed substituting
x1 = x2 = av, x3 = v into x1x2x3 = 1 we get the unique value v = v0 := a−2/3. This yields coordinates(
a1/3, a1/3, a−2/3

)
of P12. Note that P12 (the point P in the right panel of Figure 2) is also the only

intersection point of the curves r1 and r2 (their components r12 and r21).
Now a value of t at which P12 is located in r1 can be found from the parametric representation

x1(t) = t−1β(t)−2, x2(t) = tβ(t), x3(t) = β(t) of r12. The condition x1 = x2 implies an equation
t−1β−2 = tβ admitting the single root t0 = a for all a ∈ (0, 1/2). Therefore the curve r1 passes
through P12 at t = t0 only. It should be noted that the curves r1 and r2 leave extra pieces after cross-
ing each other. In principle, we can preserve them, but it is advisable to remove them for greater clarity
of pictures. Basing on the values of the limits limt→0+ x2(t) = 0, limt→0+ x1(t) = limt→0+ x3(t) = +∞
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and limt→m− x1(t) = 0, limt→m− x2(t) = limt→m− x3(t) = +∞ we conclude that the tail PP ′ corre-
sponds to values t ∈ (a,m). Therefore the original interval of parametrization (0,m) can be reduced
to the interval (0, a] shown in the text of Theorem 2.

By symmetry the analysis of the pairs r1 ∩ r3 and r2 ∩ r3 (points in teal and red color in the
right panel of Figure 1) will be the same using permutations of the indices {i, j, k} = {1, 2, 3}. For
example, the equations x1(t) = t−1β(t)−2, x2(t) = β(t) and x3(t) = tβ(t) define another connected
component r13 of the curve r1 (which intersects r3) on the same interval (0, a]. Then coordinates(
a1/3, a−2/3, a1/3

)
of the point P13 (in fact {P13} = r13 ∩ r31) can be obtained at the same boundary

value t = a (the point Q in the right panel of Figure 2). Analogously at t ∈ (a,m) we get the tail QQ′

of r13.
(2) Intersections of r1, r2, r3 with I1, I2, I3. Without loss of generality consider the invariant

curve Ik. As in Theorem 1 it suffices to consider the surfaces Λi instead of the corresponding curves ri.
The curve Ik crosses both of the curves ri and rj (the components rij and rji) exactly at their common
point Pij because substituting xi = xj = p, xk = p−2 into λi = 0 and λj = 0 yields the equation

λi = λj = (p3 − a)p−4 = 0

which admit a single root p = a1/3 corresponding to Pij . Therefore Ik ∩ rij ∩ rji = {Pij}.
At the same time Ik approximates both of ri and rj (their components rik and rjk) at infinity.

Indeed
lim

p→+∞
λi = lim

p→+∞
λj = lim

p→+∞
(p3 − a)p−4 = 0.

For the curve rk we have λk = (1 − 2a)p2 + p−4 > 0 under the same substitutions. Therefore Ik
never cross rk, moreover, limp→+∞ λk = +∞.

(3) Every singular point of (5) belongs to Σ ∩ R. As it follows from [6] the system of alge-
braic equations fi(x1, x2, x3) = 0 has the following four families of one-parametric solutions for every
a ∈ (0, 1/2) \ {1/4}:

x1 = x2 = x3 = τ, xi = τκ, xj = xk = τ, τ > 0, {i, j, k} = {1, 2, 3}, (12)

where κ := (1− 2a)(2a)−1. At a = 1/4 these families merge to the unique family x1 = x2 = x3 = τ .
Substituting xi = τκ and xj = xk = τ into the expressions (7) for λ1, λ2 and λ3 we obtain

λ1 = λ2 = λ3 = (1− 2a)(1 + 2a)(4a)−1 τ2 > 0,

because a ∈ (0, 1/2). Obviously,

λ1 = λ2 = λ3 = (1− a) τ2 > 0

at x1 = x2 = x3 = τ . Therefore the straight lines (12) lye in the set R for all a ∈ (0, 1/2) according to
the definition of R. These lines cross the invariant surface Σ at the points (see also [22])

o0 := (1, 1, 1), o1 := (qκ, q, q) , o2 := (q, qκ, q) , o3 := (q, q, qκ) ,

being the singular points of the system (5) on Σ, where q :=
3
√
κ−1 (obviously, the unique singular

point (1, 1, 1) will be obtained if a = 1/4). Thus we conclude that oi ∈ Σ ∩ R for every a ∈ (0, 1/2)
and i ∈ {0, 1, 2, 3}.

(4) Invariancy of the curves l1, l2, l3. According to [6] the curves I1, I2 and I3 are separatrices
of the unique saddle point o0 (which has the linear zero type) of the system (5) if a = 1/4. For
a ∈ (0, 1/2) \ {1/4} the points o1,o2,o3 are all hyperbolic type saddles and o0 is a stable (respectively
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unstable) hyperbolic node if 1/4 < a < 1/2 (respectively if 0 < a < 1/4). Additionally, each invariant
curve Ik is one of two separatrices of the saddle ok (see [22]), where k = 1, 2, 3. At a = 1/6 we have an
opportunity to find analytically the second separatrice of each ok different from Ik. Indeed it is easy
to see that coordinates of ok satisfy the system of equations{

xk = xi + xj , {i, j, k} = {1, 2, 3},
xixjxk = 1,

(13)

where the equalities xk = xi + xj describe the set of Kähler metrics on a given generalized Wallach
space G/H with a1 = a2 = a3 = a = 1/6 (see also [4]). Therefore each saddle ok belongs to the
intersection lk of the invariant surface Σ with the plane xk = xi + xj (the curves l1, l2, l3 are depicted
in the right panel of Figure 1 in cyan color for all indices {i, j, k} = {1, 2, 3}). Parametric equations (10)
of the curves lk can be obtained repeating similar procedures as in the case of the curves sk and rk.

It is easy to show that li ∩ lj = ∅ for i 6= j. Moreover, we claim that each of l1, l2, l3 is also an
invariant curve of the differential system (5). To show it consider the case k = 3 due to symmetry.
Substitute the parametric representation x1 = φ, x2 = tφ, x3 = t−1φ−2 of the curve l3 into f1, f2
and f3 in (5), where

φ = φ(t) := 3
√

(t2 + t)−1, t > 0.

For x1 = φ, x2 = tφ and x3 = t−1φ−2 the functions f1, f2, f3 take the following forms

f1 = −2

9

(2t+ 1)(t− 1)

t(t+ 1)
, f2 =

2

9

(t+ 2)(t− 1)

t+ 1
, f3 =

2

9

(t− 1)2

t
.

The value t = 1 providing f1 = f2 = f3 = 0 gives a stationary trajectory, namely it is the singular
point o3 = (q, q, qκ) itself. Thus assume t 6= 1. The identities

dx2
dx1

=

dx2
dt
dx1
dt

≡ (tφ)′

φ′
= −(t+ 2)t

2t+ 1
=
f2
f1
,

dx3
dx1

=

(
t−1φ−2

)′
φ′

= − t
2 − 1

2t+ 1
=
f3
f1
,

dx3
dx2

=

(
t−1φ−2

)′
(tφ)′

=
t2 − 1

t(t+ 2)
=
f3
f2

imply that l3 is a trajectory of (5) for t > 0 and t 6= 1. Moreover, l3 passes through the singular
point o3. This means that l3 is a separatrice of o3. Invariancy of the curves l1 and l2 respectively
passing through o1 and o2 can be proved using the same idea. Theorem 2 is proved.

Remark 1. As it was noted in the proof of Theorem 2 the equations (8) define for t ∈ (M,+∞)
the same curve as (9) for t ∈ (0,m). In the case t ∈ (M,+∞) the tail removing procedure leads to
the equation t−1β−2 = β equivalent to at2 − (a2 + 1)t + a = 0. Its first root t = a corresponds to
the point Pki and the second root t = 1/a gives the point Pkj . Obviously 0 < a < m < M < 1/a for
all a ∈ (0, 1/2). Therefore both components of each curve rk can be parameterized by one formula,
say (8), but using the different intervals (0, a] and [1/a,+∞).

Remark 2. We proved that all singular points o0,o1,o2 and o3 of the normalized Ricci flow on
generalized Wallach spaces with a1 = a2 = a3 = a belong to the set Σ ∩ R of metrics with positive
Ricci curvature. Unfortunately a similar assertion does not hold for the set Σ ∩ S. Lemma 3 in [22]
shows that there exists a critical value a = 3/14 such that o1,o2,o3 ∈ ΣS only if a ∈ (3/14, 1/2) and
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the boundary cases oi ∈ si (i = 1, 2, 3) hold if a = 3/14. The only generalized Wallach spaces which
admit metrics with positive sectional curvature are the Wallach spaces (1) which satisfy the condition
a ∈ (0, 3/14).

Remark 3. The case a = 1/6 is original, where Kähler metrics provide separatrices of saddles oi.
For a 6= 1/6 it is a difficult problem to find similar separatrices analytically. Knowing all separa-
trices allows to predict the dynamics of the Ricci flow in more detail. To demonstrate the main
idea consider an arbitrarily chosen singular point in the case a = 1/6. Without loss of generality take
o3 =

(
2−1/3, 2−1/3, 22/3

)
(the Kähler-Einstein metric) and observe that the curve l3 defined by the equa-

tions x3 = x1+x2 and x1x2x3 = 1 coincides with the unstable manifoldW u
3 of o3 as it was shown in [22].

The stable manifold of o3 is W s
3 :=

{
(x1, x2, x3) ∈ R3

∣∣ x3 = p−2, x1 = x2 = p, 0 < p < 1
}
⊂ I3. It is

clear now that controlling byW s
i andW u

i trajectories of (5) never can leave the domain bounded by the
curves (13) because of no trajectory originated in that domain can intersect separatrices by the unique-
ness of a solution of an initial value problem. This explains the fact proved in Theorem 4 in [4] that
Riemannian metrics (2) on generalized Wallach spaces with a = 1/6 (on the Wallach space SU(3)/Tmax

in particularly) preserve the positivity of their Ricci curvature for xk < xi + xj ({i, j, k} = {1, 2, 3}).
In Figure 3 the separatrices l1, l2, l3 and some trajectories of (5) are depicted for illustrations.

Figure 3. The case a = 1/6: the separatrices li (in cyan color), Ii (in yellow color) of the saddles oi
and some trajectories (in black color) of system (5), i = 1, 2, 3

2 Additional remarks

i) The well known fact that the positivity of the Ricci curvature follows from the positivity of the
sectional curvature can be justified and illustrated via inclusion S ⊂ R, where S is depicted in Figure 2
as a set bounded by three cones in red, teal and blue colors, respectively R is bounded by six conic
surfaces in magenta, aquamarine and burlywood colors.

To establish S ⊂ R for all a ∈ (0, 1/2) it suffices to show the inclusion ∂(S) ⊂ R. We will follow
this opportunity since a direct attempt to establish S ⊂ R leads to pairs of inequalities of the kind
γi > 0 and λi > 0 whose analysis is much more complicated than to deal with the system consisting
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of one equation γi = 0 and one inequality λi > 0:{
(xj − xk)2 + 2xi(xj + xk)− 3x2i = 0,

xjxk + a
(
x2i − x2j − x2k

)
> 0.

(14)

By symmetry fix any i ∈ {1, 2, 3} and consider the component Γi of the boundary of S. Every
point of the cone Γi belongs to some its generator line xi = νt, xj = µt, xk = t, t > 0, where
µ = 1 − ν + 2

√
ν(ν − 1) > 0, ν > 1 (see also [22]). Indeed generators satisfy the equation in (14)

and the inequality in (14) takes the form (X − Y ) t2 > 0 with X :=
(
4a(ν − 1) + 2

)√
ν(ν − 1) and

Y := 4aν2 + (1− 6a)ν + 2a− 1.
Obviously X > 0 for all a ∈ (0, 1/2) and ν > 1. Since Y = 0 has roots ν1 = 2a−1

4a < 0 and ν2 = 1 the
inequality Y > 0 holds as well at ν > 1. Thus X − Y > 0 is equivalent to X2− Y 2 = (ν − 1) p(ν) > 0,
where the quadratic polynomial p(ν) = 8aν2−(2a+3)(2a−1)ν+(2a−1)2 admits two different negative
roots ν1 = 2a−1

16a

(
2a+ 3 +

√
(2a− 1)(2a− 9)

)
and ν2 = 2a−1

16a

(
2a+ 3−

√
(2a− 1)(2a− 9)

)
for every

a ∈ (0, 1/2). It follows then p(ν) > 0 and hence X2 − Y 2 > 0 at ν > 1 independently on a ∈ (0, 1/2).
Therefore λi > 0 for any point of Γi which means that Γi ⊂ R. Since i was chosen arbitrarily we obtain
∂(S) = Γ1 ∪ Γ2 ∪ Γ3 ⊂ R and hence S ⊂ R with the obvious consequence Σ ∩ S ⊂ Σ ∩R.

ii) There are useful asymptotical representations for practical aims. For instance, at t → 0 the
expressions x1(t) = x3(t) = t−1/3 +O

(
t5/3
)
, x2(t) = t2/3 +O

(
t8/3
)
are valid for coordinates of points

of the curve s3 defined as a variety of solutions of the system{
(x1 − x2)2 + 2x3(x1 + x2)− 3x23 = 0,

x1x2x3 = 1.
(15)

For t tending to 0 the curve r1 :

{
x2x3 + a

(
x21 − x22 − x23

)
= 0,

x1x2x3 = 1
has a similar asymptotic

x1(t) = t−1/3 +O
(
t5/3
)
, x2(t) = t2/3 + t5/3

6a + O
(
t8/3
)
, x3(t) = t−1/3 + t2/3

6a + O
(
t5/3
)
in accordance

with the fact that s3 and r12 ⊂ r1 approach the same invariant curve I2 at infinity.

iii) Often it is easier to deal with a planar analysis of the dynamics of the normalized Ricci flow.
Choose the coordinate plane x3 = 0 without loss of generality. Then the projection of the set Σ ∩ S
of Riemannian metrics with positive sectional curvature onto the plane x3 = 0 is bounded by the
following plane curves s′1, s′2 and s′3 defined implicitly 3x41x

2
2 − 2x31x

3
2 − x21x42 − 2x21x2 + 2x1x

2
2 − 1 = 0,

3x42x
2
1 − 2x32x

3
1 − x22x41 − 2x22x1 + 2x2x

2
1 − 1 = 0 and x41x22 − 2x31x

3
2 + x21x

4
2 + 2x21x2 + 2x1x

2
2 − 3 = 0.

For example the equation of s′3 can be obtained eliminating x3 in the system (15).
Analogously, boundary curves of the projection of the set Σ ∩ R of Ricci positive metrics onto

the plane x3 = 0 have equations ax41x22 − ax21x42 + x1x
2
2 − a = 0, ax42x21 − ax22x41 + x2x

2
1 − a = 0 and

ax41x
2
2 + ax21x

4
2 − x31x32 − a = 0.

Projections of the Kähler metrics x1 = x2 + x3, x2 = x1 + x3 and x3 = x1 + x2 will be defined by
x1x2(x1 − x2) = 1, x1x2(x2 − x1) = 1 and x1x2(x1 + x2) = 1 respectively.

We recommend to compare the pictures demonstrated in this paper with planar pictures depicted
in the right panels of Figures 3, 6 and 7 obtained in [4] in the coordinate plane (x1, x2).
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Local and nonlocal boundary value problems (LNBVPs) related to fourth-order differential equations
(FODEs) were explored. To tackle these problems numerically, we introduce novel compact four-step
difference schemes (DSs) that achieve eighth-order of approximation. These DSs are derived from a novel
Taylor series expansion involving five points. The theoretical foundations of these DSs are validated through
extensive numerical experiments, demonstrating their effectiveness and precision.

Keywords: Taylor’s decomposition on five points (TDFP), LNBVPs, DSs, approximation, numerical ex-
periment.

2020 Mathematics Subject Classification: 34B10, 35K10, 49K40.

Introduction

In applied sciences, achieving high precision in numerical algorithms is crucial, particularly when
exact solutions are not feasible. Currently, a key focus is on developing and analyzing highly accurate
DSs for ordinary and partial DEs with variable coefficients. Previous research has extensively explored
the use of Taylor series expansions for constructing high-order compact finite DSs. For example,
on two and three points Taylor’s decomposition (TDs) has been used for approximate solutions of
linear ordinary and partial DSs, as detailed in sources [1], [2], [3]. Further advancements include
the use of three-step schemes with fourth-order of accuracy, derived from TDs on four points, for the
numerical solution of several LNBVPs related to third-order DEs, as discussed in [4], [5], and [6]. These
techniques have also been applied to third-order time-varying linear dynamical systems, as evidenced
by the numerical analysis conducted on an up-converter in communication systems.

Recent studies [7] and [8] have expanded this work to include four-step DSs with fourth- and
sixth-order accuracy, generated from TDFPs, specifically for linear ordinary DEs with boundary value
problems (BVPs).

BVPs for ordinary DEs are fundamental in both theoretical and applied contexts, modeling a
wide array of physical, biological, and chemical processes. Notable applications include Timoshenko’s
work on elasticity [9], Soedel’s analysis of structural deformation [10], and Dulacska’s research on soil
settlement effects [11].

The literature on BVPs for higher-order DEs is extensive, including recent contributions [12], [13],
and [14]. For a comprehensive overview of known results and additional references, see the monographs
[15], [16], and paper [17].
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Nonlinear FODEs, often termed beam equations, have also been studied under various boundary
conditions. Zill and Cullen [18] provide a clear discussion and physical interpretation of boundary
conditions for linear beam equations, contrasting with other conditions like conjugate [19], focal [12],
[20], and [21].

In this paper, we introduce new compact eighth-order finite DSs, derived from an innovative TDFPs,
for solving FODEs with variable coefficients.

We consider FSDSs of eighth-order approximation for the numerical solutions of three types of
BVPs {

u(4)(s) + a(s)u(s) = z(s), 0 < s < Υ,

u(0) = ϕ, u(1)(0) = η, u(Υ) = ω, u(1)(Υ) = %,
(1)

{
u(4)(s) + a(s)u(s) = z(s), 0 < s < Υ,

u(0) = ϕ, u(0) = η, u(Υ) = ω, u(2)(Υ) = %,
(2){

u(4)(s) + a(s)u(s) = z(s), 0 < s < Υ,

u(0) = ϕ, u(3)(0) = η, u(Υ) = ω, u(3)(Υ) = %,
(3)

and of the nonlocal BVP{
u(4)(s) + a(s)u(s) = z(s), 0 < s < Υ, u(0) = u(Υ) + ϕ,

u(1)(0) = u(1)(Υ) + η, u(2)(0) = u(2)(Υ) + ω, u(3)(0) = u(3)(Υ) + %
(4)

for the FODEs. We introduce the uniform grid space

[0,Υ]h = {yk = kh, k = 0, 1, · · · , N,Nh = Υ}.

The primary objective of this paper is to develop highly accurate four-step DSs for solving local and
nonlocal FODEs. We introduce eighth-order accurate DSs generated by a new technique based on a
five-point stencil: yk±2, yk±1, and yk within the interval [0,Υ]h. The theoretical underpinnings of these
schemes are corroborated by numerical experiments. The structure of the paper is as follows: Section
1 details the construction of the new technique using five points. Sections 2 through 5 explore local
BVPs (1), (2), (3) and a nonlocal BVP (4).

1 A new TDFPs

The design of eighth order of approximation DSs for the numerical solutions of the LNBVPs (1),
(2), (3), and (4) is based on the subsequent theorem on new TDFPs.

Theorem 1.1. Let W (y) be a function defined on the interval [0,Υ] with a continuous twelfth
derivative. Then the subsequent relation is satisfied:

h−4(W (yk+2)− 4W (yk+1) + 6W (yk)− 4W (yk−1) +W (yk−2)) (5)

=
76

105
W (4)(yk) +

9

70
(W (4)(yk+1) +W (4)(yk−1)) +

1

105
(W (4)(yk+2) +W (4)(yk−2))

− 97

1680
h4W (8)(yk) + o(h8).

Proof. By applying Taylor’s formula, we obtain

h−4(W (yk+2)− 4W (yk+1) + 6W (yk)− 4W (yk−1) +W (yk−2)) (6)

= W (4)(yk) +W (6)(yk)
1

6
h2 +W (8)(yk)

1

80
h4 +W (10)(yk)

17

7!6
h6 + o(h8).
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Applying the method of undetermined coefficients(MUCs), we will aim to find

h−4(W (yk+2)− 4W (yk+1) + 6W (yk)− 4W (yk−1) +W (yk−2))

−αW (yk)− β(W (4)(yk+1) +W (4)(yk−1))− γ(W (4)(yk+2) +W (4)(yk−2))− dh4W (8)(yk) = o(h8).

Utilizing Taylor’s formula, we derive

αW (4)(yk) + β(W (4)(yk+1) +W (4)(yk−1)) + γ(W (4)(yk+2) +W (4)(yk−2))

= (α+ 2β + 2γ)W (4)(yk) + (β + 4γ)W (6)(yk)h2 + (
1

12
β +

4

3
γ)W (8)(yk)h4

+(
1

5!3
β +

27

6!
γ)W (10)(yk)h6 + o(h8).

Using formula (6) and above formula , we get

h−4(W (yk+2)− 4W (yk+1) + 6W (yk)− 4W (yk−1) +W (yk−2))

−αW (4)(yk)− β(W (4)(yk+1) +W (4)(yk−1))− γ(W (4)(yk+2) +W (4)(yk−2))− dh4W (8)(yk)

= (1− α− 2β − 2γ)W (4)(yk) + (
1

6
− β − 4γ)W (6)(yk)h2 + (

1

80
− 1

12
β − 4

3
γ − d)W (8)(yk)h4

+(
17

7!6
− 1

5!3
β − 27

6!
γ)W (10)(yk)h6 + o(h8).

By setting the coefficient of the lowest power of h to zero, we derive the following system of algebraic
equations(SAEs). 

α+ 2β + 2γ = 1,
β + 4γ = 1

6 ,
1
12β + 4

3γ + d = 1
80 ,

1
5!3β + 27

6! γ = 17
7!6 .

Upon resolving this SAEs, we find α =
76

105
, β =

9

70
, γ =

1

105
, d = − 97

1680
. The relation (5) is

obtained. Theorem 1.1 is established.

Theorem 1.2. Let W (y) be a function defined on the interval [0,Υ] with a continuous fifth deriva-
tive. Then the subsequent relation holds:

W (1) (yk) =
2

3h
(W (yk+1)−W (yk−1))−

1

12h
(W (yk+2)−W (yk−2)) + o

(
h4
)
. (7)

Proof. By applying Taylor’s formula, we obtain

W (1) (yk) = β (W (yk+1)−W (yk−1)) + γ (W (yk+2)−W (yk−2)) + o
(
h4
)
.

Utilizing Taylor’s formula, we derive

(h−1 − (2β + 4γ))W (1) (yk)h+ (
2

3!
β +

16

3!
γ)W (3) (yk)h3 + (β + γ)o(h5).

By setting the coefficient of the lowest power of h to zero, we derive the following SAEs.{
2β + 4γ = h−1,
2
3!β + 16

3! γ = 0.

Upon resolving this SAEs, we find β = 2
3h
−1, γ = − 1

12h
−1. So, relation (7) is proved. Theorem 1.2 is

established.
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Theorem 1.3. Let W (y) be a function defined on the interval [0,Υ] with a continuous sixth deriva-
tive. Then the subsequent relation holds:

W (2) (yk) =
4

3h2
(W (yk+1) +W (yk−1)− 2W (yk)) (8)

− 1

12h2
(W (yk+2) +W (yk−2)− 2W (yk)) + o

(
h4
)
.

Proof. By applying Taylor’s formula, we obtain

W (2) (yk) = β (W (yk+1) +W (yk−1)− 2W (yk)) + γ (W (yk+2) +W (yk−2)−W (yk)) + o
(
h4
)
.

Utilizing Taylor’s formula, we derive(
h−2 −

(
2

2!
β +

8

2!
γ

))
W (2) (yk)h2 +

(
2

4!
β +

32

4!
γ

)
W (4) (yk)h4 + (β + γ)o(h6).

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.{
2
2!β + 8

2!γ = h−2,
2
4!β + 32

4! γ = 0.

Upon resolving this SAEs, we find β = 4
3h
−2, γ = − 1

12h
−2. So, relation (8) is proved. Theorem 1.3 is

established.

Theorem 1.4. Let W (y) be a function defined on the interval [0,Υ] with a continuous seventh
derivative. Then the subsequent relation holds:

W (3) (yk) =
896

159h3

(
W (yk+1)−W (yk−1)− 2W (1) (yk)h

)
(9)

− 419

1272h3

(
W (yk+2)−W (yk−2)− 4W (1) (yk)h

)
+ o

(
h4
)
.

Proof. Applying the MUCs, we will aim to find

W (3) (yk) = β
(
W (yk+1)−W (yk−1)− 2W (1) (yk)h

)
+ γ

(
W (yk+2)−W (yk−2)− 4W (1) (yk)h

)
+h4

(
p
(
W (4) (yk+1)−W (4) (yk−1)

)
+ q

(
W (4) (yk+2)−W (4) (yk−2)

))
+ o

(
h8
)
.

By applying Taylor’s formula, we obtain(
h−3 −

(
2

3!
β +

16

3!
γ

))
W (3) (yk)h3 +

(
2

5!
β +

64

5!
γ

)
W (5) (yk)h5 + (β + γ) o

(
h7
)
.

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.{
2
3!β + 16

3! γ = h−3,
2
5!β + 64

5! γ = 0.

Upon resolving this SAEs, we find β =
896

159
h−3, γ = − 419

1272
h−3. So, relation (9) is proved.

Theorem 1.4 is established.
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2 Local BVP (1)

Let us consider BVP (1). For the application of TDFPs (5), we have to give the eighth order of
approximation formulas for W (1)(0) and W (1)(Υ).

Theorem 2.1. Let W (y) be a function defined on the interval [0,Υ] with a continuous fifth deriva-
tive. Then the subsequent relations hold:

W (1) (0) = h−1
{

2223

518
(W (h)−W (0))− 3735

1036
(W (2h)−W (0)) +

1535

777
(W (3h)−W (0))

−45

74
(W (4h)−W (0)) +

243

2590
(W (5h)−W (0))− 23

3108
(W (6h)−W (0))

}
− 69h3

518

(
W (4) (h)−W (4) (0)

)
+

21h3

148

(
W (4) (2h)−W (4) (0)

)
+ o

(
h8
)
, (10)

W (1) (Υ) = h−1
{
−2223

518
(W (Υ− h)−W (Υ)) +

3735

1036
(W (Υ− 2h)−W (Υ))

− 243

2590
(W (Υ− 5h)−W (Υ)) +

23

3108
(W (Υ− 6h)−W (Υ))

− 1535

777
(W (Υ− 3h)−W (Υ)) +

45

74
(W (Υ− 4h)−W (Υ)) + o

(
h8
)
. (11)

Proof. Applying the MUCs, we will aim to find

W (1) (0) = β (W (h)−W (0)) + γ (W (2h)−W (0)) + d (W (3h)−W (0))

+p (W (4h)−W (0)) + q (W (5h)−W (0)) + w (W (6h)−W (0))

+h4m
(
W (4) (h)−W (4) (0)

)
+ h4n

(
W (4) (2h)−W (4) (0)

)
+ o

(
h8
)
.

By applying Taylor’s formula, we obtain

W (1) (0) = β

8∑
l=1

hl

l!
W (l) (0) + γ

8∑
l=1

(2h)l

l!
W (l) (0) + d

8∑
l=1

(3h)l

l!
W (l) (0)

+p
8∑

l=1

(4h)l

l!
W (l) (0) + q

8∑
l=1

(5h)l

l!
W (l) (0) + w

8∑
n=1

(6h)l

l!
W (l) (0)

+h4m
4∑

l=1

hl

l!
W (l+4) (0) + h4n

4∑
l=1

(2h)l

l!
W (l+4) (0) + o

(
h8
)
.

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.

3d+ 4p+ β + 2γ + 5q + 6w = h−1,
9
2!d+ 16

2! p+ 1
2!β + 4

2!γ + 25
2! q + 36

2!w = 0,
27
3! d+ 64

3! p+ 1
3!β + 8

3!γ + 125
3! q + 216

3! w = 0,
81
4! d+ 256

4! p+ 1
4!β + 16

4! γ + 625
4! q + 1296

4! w = 0,
243
5! d+ 1024

5! p+ 1
5!β + 32

5! γ + 3125
5! q + 7776

5! w +m+ 2n = 0,
729
6! d+ 4096

6! p+ 1
6!β + 64

6! γ + 15 625
6! q + 46 656

6! w + 1
2!m+ 4

2!n = 0,
2187
7! d+ 16 384

7! p+ 1
7!β + 128

7! γ + 78 125
7! q + 279 936

7! w + 1
3!m+ 8

3!n = 0,
6561
8! d+ 65 536

8! p+ 1
8!β + 256

8! γ + 390 625
8! q + 1679 616

8! w + 1
4!m+ 16

4! n = 0,
19 683

9! d+ 262 144
9! p 1

9!β + 512
9! γ + 1953 125

9! q + 10 077 696
9! w + 1

5!m+ 32
5! n = 0,

59 049
10! d+ 1048 576

10! p+ 1
10!β + 1024

10! γ + 9765 625
10! q + 60 466 176

10! w + 1
6!m+ 64

6! n = 0.
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Upon resolving this SAEs, we find β =
2223

518h
, γ = − 3735

1036h
, d =

1535

777h
, p = − 45

74h
, q =

243

2590h
,

w = − 23

3108h
, m = − 69

518h
, n =

21

148h
. So, relation (10) is established. In a similar fashion, one can

derive the relationship (11). Theorem 2.1 is established.

Now, we consider the application of Theorems 1.1–1.4 and Theorem 2.1 for the numerical solution
of the BVP (1). Using the equation (1) and formulas (5), (7), (8), (9), (10), (11), and disregarding
minor terms, we can present the eighth order of approximation DS

h−4(uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2)
+
(

76
105 −

97
1680h

4a(xk)
)
a(tk)uk + 9

70a(xk+1)uk+1

+a(xk−1)uk−1 + 1
105 (a(xk+2)uk+2 + a(xk−2)uk−2)

=
(

76
105 + 97

1680h
4a(xk)

)
z(xk) + 9

70 (z(xk+1) + z(xk−1))

+ 1
105 (z(xk+2) + z(xk−2))− 97

1680h
4z(4)(xk),(

−5543
2590 + 9

1036h
4a (0)

)
u0 +

(
2223
518 + 69

518h
4a(h)

)
u1

−
(
3735
1036 + 21

148h
4a(2h)

)
u2 + 1535

777 u3 −
45
74u4 + 243

2590u5 −
23

3108u6
= hη + h4

[
69
518 (z(x1)−z(x0))− 21

148 (z(x2)−z(x0))
]
, u0 = ϕ,(

5543
2590 −

9
1036h

4a (0)
)
uN −

(
2223
518 + 69

518h
4a(h)

)
uN−1

+
(
3735
1036 + 21

148h
4a(2h)

)
uN−2 − 1535

777 uN−3 + 45
74uN−4 −

243
2590uN−5

+ 23
3108uN−6 = hρ− h4 69

518 (z(xN−1)−z(xN ))
−h4 21

148 (z(xN−2)−z(xN )) , uN = ω

(12)

for the numerical solution of the BVP (1).

3 Local BVP (2)

Consider the BVP (2). For the application of TD’s on five points (5), we have to give the eighth
order of approximation formulas for W (2)(0) and W (2)(Υ).

Theorem 3.1. Let W (y) be a function defined on the interval [0,Υ] with a continuous tenth deriva-
tive. Then the subsequent relations hold:

W (2) (0)− h−2
{

6937 573

3439 828
W (0)− 26 121 217

5159 742
W (h) +

21 060 241

5159 742
W (2h) (13)

−892 879

859 957
W (3h)− 26 209

10 319 484
W (4h) +

24 995

5159 742
W (5h)

}
− h2 23 426 639

206 389 680
W (4) (0)

−h2
(

12 741 989

20 638 968
W (4) (h) +

5216 939

29 484 240
W (4) (2h)− 1324 691

103 194 840
W (4) (3h)

)
= o(h8),

W (2) (Υ)− h−2
{

6937 573

3439 828
W (Υ)− 26 121 217

5159 742
W (Υ− h) (14)

+
21 060 241

5159 742
W (Υ− 2h)− 892 879

859 957
W (Υ− 3h)− 26 209

10 319 484
W (Υ− 4h)

}
−h−2 24 995

5159 742
W (Υ− 5h)− h2

(
23 426 639

206 389 680
W (4) (Υ) +

12 741 989

20 638 968
W (4) (Υ− h)

+
5216 939

29 484 240
W (4) (Υ− 2h)− 1324 691

103 194 840
W (4) (Υ− 3h)

)
= o(h8).
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Proof. Applying the MUCs, we will aim to find

W (2) (0) = αW (0) + βW (h) + γW (2h) + dW (3h) + pW (4h) + qW (5h)

+h4mW (4) (0) + h4nW (4) (h) + h4fW (4) (2h) + h4wW (4) (3h) + o
(
h8
)
.

By applying Taylor’s formula, we obtain

W (2) (0) = αW (0) + β
9∑

l=0

hl

l!
W (l) (0) + γ

9∑
l=0

(2h)l

l!
W (l) (0) + d

9∑
l=0

(3h)l

l!
W (l) (0)

+p

9∑
l=0

(4h)l

l!
W (l) (0) + q

9∑
l=0

(5h)l

l!
W (l) (0) + h4mW (4) (0)

+h4n

5∑
l=0

hl

l!
W (l+4) (0) + h4f

5∑
l=0

(2h)l

l!
W (l+4) (0) + h4w

5∑
l=0

(3h)l

l!
W (l+4) (0) + o

(
h8
)
.

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.



d+ p+ α+ β + γ + q = 0,
3d+ 4p+ β + 2γ + 5q = 0,
9
2!d+ 16

2! p+ 1
2!β + 4

2!γ + 25
2! q = h−2,

27
3! d+ 64

3! p+ 1
3!β + 8

3!γ + 125
3! q = 0,

81
4! d+ 256

4! p+ 1
4!β + 16

4! γ + 625
4! q +m+ n+ f + w = 0,

243
5! d+ 1024

5! p+ 1
5!β + 32

5! γ + 3125
5! q + n+ 2f + 3w = 0,

729
6! d+ 4096

6! p+ 1
6!β + 64

6! γ + 15 625
6! q + 1

2!n+ 4
2!f + 9

2!w = 0,
2187
7! d+ 16 384

7! p+ 1
7!β + 128

7! γ + 78 125
7! q + 1

3!n+ 8
3!f + 27

3!w = 0,
38

8! d+ 48

8! p+ 1
8!β + 28

8! γ + 58

8! q + 1
4!n+ 16

4! f + 81
4!w = 0,

39

9! d+ 49

9! p+ 1
9!β + 29

9! γ + 59

9! q + 1
5!n+ 32

5! f + 243
5! w = 0.

Upon resolving this SAEs, we find α =
6937 573

3439 828
, β = −26 121 217

5159 742
, γ =

21 060 241

5159 742
, d = −892 879

859 957
,

p = − 26 209

10 319 484
, q =

24 995

5159 742
, m =

23 426 639

206 389 680
, n =

12 741 989

20 638 968
, f =

5216 939

29 484 240
, w = − 1324 691

103 194 840
.

So, relation (13) is proved. In a similar fashion, one can derive the relationship (14). Theorem 3.1 is
established.

Now, we consider the application of Theorems 1.1–1.4 and Theorem 3.1 for the numerical solution
of the BVP (2). Using the equation (2) and formulas (5), (7), (8), (9), (13), (14), and disregarding
minor terms, we can present the eighth order of approximation DS
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(
1 + 1

105h
4a(xk−2)

)
uk−2 +

(
−4 + 9

70h
4a(xk−1)

)
uk−1

+
(
6 +

(
76
105 −

97
1680h

4a(xk)
)
a(xk)h4

)
uk

+
(
−4 + 9

70h
4a(xk+1)

)
uk+1 +

(
1 + 1

105h
4a(xk+2)

)
uk+2

= h4
[(

76
105 + 97

1680h
4a(xk)

)
z(xk) + 9

70 (z(xk+1) + z(xk−1))

+ 1
105 (z(xk+2) + z(xk−2))− 97

1680h
4z(4)(xk)

]
, 2 ≤ k ≤ N − 2,(

6937 573
3439 828 −

23 426 639
206 389 680h

4a (0)
)
u0 −

(
26 121 217
5159 742 + 12 741 989

20 638 968h
4a(h)

)
u1

+
(
21 060 241
5159 742 −

5216 939
29 484 240h

4a(2h)
)
u2

−
(
892 879
859 957 −

1324 691
103 194 840h

4a(3h)
)
u3

− 26 209
10 319 484u4 + 24 995

5159 742u5 = h2η − 23 426 639
206 389 680f(0)

−
[
12 741 989
20 638 968f(h) + 5216 939

29 484 240f(2h)− 1324 691
103 194 840f(3h)

]
, u0 = ϕ,(

6937 573
3439 828 −

23 426 639
206 389 680h

4a (Υ)
)
uN

−
(
26 121 217
5159 742 + 12 741 989

20 638 968h
4a(Υ− h)

)
uN−1

+
(
21 060 241
5159 742 −

5216 939
29 484 240h

4a(Υ− 2h)
)
uN−2(

−892 879
859 957 + 1324 691

103 194 840h
4a(Υ− 3h)

)
uN−3 − 26 209

10 319 484uN−4

+ 24 995
5159 742uN−5 = h2ρ− h4

[
23 426 639
206 389 680z(Υ) + 12 741 989

20 638 968z(Υ− h)

+ 5216 939
29 484 240z(Υ− 2h)− 1324 691

103 194 840z(Υ− 3h)
]
, uN = ω,

(15)

for the numerical solution of the BVP (2).

4 Local BVP (3)

Let us consider BVP (3). For the application of TD’s on five points (5), we have to give the eighth
order of approximation formulas for W (3)(0) and W (3)(Υ).

Theorem 4.1. Let W (y) be a function defined on the interval [0,Υ] with a continuous eleventh
derivative. Then the subsequent relations hold:

W (3) (0)− h−3
{

126 630 131

4505 760
(W (h)−W (0))− 78 574 591

1501 920
(W (2h)−W (0)) (16)

+
45 949 355

901 152
(W (3h)−W (0))− 24 699 239

901 152
(W (4h)−W (0)) +

1667 173

214 560
(W (5h)−W (0))

−4609 391

4505 760
(W (6h)−W (0)) +

309 293

4505 760
(W (7h)−W (0))

}
+h

{
− 597 497

1501 920

(
W (4) (h)−W (4) (0)

)
+

1528 979

500 640

(
W (4) (2h)−W (4) (0)

)
−1173 833

500 640

(
W (4) (3h)−W (4) (0)

)}
= o

(
h8
)
,
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W (3) (Υ)− h−3
{
−126 630 131

4505 760
(W (Υ− h)−W (Υ)) (17)

+
78 574 591

1501 920
(W (Υ− 2h)−W (Υ))− 45 949 355

901 152
(W (Υ− 3h)−W (Υ))

+
24 699 239

901 152
(W (Υ− 4h)−W (Υ))− 1667 173

214 560
(W (Υ− 5h)−W (Υ))

+
4609 391

4505 760
(W (Υ− 6h)−W (Υ))− 309 293

4505 760
(W (Υ− 7h)−W (Υ))

}
+h

{
597 497

1501 920

(
W (4) (Υ− h)−W (4) (Υ)

)
− 1528 979

500 640

(
W (4) (Υ− 2h)−W (4) (Υ)

)
+

1173 833

500 640

(
W (4) (Υ− 3h)−W (4) (Υ)

)}
= o

(
h8
)
.

Proof. Applying the MUCs, we will aim to find

W (3) (0)− β (W (h)−W (0)) + γ (W (2h)−W (0)) + d (W (3h)−W (0))

+p (W (4h)−W (0)) + q (W (5h)−W (0)) + w(W (6h)−W (0)) + f (W (7h)−W (0))

+h4m
(
W (4) (h)−W (4) (0)

)
+ h4n(W (4) (2h)−W (4) (0)) + h4s

(
W (4) (3h)−W (4) (0)

)
= o

(
h8
)
.

By applying Taylor’s formula, we obtain

W (3) (0) = β

10∑
l=1

hl

l!
W (l) (0) + γ

10∑
l=1

(2h)l

l!
W (l) (0) + d

10∑
l=1

(3h)l

l!
W (l) (0)

+p
10∑
l=1

(4h)l

l!
W (l) (0) + q

10∑
l=1

(5h)l

l!
W (l) (0) + w

10∑
l=1

(6h)l

l!
W (l) (0)

+f

10∑
l=1

(7h)l

l!
W (l) (0) + h4m

5∑
l=1

hl

l!
W (4+l) (0)

+h4n
5∑

l=1

(2h)l

l!
W (4+l) (0) + h4s

5∑
l=1

(3h)l

l!
W (4+l) (0) + o

(
h8
)
.

To obtain the SAEs, equate the coefficients of the smallest power of h in the above identity to 0.

3d+ 4p+ 5q + 6w + β + 2γ + 7f = 0,
9
2!d+ 42

2! p+ 52

2! q + 62

2!w + 1
2!β + 4

2!γ + 72

2! f = 0,
33

3! d+ 43

3! p+ 53

3! q + 63

3!w + 1
3!β + 8

3!γ + 73

3! f = h−3,
34

4! d+ 44

4! p+ 54

4! q + 64

4!w + 1
4!β + 24

4! γ + 74

4! f = 0,
35

5! d+ 45

5! p+ 55

5! q + 65

5!w + 1
5!β + 25

5! γ + 75

5! f +m+ 2n+ 3s = 0,
36

6! d+ 46

6! p+ 56

6! q + 66

6!w + 1
6!β + 26

6! γ + 76

6! f + 1
2!m+ 4

2!n+ 32

2! s = 0,
37

7! d+ 47

7! p+ 57

7! q + 67

7!w + 1
7!β + 27

7! γ + 77

7! f + 1
3!m+ 8

3!n+ 33

3! s = 0,
38

8! d+ 486
8! p+ 58

8! q + 68

8!w + 1
8!β + 28

8! γ + 78

8! f + 1
4!m+ 16

4! n+ 34

4! s = 0,
39

9! d+ 49

9! p+ 59

9! q + 69

9!w + 1
9!β + 29

9! γ + 79

9! f + 1
5!m+ 32

5! n+ 35

5! s = 0,
310

10! d+ 410

10! p+ 510

10! q + 610

10!w + 1
10!β + 210

10! γ + 710

10! f + 1
6!m+ 64

6! n+ 36

6! s = 0.
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Upon resolving this SAEs, we find β =
126 630 131

4505 760h3
, γ = − 78 574 591

1501 920h3
, d =

45 949 355

901 152h3
,

p = −24 699 239

901 152h3
, q =

1667 173

214 560h3
, w = − 4609 391

4505 760h3
, f =

309 293

4505 760h3
, m = − 597 497

1501 920h3
,

n =
1528 979

500 640h3
, s = − 1173 833

500 640h3
. So, relation (16) is proved. In a similar fashion, one can derive

the relationship (17). Theorem 4.1 is established.

Now, we consider the application of Theorems 1.1–1.4 and Theorem 4.1 for the numerical solution
of the BVP (3). Using the equation (3) and formulas (5), (7), (8), (9), (16), (17), and disregarding
minor terms, we can present the eighth order of approximation DS

h−4(uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2) + bkuk (18)

+ckuk+1 + dkuk−1 + hkuk+2 + gkuk−2 = ϕk, 2 ≤ k ≤ N − 2,

a1,0u0 + a1,1u1 + a1,2u2 + a1,3u3 + a1,4u4 + a1,5u5 + a1,6u6 = −a1,7 + η,

u0 = ϕ, uN = ω,

a1,NuN + a1,N−1uN−1 + a1,N−2uN−2 + a1,N−3uN−3

+a1,N−4uN−4 + a1,N−5uN−5 + a1,N−6uN−6 = −a1,N−7 + ρ,

where

bk =

(
76

105
− 97

1680
h4a(yk)

)
a(yk)− 97

1680
h4a(4)(yk)− 697

1680
h4a′′(yk)6A20

k ,

ck =
9

70
a(yk+1)−

97

1680
h4
[
4a′(yk)B30

k + 6a′′(yk)B20
k + 4a′′′(yk)B10

k

]
,

dk =
9

70
a(yk−1)−

97

1680
h4
[
4a′(yk)C30

k + 6a′′(yk)C20
k + 4a′′′(yk)C10

k

]
,

hk =
1

105
a(yk+2)−

97

1680
h4
[
4a′(yk)D30

k + 6a′′(yk)D20
k + 4a′′′(yk)D10

k

]
,

gk =
1

105
a(yk−2)−

97

1680
h4
[
4a′(yk)E30

k + 6a′′(yk)E20
k + 4a′′′(yk)E10

k

]
,

ϕk =

(
76

105
+

97

1680
h4a(yk)

)
z(yk) +

9

70
(z(yk+1) + z(yk−1))

+
1

105
(z(yk+2) + z(yk−2))−

97

1680
h4z(4)(yk)

for the numerical solution of the BVP (3).

5 The nonlocal BVP (4)

Now, we consider the application of Theorems 1.1–1.4 and Theorems 2.1, 3.1, and 4.1 for the
numerical solution of the nonlocal BVP (4). Using the equation (4) and formulas (5), (7), (8), (9),
(10), (11), (13), (14), (16), (17), and disregarding minor terms, we can present the eighth order of
approximation DS
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h−4(uk+2 − 4uk+1 + 6uk − 4uk−1 + uk−2) +
(

76
105

− 97
1680h

4a(yk)
)
a(yk)uk + 9

70a(yk+1)uk+1 + a(yk−1)uk−1
+ 1

105 (a(yk+2)uk+2 + a(yk−2)uk−2) =
(

76
105 + 97

1680h
4a(yk)

)
z(yk)

+ 9
70 (z(yk+1) + z(yk−1)) + 1

105 (z(yk+2) + z(yk−2))

− 97
1680h

4z(4)(yk),
u0 = uN + ϕ,
h−1

{(
−5543

2590 + 9
1036h

4a (0)
)
u0 +

(
2223
518 + 69

518h
4a(h)

)
u1

−45
74u4 −

(
3735
1036 + 21

148h
4a(2h)

)
u2

+1535
777 u3 + 243

2590u5 −
23

3108u6
}

= h−1
{(

5543
2590 −

9
1036h

4a (0)
)
uN −

(
2223
518 + 69

518h
4a(h)

)
uN−1

+
(
3735
1036 + 21

148h
4a(2h)

)
uN−2 − 1535

777 uN−3
+45

74uN−4 −
243
2590uN−5 + 23

3108uN−6
}

+ η,

h−2
{(

6937 573
3439 828 −

23 426 639
206 389 680h

4a (0)
)
u0 −

(
26 121 217
5159 742

− +12 741 989
20 638 968h

4a(h)
)
u1 +

(
21 060 241
5159 742 −

5216 939
29 484 240h

4a(2h)
)
u2

−
(
892 879
859 957 −

1324 691
103 194 840h

4a(3h)
)
u3 − 26 209

10 319 484u4
+ 24 995

5159 742u5
}

= h−2
{(

6937 573
3439 828 −

23 426 639
206 389 680h

4a (Υ)
)
uN

+
(
−26 121 217

5159 742 −
12 741 989
20 638 968h

4a(Υ− h)
)
uN−1

+
(
21 060 241
5159 742 −

5216 939
29 484 240h

4a(Υ− 2h)
)
uN−2

+
(
−892 879

859 957 + 1324 691
103 194 840h

4a(Υ− 3h)
)
uN−3

− 26 209
10 319 484uN−4 + 24 995

5159 742uN−5
}

+ ω,

h−3
{(
−17 265 457

300 384 + 467 941
1501 920h

4a (0)
)
u0

+
(
126 630 131
4505 760 + 597 497

1501 920h
4a(h)

)
u1 −

(
4609 391
4505 760

+1528 979
500 640 h

4a(2h)
)
u2 +

(
45 949 355
901 152 + 1173 833

500 640 h
4a(3h)

)
u3

−24 699 239
901 152 u4 + 1667 173

214 560 u5 −
4609 391
4505 760u6 + 309 293

4505 760u7
}

= %+ h−3
{(

27 867 473
4505 760 −

467 941
1501 920h

4a (0)
)
uN

−
(
126 630 131
4505 760 + 597 497

1501 920h
4a(h)

)
uN−1 +

(
78 574 591
1501 920 +

1528 979
500 640 h

4a(2h)
)
uN−2 +

(
−45 949 355

901 152 −
1173 833
500 640 h

4a(3h)
)
uN−3

+24 699 239
901 152 uN−4 − 1667 173

214 560 uN−5 + 4609 391
4505 760uN−6 −

309 293
4505 760uN−7

}

(19)

for the numerical solution of the nonlocal BVP (4).

Now, for numerical analysis we consider the BVPs (1)–(4), for the simple case when Υ = 1,
a (y) = 1, ϕ = η = ω = χ = 0, and

z(y) =
y8(1− y)8

8!
+

1

120
y4 (y − 1)4

(
130y4 − 260y3 + 182y2 − 52y + 5

)
.

Then,

U(y) =
y8(1− y)8

8!

is the exact solution of these BVPs. For solving these problems, we use the eighth order of approxi-
mation DSs (12), (15), (18), and (19), respectively, with different values of h. The error is computed
by

EN = max
0≤k≤N

|u(yk)− uk|.

The error analysis shown in Table indicates that all DSs have correct convergence rates.
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T a b l e

Numerical Results

h = 1
N

N = 40 N = 80 N = 160

DS (12) 1.2225e-13 5.5447e-15 3.0095e-16
DS (15) 2.0641e-12 3.7546e-14 6.4559e-16
DS (18) 5.2435e-13 1.2208e-14 3.1736e-16
DS (19) 3.6094e-09 1.7743e-10 6.4050e-12

Conclusion

1. In this work, we examine LNBVPs for FODEs with variable coefficients. We develop and analyze
finite DSs of eighth-order accuracy using a novel method based on five-point grids for addressing these
problems. Our findings are validated through extensive numerical experiments.

2. Highly accurate four-step finite DSs for solving LNBVPs of the general FODE

u(4)(s) + d(s)u(3) (s) + c(s)u(2) (s) + b(s)u(1) (s) + a(s)u(s) = Ψ(s), 0 < s < Υ

will be presented and investigated.
3. Highly accurate four-step finite DSs for solving LNBVPs for elliptic FODEs

u(4)(s) +Au(s) = Ψ(s), 0 < s < Υ

will be constructed and studied. Here A is a self-adjoint positive definite operator in a Hilbert space H.
The stability of these DSs is ensured by the operator method discussed in reference [1].
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This work investigates the structure of punctual numberings for families of punctually enumerable sets
with respect to primitive recursively reducibility. We say that a numbering of a certain family is primi-
tive recursively reducible to another numeration of the same family if there exists a primitive recursively
procedure (an algorithm not employing unbounded search) mapping the numbers of objects in the first
numbering to the numbers of the same objects in the second numbering. This study was motivated by
the work of Bazhenov, Mustafa, and Ospichev on punctual Rogers semilattices for families of primitive
recursively enumerable functions. The concept of punctually enumerable sets was introduced in the paper,
and it was proven that not all recursively enumerable sets are punctually enumerable, but in all m-degrees,
recursively enumerable sets include punctually enumerable sets. For two-element families of punctual sets,
it was demonstrated that punctual Rogers semilattices can be of at least three types: (1) one-element
family, (2) isomorphic to the upper semilattice of recursively enumerable sets with respect to primitive re-
cursively m-reducibility, (3) without the greatest element. It was also proven that the set of all punctually
enumerable sets does not have a punctual numbering, and punctual families with a Friedberg numbering
do not have the least numbering.

Keywords: primitive recursive functions, punctually enumerable sets, Rogers semilattice, quick functions,
punctual numberings.
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Introduction

Theory of computable numberings is one of the actively developing areas in the computability
theory. Numbering of a countable set S is any surjective mapping ν : ω → S (Here and further as ω
we denote the set of natural numbers). A numbering ν is called computable if the set

{〈n, x〉 : n ∈ ω, x ∈ ν(n)}

is computably enumerable (c.e.) set.
The set of all computable numberings for family S denotes as Com(S). Let ν and µ are numberings

for family S. Numbering ν is reducible to µ if there is computable function f such that ν = µ ◦ f
(denotes ν ≤ µ). This reducibility induces a partially preordered set structure, which factor structure
is called Rogers semilattice for family S and denoted as R(S).

There are several interesting results known about Rogers semilattice. For example, if S is a family of
c.e. sets, then either |R(S)| = 1 or |R(S)| =∞ [1]. In the case when |R(S)| =∞ the semilattice is not
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a lattice [2]. There is a universal numbering of all partial computable functions [3] and a computable
numbering of all c.e. sets without repetitions [4] (these numberings are called friedberg numbering).
For more information about the properties of the classical Rogers semilattice, refer to the following
articles: [5–8].

In recent years, under the influence of the work [9], interest in primitive recursive (or punctual)
properties of algebraic structures has increased. The next articles will help you to find more infor-
mation about punctual structures [10–27]. In connection with this, studying the punctual properties
of numberings is also relevant. Bazhenov, Mustafa, and Ospichev considered punctual numberings
of families of functions in their article [28]. The authors established punctual reducibility between
numberings, induced by primitive recursive functions, leading to the creation of upper semilattices of
degrees known as Rogers pr-semilattices. They demonstrated that any infinite, uniformly primitive
recursive family S induces an infinite Rogers pr-semilattice R. It was proven that the semilattice R
is downwards dense, with every nontrivial interval within R containing an infinite antichain. Addi-
tionally, every non-greatest element in R is a part of an infinite antichain. The authors showed that
the Σ1-fragment of the theory Th(R) is decidable. Several examples were provided to emphasize the
contrasts between the punctual framework and the classical theory of computable numberings. No-
tably, it was demonstrated that some infinite Rogers pr-semilattices R are lattices, while others are
not. The authors obtained a series of results concerning special classes of punctual numberings, includ-
ing Friedberg numberings and decidable numberings with primitive recursive numeration equivalence.
This paper is a logical continuation of the article [28] and aims to investigate punctual numberings for
families of sets.

In Chapter 2, we introduce punctual analogs of concepts standard in the theory of computable
numberings and define the punctual Rogers semilattice for sets. Chapter 3 is devoted to the structural
properties of c.e. degrees induced by the restriction of m-reducibility by primitive recursive functions
(called prm-reducibility). Chapters 4 and 5 present some properties of the punctual Rogers semilattice
for finite and infinite families, including its connection with the structure of c.e. prm-degrees.

We adhere to the notations and terminology adopted in [29, 30]. We denote by {pe}e∈ω the com-
putable numbering of all primitive recursive functions. In this article we will consider restricted Church-
Turing thesis for primitive recursive functions. We can define this thesis as follows: a function is
primitive recursive if and only if it can be described by an algorithm that uses only bounded loops.
More about restricted Church-Turing thesis you can find in the work [31].

1 Punctually enumerable sets and numberings

In the paper [28], the numbering ν of a family of primitive recursive functions is called “punctual”
if the function gν(n, x) := (ν(n))(x) is primitive recursive. It seems natural to attempt to extend this
definition to a family of c.e. sets, but here we face some difficulties.

The thing is, such a definition of punctual numbering yields the same class of computable number-
ings for families of c.e. sets because any c.e. set can be represented as the range of a primitive recursive
function, which means that a family can be enumerated in a punctual way. On the other hand, even
with the presence of a punctual enumeration of a c.e. set, it is not always possible to use primitive
recursive constructions, for example, due to the unbounded repetition of elements in the enumeration.
In this regard, it makes sense to consider families of sets with stricter enumeration constraints than
c.e. sets.

Definition 1. A set A is called punctually enumerable, if there is a primitive recursive function p,
such that

1) A = range(p), and
2) If p(x) = p(y) for some x < y, then range(p) = {p(0), p(1), . . . , p(x)}.
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We will call the function p as a quick function for A.

Thus, the quick function p from the definition is injective for an infinite set A, and for a finite set
it eventually enumerates all of its elements and then starts repeating them.

Definition 2. A numbering ν of a family S of punctually enumerable sets is called punctual, if
there exists a primitive recursive function gν(n, x) such that λx.gν(n, x) is a quick function for ν(n)
for any n. The set of all punctual numberings for family S we will denote as Compr(S).

Reductions on numberings are defined analogously to [28].

Definition 3. We say that numbering ν is punctually reducible to numbering µ (denoted as ν ≤pr µ),
if there is primitive recursive function f such that ν = µ ◦ f .

Numberings ν and µ are punctually equivalent and denote as ν ≡pr µ, if ν ≤pr µ and µ ≤pr ν.
As in the computable case, the least upper bound of the numberings ν and µ is the numbering

ν ⊕ µ, which is defined as

(ν ⊕ µ)(2x) = ν(x), (ν ⊕ µ)(2x+ 1) = µ(x).

As punctual Rogers semilattice of the family of punctually enumerable sets S, we will call partially
ordered set Rpr(S) = (Compr(S)/≡pr

,≤pr,⊕).
The following theorem demonstrates the independence of the concepts of primitive recursive set

(having primitive recursive characteristic function) and punctually enumerable.

Theorem 1. There exist sets A and B such that A is punctually enumerable but not primitive
recursive, and B is primitive recursive but not punctually enumerable.

Proof. As a set A we can choose the set K ⊕ ω. For this set its quick function we can construct as
follows: we fix a primitive recursive approximation of the creative set K, denoted Ki, which at each
step enumerates at most one element. Then, we set f(0) = 1, and f(x) = 2s, where s ∈ Kx \Kx−1, if
such s exists. If there is no such s, then f(x) is defined as the smallest odd number that has not been
used before. It is clear that f is injective primitive recursive function and A is the range of f .

For set B we will construct its primitive recursive characteristic function φ such that for B there
is no quick function. We fix a computable numbering of all injective primitive recursive functions with
the following condition

ie(x)[t] ↓= a⇒ a < t.

We will define B as a infinite set. So, it is sufficient that there is no injective quick function for B.
At step s we will define φ(s) as follow: Assume that k is the cardinality of the set {t : φ(t) =

1 & t < s}. If there is more that k elements x ≤ s such that ik(x)[s] ↓, then define φ(s) = 1. Otherwise,
define φ(s) = 0.

It is not hard to see that B is infinite set and any ik can not enumerate B.

2 The structure of prm-degrees

In recent work [32] considered a many-one reductions for computable sets under primitive recursive
functions, and have been proven that first-order theory of upper semilattice of degrees of computable
sets with respect to primitive recursive many-one reducibility is hereditarily undecidable.

Definition 4. [32] The set A is prm-reducible to the set B (written as A ≤prm B), if there exists a
primitive recursive function f such that A ≤m B via f .

Remark 1. The computable m-degree contains infinitely many prm-degrees.

Theorem 2. For any c.e., but not computable set A, there is c.e. set B such that A ≡m B and
A �pr

m B.
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Proof. Let’s define computable majorant for all primitive recursive functions:

f(0) = p0(0) + 1,

f(x+ 1) = max
i,j≤x+1

{pi(j), f(x)}+ 1.

Note that f is not primitive recursive but the set range(f) is primitive recursive.
Let B = f(A) = {f(x) : x ∈ A}.
It is clear, that A ≤fm B, since f is strongly increasing, then x ∈ B ⇔ ∃n 6 x (n ∈ A& f(n) = x),

which means that reverse reducibility is correct.
Let’s show that if A ≤prm B, then A is computable. We fix primitive recursive function pe, which

reduces A to B, and also step s such that A � e = As � e (here by A � e denotes the set {x : x ∈
A & x ≤ e}).

Let x be an arbitrary number. If x 6 e, then x ∈ A⇔ x ∈ As. Otherwise, we check the following
condition: pe(x) ∈ range(f)? If it is not, then x /∈ A. If it is, we effectively find zo such that
f(z0) = pe(x).

Repeat for z0 same procedure as we did for x, and, if z0 > e, then we find number z1 such that
f(z1) = pe(z0) and so on. As a result, we receive sequence (zk)k. Since f(z0) = pe(x) < f(x), by
definition of f , then z0 < x, consequently, the sequence (zk)k decreases and we find k, such that
pe(zk) /∈ range(f) or zk 6 e. Then x ∈ A ⇔ pe(x) = f(z0) ⇔ z0 ∈ A ⇔ pe(z0) = f(z1) ⇔
· · · ⇔ pe(zk−1) = f(zk) ⇔ zk ∈ A. If pe(zk) /∈ range(f), then zk /∈ A, otherwise zk 6 e and
zk ∈ A⇔ zk ∈ As.

Thus, we can effectively define that x belongs to A or not.

Corollary 1. Every non-computable c.e. m-degree contains infinitely many prm-degrees.

Proof. Let A0 be non-computable c.e. set. By using the previous theorem, we will build c.e. set A1

such that A0 ≡m A1 and A0 �pr
m A1, for A1 similarly build A2, and for A2 build A3 and so on. All sets

An, n ∈ ω are m-equivalent, and for i < j set Ai m-reduces to Aj by f j−i(x) ((j − i)-th composition
of function f from the previous theorem), consequently, Ai �pr

m Aj . Here, note that B = f(A) ≤prm A.
(Proof is similar).

3 Punctual semilattice of two-element families

In the work [28] it was shown that the punctual Rogers semilattice of a finite family of functions
always has exactly one element. However, it turns out that this is not the case for families of sets.

In this chapter we assume, that S = {A,B}, where A,B are different punctually enumerable sets.
Note that in this case Rpr(S) 6= ∅, since the function

α(n)(x) =

{
f(x), for n = 2k,

g(x), for n = 2k + 1,

where f and g are quick functions for A and B respectively, gives the punctual numbering of the
family S.

Proposition 1. Let S is punctual two-element family such that A or B is finite then |Rpr(S)| = 1.

Proof. Let |A| = N 6 |B|; f and g are quick functions of the sets A and B, respectively.
Let ν, µ ∈ Compr(S) are arbitrary and kν , kµ their quick functions. Let’s show that ν ≡pr µ.
Fix numbers a and b such that µ(a) = A and µ(b) = B. Then ν 6pr µ by primitive recursive

function h, which defines as:
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h(n) =

{
a, if |kν(n, ·) � N | 6 N,
b, otherwise.

Really, |kν(n, ·) � N | 6 N means that quick function kν on N -th argument starts to repeat the
values, consequently, |ν(n)| 6 N and that’s why ν(n) = A = µ(a).

Reverse reducibility is proved similarly.

Proposition 2. Let S be a two-element family such that A and B are infinite, A ∩ B is finite and
one of the sets is primitive recursive, then |Rpr(S)| = 1.

Proof. Let |A ∩B| = N and A is primitive recursive.
Let’s take two numberings ν and µ of the family S and fix numbers a and b such that µ(a) = A

and µ(b) = B.

We define

h(n) =

{
a, if ∃x ∈ (kν(n, ·) � N) ∩ (A \B),

b, otherwise.

Note, that |kν(n, ·) � N | > |A ∩ B| ⇒ ∃x ∈ (kν(n, ·) � N) \ (A ∩ B). We can check that x belongs
to A by primitive recursive procedure, and ν(n) = A⇔ x ∈ A. Consequently, ν 6pr µ by function h.
It is clear that reverse reducibility is true, then ν ≡pr µ.

Theorem 3. There exists family S = {A,B}, where |A ∩ B| < ∞, such that there is no universal
numbering for S.

Proof. We will build the sets A, B and numbering αe for family S = {A,B}, satisfying the following
requirements:

Pe,i : πe ∈ Compr(S)→ αe 6≤pr πe by function pi,

where πe is computable numbering of all primitive recursive numberings, pi is computable numbering
of all primitive recursive functions. Let ke be primitive recursive quick function for numbering πe.

Strategy for Pe,i:
1) Pick we,i – the least number, that we do not use before.
2) Wait until pi(we,i) ↓ and ke(pi(we,i), 0) ↓ on the step t. While we are waiting, list to αe(we,i)

new numbers.
3) We perform one of the following cases:
Case 1: If ke(pi(we,i), 0) ∈ B, then all elements that we listed to αe(we,i) until this step, we add to

A. Also, we add to α(we,i) all elements from A. After this, we add to αe(we,i) all elements
that we add to A.

Case 2: If ke(pi(we,i), 0) ∈ A, then all elements that we listed to αe(we,i) until this step, we add to
B. Also, we add to α(we,i) all elements from B. After this, we add to αe(we,i) all elements
that we add to B.

Case 3: If ke(pi(we,i), 0) 6∈ A ∪B, then ke(pi(we,i), 0) ∈ B and return to the Case 1.
Construction. Fix effective linear order of requirements:

P0,0 < P1,0 < P0,1 < P2,0 < P1,1 < P0,2 < ...

On step s of the construction we visit the first s strategies from the list. At every step, fresh
numbers are selected and thrown into the sets A or B.
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Let πe ∈ Compr(S), by this we build αe and let there is primitive recursive function pi, such that
αe ≤pr πe by function pi. So the following should be performed:

∀x[αe(x) = πe(pi(x))].

Let’s check the witness we,i in Pe,i. By construction, while pi(we,i) defines on step t, in αe(we,i) we
add new numbers. Suppose that on stage 3 the number ke(pi(we,i), 0) is in the set B, since A∩B = ∅,
the following performed πe(pi(we,i)) = B. But, by construction αe(ww,i) = A. This contradicts to
reducibility αe to πe.

For case, when the number ke(pi(we,i), 0) is in the set A, we do the same action. If number
ke(pi(we,i), 0) 6∈ A ∪B, then the action is performed as in the first case.

Proposition 3. Let S be two-elemented family, such that A ⊂ B, then |Rpr(S)| =∞ with universal
numbering.

Proof. Since the sets A and B are punctually enumerable, then there are functions p, q – quick
functions for A and B, respectively.

We will build the numberings for family S as follows:
Let W be arbitrary c.e. set, which is not empty and not ω, then numbering ν defines as:

νW (x) =

{
A, if x /∈W,
B, if x ∈W.

W = ∪sWs.
Quick function λx.h(x, y) of the numbering ν will add elements as:
On step 0. hν(x, 0) = p(0).
On step s.
1) hν(x, s) = p(s), if x /∈Ws,
2) hν(x, s) = q(µz≤s+1[q(z) /∈ hν(x, ·) � s]), if x ∈Ws.
It is easy to check, that for an arbitrary Wi, which is not empty and not ω, we can decide that

νWi ∈ Compr(S).
Wi reduces to Wj by primitive recursive function if and only if νWi reduces by primitive recursive

function to νWj .
Now, let α be an arbitrary punctual numbering of the family S. Then we can find c.e. set Wi such

that α = νWi . Since α is numbering of the family S, and Wi is not empty, then there is an element
b ∈ B \ A, then we can define the function ϕ(x) = µz[hα(x, z) = b], which is range of c.e. set Wi.
Which means that Rpr(S) is isomorphic to L0prm.

It is known, that the set K0 = {〈x, y〉|x ∈Wy} is universal in L0prm. Consequently, νK0 is universal
punctual numbering of the family S.

Note that Rpr(S) is isomorphic to the upper semilattice of all c.e. sets under pr-many-one re-
ducibility. By [32] we can say that first-order theory of Rpr(S) is undecidable.

Proposition 4. There exists the family S = {A,B} such that |A ∩ B| = ∞ and |Rpr(S)| = ∞
without universal numbering.

Proof. Let A = ω \ {0} and B = ω \ {1}. And let µ be an arbitrary numbering of the family S.
We will build the numbering ν ∈ Compr(S) so that ν �pr µ.

We will construct quick function qν for ν as follows:

qν(w, y) =


y + 2, {0, 1} ∩ hµ(pe(w) ↓, ·) � y = ∅;
0, hµ(pe(w), y) = 1;
1, hµ(pe(w), y) = 0;
y + 1, {0, 1} ∩ hµ(pe(w) ↓, ·) � y 6= ∅,
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where h is quick function of the numbering µ and pe is function that does not reduce ν to µ.
Let numbering ν reduces to numbering µ by primitive recursive function p, then there is w such

that ν(w) = 0 and µ(p(w)) = 1 or ν(w) = 1 and µ(p(w)) = 0. Contradiction.
Since µ is an arbitrary numbering from the Compr(S), then for any numbering from Compr(S) we

can construct ν, which does not reduce to µ, which means that there is no universal numbering in this
family.

4 Punctual semilattice of the infinite families

Theorem 4. There is no punctual numbering for the family of all punctually enumerable sets.

Proof. Suppose that there is the numbering ν for the family of all punctually enumerable sets. Let
g(x, y) be a quick function for ν. We construct punctually enumerable set A such that ν(e) 6= A for
all e ∈ ω; thus we will come to the contradiction.

Let q(0) = p(0, 0) + 1 and q(n+ 1) = max({p(n+ 1, z) : z ≤ n+ 1} ∪ {q(n)}) + 1.
It is clear that q is primitive recursive increasing function. Assume A = range(q).
By contradiction, assume ν(n) = A for some n ∈ ω. Since, A is infinite, the function λy.g(n, y) is

injective. It is clear that the set {p(n, z) : z ≤ n} has n+1 different elements, hence in {p(n, z) : z ≤ n}
there is a number greater than q(n). Contradiction.

Corollary 2. There is no punctual numbering for the family of all primitive recursive punctually
enumerable sets.

The proof of corollary is the same as the proof of the theorem.

Definition 5. The numbering ν ∈ Compr(S) is called friedberg, if it is injective.

Proposition 5. If the infinite family S has friedberg numbering, then
1) Rpr(S) does not have the least element,
2) |Rpr(S)| =∞.

Proof. 1) Let ν be friedberg numbering for the infinite family S. Suppose that α is the least
numbering of the family S. Then α ≤pr ν by primitive recursive function g, which means that alpha is
punctually decidable, since ∀n,mα(m) = α(n) ⇔ ν(g(m)) = ν(g(n)) ⇔ g(m) = g(n). Consequently
([28], Proposition 3.1(ii)), there is spd-numbering µ ≡pr α. By using the construction from the Theorem
4.1 of the same paper, we can construct the numbering µ0 <pr µ, which contradicts to choice of α.

2) Let ν be friedberg numbering of the infinite family S. Consider µ = ν ◦f , where f is a primitive
recursive bijective function such that f−1 is not primitive recursive (existence of such function is shown
in [33]). It is clear, that µ ≤pr ν and µ friedberg: µ(m) = µ(n) ⇔ ν(f(m)) = ν(f(n)) ⇔ f(m) =
f(n) ⇔ m = n. Wherein, ν = µ ◦ f−1 and f−1 is not primitive recursive, which means that ν 6≤pr µ.
Thus µ <pr ν. Continuing the process, you can build an endless-waning chain of friedberg numberings,
from where we get required.
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In this article, the existence and uniqueness of solutions for non-linear fractional differential equation
with Tempered Ψ−Caputo derivative with three-point boundary conditions were studied. The existence
and uniqueness of the solution were proved by applying the Banach contraction mapping principle and
Schaefer’s fixed point theorem.

Keywords: fractional differential equations, tempered Ψ−Caputo derivative, nonlinear analysis, Schaefer’s
fixed point theorem; Banach contraction.
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Introduction

Fractional calculus is a strong tool of mathematical analysis that studies derivatives and integrals
of a fractional order. Fractional differential equations (FDEs) are used in many fields of engineering
and sciences such as physics, mechanics, chemistry, viscoelasticity, electro chemistry, porous media,
electromagnetic, for more details see the books [1–3] and applicable papers [4–10].

One of the useful generalizations of a fractional derivative and an integral is associated with a
dependent function [11]. Mali et al. developed well the theory of tempered fractional integrals and
derivatives of a function with respect to another function [12]. This theory combines the tempered
fractional calculus with the ψ-fractional calculus, both of which have found applications in topics
including continuous time random walks. In [13], Benchohra et al., by means of the Banach fixed point
theorem and the nonlinear alternative of Leray-Schauder type, proved the existence of solutions for
the first order boundary value problem (BVP) for a FDE

DηCκ(w) = h(w,κ(w)), w, η ∈ Ω := (0, 1), (1)

under condition pκ(0) + qκ(1) = h◦. In 1996, authors proved existence and uniqueness of problem (1),
for w ∈ Ω, where h : [0,>] × R → R, 0 < > < +∞ is a given continuous function [14]. Also, the
authors in [15] by the Banach contraction principle and Schauder’s fixed point theorem investigated the
existence of solutions for problem (1) with integral conditions κ(0) + p

∫ >
0 κ(ζ̀) dζ̀ = κ(>). Recently,

∗Corresponding author. E-mail: mesamei@basu.ac.ir, mesamei@gmail.com
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authors have presented very valuable works on the ability of fractional derivatives and fractional q-
derivatives with Caputo sense [16–23]. Salim et al. concerned some existence and uniqueness results
for a class of problems for nonlinear Caputo tempered implicit FDEs{

Dη,ψC;κ1,ξ
κ(w) = h

(
w,κ(w),Dη,ψC;κ1,ξ

κ(w)
)
, w ∈ [κ1, κ2], η ∈ Ω,

p1κ(κ1) + p2κ(κ2) = p3κ(η) + q,
(2)

in b-Metric spaces with three-point boundary conditions, where h ∈ C(Ω × R2), κ1 < η < κ2 < +∞
and pi, i = 1, 2, 3, q are real constants [24]. For more instance, consider [25–27].

Motivated by the studies [28–33], we characterize an alteration of the Ψ−Caputo derivative, the
Tempered Ψ−Caputo derivative and consider the Cauchy problem for FDEs with this type of a frac-
tional derivative. This derivative incorporates as uncommon cases the Tempered Caputo [30]. In this
manner, we study the following (BVP) for a FDE with the tempered Ψ−Caputo fractional derivative
type {

Dη,λ,ψC κ(w) = h(w,κ(w)), w ∈ J̄ = [0,>], η ∈ Ω,

p1κ(0) + p2κ(>◦) + p3κ(>) = q,
(3)

where h : J̄×R2 is a continuous function, Dη,λ,ψC is a Tempered Ψ−Caputo fractional derivative, increase
function Ψ is a continuously differentiable on [0,∞) with Ψ(0) = 0, Ψ′(w) > 0, for each w ∈ (0,∞),
limw→∞Ψ(w) = ∞, pi (i = 1, 2, 3) are real constants with q́ = p1 + p2e

−λΨ(>◦) + p3e
−λΨ(>), q́ 6= 0,

0 < >◦ < >.
In Section 2, we give a result, based on Banach (Theorem 2) and Schaefer’s (Theorem 3) fixed

point theorems. In Section 2.2, a case is given that illustrates the application of our primary comes
about. These comes about can be considered as a commitment to this developing field.

1 Preliminaries

In this section we present definitions and theorems from fractional calculus theory which are used
in this paper. Let Ψ ∈ Cn[>1,>2] be an increasing differentiable function for all >1 ≤ w ≤ >2. The
tempered Ψ-fractional integral of an order n− 1 < η < n (n ∈ N) is present by

Iη,λ,Ψ>1
κ(w) =

∫ w

>1

(Ψ̃
ζ̀
(w))η−1 e

−λΨ̃
ζ̀

(w)
Ψ′(ζ̀)

Γ(η) κ(ζ̀) dζ̀, λ > 0,

where Ψ̃v(w) = Ψ(w) − Ψ(v). Now, let Ψ′(w) 6= 0 for all w ∈ [>1,>2]. The tempered Ψ−Caputo
fractional derivative of an order η is defined as

Dη,λ,ΨC;>1
κ(w) =

∫ w

>1

e−λΨ(w)Ψ′(w)
Γ(n−η) (Ψ̃

ζ̀
(w))n−η−1κ[n]

λ,Ψ(ζ̀) dζ̀, λ > 0,

where κ[n]
λ,Ψ(w) =

[
1

Ψ′(w)
d

dw

]n (
eλΨ(w)κ(w)

)
. By employing the above assumptions the next theorem is

satisfied.

Theorem 1. Let Ψ ∈ Cn[>1,>2]. Then the following holds (I) Dη,λ,ΨC;>1

[
Iη,λ,Ψ>1

κ(w)
]

= κ(w);

(II) Iη,λ,Ψ>1

[
Dη,λ,ΨC;>1

(κ(w))
]

= κ(w)− e−λΨ(w)
n−1∑
k=0

hk
[
Ψ̃>1(w)

]k where

hk =
κ[k]
λ,Ψ(>1)

k! = 1
k!

[
1

Ψ′(w)
d

dw

] (
eλΨ(w)κ(w)

) ∣∣
w=>1

.
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2 Main results

In this section, we consider BVP (3). We consider the norm |κ|∞ := sup
{
κ(w) : w ∈ J̄

}
on space

C(J̄).

2.1 Existence of solution

Let us start by defining what we mean by a solution of BVP (3).

Definition 1. A continuous function κ : J̄ → R is a solution of the BVP (3), if Dη,λ,ψC κ(w) exists
for all w ∈ J̄, continuous on J̄, and κ(w) fulfils equality (3) for all w ∈ J̄.

Lemma 1. Let the function h ∈ C(J̄×R) be bounded. Then the function κ(w) is a solution of the
BVP (3) defined on the interval J̄ iff it is a solution of the following equation

κ(w) = q
q́e
−λΨ(w) +

∫ >
0
G(w, ζ̀)Ψ′(ζ̀)

Γ(η) h(ζ̀,κ(ζ̀)) dζ̀

with G(w, v) = G1(w, v), whenever 0 ≤ w ≤ >◦, and G(w, v) = G2(w, v), whenever >◦ < w ≤ >,
where

G1(w, v) =


−p2e−λΨ(w)

q́ (Ψ̃v(>◦))η−1e−λΨ̃v(>◦)

−p3e−λΨ(w)

q́ (Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))η−1e−λΨ̃v(w), 0 ≤ v ≤ w,

−p2e−λΨ(w)

q́ (Ψ̃v(>◦))η−1e−λΨ̃v(>◦) − p3e−λΨ(w)

q́ (Ψ̃v(>))η−1e−λΨ̃v(>), w < v ≤ >,
−p3e−λΨ(w)

q́ (Ψ̃v(>))η−1e−λΨ̃v(>), >◦ < v ≤ >,

G2(w, v) =


−p2

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>)

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))η−1e−λΨ̃v(w), 0 ≤ v ≤ >◦,

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))η−1e−λΨ̃v(w), >◦ < v ≤ w,

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>), w < v ≤ >.

Proof. By performing the integral I ,ηλ,Ψ0 to both of Equation (3) and applying assertion (2) of
Theorem 1, we get κ(w) = c0e

−λΨ(w) + 1
Γ(η)

∫ w
0 (Ψ̃

ζ̀
(w))η−1e−λΨ̃

ζ̀
(w)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀. Using condi-

tion (3) we have

c0 = q
q́ −

p2

q́

∫ >◦
0

(Ψ̃
ζ̀
(>◦))η−1 e

−λΨ̃
ζ̀

(>◦)

Γ(η) Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

−
∫ >

0
(Ψ̃

ζ̀
(>))η−1 p3e

−λΨ̃
ζ̀

(>)

q́Γ(η) Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀,

then the unique solution of (3) is given by the formula

κ(w) = q
q́e
−λΨ(w) − p2e−λΨ(w)

q́Γ(η)

∫ >◦
0

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

− p3

q́Γ(α)e
−λΨ(w)

∫ >
0

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ w

0
(Ψ̃

ζ̀
(w))η−1 e

−λΨ̃
ζ̀

(w)

Γ(η) Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀. (4)
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Let 0 ≤ w ≤ >◦. Then (4) can be rewritten

κ(w) = q
q́e
−λΨ(w) − p2e−λΨ(w)

q́Γ(η)

{∫ w

0
(Ψ̃ξ(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ >◦
w

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

}
− p3

q́Γ(η)e
−λΨ(w)

{∫ w

0
(Ψ̃

ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ >◦
w

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ >
>◦

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

}
+ 1

Γ(η)

∫ w

0
(Ψ̃

ζ̀
(w))η−1e−λΨ̃

ζ̀
(w)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀.

Here grouping the like terms, and then simplifying, we get the new function as follows

G1(w, v) =


−p2

q́ e
−λΨ(w)(Ψ̃v(>◦))η−1e−λΨ̃v(>◦)

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))η−1e−λΨ̃v(w), 0 ≤ v ≤ w,

−p2

q́ e
−λΨ(w)(Ψ̃v(>◦))η−1e−λΨ̃v(>◦) − p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>), w < v ≤ >,

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>), >◦ < v ≤ >,

using this equality, relation (4) may be written as an integral equation,

κ(w) = q
q́e
−λΨ(w) + 1

Γ(η)

∫ >◦
0

G1(w, ζ̀)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀,

for the case w ∈ [>◦,>] we can write equality (4) in the form

κ(w) = q
q́e
−λΨ(w) − p2e−λΨ(w)

q́Γ(η)

∫ >◦
0

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

− p3e−λΨ(w)

q́Γ(η)

{∫ >◦
0

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ w

>◦
(Ψ̃

ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

+

∫ >
w

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

}
+ 1

Γ(η)

{∫ >◦
0

(Ψ̃
ζ̀
(w))η−1e−λΨ̃

ζ̀
(w)Ψ′(η)h(ζ̀,κ(ζ̀)) dζ̀

}
+

∫ w

>◦
(Ψ̃

ζ̀
(w))η−1e−λΨ̃

ζ̀
(w)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀.

Here we introduce the new function

G2(w, v) =


−p2

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>)

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))eta−1e−λΨ̃v(w), 0 ≤ v ≤ >◦,

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>) + (Ψ̃v(w))η−1e−λΨ̃v(w), >◦ < v ≤ w,

−p3

q́ e
−λΨ(w)(Ψ̃v(>))η−1e−λΨ̃v(>), w < v ≤ >.
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Hence for the case w ∈ [>◦,>], we can write (4) in the form κ(w) = q
q́e
−λΨ(w) + 1

Γ(η)

∫ >
>◦ G2(w, ζ̀)

Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀. So, we conclude that the solution of BVP (3) has the form κ(w) = q
q́e
−λΨ(w) +∫ >

0 G(w, ζ̀)Ψ′(ζ̀)
Γ(η) h(ζ̀,κ(ζ̀)) dζ̀. The proof is completed.

Theorem 2. Assume that

(H1) There exists a constant k > 0 such that |h(w, v1)− h(w, v2)| 6 k|v1 − v2|, for all w ∈ J̄, and for
each v1, v2 ∈ R.

If k/λη (|p2/q́|+ |p3/q́|+ 1) < 1, then the BVP (3) has a unique solution on J̄.

Proof. We transform the problem (3) into a fixed point problem considering the operator
O : C(J̄)→ C(J̄) defined by

O(κ)(w) = q
q́e
−λΨ(w) +

∫ >
0
G(w, ζ̀)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀. (5)

It isn’t troublesome to see that, a fixed point O is a solution of (3). We might utilize the Banach
contraction principle to demonstrate that O characterized by (3) includes a fixed point and O is a
contraction.

Case 1: Let w ∈ J̄, so we have

|O(κ1)(w)−O(κ2)(w)| =
∣∣∣∣∫ >

0

G1(w, ζ̀) Ψ′(ζ̀)
Γ(η)

[
h(ζ̀,κ1(ζ̀))− h(ζ̀,κ2(ζ̀))

]
dζ̀

∣∣∣∣
≤ k|κ1−κ2|

Γ(η)

∫ >
0

|G1(w, ζ̀)|Ψ′(ζ̀) dζ̀

≤ k|κ1−κ2|
Γ(η)

(∣∣∣ p2
q́

∣∣∣ e−λΨ(w)

{∫ w

0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

+

∫ w

0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

}
+
∣∣∣ p3
q́

∣∣∣ e−λΨ(w)

{∫ w

0

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀

+

∫ >◦
w

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀ +

∫ >
>◦

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀

}
+

∫ w

0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

)
≤ k|κ1−κ2|

Γ(η)

{∣∣∣ p2
q́

∣∣∣ e−λΨ(w)

∫ >◦
0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

+
∣∣∣ p3
q́

∣∣∣ e−λΨ(w)

∫ >
0

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀ +

∫ w

0

(Ψ̃ζ̀(w))η−1e−λΨ̃
ζ̀

(w)Ψ′(ζ̀) dζ̀

}
6 k|κ1−κ2|

Γ(η)

{∣∣∣ p2
q́

∣∣∣ ∫ Ψ(>◦)

0

ζ̀η−1e−λζ̀ dζ̀ +
∣∣∣ p3
q́

∣∣∣ ∫ Ψ(>)

0

ζ̀η−1e−λζ̀ dζ̀ +

∫ Ψ(w)

0

ζ̀η−1e−λζ̀ dζ̀

}

6 k|κ1−κ2|
Γ(η)

{∣∣∣ p2
q́

∣∣∣ ∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀ +
∣∣∣ p3
q́

∣∣∣ ∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀ +

∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀

}
6 k|κ1−κ2|

Γ(η)

{∣∣∣ p2
q́

∣∣∣ Γ(η)
λη +

∣∣∣ p3
q́

∣∣∣ Γ(η)
λη + Γ(η)

λη

}
6 k

λη

(∣∣∣ p2
q́

∣∣∣+
∣∣∣ p3
q́

∣∣∣+ 1
)
|κ1 − κ2|.
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Case 2: Let w ∈ [>◦,>], so we have

|O(κ1)(w)−O(κ2)(w)|
∣∣∣∣ 1

Γ(η)

∫ >
0

G2(w, ζ̀)Ψ′(ζ̀)
[
h(ζ̀,κ)1(ζ̀))− h(ζ̀,κ2(ζ̀))

]
dζ̀

∣∣∣∣
≤ k|κ1−κ2|

Γ(η)

∫ >
0

|G2(w, ζ̀)|Ψ′(ζ̀) dζ̀

≤ k|κ1−κ2|
Γ(η)

(∣∣∣ p2
q́

∣∣∣ e−λΨ(w)

{∫ >◦
0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

}
+
∣∣∣ p3
q́

∣∣∣ e−λΨ(w)

{∫ >
0

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀

+

∫ w

>◦
(Ψ̃ζ̀(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀ +

∫ >
w

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀

}
+

∫ >◦
0

(Ψ̃ζ̀(w))η−1e−λΨ̃
ζ̀

(w)Ψ′(ζ̀) dζ̀ +

∫ w

>◦
(Ψ̃ζ̀(w))η−1e−λΨ̃

ζ̀
(w)Ψ′(ζ̀) dζ̀

)
6 k|κ1−κ2|

Γ(η)

{ ∣∣∣ p2
q́

∣∣∣ ∫ >◦
0

(Ψ̃ζ̀(>◦))η−1e−λΨ̃
ζ̀

(>◦)Ψ′(ζ̀) dζ̀

+
∣∣∣ p3
q́

∣∣∣ ∫ >
0

(Ψ̃ζ̀(>))η−1e−λΨ̃
ζ̀

(>)Ψ′(ζ̀) dζ̀ +

∫ w

0

(Ψ̃ζ̀(w))η−1e−λΨ̃
ζ̀

(w)Ψ′(ζ̀) dζ̀

}
6 k|κ1−κ2|

Γ(η)

{ ∣∣∣ p2
q́

∣∣∣ ∫ Ψ(>◦)

0

ζ̀η−1e−λζ̀ dζ̀ +
∣∣∣ p3
q́

∣∣∣ ∫ Ψ(>)

0

ζ̀η−1e−λζ̀ dζ̀ +

∫ Ψ(w)

0

ζ̀η−1e−λζ̀ dζ̀

6 k|κ1−κ2|
Γ(η)

{ ∣∣∣ p2
q́

∣∣∣ ∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀ +
∣∣∣ p3
q́

∣∣∣ ∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀ +

∫ ∞
0

ζ̀η−1e−λζ̀ dζ̀

}
6 k|κ1−κ2|

Γ(η)

{ ∣∣∣ p2
q́

∣∣∣ Γ(η)
λη +

∣∣∣ p3
q́

∣∣∣ Γ(η)
λη + Γ(η)

λη

}
6 k

λη

(∣∣∣ p2
q́

∣∣∣+
∣∣∣ p3
q́

∣∣∣+ 1
)
|κ1 − κ2|.

Thus, for all w ∈ J̄, |O(κ1)(w)−O(κ2)(w)| 6 k
λη

(∣∣p2

q́

∣∣+
∣∣p3

q́

∣∣+ 1
)
|κ1 − κ2|. Consequently by (3), O

is a contraction. As a consequence of Banach fixed point theorem we deduce that O has a fixed point
which is a solution of the problem (3).

The second result is based on Schaefer’s fixed point.

Theorem 3. Assume that
(H2) The function h : J̄× R→ R is continuous;
(H3) There exists ∆̆ > 0 such that |h(w,κ)| ≤ ∆̆ for each w ∈ J̄ and all κ ∈ R.
Then the BVP (3) has at least one solution on J̄.

Proof. We shall use Schaefer’s fixed point theorem to prove that O defined by (5) has a fixed point.
The proof will be given in several steps.

Step 1: O is continuous. Let {κn} be a sequence such that κn → κ in C(J̄). Then for each w ∈ J̄,

|O(κn)(w)−O(κ)(w)| =
∫ >

0
G(w, ζ̀)Ψ′(ζ̀)

Γ(η) h(ζ̀,κn(ζ̀))− h(ζ̀,κ(ζ̀)) dζ̀

6 1
Γ(η) sup

w∈J̄

∣∣∣h(w,κn(w))− h(w,κ(w))
∣∣∣ ∫ T

0
G(w, ζ̀)Ψ′(ζ̀) dζ̀

6 1
λη

∣∣∣p2

q́ + p3

q́ + 1
∣∣∣ |h(w,κn(w))− h(w,κ(w))|∞.

Since h is a continuous function, we have

|O(κn)(w)−O(κ)(w)| 6 1
λη

∣∣∣p2

q́ + p3

q́ + 1
∣∣∣ |h(w,κn(w))− h(w,κ(w))|∞ → 0,

as n −→∞.
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Step 2: O maps bounded sets into bounded sets in C(J̄). Indeed, it is enough to show that for any
r > 0 there exists a positive constant l such that for each κ ∈ Br = {κ ∈ C(J̄) : |κ|∞ 6 r}, we have
|O(κ)|∞ 6 l. By (H3) we have for each w ∈ J̄,

|O(κ)(w)| 6
∣∣∣ qq́ ∣∣∣+ 1

Γ(η)

∣∣∣∣∫ >
0
G(w, ζ̀)Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

∣∣∣∣
6
∣∣∣ qq́ ∣∣∣+ ∆̆

Γ(η)

∫ >
0
G(w, ζ̀)Ψ′(ζ̀)) dζ̀ 6

∣∣∣ qq́ ∣∣∣+ ∆̆
λ

η (∣∣∣p2

q́

∣∣∣+
∣∣∣p3

q́

∣∣∣+ 1
)

:= l.

Step 3: Here we prove that the operator O maps bounded sets into equicontinuous sets from C(J̄).
Let w1,w2 ∈ J̄, Br be a bounded set in C(J̄). As in Step 2 we assume that κ ∈ Br and KΨ =
λ max

{
Ψ′(w)e−λΨ(w) : w ∈ J̄

}
. Then the mean value theorem implies that

∣∣e−λΨ(w2) − e−λΨ(w1)
∣∣ 6

KΨ|w2 − w1|.
Case 1: Let w1,w2 ∈ J̄. Then

|O(κ)(w2)−O(κ)(w1)| =
∣∣∣ qq́ (e−λΨ(w2) − e−λΨ(w1)

)
+

∫ >
0

(
G1(w2, ζ̀)−G1(w1, ζ̀)

)
Ψ′(ζ̀)
Γ(η) h(ζ̀,κ(ζ̀)) dζ̀

∣∣∣∣
6
∣∣∣ qq́ ∣∣∣ (e−λΨ(w2) − e−λΨ(w1)

)
+

∫ >
0

(
G1(w2, ζ̀)−G1(w1, ζ̀)

)
∆̆Ψ′(ζ̀)

Γ(η) dζ̀

6
∣∣∣ qq́ ∣∣∣ (e−λΨ(w2) − e−λΨ(w1)

)
+ ∆̆

Γ(η)

{(∫ w2

0

∣∣∣p2

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

+

∫ w2

0

∣∣∣p3

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>))η−1e−λ(Ψ̃

ζ̀
(>))Ψ′(ζ̀) dζ̀

+

∫ w2

0
e−λΨ(w2)(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀

+

∫ >◦
w2

∣∣∣p2

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

+

∫ >◦
w2

∣∣∣p3

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

)
−
∫ w1

0
w p2

q́ we−λΨ(w1)(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

−
∫ w1

0

∣∣∣p3

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(s) dζ̀

−
∫ w1

0
e−λΨ(w1)(Ψ̃

ζ̀
(w1))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

−
∫ >◦

w1

∣∣∣p2

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

−
∫ >◦

w1

∣∣∣p3

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

}
6
∣∣∣ qq́ ∣∣∣KΨ|w2 − w1|+ ∆̆

Γ(η)

{ ∣∣∣p2

q́

∣∣∣ (e−λΨ(w2) − e−λΨ(w1)
)

·
∫ >◦

0
(Ψ̃

ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀
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+
∣∣∣p3

q́

∣∣∣ (e−λΨ(w2) − e−λΨ(w1)
)∫ >◦

0
(Ψ̃

ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

+

∫ w2

0
(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀−

∫ w1

0
(Ψ̃

ζ̀
(w1))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

}
6 KΨ|w2 − w1|

{ ∣∣∣ qq́ ∣∣∣+ ∆̆
Γ(η)

∣∣∣p2

q́

∣∣∣ ∫ Ψ(>◦)

0
ζ̀η−1e−λζ̀ dζ̀

+ M
Γ(η)

∣∣∣p3

q́

∣∣∣ ∫ Ψ(>◦)

Ψ̃>◦ (>)
ζ̀η−1e−λζ̀ dζ̀

}
+

∫ Ψ(w2)

Ψ(w1)
ζ̀η−1e−λη dζ̀.

Case 2: Let w1 ∈ [0,>◦], w2 ∈ [>◦,>]. Then

|O(κ)(w2)−O(κ)(w1)| =
∣∣∣ qq́ (e−λΨ(w2) − e−λΨ(w1)

)
+ 1

Γ(η)

∫ >
0

(
G2(w2, ζ̀)−G1(w1, ζ̀)

)
Ψ′(ζ̀)h(ζ̀,κ(ζ̀)) dζ̀

∣∣∣∣
6
∣∣∣ qq́ ∣∣∣ (e−λΨ(w2) − e−λΨ(w1)

)
+ ∆̆

Γ(η)

{ ∣∣∣p2

q́

∣∣∣ e−λΨ(w2)

∫ >◦
0

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

+
∣∣∣p3

q́

∣∣∣ e−λΨ(w2)

∫ >◦
0

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

+

∫ >◦
0

(Ψ̃
ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀

+
∣∣∣p3

q́

∣∣∣ e−λΨ(w2)

∫ w2

>◦
(Ψ̃

ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

+

∫ w2

>◦
(Ψ̃

ζ̀
(w2))η−1e−λ(Ψ̃

ζ̀
(w2))Ψ′(ζ̀) dζ̀

+
∣∣∣p3

q́

∣∣∣ e−λΨ(w2)

∫ >
w2

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∣∣∣p2

q́

∣∣∣ e−λΨ(w1)

∫ w1

0
(Ψ̃

ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

−
∣∣∣p3

q́

∣∣∣ e−λΨ(w1)

∫ w1

0
(Ψ̃

ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∫ w1

0
(Ψ̃

ζ̀
(w1))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

−
∣∣∣p2

q́

∣∣∣ e−λΨ(w1)

∫ >◦
w1

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

−
∣∣∣p3

q́

∣∣∣ e−λΨ(w1)

∫ >◦
w1

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∣∣∣p3

q́

∣∣∣ e−λΨ(w1)

∫ >
>◦

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

6 KΨ|w2 − w1|
{ ∣∣∣ qq́ ∣∣∣+ ∆̆

Γ(λ)

∣∣∣p2

q́

∣∣∣ ∫ >◦
0

(Ψ̃
ζ̀
(>◦))η−1e−λΨ̃

ζ̀
(>◦)Ψ′(ζ̀) dζ̀

+ ∆̆
Γ(λ)

∣∣∣p3

q́

∣∣∣ ∫ >
0

(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

}
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+

∫ w2

0
(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀−

∫ w1

0
(Ψ̃

ζ̀
(w1))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

6 KΨ|w2 − w1|
{ ∣∣∣ qq́ ∣∣∣+ ∆̆

Γ(η)

∣∣∣p2

q́

∣∣∣ ∫ Ψ(>◦)

0
ζ̀η−1e−λζ̀ dζ̀

+ ∆̆
Γ(α)

∣∣∣p3

q́

∣∣∣ ∫ Ψ(>◦)

Ψ̃
ζ̀
(>)

ζ̀η−1e−λζ̀ dζ̀

}
+

∫ Ψ(w2)

Ψ(w1)
ζ̀η−1e−λζ̀ dζ̀.

Case 3: Let w1,w2 ∈ [>◦,>]. Then

|O(κ)(w2)−O(κ)(w1)| =
∣∣∣ qq́ (e−λΨ(w2) − e−λΨ(w1)

)
+

∫ >
0
G2(w2, ζ̀)−G2(w1, ζ̀)Ψ′(ζ̀)

Γ(η) h(ζ̀,κ(ζ̀)) dζ̀

∣∣∣∣
6
∣∣∣ qq́ ∣∣∣ (e−λΨ(w2) − e−λΨ(w1)

)
+ ∆̆

Γ(η)

{∫ w2

>◦

∣∣∣p3

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

+

∫ w2

>◦
(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀

+

∫ >
w2

∣∣∣p3

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∫ w1

>◦

∣∣∣p3

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∫ w1

τ
(Ψ̃

ζ̀
(w1))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

−
∫ >

w1

∣∣∣p3

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

}
6
∣∣∣ qq́ ∣∣∣ (e−λΨ(w2) − e−λΨ(w1)

)
+ ∆̆

Γ(η)

{∫ >
>◦

∣∣∣p3

q́

∣∣∣ e−λΨ(w2)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

−
∫ >
>◦

∣∣∣p3

q́

∣∣∣ e−λΨ(w1)(Ψ̃
ζ̀
(>))η−1e−λΨ̃

ζ̀
(>)Ψ′(ζ̀) dζ̀

+

∫ w2

>◦
(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w2)Ψ′(ζ̀) dζ̀−

∫ w1

>◦
(Ψ̃

ζ̀
(w2))η−1e−λΨ̃

ζ̀
(w1)Ψ′(ζ̀) dζ̀

}
6 KΨ|w2 − w1|

{ ∣∣∣ qq́ ∣∣∣+ ∆̆
Γ(η)

∣∣∣p3

q́

∣∣∣ ∫ Ψ̃>◦ (>)

0
ζ̀η−1e−λζ̀ dζ̀

}
+

∫ Ψ̃>◦ (w2)

Ψ̃>◦ (w2)
ζ̀η−1e−λζ̀ dζ̀.

The right hand side of the above inequalities for all Cases 1–3 tend for zero by w2 −→ w1. From this
due to Arzelà-Ascoli theorem and Steps 1–3 follows that the mapping O : C(J̄)→ O(J̄) is continuous.

Step 4: Here we prove the necessary prior bounds. Indeed we show that the set Υ =
{
κ ∈

C([0,R]) : κ = µO(κ) for some µ ∈ Ω
}
, is bounded. Suppose that κ = µO(κ) for some 0 < µ < 1.

Then for each w ∈ J̄ we can write

κ(w) = µ

{
q
q́ +

∫ >
0
G(w, ζ̀)Ψ′(s)

Γ(α) h(ζ̀,κ(ζ̀)) dζ̀

}
.
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This fact in combination with (H3) shows that for each w ∈ J̄,

|O(κ)(w)| 6
∣∣∣ qq́ ∣∣∣+ ∆̆

Γ(η)

∫ >
0
G(w, ζ̀)Ψ′(ζ̀) dζ̀ 6

∣∣∣ qq́ ∣∣∣+ ∆̆
Γ(η)

(∣∣∣p2

q́

∣∣∣+
∣∣∣p3

q́

∣∣∣+ 1
)
,

for each w ∈ J̄. Thus the set Υ is bounded and O has a fixed point by Schaefer’s fixed point theorem,
that is a solution of problem.

2.2 An illustrative example

In this section we give an example to illustrate the usefulness of our main results. Let us consider
Ψ(w) = ln(w + 1), and the following FBVP,

Dη,λ,ΨC κ(w) = e−2w|κ(w)|
24|1+κ(w)| , w ∈ J̄ = [0, 1] , η ∈ (0, 1] , (6)

with
κ(0) + 3

2κ
(

1
2

)
+ 2 κ(1) = 1

2 . (7)

Put h(w,κ(w)) = e−2wκ(w)
24(w+1) , (w,κ) ∈ J̄× [0,+∞). Let κ1,κ2 ∈ [0,+∞) and w ∈ J̄. Then we have

|h(w,κ1)− h(w,κ2)| = e−2w

24

∣∣∣ κ1
2κ1+1 −

κ2
2κ2+1

∣∣∣ = e−2w

24
|κ1−κ2|

(κ1+1)(κ2+1) 6 e−2w

24 |κ1 − κ2| 6 1
24 |κ1 − κ2|.

Hence the condition (H1) holds with k = 1
24 . We shall check that condition (7) is satisfied for appro-

priate values of η ∈ ]0, 1[ with p1 = 1, p2 = 3
2 , p3 = 2, > = 1, >◦ = 1

2 and

q́ = p1 + p2e
−λΨ(>◦) + p3e

−λΨ(>) = 1 + 3
2e
−λΨ(1/2) + 2e−λΨ(1). (8)

Then by Theorem 2 the problem (6)-(7) has a unique solution on J̄ for values of η and λ satisfying
condition (H1). For example
• If λ = 1 and for all η ∈ (0, 1) then thanks to Eq. (8), we have q́ = 3 and

k
λη

(∣∣∣p2

q́

∣∣∣+
∣∣∣p3

q́

∣∣∣+ 1
)
' 0.09027 < 1.

w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.04

0.06

0.08

0.1

0.12

0.14

0.16

ℓ = k
λη

(
∣

∣

∣

p2
q́

∣

∣

∣
+

∣

∣

∣

p3
q́

∣

∣

∣
+ 1

)

< 1

λ=0.5

λ=1

λ=3

Figure 1. 2D-graph of ` < 1 for the BVP (6) whenever λ = 0.5, 1, 3, η,w ∈ Ω

Fig. 1 shows 2D-graph of ` for the BVP (6) whenever λ = 0.5, 1, 3 and η,w ∈ Ω.
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• If λ = 3 and η ∈ Ω, we have

k
λη

(∣∣∣p2

q́

∣∣∣+
∣∣∣p3

q́

∣∣∣+ 1
)

= 1
24×3η

(∣∣1
2

∣∣+
∣∣2

3

∣∣+ 1
)
< 1. (9)

Table 1 presents numerical values of ` for the BVP (6) whenever λ = 0.5, 1, 3 and η,w ∈ Ω. Fig. 1
shows 2D-graph of ` for the BVP (6) whenever λ = 0.5, 1, 3 and η,w ∈ Ω.

T a b l e 1

Obtained results of ` < 1 in (9) when λ = 0.5, 1, 3 and η,w ∈ Ω

w `

λ = 0.5 λ = 1 λ = 3

0.05 0.08463 0.09028 0.12091
0.10 0.08761 0.09028 0.11444
0.15 0.09070 0.09028 0.10833
0.20 0.09390 0.09028 0.10254
0.25 0.09721 0.09028 0.09706

.

.

.
.
.
.

.

.

.
.
.
.

0.80 0.14232 0.09028 0.05304
0.85 0.14734 0.09028 0.05021
0.90 0.15254 0.09028 0.04752
0.95 0.15792 0.09028 0.04498

2.3 Data comparison

At present, we consider λ = 3, three values for η = 0.7, 0.8, 0.9 and four cases for Ψ(w) as
Ψ1(w) = 2w; Ψ2(w) = w (Caputo derivative); Ψ3(w) = ln w (Caputo–Hadamard derivative);
Ψ4(w) =

√
w (Katugampola derivative); for the BVP (6). Tables 2, 3 and 4 show the numerical

results for these cases. One can see illustrative results in the Figs. 2, 3 and 4. Therefore, these results
guarantee that for all of three different cases by terms of the order η and four standard fractional
derivatives Ψ, the BVP admits at least a solution on J̄ .

w
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0.01

0.02

0.03

0.04

0.05

0.06
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ℓ = k
λη

(
∣

∣

∣

p2
q́

∣

∣

∣
+

∣

∣

∣

p3
q́

∣

∣

∣
+ 1

)

< 1

λ = 3, η = 0.7

Ψ
1

Ψ
2

Ψ
3

Ψ
4

Figure 2. 2D plot of ` in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.7 for w ∈ Ω
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w

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.05

0.06

0.07

0.08

ℓ = k
λη

(
∣

∣

∣

p2
q́

∣

∣

∣
+

∣

∣

∣

p3
q́

∣

∣

∣
+ 1

)

< 1

λ = 3, η = 0.8

Ψ
1

Ψ
2

Ψ
3

Ψ
4

Figure 3. 2D plot of ` in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.8 for w ∈ Ω
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(
∣
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∣

∣

∣
+

∣

∣

∣
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∣

∣

∣
+ 1
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< 1
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Ψ
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Ψ
3

Ψ
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Figure 4. 2D plot of ` in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.9 for w ∈ Ω

T a b l e 2

Obtained results of ` < 1 in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.7 for w ∈ Ω

w Ψ1(w) = 2w Ψ2(w) = w Ψ3(w) = ln w Ψ4(w) =
√

w

q́ ` q́ ` q́ ` q́ `

0.05 1.157 0.078 4.012 0.036 28001.000 0.019 2.790 0.044
0.10 1.140 0.079 3.593 0.038 3501.000 0.019 2.355 0.048
0.15 1.125 0.079 3.232 0.040 1038.037 0.019 2.095 0.052
0.20 1.112 0.080 2.921 0.042 438.500 0.019 1.915 0.055
0.25 1.099 0.081 2.653 0.045 225.000 0.020 1.781 0.057

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0.70 1.027 0.085 1.429 0.067 11.204 0.025 1.284 0.072
0.75 1.023 0.085 1.369 0.069 9.296 0.027 1.260 0.073
0.80 1.019 0.086 1.318 0.071 7.836 0.028 1.239 0.074
0.85 1.016 0.086 1.273 0.072 6.699 0.029 1.220 0.075
0.90 1.013 0.086 1.235 0.074 5.801 0.031 1.203 0.075
0.95 1.011 0.086 1.202 0.076 5.082 0.033 1.188 0.076
1.00 1.009 0.086 1.174 0.077 4.500 0.034 1.174 0.077
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T a b l e 3

Obtained results of ` < 1 in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.8 for w ∈ Ω

w Ψ1(w) = 2w Ψ2(w) = w Ψ3(w) = ln w Ψ4(w) =
√

w

q́ ` q́ ` q́ ` q́ `

0.05 1.157 0.070 4.012 0.032 28001.000 0.017 2.790 0.039
0.10 1.140 0.070 3.593 0.034 3501.000 0.017 2.355 0.043
0.15 1.125 0.071 3.232 0.036 1038.037 0.017 2.095 0.046
0.20 1.112 0.072 2.921 0.038 438.500 0.017 1.915 0.049
0.25 1.099 0.072 2.653 0.040 225.000 0.018 1.781 0.051

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0.75 1.023 0.077 1.369 0.062 9.296 0.024 1.260 0.065
0.80 1.019 0.077 1.318 0.063 7.836 0.025 1.239 0.066
0.85 1.016 0.077 1.273 0.065 6.699 0.026 1.220 0.067
0.90 1.013 0.077 1.235 0.066 5.801 0.028 1.203 0.068
0.95 1.011 0.077 1.202 0.068 5.082 0.029 1.188 0.068
1.00 1.009 0.077 1.174 0.069 4.500 0.031 1.174 0.069

T a b l e 4

Obtained results of ` < 1 in BVP (6) when λ = 3, Ψ(w) ∈ {2w,w, ln w,
√

w} and η = 0.9 for w ∈ Ω

w Ψ1(w) = 2w Ψ2(w) = w Ψ3(w) = ln w Ψ4(w) =
√

w

q́ ` q́ ` q́ ` q́ `

0.05 1.157 0.062 4.012 0.029 28001.000 0.016 2.790 0.035
0.10 1.140 0.063 3.593 0.031 3501.000 0.016 2.355 0.039
0.15 1.125 0.064 3.232 0.032 1038.037 0.016 2.095 0.041
0.20 1.112 0.064 2.921 0.034 438.500 0.016 1.915 0.044
0.25 1.099 0.065 2.653 0.036 225.000 0.016 1.781 0.046

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
0.75 1.023 0.069 1.369 0.055 9.296 0.021 1.260 0.059
0.80 1.019 0.069 1.318 0.057 7.836 0.022 1.239 0.059
0.85 1.016 0.069 1.273 0.058 6.699 0.024 1.220 0.060
0.90 1.013 0.069 1.235 0.059 5.801 0.025 1.203 0.061
0.95 1.011 0.069 1.202 0.061 5.082 0.026 1.188 0.061
1.00 1.009 0.069 1.174 0.062 4.500 0.028 1.174 0.062

Conclusion

This paper contains a new fractional mathematical model of a BVP consisting of the Tempered
Ψ−Caputo derivative in the framework of the generalized sequential G-operators. We turned to the
investigation of the qualitative behaviors of its solutions including existence and uniqueness. To confirm
the existence criterion, we used the Banach contraction mapping principle and Schaefer’s fixed point
theorem. Comparison of data obtained by choosing several types of fractional derivatives is of great
importance.

Author Contributions

K. Bensassa: Actualization, formal analysis, methodology, initial draft, validation, investigation
and was a major contributor in writing the manuscript. M. Benbachir: Methodology, actualization,
validation, investigation, formal analysis and initial draft. M.E. Samei: Validation, actualization, for-
mal analysis, methodology, investigation, simulation, initial draft, software and was a major contributor
in writing the manuscript. S. Salahshour: Methodology, actualization, validation, investigation, formal
analysis and initial draft. All authors participated in the revision of the manuscript and approved the
final submission.

Conflict of Interest

The authors declare that they have no competing interests.

Mathematics Series. No. 4(116)/2024 53



K. Bensassa et al.

References

1 Podlubny, I. (1999). Fractional Differential Equations. Academic Press, New York.
2 Carpinteri, A., & Mainardi, F. (1997). Fractional Calculus: Some Basic Problems in Contin-
uum and Statistical Mechanics, in “Fractals and Fractional Calculus in Continuum Mechanics”.
Springer-Verlag Wien, 291–348.

3 Oldham, K.B., & Spanier, J. (1974). The Fractional Calculus. Academic Press, New York,
London.

4 Gaul, L., Klein, P., & Kample, S. (1991). Damping description involving fractional opera-
tors. Mechanical Systems and Signal Processing, 5(2), 81–88. https://doi.org/10.1016/0888-
3270(91)90016-X
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Singularly perturbed integro-differential equations with degenerate kernels are considered. It is shown that
in the linear case these problems are always uniquely solvable with continuous coefficients, while nonlinear
problems either have no real solutions at all or have several of them. For linear problems, the results of
Bobojanova are refined; in particular, necessary and sufficient conditions are given for the existence of a
finite limit of their solutions as the small parameter tends to zero and sufficient conditions under which the
passage to the limit to the solution of the degenerate equation is possible.
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Introduction

Many applied problems lead to nonlinear Hammerstein’s equations of the form

ε
dy

dt
=

1∫
0

K (t, s) f (s, y (s, ε)) ds, y (0, ε) = y0.

In the general case, it is impossible to obtain its solution in explicit form. However, if K (t, s) is
represented as a sum of products of functions with separated variables, then the study of this equation
can be reduced to an algebraic system of equations. We will not consider the general case, but will
show how this issue can be solved for a singularly perturbed equation of the form

εdy(t)dt =
1∫
0

a1 (t) b1 (s) f (y (s, ε) , s) ds+

+
1∫
0

a2 (t) b2 (s) f (y (s, ε) , s) ds, y (0, ε) = y0.

(1)

Here f (y, s) is a known continuous nonlinear function, aj (t) , bj (t) are known continuous functions on
the segment [0, 1], y = y (t, ε) is an unknown scalar function, ε > 0 is a small parameter (the segment
[0, 1] is taken to simplify the calculations; instead, you can take any segment [0, T ]). Linear version of
this problem:

εdydt =
1∫
0

a1 (t) b1 (s) y (s, ε) ds+
1∫
0

a2 (t) b2 (s) y (s, ε) ds+

+h (t) , y (0, ε) = y0

(2)

∗Corresponding author. E-mail: bkalimbetov@mail.ru
This work was supported in part by grant No. 23-21-00496 of the Russian Science Foundation.
Received: 27 March 2024; Accepted: 12 September 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics Series. No. 4(116)/2024 57



M.A. Bobodzhanova et al.

was considered in [1]. Before examining the nonlinear equation (1), we present the results of this work.
For a complete understanding, let us recall the scheme for solving equation (2) indicated in [1].

1 Linear singularly perturbed Fredholm’s equations

Integrating (2) over t, assuming that it has a continuous solution, we obtain the equivalent problem

εy (t, ε) =
t∫
0

a1 (θ) dθ
1∫
0

b1 (s) y (s, ε) ds+

+
t∫
0

a2 (θ) dθ
1∫
0

b2 (s) y (s, ε) ds+
t∫
0

h (θ) dθ + εy0.

Using the notation
t∫
0

aj (θ) dθ = qj (t) ,
t∫
0

h (θ) dθ + εy0 = h1 (t, ε) , we reduce the last equation to the

integral equation

εy (t, ε) = q1 (t)

1∫
0

b1 (s) y (s, ε) ds+ q2 (t)

1∫
0

b2 (s) y (s, ε) ds+ h1 (t, ε) (3)

with a degenerate kernel and solve it using a well-known scheme (see, for example, [2]). Enter constants

w1 =

1∫
0

b1 (s) y (s, ε) ds, w2 =

1∫
0

b2 (s) y (s, ε) ds. (4)

Then the solution to equation (3) will be written in the form

y (t, ε) =
1

ε
(q1(t)w1 + q2 (t)w2 + h1 (t, ε)) . (5)

Substituting this into (4), we obtain a system of algebraic equations
εw1 =

1∫
0

b1 (s) ((q1 (s)w1 + q2 (s)w2)) ds+
1∫
0

b1 (s)h1 (s, ε) ds,

εw2 =
1∫
0

b2 (s) ((q1 (s)w1 + q2 (s)w2)) ds+
1∫
0

b2 (s)h1 (s, ε) ds

⇔

⇔


εw1 = c11w1 + c12w2 +H1 (ε) ,

εw2 = c21w1 + c22w2 +H2 (ε) ,
(6)

relative to the unknown constants w1 and w2. Here it is indicated:

cij =

1∫
0

bi (s) qj (s) ds, Hj (ε) =

1∫
0

bj (s)h1 (s, ε) ds, i, j = 1, 2.

Let σ (C) = {λ1, λ2} be the spectrum of the matrix C = (cij) (λ1, λ2 may coincide). Let’s reduce the
matrix C to normal form in the space C2 (see, for example, [3]). The following cases of normal forms
of a matrix are possible:

1) J1 =

(
λ1 0
0 λ2

)
(λ1 6= λ2) ,
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2) J2 =

(
λ 0
0 λ

)
(λ1 = λ2 = λ) ,

3) J3 =

(
λ 1
0 λ

)
(λ1 = λ2 = λ) ,

two of which are diagonal, and one have a Jordan’s structure. There exists (see, for example, [4]) a
transformation matrix T = Tj such that T−1CT = Jj , j = 1, 2, 3. But then the same matrix T leads
to the matrix

εI − C ≡
(
ε− c11 −c12
−c21 ε− c22

)
of the normal form, i.e. T−1 (εI − C)T will take one of the following forms:

1) J1 (ε) =

(
ε− λ1 0

0 ε− λ2

)
(λ1 6= λ2) ,

2) J2 (ε) =

(
ε− λ 0

0 ε− λ

)
(λ1 = λ2 = λ) ,

3) J3 (ε) =

(
ε− λ 1

0 ε− λ

)
(λ1 = λ2 = λ) .

In this case, the solution of the system (6) will be written in one of the following forms:

w = w (ε) =
(
TJ−1j (ε)T−1

)
H (ε) , j = 1, 2, 3. (7)

Let us first assume that detC 6= 0. Then the eigenvalues λj 6= 0. We have in the case j = 1 :

w =

[
T

(
(ε− λ1)−1 0

0 (ε− λ2)−1
)
T−1

]
H (ε) . (8)

Since (ε− λj)−1 = − 1
λj

1
1− ε

λj

= − 1
λj

∞∑
k=0

(
ε
λj

)k
is the analytic function with respect to ε, and the

inhomogeneity H (ε) = {h1 (ε) , h2 (ε)} linearly depends on ε, then w (ε) is an analytic function with
respect to ε, and the solution (5) of the problem (2) will have a first-order pole with respect to ε.

In the case j = 2 expression (7) for w has the form

w =
(
TJ−12 (ε)T−1

)
H (ε) = T

( 1
ε−λ 0

0 1
ε−λ

)
T−1H (ε) =

= − 1

λ
T

(
1

1− ε
λ

0

0 1
1− ε

λ

)
T−1H (ε) ,

i.e. the vector w = w (ε) is again an analytic function with respect to ε, and therefore the solution (5)
of the problem (2) will have a pole of first order with respect to ε.

In the case j = 3 the vector w :

w =
(
TJ−13 (ε)T−1

)
H (ε) = T

(
ε− λ 1

0 ε− λ

)−1
T−1H (ε) =

= T

[
1

ε−λ − 1
(ε−λ)2

0 1
ε−λ

]
T−1H (ε) = T

[ − 1
λ

1
1− ε

λ
− 1
λ2

1

(1− ελ)
2

0 − 1
λ

1
1− ε

λ

]
T−1H (ε)
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is again an analytic function with respect to ε, and therefore the solution (5) of the problem (2) will
have a pole of first order with respect to ε.

Let detC = 0. Three cases have to be considered here:

a) λ1 = λ2 = 0, b) λ1 = 0, λ2 6= 0, c) λ1 6= 0, λ2 = 0.

In the case a), expression (8) for w takes the form

w =

(
T

(
1
ε 0
0 1

ε

)
T−1

)
H (ε) =

1

ε
H (ε)

if C = 0, and the form

w =

(
T

(
1
ε − 1

ε2

0 1
ε

)
T−1

)
H (ε) =

1

ε2
T

(
ε −1
0 ε

)
H (ε)

if the matrix C is similar to a Jordan’s cell
(

0 1
0 0

)
. In this case the solution (5) of the problem (2)

will have a second-order pole with respect to ε and a third-order pole with respect to ε, if the matrix

C is similar to a jordan’s cell
(

0 1
0 0

)
.

In the case b), the expression (7) takes the form

w = T

(
ε−1 0

0 (ε− λ2)−1
)
T−1H (ε) =

1

ε

[
1 0
0 − 1

λ2
ε

1− ε
λ2

]
H (ε) ,

therefore the solution (5) of the problem (2) will have a second-order pole with respect to ε. In the
case c), we also obtain that the solution (5) of the problem (2) has a second-order pole with respect
to ε.

Let us write the results obtained in the form of a theorem.

Theorem 1. Let the functions aj (t) , bj (t) , h (t) in the equation (2) be continuous on the segment
[0, 1] . Then the following statements are true.

1. If detC 6= 0, then the solution y (t, ε) of the problem (2) exists in the class C1 [0, 1] , is unique

in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−1
εkyk (t) .

2. If detC = 0 and σ (C) = {λ1, λ2} , then the following statements hold:
a) when λ1 = λ2 = 0 the solution y (t, ε) of the problem (2) exists in the class C1 [0, 1] , is unique

in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−2
εkyk (t) , if C = 0, and in the form

of Laurent’s series y (t, ε) =
∞∑

k=−3
εkyk (t) , if C is similar to a Jordan cell

(
0 1
0 0

)
.

b) for λ1 = 0, λ2 6= 0 or λ1 6= 0, λ2 = 0 the solution y (t, ε) of the problem (2) exists in the class

C1 [0, 1] , is unique in this class and is represented as a Laurent’s series y (t, ε) =
∞∑

k=−2
εkyk (t) .

From this theorem it follows that in the general case the solution y (t, ε) tends to infinity as t > 0
and ε → +0. Only in exceptional cases y (t, ε) may tend to a finite limit. For example, if detC 6= 0,
then for the existence of a finite limit it is necessary to require that y−1 (t) ≡ 0. This condition must be
expressed through the initial data of the problem (2). This was done in [1], but it is quite cumbersome
and we do not present it. In the case of one term in (2), i.e. in the case a2 (t) ≡ 0 or b2 (t) ≡ 0
condition y−1 (t) ≡ 0 becomes more visible. Let’s show it.
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Noting a1 (t) = a (t) , b1 (t) = b (t) , we rewrite equation (2) in the form

ε
dy

dt
=

1
∫
0
a (t) b (s) y (s, ε) ds+ h (t) , y (0, ε) = y0. (9)

Applying the procedure described above to (9), we obtain the following solution:

y (t, ε) = 1
ε


t∫
0

a(x)dx
1∫
0

b(s)

(
s∫
0

h(θ)dθ+εy0
)
ds

ε−
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

+
t∫
0

h (θ) dθ + y0ε

 . (10)

Summing up the expression in square brackets, we write the solution in the form

y (t, ε) = ε−1

ε−
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

[
−εy0

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds+

+ε2y0 +
t∫
0

a (s) ds
1∫
0

b (s)

(
s∫
0

h (θ) dθ + εy0
)
ds−

−
t∫
0

h (s) ds
1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds+ ε

t∫
0

h (s) ds

]
.

The free term on ε in the square bracket does not allow one to go to the final limit as ε→ +0, therefore
it must be removed. Let’s calculate it:(

t
∫
0
a (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
h (θ) dθ

)
ds

)
−
(
t
∫
0
h (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

)
.

This means that if for any t ∈ [0, 1] the condition(
t
∫
0
a (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
h (θ) dθ

)
ds

)
≡

≡
(
t
∫
0
h (s) ds

)(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

)
,

(∗)

is satisfied, then there is a finite limit y (t, ε) → ȳ (t) as ε → +0. This condition is necessary and
sufficient for the existence of a finite limit lim

ε→+0
y (t, ε) = ȳ (t) .

Note that the condition (∗) is automatically satisfied if a (t) ≡ h (t) . It is curious that in this case

the limit ȳ (t) will coincide with the solution of the equation
1
∫
0
b (s) ȳ (s) ds + 1 = 0 degenerate with

respect to (9). Let us prove this.
Let h (t) ≡ a (t) . Then the condition (∗) is satisfied and the solution of the problem (2) will be

written in the form

y (t, ε) = −
−y0

(
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

)
+εy0+

(
t∫
0

a(s)ds

)(
1∫
0

b(s)y0ds

)
+

(
t∫
0

h(s)ds

)
(
−ε+

1∫
0

b(s)

(
s∫
0

a(x) dx

)
ds

) =

=
y0

(
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

)
−εy0−

(
t∫
0

a(s)ds

)(
1∫
0

b(s)y0 ds

)
−
(
t∫
0

a(s)ds

)
(
−ε+

1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

) .
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Passing here to the limit when ε→ +0, we obtain

ȳ (t) = 1
1∫
0

b(s)

(
s∫
0

a(x) dx

)
ds

[
y0
(

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds

)
−

−
(

t∫
0

a (s) ds

)(
1∫
0

b (s) y0 ds

)
−
(

t∫
0

a (s) ds

)]
.

(11)

Let us show that ȳ (t) is the solution to the degenerate equation

1∫
0

b (s) · ȳ (s) ds+ 1 = 0. (12)

Substituting (11) into the left side of the equation (12), we will have

1∫
0

1
1∫
0

b(s)

(
s∫
0

a(x)dx

)
ds

[
b(s)

(
−
(
s∫
0

a (s) ds

)
y0
(

1∫
0

b (s) ds

)
+

+y0
(

1∫
0

b (s)

(
s∫
0

a (x) dx

)
ds

)
−
(
s∫
0

a (s) ds

))]
+ 1.

We must show that
1∫
0

b (s)

(
−

 s∫
0

a (x) dx

 y0

 1∫
0

b (s) ds

+

+ y0

 1∫
0

b (s)

 s∫
0

a (x) dx

 ds

− s∫
0

a (x) dx

)
ds−

−
1∫
0

b (s)

 s∫
0

a (x) dx

ds ≡ 0.

Removing the terms underlined above and then canceling both sides by y0, we arrive at the identity

1
∫
0
b (s)

(
−
(
s
∫
0
a (x) dx

)(
1
∫
0
b (s) ds

)
+

(
1
∫
0
b (s)

(
s
∫
0
a (x) dx

)
ds

))
ds ≡ 0.

The proof of this identity for arbitrary functions a (t) and b (t), continuous on an interval [0, 1], is
problematic. However, in the case of polynomials a (t) and b (t), it can be proved by induction on the
powers of the polynomials.

The following results were obtained.

Theorem 2. Let the functions a (t) , b (t) , h (t) in equation (9) be continuous on the segment [0, 1] .
Then:

1) equation (9) has a unique solution y (t, ε) ∈ C1 [0, 1] in the form (10), which for arbitrary a (t) and

h (t) ∈ C [0, 1] has a first-order pole with respect to ε if C =
1∫
0

b (s) ·
s∫
0

a (θ) dθ 6= 0, and a second-order

pole with respect to ε if C = 0;
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2) in order for y (t, ε) to be analytical in ε (for sufficiently small ε > 0), it is necessary and sufficient
that the identity (∗) holds;

3) for a (t) ≡ h (t) ∗, the exact solution y (t, ε) of the equation (2) uniformly (for t ∈ [0, 1] ) tends
to the solution (11) of the degenerate equation (12) when ε→ +0.

Remark 1. In work [1] statement 3) of this theorem was not given. Here it is proved for the first
time.

Remark 2. It follows from Theorems 1 and 2 that there is no boundary layer in the solutions of
problem (2).

Let’s look at examples.

Example 1. Consider the problem

ε
dy

d t
= 5 t2

1∫
0

(
4s2 − 5s

)
y (s, ε) ds+ 2t− 1, y (0, ε) = y0. (13)

Substituting a (t) = 5t2, b (t) = 4t2 − 5t, h (t) = 2t − 1 into formula (10), we find a solution to this
problem in the form

y (t, ε) = y0 − t

ε
+
t2

ε
− 1

4

t3
(
70y0ε− 13

)
ε (9ε+ 5)

.

The condition (∗) that has the form 13
36 t

3 ≡ −5
9 t

2 + 5
9 t, is not satisfied, and therefore the solution to

problem (13) has a first-order pole in ε.

Example 2. Now consider the problem

ε
dy

d t
= 3(t− 1)2

1
∫
0

(
2s− 6

5

)
y (s, ε) ds+ 5 t+ 1, y (0, ε) = y0.

Here: a (t) = 3(t−1)2, b (t) = 2t− 6
5 , h (t) = 5 t+1, C =

1∫
0

b (s) ·
(
s∫
0

a (x) dx

)
ds = 0 and the condition

(∗) is not met. Calculating the solution using formula (10), we obtain the following solution:

y (t, ε) =
y0

60
· −12t3 + 36t2 + 60ε− 36t

ε
+

150εt2 + 19t3 + 60εt− 57t2 + 57t

60ε2
.

It can be seen that the solution has a pole of second order in ε.

Example 3. Consider another problem

ε
dy

dt
=
(
2− 5 t2

) 1∫
0

s3y (s, ε) ds+
(
2− 5t2

)
, y (0) = y0. (14)

Here a(t) ≡ h (t) =
(
2− 5t2

)
, it means that the condition (∗) is fulfilled in an obvious way and

therefore there is a finite limit lim
ε→+0

y (t, ε) = ȳ (t) . Let’s make sure of this. Solving problem (14) using

the above method, we obtain the following solution:

y (t, ε) =
1

4

−175y0t3 − 700t3 + 420εy0 + 210y0t− 68y0 + 840t

−17 + 105 ε
.

∗ In this case the identity (∗) is obvious.
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We see that the solution is analytic with respect to ε for sufficiently small values ε > 0, and there is a
uniform passage to the limit

y (t, ε)→ ȳ (t) =
175

68
y0t3 +

175

17
t3 − 105

34
ty0 + y0 − 210

17
t (ε→ +0) .

Substituting ȳ (t) into the right side of the degenerate equation 0 =
1∫
0

s3 ××ȳ (s) ds+ 1, we have

1∫
0

s3
(

175

68
y0s3 +

175

17
s3 − 105

34
sy0 + y0 − 210

17
s

)
ds+ 1 ≡ 0.

Thus, the function ȳ (t) is the solution of a degenerate equation, which is consistent with statement 3)
of Theorem 2.

2 Nonlinear singularly perturbed Hammerstein equations

Let’s move on to studying the nonlinear equation (1). In the works known to us [5–7] more general
linear, nonlinear differential and integro-differential equations are considered and systems are than
in our work. However, they are devoted to the construction of asymptotic solutions and the study
phenomena of initial and boundary jumps. Assuming that there is a continuous solution of this
equation, integrating it by t over the segment [0, t], we obtain the integral equation

εy (t, ε) = q1 (t)
1∫
0

b1 (s) f (y (s, ε) , s) ds+

+q2 (t)
1∫
0

b2 (s) f (y (s, ε) , s) ds+ εy0,

(3∗)

where the notations qj (t) =
t∫
0

aj (θ) dθ, j = 1, 2, are introduced. Let us introduce constants

w1 =

1∫
0

b1 (s) f (y (s, ε) , s) ds, w2 =

1∫
0

b2 (s) f (y (s, ε) , s) ds. (15)

Then the solution of the equation (3∗) will be written in the form

y (t, ε) =
1

ε

(
q1(t)w1 + q2 (t)w2 + εy0

)
. (16)

Substituting (16) into (15), we obtain an algebraic system of equations

w1 =
1∫
0

b1 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds,

w2 =
1∫
0

b2 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds.

(17)

If the function f (y, s) is known, then (17) is a nonlinear algebraic system of equations, the solvability of
which relative tow1 and w2 is not guaranteed by anything. Therefore, it is unlikely that in the general
case it will be possible to formulate the conditions for the solvability of the system (17) in terms of the
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initial data. In a specific case, when all the functions included in equation (1) are given, nothing can
be also said about solvability. In this case, difficulties arise in calculating the integrals included in (17).
Let’s try to solve system (17) using the Maple program. We present the corresponding algorithm.

Restart:
Set the initial data

f := f (z, t) ; q1 := q1 (t) ; q2 := q2 (t) ; b1 := b1 (t) ; b2 := b2 (t) .

We write system (17) for given data

w1 =
1∫
0

b1 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds,

w2 =
1∫
0

b2 (s) f
(
1
ε

(
q1 (s)w1 + q2 (s)w2 + εy0

)
, s
)
ds.

A system of algebraic equations is obtained. We solve it using the solve operator. If we manage to
find the constants w1 = w0

1, w2 = w0
2, then the solution of the equation (1) is obtained as follows:

y (t, ε) =
1

ε

(
q1 (t)w1 + q2 (t)w2 + εy0

)
;

subs
({
c1 = c01, c2 = c02

}
, y (t, ε)

)
.

Let us demonstrate the implementation of this procedure using specific examples.

Example 4. Solve the Cauchy’s problem

ε
d

d t
y (t, ε) = 3t2

1∫
0

sy2 (s, ε) ds, y (0, ε) = y0. (18)

Here: q1 (t) = t3

3 , q2 (t) = 0, b1 (t) = t, b2 (t) = 0. Applying the algorithm described above, we obtain
the following solution to problem (18):

y (t, ε) = t3
(

4ε− 8

5
y0 ± 2

5

√
100ε2 − 80εy0 − 9 (y0)2

)
+ y0.

From this it is clear that for sufficiently small ε > 0 and y0 6= 0 equation (18) has no real solutions and
only for y0 = 0 it has two real solutions y (t, ε) = t3 (4ε± 4ε) , uniformly tending to zero as ε→ +0.

Example 5. Now consider the problem

ε
d

d t
y (t, ε) = 2t

1∫
0

sy3 (s) ds, y (0, ε) = m. (19)

Here, instead of quadratic nonlinearity, we took cubic nonlinearity f (y) = y3. Using the Maple program
algorithm described above, we find that problem (19) has only one real solution y (t) = t2

ε w+m, where
the constant w has the form

w =
[1

3

(
−10m3 − 144εm+ 6

√
3m6 + 72εm4 + 672ε2m2 − 384ε3

)1/3
−
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−
3
(
2
9m

2 − 8
3ε
)(

−10m3 − 144εm+ 6
√

3m6 + 72εm4 + 672ε2m2 − 384ε3
)1/3 − 4

3
m
]
· ε.

When ε→ +0 the solution y (t, ε) has a finite limit

ȳ (t) = t2

 1

3
(

6
√

3 |m|3 − 10m3
)1/3 − 2m2

3
(

6
√

3 |m|3 − 10m3
)1/3 − 4

3
m

+m.

For different signs of the initial condition m, the solution tends to different limits.

Remark 3. The results of studies for linear singularly perturbed problems are presented in the
works [8–24].

Conclusion

The properties of nonlinear singularly perturbed problems of type (1) differ significantly from the
properties of linear problems of type (2); linear problems are always uniquely solvable in the class
C1 [0, 1] with continuous initial data, and nonlinear problems may not have real solutions at all or have
several of them.
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In this paper, we study precise and exact traveling wave solutions of the conformable differential nonlinear
Schrödinger equation. Then, we transform the given equation into an integer order differential equation by
utilizing the wave transformation and the characteristics of the conformable derivative. To extract optical
soliton solutions, we divide the wave profile into amplitude and phase components. Further, we introduce
a new extension of a modified Jacobi elliptic functions method to the conformable differential nonlinear
Schrödinger equation with group velocity dispersion and coefficients of second-order spatiotemporal disper-
sion.

Keywords: Non-linear Schrödinger equation, Conformable fractional derivative, Modified Jacobi elliptic
functions method, Extracting optical solitons-solutions.

2020 Mathematics Subject Classification: 26A33, 34A25, 35R11.

Introduction

Fractional partial and ordinary differential equations (FPDEs and FODEs) are a type of differential
equation that involve fractional derivatives. They have been extensively used in many areas of science
and engineering, including physics, biology, and finance. One important aspect of fractional calculus
is the ability to model complex systems with memory, where the behavior of the system depends on
past history [1–8]. The conformable fractional sense is a new approach to fractional calculus that has
gained significant attention in recent years. It provides a more accurate representation of non-local
effects and has been used to model various physical and biological systems. Conformable PDEs are a
type of FPDEs that utilize the conformable fractional derivative, and they have been used to provide
a more realistic representation of a wide range of real-world phenomena, such as diffusion and wave
propagation. As such, the study of FPDEs and FODEs in the conformable fractional sense is an active
and exciting area of research with broad applications [9, 10].

The behavior of conformable PDEs has gained significant attention in recent years due to their
wide-ranging applications in various domains, including physics, biology, and engineering. However,
understanding the behavior of solutions to conformable PDEs is a complex task, making it challenging
to determine accurate answers. To overcome this challenge, several approaches have been suggested
to discover analytical solutions for conformable PDEs. These approaches include integral transform
methods, numerical methods, and special function techniques, among others. Each of these methods
∗Corresponding author. E-mail: shridehalomari@bau.edu.jo
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has its strengths and weaknesses, making it essential to select the appropriate approach based on the
specific characteristics of the conformable PDE being studied. A comprehensive reference list of these
approaches can be found in [11], which can aid researchers in selecting the most appropriate approach
to solve a particular conformable PDE.

In recent years, finding accurate traveling wave solutions of various nonlinear conformable PDEs has
been the primary focus of many researchers. Numerous methods have been proposed to tackle this chal-
lenge and provide more general solutions to nonlinear PDEs. These methods include the Kudryashov
method [12], the improved tan-expansion method [13], the Sine-Gordon Expansion method [14], the
exponential rational function method [15], the sub-equation method [16], the tanh method [16], the
auxiliary equation method [17], the Exp-function Method [18], the Jacobi elliptic function expansion
method [19], the extended direct algebraic method [20], the first integral method [21] and the improved
Bernoulli subequation function method [22]. Among these methods, the modified Jacobi elliptic func-
tions approach [23] is the most crucial method for solitary wave solutions in optics, which has been
widely used to give more general solutions to nonlinear PDEs. These approaches have enabled re-
searchers to better understand the behavior of conformable PDEs and their solutions, leading to more
accurate predictions and improved modeling of various physical systems.

The focus of this paper is on obtaining an accurate solution to a 1D conformable differential
nonlinear Schrödinger equation (CNLSE). To accomplish this, the paper proposes using a second-
order nonlinear ODE with a sixth-degree nonlinear component, which extends the elliptic equation.
Additionally, the paper aims to develop solutions to the CNLSE using Jacobi’s elliptic functions (JEFs).
In doing so, optical solitons and other solutions can be observed in the limiting situation of the modulus
of ellipticity. The remainder of the paper is dedicated to utilizing a modified auxiliary equation
approach to identify all soliton solutions in terms of JEFs and providing soliton solutions with suitable
limiting values of the modulus of ellipticity. Ultimately, the results of this paper will contribute to
advancing the understanding and application of the CNLSE. However, this paper is structured as
follows:
• Section 1 presents the modified auxiliary method (modified Jacobi elliptic functions (MJEFs)

method) for obtaining solitary solutions of CNLSE, including a demonstration that some solutions
from a previous paper are particular to our model.
• Section 2 discusses the obtained results and their novelty compared to previous methods.
• Section 2 presents the study’s results.

1 Mathematical analysis

In this paper, we apply a MJEFs approach to obtain exact wave solutions for CNLSE having group
velocity dispersion GVD and second order spatiotemporal dispersion coefficients provided ω = 1 and
b2 = 0 (see [24]). The governing model is written as follows:

i ∂q∂x + iρ∂
ωq
∂tω

++β ∂
2ωq
∂t2ω

+ γ ∂
2q
∂t2

+ b2|q|2q = 0,

t > 0, ω > 1,

(1)

where q(x, t) denotes the macroscopic complex-valued wave profile, x and t are, respectively, the
spatial and temporal variables. The numbers β and γ denote the coefficients of the GVD and spatial
dispersion, respectively. Whereas, ρ is proportional to the group speed ratio and b2 is nonzero real-
valued constant coefficient which coefficient constitute the nonlinearity component. For extracting
optical solitons-solutions, the wave profile is split into amplitude and phase components as

q(x, t) = u(ξ)eiψ, (2)
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where

ξ = x− ν t
ω

ω
, (3)

ν being a real constant and u(ξ) the amplitude components of the wave profiles. The phase factor is

ψ = −cx+ ω t
ω

ω + θ0, (4)

where c is the frequency of the solitons and ω is the wave number and θ0 is the phase constant. We
reduce NLPDE (1) into one-dimensional ODE; if we take the necessary of (2) with (3) for (1), we get
the following expressions:

qx = u′eiψ − icueiψ,

qxx = u′′eiψ − 2icu′eiψ − c2ueiψ,

∂ωq
∂tω

= −νu′eiψ + iωueiψ,

∂2ωq
∂t2ω

= ν2u′′eiψ − 2iνωu′eiψ − ω2ueiψ, |q|2q = u3eiψ.

(5)

By using (2), (4) and (5) in (1), CNLSE (1) turns into an ODE that we decompose into real and imag-
inary parts. The imaginary part yields a relation which is constraint between the soliton parameters
as

ν = 1−2cγ
ρ+2ωβ . (6)

The real part of the equation in (6) is

(c− ρω − βω2 − γc2)u+ (βν2 + γ)u′′ + b2u
3 = 0. (7)

The balance rule detailed in [25] gives N = 1. Solitons emerges from the limiting process are presenting
in the next section.

1.1 Solitons-solutions

Applying the modified auxiliary equation method to the CNLSE (1) and using the balance rule
of [25] (when N = 1),we get to write the solution of (7) as follows:

u(ξ) =
∑N=1

i=0 aiF
i(ξ) = a0 + a1F (ξ), (8)

where, a0, a1 are arbitrary constants such that a1 6= 0 and F (ξ) is a Jacobian elliptic function (see [23]),
when F (ξ) satisfying the following:

(F ′(ξ))2 = A2F
2(ξ) +A4F

4(ξ) +A6F
6(ξ), (9)

where A2, A4 and A6 are arbitrary constants determined by Jacobi elliptic functions JEFs method [23].
Substituting (8) and the derivative of (9) in (7), while collecting all terms with the same power and
setting them to zero, we have the following of algebraic equations:

3(βν2 + γ)A6a1 = 0,

2(βν2 + γ)A4 + b2a
2
1 = 0,

3b2a0a
2
1 = 0,

(βv2 + γ)A2 + 3b2a
2
0 + (c− ρω − βω2 − γc2) = 0,

b2a
3
0 + (c− ρω − βω2 − γc2)a0 = 0.

(10)
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Form the first equation of system (10), we take A6 = 0 according to [23], we deduce existence of one
modulus (0 ≤ k1 ≤ 1 and k2 = 0, see [23]).

Solving algebraic equation (10) by using any computer software (Matlab, Maple, Wolfram, Math-
ematica, ...) yields three cases of solutions and according with [23] as follow:

a0 = 0, a21 = −2(βν2 + γ)
A4

b2
> 0, c =

1

2γ
(1 +

√
4βγν2A2 − 4βγω2 + 4βγA2 − 4γωρ+ 1) ≥ 0, A6 = 0,

with
4βγν2A2 − 4βγω2 + 4βγA2 − 4γωρ+ 1 ≥ 0.

Case 1: When A2 = −(1+k21) and A4 = k21 > 0 with (βν2+γ)A4
b2
< 0, we can acquire the following

new complex Jacobi sine function solution for equation (1):

q1(x, t, k1) = ±

√
−2(βν2 + γ)

k21
b2
e
i
(

−1
2γ

(
1±
√
−4βγν2(1+k21)−4βγω2−4βγ(1+k21)−4γωρ+1

)
x+ω t

ω

ω
+θ0
)
sn(x−ν t

ω

ω
, k1).

(11)
Case 2: When A2 = 2k21−1 and A4 = −k21 < 0 with (βν2+γ)A4

b2
> 0, we can acquire the following

new complex Jacobi cosine function solution for equation (1):

q2(x, t, k1) = ±

√
2(βν2 + γ)

k21
b2
e
i
(

−1
2γ

(
1±
√

4βγν2(2k21−1)−4βγω2+4γ(2k21−1)−4γωρ+1
)
x+ω t

ω

ω
+θ0
)
cn(x−ν t

ω

ω
, k1).

(12)
Case 3: When A2 = 2− k21 and A4 = −1 < 0 with (βν2 + γ)A4

b2
> 0, we can acquire the following

new complex Jacobi function solution of the third kind for equation (1):

q3(x, t, k1) = ±

√
2(βν2 + γ)

b2
e
i
(

−1
2γ

(
1±
√

4βγν2(2−k21)−4βγω2+4γ(2−k21)−4γωρ+1
)
x+ω t

ω

ω
+θ0
)
dn(x− ν t

ω

ω
, k1).

(13)

1.2 Particular cases

When k1 → 0, the JEFs (11)-(12)-(13) degenerate to the triangular functions, that is,

snξ → sin ξ, cnξ → cos ξ, dnξ → 1. (14)

When k1 → 0, the JEFs (11)-(12)-(13) degenerate to the hyperbolic functions, that is,

snξ → tan ξ, cnξ → sechξ, dnξ → sechξ. (15)

In [11], several specific solutions from (11)-(12)-(13) with (14)-(15) are described.

2 Physical interpretation and discussion

In a specific example of the constants when setting the variables γ = 1, β = 3 and ω = 0.5, it
would be extremely helpful if we had real figures that visually illustrated some of the new solutions
to equation 1 that were achieved, corresponding to case 1 (Fig. 1), case 2 (Fig. 2) and case 3 (Fig. 3).
In this study, key characteristics of the modified JEFs approach were employed to provide a physical
explanation for several complex and Jacobi elliptic solutions that were derived for an equation 1. The
modified JEFs technique is more broad than the classical methods (such a tanh method, sin-cos method,
simplest equation method [26] and the expansion method [18]) because it can discover additional types
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of analytical solutions that cannot be found by using Bäckland method [11] as an example. In order to
acquire additional analytical answers, a better knowledge of engineering and physical challenges, and
new physical predictions, the process described in [27] will help.

In section (1.1), we demonstrate that the JEFs solutions to (1) only have one k1 modulus 0 ≤ k1 ≤ 1
according to [23]. As far as we are aware, this is the first place in the literature where the new solutions
(11)-(12)-(13) of (1) may have been found.

In regards to figures, surfaces have been plotted by taking into account the appropriate values for
the parameters. When we verify every analytical solution produced in this study using the modified
JEFs approach, we find that Figures 1, 2, and 3 have three-dimensional surfaces. As a result, it may
be claimed that they are physically plausible because nearly every figure demonstrates similar wave
behaviors given the appropriate parameter values.

(a) (b)

(c)

Figure 1. (a) Real, (b) imaginary and (c) absolute plots in 3D sketches of equation (11), respectively,
when v = 2, b2 = −2, ω = 5, θ0 = 2 and ρ = 2
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(a) (b)

(c)

Figure 2. (a) Real, (b) imaginary and (c) absolute plots in 3D sketches of equation (12), respectively,
when v = 2, b2 = −2, ω = 5, θ0 = 2 and ρ = 2

(a) (b)

(c)

Figure 3. (a) Real, (b) imaginary and (c) absolute plots in 3D sketches of equation (13), respectively,
when v = 2, b2 = −2, ω = 5, θ0 = 2 and ρ = 2
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Conclusion

The current work employs the MJEFs approach to address the CNLSE, incorporating fractional
derivatives featuring second-order spatiotemporal and GVD coefficients via wave transformation and
conformable derivatives. A diverse array of optical solitons-solutions are constructed for the governing
equation. Figures 1, 2, and 3 present a viewpoint of the resulting solitons solutions with respect to
distinct parameters. Our novel MJEFs technique generates a new set of solutions (with one modulus)
that are exclusively presented in this work. These unrestricted parameter solutions hold significant
importance in elucidating various physical interpretations. The outcomes demonstrate the capability
of our approach to be used in a variety of CPDEs and offer numerous precise solutions for CPDEs.
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In this paper, we derive some new fixed point results in C∗-algebra valued fuzzy metric space with the help
of subadditive altering distance function with respect to a t-norm. Our results generalize some existing
fixed point results in the literature. A common fixed point result is also derived for a pair of mappings
on complete C∗-algebra valued fuzzy metric space. The results are supported by suitable examples along
with the graphical demonstration of the used conditions. As application, we establish the solvability
of a second order boundary value problem. Moreover, the results are also applied in control theory to
study the possibility of optimally controlling the solution of an ordinary differential equation in dynamic
programming.

Keywords: C∗-algebra valued metric space, fuzzy metric space, fixed point, boundary value problem, control
theory.
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Introduction

The concept of fuzzy metric was introduced by Kramosil and Michalek [1] in 1975 and the study of
fixed points in fuzzy metric space was given by Grabiec [2] in 1988. Fixed point theory has emerging
applications in various domains including applied analysis, physics, mechanics, medical science etc.
During recent years, several researchers ([3–10]) have done the study of fixed point theory by introduc-
ing different types of mappings as well as considering different spaces along with various applications.

In 1984, Khan et al. [11] introduced the concept of altering distance function between two points
and again in 2011, Shen et al. [12] defined the same by introducing a new condition and derived many
fixed point results in fuzzy metric space. After that Roldán-López-de-Hierro et al. [3] established some
results on common fixed point theorems for weakly compatible mappings in fuzzy metric spaces with
new contractive conditions. In 2018, Shoaib et al. [13] derived some fixed point results in dislocated
complete b-metric space and gave some examples as well as applications relating the results to common
fixed points for multivalued mappings. Using the altering distance function, Patir et al. [5,6,8] derived
some fixed point results using different types of mappings and gave examples as well as applications
to boundary value problem and integral equations.

The concept of C∗-algebra valued metric space was given by Ma et al. [14] by replacing the set
of non negative real numbers with a (unital) C∗-algebra. In 2020, Madadi et al. [15] introduced the
concept of C∗-algebra valued fuzzy metric space and derived some topological properties of the same.
After that in 2021, Khaofong et al. [16] gave a new definition of C∗-algebra valued fuzzy metric space
by replacing [0, 1] by [0A, 1A], where 0A and 1A are the zero element and the unit element of an algebra
A respectively in the sense of George and Veeramani [17], and established some results by introducing
C∗-algebra valued contraction mapping with application to integral equations.
∗Corresponding author. E-mail: goutamd477@gmail.com
Received: 6 February 2024; Accepted: 28 August 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Motivated by these, in this paper, we establish some fixed point results for complete C∗-algebra
valued fuzzy metric space using subadditive altering distance function with respect to some t-norm.
We also derive a common fixed point result for a pair of mappings on complete C∗-algebra valued fuzzy
metric space. Some of our results extend the works of Shoaib et al. [13] and Patir et al. [5, 6, 8, 18] in
the setting of C∗-algebra valued fuzzy metric space. In the third section we give an application of our
established result to second order boundary value problem. In view of the vast application of control
theory in present times in different technological fields viz., spacecraft control, robot technology, smart
fluid technology, etc., the section four of our paper is devoted to the study of control theory via our
derived result. Here we apply our results to study the possibility of optimally controlling the solution
of an ordinary differential equation in dynamic programming.

1 Preliminaries

Throughout the paper, A denotes a unital C∗-algebra with unity 1A. A complex algebra A is called
a complex *-algebra if there is an involution ∗ : A→ A defined on it by u→ u∗, where u∗ is called the
adjoint of u and having the properties that for all u, v ∈ A, (λu + v)∗ = λ̄u∗ + v∗, (uv)∗ = v∗u∗ and
(u∗)∗ = u, where λ̄ denotes the conjugate of λ ∈ C. A complete unital *-algebra is called a Banach
*-algebra with the norm satisfying ||u∗|| = ||u|| for all u ∈ A. Moreover, a Banach *-algebra is a
C∗-algebra if ||u∗u|| = ||u||2 for all u ∈ A.

An element ξ ∈ A is called a positive element of A and denoted by 0A 4 ξ (0A being the zero
element of A) if ξ ∈ Ah and σ(ξ) ⊂ [0,∞), where Ah = {ξ ∈ A : ξ∗ = ξ} and σ(ξ) is the spectrum of
ξ. A partial ordering on A is defined by ξ 4 η (or, η < ξ) if and only if 0A 4 η − ξ (or, η − ξ < 0A).
When ξ − η is positive and non-zero, we call ξ − η as strictly positive and denote it by ξ − η � 0A
(or, ξ � η). The set {ξ ∈ A : 0A 4 ξ} is denoted by A+ and we denote (ξ∗ξ)

1
2 as |ξ| and for invertible

η, ξη−1 as ξ
η . Let A′ be the set {ξ ∈ A+ : ξη = ηξ for all η ∈ A}. Moreover, [0A, 1A] denotes the set

{ξ ∈ A : 0A 4 ξ 4 1A}.
Definition 1. [14] Let X be a nonempty set and A be a C∗-algebra. Suppose that a mapping

d : X ×X → A+ satisfies:
(i) d(ξ, η) = 0A if and only if ξ = η for all ξ, η ∈ X,
(ii) d(ξ, η) = d(η, ξ) for all ξ, η ∈ X,
(iii) d(ξ, η) 4 d(ξ, ζ) + d(ζ, η) for all ξ, η, ζ ∈ X.
Then d is called a C∗-algebra valued metric on X and (X,A, d) is called a C∗-algebra valued metric

space.

Example 1. [19] Let X = [0, 1] and A = M2(R), the set of all bounded linear operators on the
Hilbert space R2. Define d : X ×X → A+ by

d(ξ, η) =

[
|ξ − η| 0

0 2|ξ − η|

]
,

where ξ, η ∈ X. Then, (X,A, d) is a C∗-algebra valued metric space.

Lemma 1. [20, 21] Suppose that A is a unital C∗-algebra with unit element 1A.
(i) For any ξ ∈ A+, ξ 4 1A if and only if ||ξ|| ≤ 1.
(ii) If u ∈ A+ with ||u|| ≤ 1

2 , then 1A − u is invertible and ||u(1A − u)−1|| < 1.
(iii) Suppose that u, v ∈ A with 0A 4 u, v and uv = vu then 0A 4 uv.
(iv) Suppose that Ã = {u ∈ A : uv = vu for all v ∈ A}. Let u ∈ Ã, if v, w ∈ Ã with 0A 4 w 4 v

and 1A − u is a positive element in Ã then (1A − u)−1w 4 (1A − u)−1v.

Lemma 2. [22, 23] Let A be a C∗-algebra with unit element 1A and let u, v ∈ A.
(i) If u is self-adjoint, then u 4 ||u||1A.
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(ii) If 0A 4 u 4 v, then ||u|| ≤ ||v||.
(iii) If u ∈ A, then 1A + uu∗ is invertible in A.
(iv) If u ∈ A+, then u = ξ∗ξ for some ξ ∈ A.
Madadi et al. [15] defined the triangular norm or t-norm as follows:

Definition 2. Let A be a C∗-algebra with unit element 1A. A mapping τ : A+×A+ → A+ is called
a t-norm if

(i) τ(a, 1A) = a for all a ∈ A+,
(ii) τ(a, b) = τ(b, a) for all a, b ∈ A+,
(iii) a 4 a′, b 4 b′ =⇒ τ(a, b) 4 τ(a′, b′) for all a, b, c, d ∈ A+,
(iv) τ(a, τ(b, c)) = τ(τ(a, b), c) for all a, b, c ∈ A+.

Definition 3. [16] Let A be a C∗-algebra with unit element 1A. For an arbitrary set X, let τ be a
continuous t-norm on A+ and MA be a fuzzy set from X ×X × (0,∞)→ [0A, 1A]. Then (X,MA, τ) is
called a C∗-algebra valued fuzzy metric space, if it satisfies the following conditions, for each ξ, η, ρ ∈ X
and t, s > 0,

(i) MA(ξ, η, t) � 0A,
(ii) MA(ξ, η, t) = 1A if and only if ξ = η for all t > 0,
(iii) MA(ξ, η, t) = MA(η, ξ, t),
(iv) τ(MA(ξ, η, s),MA(η, ρ, t)) 4MA(ξ, ρ, s+ t),
(v) MA(ξ, η) : (0,∞)→ [0A, 1A] is continuous.

As in [12], we define the altering distance function in C∗-algebra valued fuzzy metric space as
follows.

Definition 4. Let (X,MA, τ) be a C∗-algebra fuzzy metric space with unit element 1A. Let φ :
A+ → A+ be a mapping. Then φ is called an altering distance function if

(i) φ is strictly decreasing and left continuous,
(ii) φ(k) = 0A if and only if k = 1A, i.e., limk→1−A

φ(k) = 0A.

Using the subadditivity condition with respect to a t-norm τ , we give the following definition of
subadditive altering distance function with respect to τ .

Definition 5. Let (X,MA, τ) be a C∗-algebra valued fuzzy metric space. An altering distance func-
tion φ is said to be subadditive with respect to the t-norm τ if φ(τ(a, b)) 4 φ(a) + φ(b),
a, b ∈ {MA(ξ, η, t) : ξ, η ∈ X, t > 0}.

In the same line as Grabiec [2; Lemma 4], we can prove the following lemma in the setting of
C*-algebra valued fuzzy metric space.

Lemma 3. Let (X,MA, τ) is a C∗-algebra valued fuzzy metric space. ThenMA(ξ, η, t) 4MA(ξ, η, kt),
where k ∈ N, ξ, η ∈ X and t > 0.

Proof. Let t, s > 0 with t < s. Suppose that for all ξ, η ∈ X, MA(ξ, η, t) � MA(ξ, η, s). Now, by
condition (iv) of Definition 3,

τ(MA(ξ, η, t),MA(η, η, s− t)) 4MA(ξ, η, s)

≺MA(ξ, η, t),

τ(MA(ξ, η, t), 1A) ≺MA(ξ, η, t),

MA(ξ, η, t) ≺MA(ξ, η, t),

which is a contradiction. So, MA(ξ, η, t) 4MA(ξ, η, s) when t < s.
Thus, MA(ξ, η, t) is non-decreasing with respect to t for all ξ, η ∈ X and hence the lemma easily

follows.
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Following the definition of Cauchy sequence in fuzzy metric space by George and Veeramani [17],
the Cauchy sequence in C∗-algebra valued fuzzy metric space can be defined in a similar way.

Definition 6. Let (X,MA, τ) be a C∗-algebra valued fuzzy metric space. A sequence {ξn} in X is
said to be a Cauchy sequence if for all εA ∈ (0A, 1A) and t > 0, there exists n0 ∈ N such that for all
m > n > n0, MA(ξm, ξn, t) < 1A − εA or equivalently, lim

m,n→∞
MA(ξm, ξn, t) = 1A.

The sequence {ξn} is said to be convergent to ξ, if lim
n→∞

MA(ξn, ξ, t) = 1A. If every Cauchy sequence
in (X,MA, τ) is convergent, then (X,MA, τ) is called a complete C∗-algebra valued fuzzy metric space.

2 Main Results

In this section, we derive some fixed point results considering a subadditive altering distance func-
tion with respect to a t-norm.

Theorem 1. Let (X,MA, τ) be a complete C∗-algebra valued fuzzy metric space. Let φ be a
subadditive altering distance function with respect to the t-norm τ and let T be a self mapping on X
such that

φ(MA(Tξ, Tη, t)) 4 a∗1φ(MA(ξ, T ξ, t))a1 + a∗2φ(MA(η, Tη, t))a2 + a∗3φ(MA(ξ, Tη, 2t))a3

+ a∗4φ(MA(η, Tξ, t))a4 + a∗5φ(MA(ξ, η, t))a5

+ a∗6(φ(MA(ξ, T ξ, t)) + φ(MA(η, Tη, t)))
(1A + φ(MA(ξ, T ξ, t)))

(1A + φ(MA(ξ, η, t)))
a6, (1)

where ai ∈ A′ for i = 1, ..., 6 with
∑6

i=1 ||ai||2 + ||a3||2 + ||a6||2 < 1. Then T has a unique fixed point
in X.

Proof. For ξ0 ∈ X, we consider the Picard sequence ξn+1 = Tξn, n ∈ N ∪ {0}. Now,

φ(MA(ξj , ξj+1, t))

4 a∗1φ(MA(ξj−1, T ξj−1, t))a1 + a∗2φ(MA(ξj , T ξj , t))a2 + a∗3φ(MA(ξj−1, T ξj , 2t))a3

+ a∗4φ(MA(ξj , T ξj−1, t))a4 + a∗5φ(MA(ξj−1, ξj , t))a5

+ a∗6(φ(MA(ξj−1, T ξj−1, t)) + φ(MA(ξj , T ξj , t)))
(1A + φ(MA(ξj−1, T ξj−1, t)))

(1A + φ(MA(ξj−1, ξj , t)))
a6

4 ||a1||21Aφ(MA(ξj−1, ξj , t))) + ||a2||21Aφ(MA(ξj , ξj+1, t)) + ||a3||21Aφ(MA(ξj−1, ξj+1, 2t))

+ ||a5||21Aφ(MA(ξj−1, ξj , t)) + ||a6||21Aφ(MA(ξj−1, ξj , t)) + ||a6||21Aφ(MA(ξj , ξj+1, t)). (2)

Using the property of t-norm and the altering distance function φ, we have

MA(ξj−1, ξj+1, 2t) < τ(MA(ξj−1, ξj , t),MA(ξj , ξj+1, t)),

φ(MA(ξj−1, ξj+1, 2t)) 4 φ(τ(MA(ξj−1, ξj , t),MA(ξj , ξj+1, t)))

4 φ(MA(ξj−1, ξj , t)) + φ(MA(ξj , ξj+1, t)).

So, from (2), we get

φ(MA(ξj , ξj+1, t)) 4 ||a1||21Aφ(MA(ξj−1, ξj , t)) + ||a2||21Aφ(MA(ξj , ξj+1, t)) + ||a3||21Aφ(MA(ξj−1, ξj , t))

+ ||a3||21Aφ(MA(ξj , ξj+1, t)) + ||a5||21Aφ(MA(ξj−1, ξj , t)) + ||a6||21Aφ(MA(ξj−1, ξj , t))

+ ||a6||21Aφ(MA(ξj , ξj+1, t)).
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Then the above equation becomes

(1− ||a2||2 − ||a3||2 − ||a6||2)1Aφ(MA(ξj , ξj+1, t)) 4 (||a1||2 + ||a3||2 + ||a5||2 + ||a6||2)1Aφ(MA(ξj−1, ξj , t)),

φ(MA(ξj , ξj+1, t)) 4
(||a1||2 + ||a3||2 + ||a5||2 + ||a6||2)

(1− (||a2||2 + ||a3||2 + ||a6||2))
1Aφ(MA(ξj−1, ξj , t)),

φ(MA(ξj , ξj+1, t)) 4 γφ(MA(ξj−1, ξj , t))

4 γjφ(MA(ξ0, ξ1, t)), (3)

where γ = (||a1||2+||a3||2+||a5||2+||a6||2)
(1−(||a2||2+||a3||2+||a6||2)) 1A. Taking norm on both sides of the equation (3), we get

||φ(MA(ξj , ξj+1, t))|| 4 ||γ||j ||φ(MA(ξ0, ξ1, t))||.

Taking the limit as j →∞, since ||γ|| < 1, from the above equation, we get

lim
j→∞

φ(MA(ξj , ξj+1, t)) = 0A,

lim
j→∞

MA(ξj , ξj+1, t) = 1A. (4)

Next we show that {ξj} is a Cauchy sequence. If not, then there exists 0A � εA � 1A, for which we
can find two subsequence {ξr(j)} and {ξs(j)} of {ξj} with r(j) > s(j) > j, j ∈ N ∪ {0} such that

MA(ξr(j), ξs(j), t) 4 1A − εA. (5)

Now, without loss of generality, we can choose r(j) as the smallest positive integer satisfying r(j) > s(j)
in (5). Then,

MA(ξr(j)−1, ξs(j), t) � 1A − εA. (6)

Now,

MA(ξr(j)−1, ξs(j)−1, t) < τ(MA(ξr(j)−1, ξs(j),
t

2
),MA(ξs(j), ξs(j)−1,

t

2
)), j ∈ N

< τ(1A − εA,MA(ξs(j), ξs(j)−1,
t

2
)) (by (6)),

lim
j→∞

MA(ξr(j)−1, ξs(j)−1, t) < τ(1A − εA, 1A) = 1A − εA (by (4)),

lim
j→∞

MA(ξr(j)−1, ξs(j)−1, t) < 1A − εA. (7)

Again, from (5),

1A − εA <MA(ξr(j), ξs(j), 4t)

< τ(MA(ξr(j), ξr(j)−1, 2t), τ(MA(ξr(j)−1, ξs(j)−1, t),MA(ξs(j), ξs(j)−1, t)))

< τ(1A, τ( lim
j→∞

MA(ξr(j)−1, ξs(j)−1, t), 1A)) (by (4)),

1A − εA < lim
j→∞

MA(ξr(j)−1, ξs(j)−1, t). (8)

Hence, from (7) and (8), we get

lim
j→∞

MA(ξr(j)−1, ξs(j)−1, t) = 1A − εA.
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By (5),

φ(1A − εA) 4 φ(MA(ξr(j), ξs(j), t))

4 a∗1φ(MA(ξr(j)−1, T ξr(j)−1, t))a1 + a∗2φ(MA(ξs(j)−1, T ξs(j)−1, t))a2

+ a∗3φ(MA(ξr(j)−1, T ξs(j)−1, 2t))a3 + a∗4φ(MA(Tξs(j)−1, T ξr(j)−1, t))a4

+ a∗5φ(MA(ξr(j)−1, ξs(j)−1, t))a5 + a∗6(φ(MA(ξr(j)−1, T ξr(j)−1, t))

+ φ(MA(ξs(j)−1, T ξs(j)−1, t)))
(1A + φ(MA(ξr(j)−1, T ξr(j)−1, t)))

(1A + φ(MA(ξr(j)−1, ξs(j)−1, t)))
a6.

By taking the limit as j →∞ the above expression becomes

φ(1A − εA) 4 ||a1||21Aφ(1A) + ||a2||21Aφ(1A) + ||a3||21Aφ(1A − εA) + ||a4||21Aφ(1A − εA)

+ ||a5||21Aφ(1A − εA) + ||a6||2(φ(1A) + φ(1A))
(1A + φ(1A))

(1A + φ(1A − εA))
,

φ(1A − εA) 4 ||a3||2φ(1A − εA) + ||a4||2φ(1A − εA) + ||a5||2φ(1A − εA),

φ(1A − εA) 4 0A =⇒ 1A − εA = 1A =⇒ εA = 0A,

which is a contradiction. Therefore, {ξj} is a Cauchy sequence. Then there exists a point z in X such
that ξn → z. Now,

φ(MA(Tξn, T z, t)) 4 a∗1φ(MA(ξn, T ξn, t))a1 + a∗2φ(MA(z, Tz, t))a2

+ a∗3φ(MA(ξn, T z, 2t))a3 + a∗4φ(MA(z, T ξn, t))a4 + a∗5φ(MA(ξn, z, t))a5

+ a∗6(φ(MA(ξn, T ξn, t)) + φ(MA(z, Tz, t)))
(1A + φ(MA(ξn, T ξn, t)))

(1A + φ(MA(ξn, z, t)))
a6.

Taking the limit as n→∞ and by Lemma 3, from the above equation, we get

φ(MA(z, Tz, t)) 4 ||a2||21Aφ(MA(z, Tz, t)) + ||a3||21Aφ(MA(z, Tz, t)) + ||a6||21Aφ(MA(z, Tz, t)),

(1− ||a2||2 − ||a3||2 − ||a6||2)1Aφ(MA(z, Tz, t)) 4 0A.

Since the left hand side of the above expression is positive and a2, a3, a6 ∈ A′, using Lemma 1, we get

φ(MA(z, Tz, t)) = 0A =⇒ MA(z, Tz, t) = 1A =⇒ z = Tz.

Uniqueness of the fixed point can be proved easily by (1).

Remark 1. The above theorem generalizes the results given by [13] and [5] if we consider C∗-algebra
valued fuzzy metric space in place of b-metric space and fuzzy metric space respectively.

We present the following example to demonstrate the above theorem.

Example 2. Let X = A = [0, 1] and d(ξ, η) = |ξ − η| for all ξ, η ∈ X. Let MA be a fuzzy set from
X2× (0,∞) to [0, 1] such that MA(ξ, η, t) = 1

1+d(ξ,η) . Then (X,MA, τ) is a complete C∗-algebra valued
fuzzy metric space with respect to the t-norm, τ(a, b) = min{a, b}, a, b ∈ [0, 1]. Let T : X → X be
defined by T (ξ) = ξ

7 for all ξ ∈ X and φ(λ) = 1− λ, λ ∈ [0, 1]. Let ai = 1
3 for i = 1, ..., 6.

Now,

φ(MA(Tξ, Tη, t)) = φ

(
1

1 + |Tξ − Tη|

)
= 1− 1

1 + | ξ7 −
η
7 |
. (9)
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Again,

a∗1φ(MA(ξ, T ξ, t))a1 + a∗2φ(MA(η, Tη, t))a2 + a∗3φ(MA(ξ, Tη, 2t))a3 + a∗4φ(MA(η, Tξ, t))a4

+ a∗5φ(MA(ξ, η, t))a5 + a∗6(φ(MA(ξ, T ξ, t)) + φ(MA(η, Tη, t)))
(1A + φ(MA(ξ, T ξ, t)))

(1A + φ(MA(ξ, η, t)))
a6

=
1

9

[
5−

{
1

1 + |ξ − ξ
7 |

+
1

1 + |η − η
7 |

+
1

1 + |ξ − η
7 |

+
1

1 + |η − ξ
7 |

+
1

1 + |ξ − η|

}]

+
1

9

(
2− 1

1 + |ξ − Tξ|
− 1

1 + |η − Tη|

)(2− 1
1+|ξ−Tξ|

)
(

2− 1
1+|ξ−η|

) . (10)

We represent the equations (9) and (10) in the following figure.

Figure 1. Demonstration of the condition of Theorem 1 by mapping T

In Figure 1, the yellow surface represents the equation (10) and the blue surface represents the
equation (9), where the values of ξ, η are between 0 and 1. Clearly, for all values of ξ, η, the value of
(10) is greater than the value of (9). Hence, the condition of Theorem 1 is satisfied. Clearly, 0 is the
fixed point of T here.

Example 3. Let X = {(1, 1), (2, 1), (2, 7)} ⊆ R2 and A, MA, τ and φ be as in Example 2. Let

T : X → X be defined by T (1, 1) = T (2, 1) = (1, 1) and T (2, 7) = (2, 1) and a1 = a2 =
√

15
100 ,

a4 = a5 =
√

22
100 and a3 = a6 = 0. Then for ξ = (2, 1) and η = (2, 7),

φ(MA(Tξ, Tη, t)) = 1− 1

1 + d((1, 1), (2, 1))
= 1− 1

2
=

1

2

and

a∗1φ(MA(ξ, T ξ, t))a1 + a∗2φ(MA(η, Tη, t))a2 + a∗3φ(MA(ξ, Tη, 2t))a3 + a∗4φ(MA(η, Tξ, t))a4

+ a∗5φ(MA(ξ, η, t))a5 + a∗6(φ(MA(ξ, T ξ, t)) + φ(MA(η, Tη, t)))
(1A + φ(MA(ξ, T ξ, t)))

(1A + φ(MA(ξ, η, t)))
a6

= 0.15(1− 1

2
+ 1− 1

7
) + 0.22(1− 1

1 +
√

37
+ 1− 1

6
) = 0.5734 >

1

2
.

Therefore, the condition of Theorem 1 is satisfied. Clearly, (1, 1) is the fixed point of T in X.
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In the following result, we use minimum and maximum conditions to prove the existence of fixed
point. We note that for ai ∈ [0A, 1A], i = 1, 2, ..., n, n ∈ N, MIN(ai) denotes an element ak, 1 ≤ k ≤ n
such that ak 4 ai for each i, 1 ≤ i ≤ n. Similarly, MAX(ai) denotes an element ak, 1 ≤ k ≤ n such
that ak < ai for each i, 1 ≤ i ≤ n.

Theorem 2. Let (X,MA, τ) be a complete C∗-algebra valued fuzzy metric space. Let φ be a
subadditive altering distance function with respect to the t-norm τ and let T be a self mapping on X
such that

φ(MA(Tξ, Tη, t)) 4 a∗1MIN{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)), φ(MA(ξ, Tη, 2t)), φ(MA(η, Tξ, t)),

φ(MA(η, Tη, t))}a1 + a∗2MAX{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)),

φ(MA(ξ, Tη, 2t)), φ(MA(η, Tξ, t)), φ(MA(η, Tη, t))}a2, (11)

where a1, a2 ∈ A′ with ||a1||2 + 2||a2||2 < 1. Then T has a unique fixed point in X.

Proof. For ξ0 ∈ X, let ξn+1 = Tξn, n ∈ N ∪ {0}. Now,

φ(MA(ξj , ξj+1, t)) 4 a∗1MIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj−1, T ξj−1, t)), φ(MA(ξj−1, T ξj , 2t)),

φ(MA(ξj , T ξj−1, t)), φ(MA(ξj , T ξj , t))}a1 + a∗2MAX{φ(MA(ξj−1, ξj , t)),

φ(MA(ξj−1, T ξj−1, t)), φ(MA(ξj−1, T ξj , 2t)), φ(MA(ξj , T ξj−1, t)), φ(MA(ξj , T ξj , t))}a2
4 ||a1||21AMIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj−1, ξj+1, 2t)), φ(MA(ξj , ξj+1, t))}
+ ||a2||21AMAX{φ(MA(ξj−1, ξj , t)), φ(MA(ξj−1, ξj+1, 2t)), φ(MA(ξj , ξj+1, t))}
4 ||a1||21AMIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t)), φ(τ(MA(ξj−1, ξj , t),MA(ξj , ξj+1, t)))}
+ ||a2||21AMAX{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t)), φ(τ(MA(ξj−1, ξj , t),MA(ξj , ξj+1, t)))}.

Again, φ(a) 4 φ(τ(a, b)) and φ(b) 4 φ(τ(a, b)). So, MIN{φ(a), φ(b), φ(τ(a, b))} = MIN{φ(a), φ(b)}
for all a, b ∈ [0A, 1A]. Hence,

φ(MA(ξj , ξj+1, t)) 4 ||a1||21AMIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))}
+ ||a2||21Aφ(τ(MA(ξj−1, ξj , t),MA(ξj , ξj+1, t)))

4 ||a1||21AMIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))}
+ ||a2||21A(φ(MA(ξj−1, ξj , t)) + φ(MA(ξj , ξj+1, t))). (12)

If MIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))} = φ(MA(ξj−1, ξj , t)), then

φ(MA(ξj , ξj+1, t)) 4 ||a1||21Aφ(MA(ξj−1, ξj , t)) + ||a2||21Aφ(MA(ξj−1, ξj , t)) + ||a2||21Aφ(MA(ξj , ξj+1, t)),

φ(MA(ξj , ξj+1, t)) 4
(||a1||2 + ||a2||2)

(1− ||a2||2)
1Aφ(MA(ξj−1, ξj , t)) = γ1φ(MA(ξj−1, ξj , t)).

Again, if MIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))} = φ(MA(ξj , ξj+1, t)), then from (12), we get

φ(MA(ξj , ξj+1, t)) 4 ||a1||21Aφ(MA(ξj , ξj+1, t)) + ||a2||21Aφ(MA(ξj−1, ξj , t)) + ||a2||21Aφ(MA(ξj , ξj+1, t)),

φ(MA(ξj , ξj+1, t)) 4
( ||a2||2

1− ||a1||2 − ||a2||2
)
1Aφ(MA(ξj−1, ξj , t)) = γ2φ(MA(ξj−1, ξj , t)),

where γ1 =
( ||a1||2+||a2||2

1−||a2||2
)
1A and γ2 =

( ||a2||2
1−||a1||2−||a2||2

)
1A are positive elements in A and strictly less

than 1A. Proceeding as in Theorem 1, we can easily show that the sequence {ξn} is a Cauchy sequence.
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Let ξn → z. Now,

φ(MA(Tξn, T z, t)) 4 a∗1MIN{φ(MA(ξn, z, t)), φ(MA(ξn, T ξn, t)), φ(MA(ξn, T z, 2t)), φ(MA(z, T ξn, t)),

φ(MA(z, Tz, t))}a1 + a∗2MAX{φ(MA(ξn, z, t)), φ(MA(ξn, T ξn, t)), φ(MA(ξn, T z, 2t)),

φ(MA(z, T ξn, t)), φ(MA(z, Tz, t))}a2
4 a∗1MIN{φ(MA(ξn, z, t)), φ(MA(ξn, ξn+1, t)), φ(MA(ξn, T z, 2t)), φ(MA(z, ξn+1, t)),

φ(MA(z, Tz, t))}a1 + a∗2MAX{φ(MA(ξn, z, t)), φ(MA(ξn, ξn+1, t)), φ(MA(ξn, T z, 2t)),

φ(MA(z, ξn+1, t)), φ(MA(z, Tz, t))}a2.

By taking the limit as n→∞, the above equation becomes

φ(MA(z, Tz, t)) 4 ||a1||2φ(MA(z, Tz, t)) + ||a2||2φ(MA(z, Tz, t)),

(1− ||a1||2 − ||a2||2)1Aφ(MA(z, Tz, t)) 4 0A,

which gives z = Tz. Clearly, by using (11), the fixed point is unique.

Remark 2. The above theorem can be taken as a generalization of Theorem 2.11 of [5] and Theorem
2.1 of [24] in the setting of C∗-algebra valued fuzzy metric space.

It may be noted here that the mapping we have considered is not necessarily continuous, which
can be seen from the following example.

Example 4. We consider (X,MA, τ) and φ as in Example 3. Let T : X → X be defined by

T (ξ) =

{
1
6 if ξ ∈ [0, 12)
1
12 ifξ ∈ [12 , 1].

Let a1 = 0 and a2 = 7
10 . Now, three cases will arise:

Case 1. If ξ, η ∈ [0, 12), then φ(MA(Tξ, Tη, t)) = 1 − 1
1+d( 1

6
, 1
6
)

= 0. So, condition (11) is trivially
true.

Case 2. If ξ, η ∈ [12 , 1], this is similar to Case 1.
Case 3. If ξ ∈ [0, 12) and η ∈ [12 , 1], then

φ(MA(Tξ, Tη, t)) = 1− 1

1 + |16 −
1
12 |

=
1

13
(13)

and

a∗1MIN{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)), φ(MA(ξ, Tη, 2t)), φ(MA(η, Tξ, t)), φ(MA(η, Tη, t))}a1
+ a∗2MAX{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)), φ(MA(ξ, Tη, 2t)), φ(MA(η, Tξ, t)), φ(MA(η, Tη, t))}a2

=
49

100
MAX

{
1− 1

1 + |ξ − 1
6 |
, 1− 1

1 + |η − 1
12 |
, 1− 1

1 + |ξ − 1
12 |
, 1− 1

1 + |η − 1
6 |
, 1− 1

1 + |ξ − η|

}
.

(14)

Figure 2 describes equations (13) and (14). Here, the yellow surface represents the equation (14)
and the blue surface represents the equation (13). From Figure 2, it is clear that for all ξ ∈ [0, 12) and
η ∈ [12 , 1], the value of (14) is greater than the value of (13). Thus, the condition of Theorem 2 is
satisfied. Clearly, 1

6 is a fixed point of T .
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Figure 2. Demonstration of the condition of Theorem 2 by mapping T

Next we derive the following common fixed point theorem.

Theorem 3. Let (X,MA, τ) be a complete C∗-algebra valued fuzzy metric space. Let φ be a
subadditive altering distance function with respect to the t-norm τ and let T, S : X → X be such that

φ(MA(Tξ, Sη, t)) 4 a∗1MIN{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)), φ(MA(ξ, Sη, 2t)), φ(MA(η, Tξ, 2t)),

φ(MA(η, Sη, t))}a1 + a∗2MAX{φ(MA(ξ, η, t)), φ(MA(ξ, T ξ, t)), φ(MA(ξ, Sη, 2t)),

φ(MA(η, Tξ, 2t)), φ(MA(η, Sη, t))}a2,

where a1, a2 ∈ A′ with ||a1||2 + 2||a2||2 < 1. Then T and S have a unique common fixed point.

Proof. For ξ0 ∈ X, let ξ2i+1 = Tξ2i and ξ2i+2 = Sξ2i+1, i ∈ N ∪ {0}. Now,

φ(MA(ξ2i+1, ξ2i+2, t)) = φ(MA(Tξ2i, Sξ2i+1, t))

4 a∗1MIN{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i, T ξ2i, t)), φ(MA(ξ2i, Sξ2i+1, 2t)),

φ(MA(ξ2i+1, T ξ2i, 2t)), φ(MA(ξ2i+1, Sξ2i+1, t))}a1
+ a∗2MAX{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i, T ξ2i, t)), φ(MA(ξ2i, Sξ2i+1, 2t)),

φ(MA(ξ2i+1, T ξ2i, 2t)), φ(MA(ξ2i+1, Sξ2i+1, t))}a2
= ||a1||21AMIN{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i, ξ2i+2, 2t)), φ(MA(ξ2i+1, ξ2i+2, t))}
+ ||a2||21AMAX{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i, ξ2i+2, 2t)), φ(MA(ξ2i+1, ξ2i+2, t))}
4 ||a1||21AMIN{φ(MA(ξ2i, ξ2i+1, t)), φ(τ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i+1, ξ2i+2, t))),

φ(MA(ξ2i+1, ξ2i+2, t))}
+ ||a2||21AMAX{φ(MA(ξ2i, ξ2i+1, t)), φ(τ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i+1, ξ2i+2, t))),

φ(MA(ξ2i+1, ξ2i+2, t))}.

Since MIN{φ(a), φ(b), φ(τ(a, b))} = MIN{φ(a), φ(b)} for all a, b ∈ [0A, 1A], we have

φ(MA(ξ2i+1, ξ2i+2, t)) 4 ||a1||21AMIN{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i+1, ξ2i+2, t))}
+ ||a2||21Aφ(τ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i+1, ξ2i+2, t)))

4 ||a1||21AMIN{φ(MA(ξ2i, ξ2i+1, t)), φ(MA(ξ2i+1, ξ2i+2, t))}
+ ||a2||21A(φ(MA(ξ2i, ξ2i+1, t)) + φ(MA(ξ2i+1, ξ2i+2, t))). (15)
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Similarly,

φ(MA(ξ2i+2, ξ2i+3, t)) = φ(MA(Sξ2i+1, T ξ2i+2, t))

4 a∗1MIN{φ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+1, Sξ2i+1, t)), φ(MA(ξ2i+1, T ξ2i+2, 2t)),

φ(MA(ξ2i+2, Sξ2i+1, 2t)), φ(MA(ξ2i+2, T ξ2i+2, t))}a1
+ a∗2MAX{φ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+1, Sξ2i+1, t)), φ(MA(ξ2i+1, T ξ2i+2, 2t)),

φ(MA(ξ2i+2, Sξ2i+1, 2t)), φ(MA(ξ2i+2, T ξ2i+2, t))}a2
4 ||a1||21AMIN{φ(MA(ξ2i+1, ξ2i+2, t)), φ(τ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+2, ξ2i+3, t))),

φ(MA(ξ2i+2, ξ2i+3, t))}+ ||a2||21AMAX{φ(MA(ξ2i+1, ξ2i+2, t)), φ(τ(MA(ξ2i+1, ξ2i+2, t)),

φ(MA(ξ2i+2, ξ2i+3, t))), φ(MA(ξ2i+2, ξ2i+3, t))}
4 ||a1||21AMIN{φ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+2, ξ2i+3, t))}
+ ||a2||21Aφ(τ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+2, ξ2i+3, t)))

4 ||a1||21AMIN{φ(MA(ξ2i+1, ξ2i+2, t)), φ(MA(ξ2i+2, ξ2i+3, t))}
+ ||a2||21A(φ(MA(ξ2i+1, ξ2i+2, t)) + φ(MA(ξ2i+2, ξ2i+3, t))). (16)

Putting j = 2i+ 1, i = 0, 1, 2, ..., from (15) and (16), we get

φ(MA(ξj , ξj+1, t)) 4 ||a1||21AMIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))}
+ ||a2||21A(φ(MA(ξj−1, ξj , t)) + φ(MA(ξj , ξj+1, t))). (17)

If min{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))} = φ(MA(ξj−1, ξj , t)), then from (17), we get

φ(MA(ξj , ξj+1, t)) 4
( ||a1||2 + ||a2||2

1− ||a2||2
)
1Aφ(MA(ξj , ξj+1, t)). (18)

Again, if MIN{φ(MA(ξj−1, ξj , t)), φ(MA(ξj , ξj+1, t))} = φ(MA(ξj , ξj+1, t)), then

φ(MA(ξj , ξj+1, t)) 4
( ||a2||2

1− ||a1||2 − ||a2||2
)
1Aφ(MA(ξj−1, ξj , t)). (19)

Proceeding as Theorem 1, from (18) and (19) we can easily show that {ξn} is a Cauchy sequence and
let lim

n→∞
ξn = z. Then,

φ(MA(z, Sz, t)) 4 φ(MA(z, ξ2n+1, t)) + φ(MA(ξ2n+1, Sz, t))

= φ(MA(z, ξ2n+1, t)) + φ(MA(Tξ2n, Sz, t))

4 φ(MA(z, ξ2n+1, t)) + a∗1MIN{φ(MA(ξ2n, z, t)), φ(MA(ξ2n, T ξ2n, t)),

φ(MA(ξ2n, Sz, 2t)), φ(MA(z, T ξ2n, 2t)), φ(MA(z, Sz, t))}a1
+ a∗2MAX{φ(MA(ξ2n, z, t)), φ(MA(ξ2n, T ξ2n, t)),

φ(MA(ξ2n, Sz, 2t)), φ(MA(z, T ξ2n, 2t)), φ(MA(z, Sz, t))}a2.

Taking the limit as n→∞ and by Lemma 3, from the above equation, we get

φ(MA(z, Sz, t)) 4 ||a1||2φ(MA(z, Sz, t)) + ||a2||2φ(MA(z, Sz, t)),

(1− ||a1||2 − ||a2||2)1Aφ(MA(z, Sz, t)) 4 0A,

which gives z = Sz. Similarly, we can show that z is also a fixed point of T .
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Theorem 4. Let (X,MA, τ) be a complete C∗-algebra valued fuzzy metric space. Let φ be a
subadditive altering distance function with respect to the t-norm τ and let T, S be two self mappings
on X such that

φ(MA(Tξ, Sη, t)) 4 a∗1φ(MA(ξ, T ξ, t))a1 + a∗2φ(MA(η, Sη, t))a2 + a∗3φ(MA(ξ, Sη, t))a3

+ a∗4φ(MA(η, Tξ, t))a4 + a∗5φ(MA(ξ, η, t))a5,

where ai ∈ A′ for i = 1 to 5 with
∑5

i=1 ||ai||2 < 1. Then T and S have a unique common fixed point.

The proof is similar to Theorem 3.
For T = S, the above theorem reduces to the following fixed point theorem.

Theorem 5. Let (X,MA, τ) be a complete C∗-algebra valued fuzzy metric space. Let φ be a
subadditive altering distance function with respect to the t-norm τ and let T be a self mapping on X
such that

φ(MA(Tξ, Tη, t)) 4 a∗1φ(MA(ξ, T ξ, t))a1 + a∗2φ(MA(η, Tη, t))a2 + a∗3φ(MA(ξ, Tη, t))a3

+ a∗4φ(MA(η, Tξ, t))a4 + a∗5φ(MA(ξ, η, t))a5,

where ai ∈ A′ for i = 1 to 5 with ||a1||2 + ||a2||2 + 2||a3||2 + ||a5||2 < 1. Then T has a unique fixed
point.

3 Application to boundary value problem

We consider the following boundary value problem:

x2y′′ + xy′ − y = f(t, y(t)), 0 < x < 1, t ∈ I = [0, 1], (20)

(where f is a function from I ×R to R), with the boundary conditions: y(x) is bounded as x→ 0 and
y(1) = 0. This boundary value problem is equivalent to the integral equation:

u(t) =

∫ 1

0
G(t, s)f(s, u(s))ds, 0 < t, s < 1,

where

G(t, s) =

{
t
2(1− 1

s2
), s > t

1
2(t− 1

t ), s < t

is the Green’s function.
Let C(I,R) denote the set of all continuous functions f : I → R such that for x, y ∈ C(I,R),

|x(t)− y(t)| < k for some k > 0 and for all t ∈ I.
Theorem 6. For the above problem (20), we consider f as a continuous function from I × R → R

satisfying the following condition:

f(s, u(s))− f(s, v(s)) ≤ 1

9
|u(s)− v(s)|, for all u, v ∈ C(I,R), s ∈ I.

Then the problem (20) has a unique solution.
Proof. Let T : C(I,R) → C(I,R) be defined by Tu(t) =

∫ 1
0 G(t, s)f(s, u(s))ds, u ∈ C(I,R). Let

A = [0, 1] with the usual norm on R. LetX = C(I,R) with d(x, y) = supt∈I |x(t)−y(t)|, x, y ∈ C(I,R).
Here 0A = 0 and 1A = 1. We consider MA : X ×X × (0,∞)→ [0, 1] given by MA(x, y, t) = 1− d(x,y)

k ,
x, y ∈ X, t > 0. Then (X,MA, τ) is a complete C∗-algebra valued fuzzy metric space with respect to
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the t-norm τ(x, y) = max{x+ y− 1, 0}, x, y ∈ [0, 1]. Also let φ(t) = 1− t, t ∈ [0, 1] be the subadditive
altering distance function. Now, for u, v ∈ X and t1 > 0,

φ(MA(Tu, Tv, t1)) =
d(Tu, Tv)

k
=

1

k
sup
t∈I
|Tu(t)− Tv(t)|

=
1

k
sup
t∈I

∣∣∣∣ ∫ 1

0
G(t, s)f(s, u(s))ds−

∫ 1

0
G(t, s)f(s, v(s))ds

∣∣∣∣
=

1

k
sup
t∈I

∣∣∣∣ ∫ 1

0
G(t, s)(f(s, u(s))− f(s, v(s)))ds

∣∣∣∣
≤ 1

k
sup
t∈I

∣∣∣∣ ∫ 1

0
G(t, s)

1

9
|u(s)− v(s)|ds

∣∣∣∣
≤ 1

9

d(u, v)

k
sup
t∈I

∣∣∣∣ ∫ 1

0
G(t, s)ds

∣∣∣∣
=

1

9

d(u, v)

k
sup
t∈I

∣∣∣∣ ∫ t

0

1

2
(t− 1

t
)ds+

∫ 1

t

t

2
(1− 1

s2
)ds

∣∣∣∣
=

1

9

d(u, v)

k
sup
t∈I
|t− 1| = 1

3
φ(MA(u, v, t1))

1

3
,

where ai = 0 for i = 1 to 4 and a5 = 1
3 . Then all the conditions of Theorem 5 are satisfied. Hence the

boundary value problem has a unique solution.

4 Application to control theory

In [25], Pathak et al. and in [26] Rhoades et al. investigated the possibility of optimally controlling
the solution of ordinary differential equation via dynamic programming. Inspired by their work, we
give an application to solve such ordinary differential equations in control theory using C∗-algebra
valued metric space.

Let K be a compact subset of Rn with the Euclidean distance which we denote here by |.|. Let
Ta : Rn → Rn be a mapping such that Ta(ξ) = f(ξ, a) for each a ∈ K and for all ξ ∈ Rn, where
f : Rn ×K → Rn is a bounded continuous function such that

|f(ξ, a)| ≤ C for some C > 0 (21)

and for t1 > 0, ξ, η ∈ Rn,

t1
t1 + |f(ξ, a)− f(η, a)|

≤ a∗1
t1

t+ |ξ − f(ξ, a)|
a1 + a∗2

t1
t1 + |η − f(η, a)|

a2 + a∗3
t1

t1 + |ξ − f(η, a)|
a3

+ a∗4
t1

t1 + |η − f(ξ, a)|
a4 + a∗5

t1
t1 + |ξ − η|

a5, (22)

where ||a1||2 + ||a2||2 + 2||a3||2 + ||a5||2 < 1. For X = Rn and A = R, τ(ξ, η) = min{ξ, η}, ξ, η ∈ R+,
we define MA(ξ, η, t1) = t1

t1+|ξ−η| . We take φ as the identity mapping on A+.
Now, we study the possibility of optimally controlling the solution ξ(.) of the ordinary differential

equation:

{
ξ′(s) = f(ξ(s), α(s)), t < s < T,

ξ(t) = ξ,
(23)
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where ξ ∈ Rn is a given initial point, taken by ξ(.) at the initial time t ≥ 0, and T > 0 is a fixed
terminal time and ξ′(s) = dξ(s)

ds . Here α(.) is a control function which is some appropriate scheme for
adjusting parameters from the compact set K as time progresses thereby affecting the dynamics of the
system modelled by (23). We assume that

K ′ = {α : [0, T ]→ K,α(.) is measurable}

denotes the set of admissible controls. Since Ta(ξ) = f(ξ, a) for all ξ ∈ Rn, a ∈ K, from (21) and (22)
we have

t1
t1 + |Ta(ξ)− Ta(η)|

≤ a∗1
t1

t+ |ξ − Ta(ξ)|
a1 + a∗2

t1
t1 + |η − Ta(η)|

a2 + a∗3
t1

t1 + |ξ − Ta(η)|
a3

+ a∗4
t1

t1 + |η − Ta(ξ)|
a4 + a∗5

t1
t1 + |ξ − η|

a5

for all ξ, η ∈ Rn, t1 > 0 and a ∈ K. Now, applying Theorem 5, we deduce that for each control
α(.) ∈ K ′, the ordinary differential equation (23) has a unique continuous solution ξ = ξα(.)(.), existing
on the time interval [t, T ]. Solving the ordinary differential equation for almost everywhere time
t < s < T , we say that ξ(.) is the response of that system to the control α(.), and ξ(s) is the state of
the system at a particular time s.

To find a function α∗(.) which can control the system, the following cost criterion is introduced for
each admissible control α(.) ∈ K ′ (refer to [27]).

Ωξ,t(α(.)) =

∫ T

t
p(ξ(s), α(s))ds+ q(ξ(T )), (24)

where ξ = ξα(.)(.) is a solution of (23) and p : Rn ×K → R, q : Rn → R are given functions, where p
is the running cost per unit time and q is the terminal cost. Suppose that,



max{|Pa(ξ)|, |q(ξ)|} ≤ C for some C > 0
t1

t1+|Pa(ξ)−Pa(η)| ≤ a∗1 t1
t+|ξ−Pa(ξ)|a1 + a∗2

t1
t1+|η−Pa(η)|a2 + a∗3

t1
t1+|ξ−Pa(η)|a3

+a∗4
t1

t1+|η−Pa(ξ)|a4 + a∗5
t1

t1+|ξ−η|a5
t1

t1+|q(ξ)−q(η)| ≤ a∗1 t1
t+|ξ−q(ξ)|a1 + a∗2

t1
t1+|η−q(η)|a2 + a∗3

t1
t1+|ξ−q(η)|a3

+a∗4
t1

t1+|η−q(ξ)|a4 + a∗5
t1

t1+|ξ−η|a5, for all ξ, η ∈ Rn, a ∈ K,

where Pa : Rn → Rn is a mapping such that Pa(ξ) = p(ξ, a) for all ξ ∈ Rn. For given ξ ∈ Rn and
0 < t < T , we are to find if possible a control α∗(.) which minimizes the cost functional (24) among
all other admissible controls.

For the solution of the above problem we now apply the dynamic programming as described in [27],
where the value function u(ξ, t) is defined by

u(ξ, t) = inf
α(.)∈K′

Ωξ,t(α(.)) ξ ∈ Rn, 0 ≤ t ≤ T.

Here u(ξ, t) is the least cost for the position ξ at time t.
For fixed ξ ∈ Rn and 0 ≤ t ≤ T , proceeding as in [27; 554], the following theorem gives the

optimality conditions:
Theorem 7. For each ζ > 0 small enough such that t+ ζ ≤ T ,

u(ξ, t) = inf
α(.)∈K′

{∫ t+ζ

t
p(ξ(s), α(s))ds+ u(ξ(t+ ζ), t+ ζ)

}
,

where ξ = ξα(.) solves the ODE (23) for the control α(.).
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Proof. The proof follows from Theorem 5 and [27; 554].

Conclusions and Future Works

In this paper, we have obtained some fixed point and common fixed point results for some general-
ized mappings in C∗-algebra valued fuzzy metric space. Moreover, the results are applied to boundary
value problem and control theory. Some open problems concerning our results are as follows.

In Theorems 1, 2 and 3, we have considered complete C∗-algebra valued fuzzy metric space. The
investigation of the existence of fixed point via our defined contractive conditions in case of incomplete
C∗-algebra valued fuzzy metric space is a problem of further study.

In [28] and [29], the authors obtained some important results in fuzzy bipolar metric space. The
analogous study in case of bipolar C∗-algebra valued fuzzy metric space for the mappings defined in
this paper is a scope for future research.

In 2024, Gnanaprakasam et al. [30] applied fixed point techniques to discuss solvability of fractional
integro-differential equation in orthogonal complete metric space. In this regard, we can extend our
study to investigate solvability of fractional integro-differential equation.

Further investigation can be done considering coupled fixed point, best proximity point, coupled
best proximity point, etc., using our mappings in the setting of C∗-algebra valued fuzzy metric space.
The works done in this paper thus open up a wide scope of investigation in C∗-algebra valued fuzzy
metric space considering various emerging applications.
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Expansion formulas associated with the multidimensional Lauricella hypergeometric functions are well-
established and extensively utilized. However, the recurrence relations inherit in these formulas add extra
complexities to their use. A thorough analysis of the characteristics of these expansion formulas shows that
they can be simplified and converted into a more convenient form. This paper presents new recurrence free
decomposition formulas, which are employed to solve boundary value problems.

Keywords: Appell Functions, Lauricella Functions, Recurrence Decomposition Formula, Recurrence Free
Decomposition Formula.
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Introduction

The theory of multidimensional hypergeometric functions has gained significant interest because of
its capability to solve numerous applied problems involving partial differential equations (for details,
see [1]; also the references quoted in to [2] and [3]). As shown in work [4], for instance, hypergeometric
special functions with many arguments can be widely used to estimate the energy absorbed by the non
ferromagnetic conducting sphere located inside an internal magnetic field. In addition to their using in
solving partial deferential equations, hypergeometric series of several variables are utilized into different
quantum physical problems and also in quantum chemical applications [2,5]. Inter alia, the second order
degenerate differential equations in partial derivatives of elliptic-parabolic types, which are particularly
widespread in studying gas dynamics problems may be solved by means of diverse multidimensional
Gaussian series. Interesting examples consist of the studying problem of the adiabatic plane parallel
to the liquid or gas flow without any vortex. Also the problem of the flow of supersonic current from
a container with smooth walls and several other technical issues of gas-liquid flow may arise in various
applications [6, 7].

It is very essential to highlight that Riemann’s and Green’s special functions, as well as the fun-
damental solutions with singularity of the second order degenerate differential equations with partial
derivatives may be also expressed by multidimensional Gaussian series. When we research problems
with boundary values for similar differential equations in partial derivatives, we need to expand hyper-
geometric special functions of several variables into more simpler types of special functions, like Gauss
or Appell functions.
∗Corresponding author. E-mail: ryskan.a727@gmail.com
This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic

of Kazakhstan (Grant No. AP14972818).
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The known operator method of Burchnall and Chaundy [8] has been very widely used by scientists
to receive formulas for expanding of hypergeometric functions of two independent arguments, the
known operator method of Burchnall and Chaundy [8] has been very widely used by scientists to
receive formulas for expanding of hypergeometric Gaussian series of two variables, expressing through
the use of simple Gauss’ hypergeometric series of one variable.

Based on the fundamental work of Burchnall and Chaundy [8], Hasanov and Srivastava [9, 10] in-
troduced formulas which extend the capabilities Burchnall-Chaundy operator, this leads to another
expansion formulas for various hypergeometric series of three variables. They also established recur-
rent formulas for higher-dimensional hypergeometric functions. Nonetheless, the recurrence introduces
potential complications when applying these decomposition formulas.

In this study, we develop novel decomposition formulas for all four multiple Lauricella’s hypergeo-
metric functions, providing they are independent of recurrence.

1 The expansions of Appell’s two-variable functions

The decomposition of a hypergeometric series with many arguments into several simpler components
is one of the main problems of the special functions theory. Such a decomposition is valuable because
it enables the simplification of complex calculations, reduces the dimensionality of the problem, and
facilitates the development of new identities and relationships between special functions.

In 1940, Burchnall and Chaundy [8] introduce the operators

∇ (h) =
Γ (h) Γ (δ1 + δ2 + h)

Γ (δ1 + h) Γ (δ2 + h)
, ∆ (h) =

Γ (δ1 + h) Γ (δ2 + h)

Γ (h) Γ (δ1 + δ2 + h)
, (1)

where δ1 = x
∂

∂x
and δ2 = y

∂

∂y
, through which they penned

F2

(
a, b, b′; c, c′;x, y

)
= ∇(a)F (a, b; c;x)F (a, b′; c′; y), (2)

F3

(
a, a′, b, b′; c;x, y

)
= ∆(c)F (a, b; c;x)F (a′, b′; c; y),

F1

(
a, b, b′; c;x, y

)
= ∇(a)∆(c)F (a, b; c;x)F (a, b′; c; y),

F4

(
a, b; c, c′;x, y

)
= ∇(a)∇(b)F (a, b; c;x)F (a, b; c′; y),

thus decomposing Appell’s functions using operators ∆ and ∇; they also obtained transformations of
Appell’s functions including

F1

(
a, b, b′; c;x, y

)
= ∇(a)F3

(
a, a, b, b′; c;x, y

)
,

F1

(
a, b, b′; c;x, y

)
= ∆(c)F2

(
a, b, b′; c, c;x, y

)
,

F4

(
a, b; c, c′;x, y

)
= ∇(b)F2

(
a, b, b; c, c′;x, y

)
,

and some others.
These symbolic representations are utilized to derive numerous expansions of Appell’s functions

either as products of ordinary hypergeometric functions or conversely. For instance, employing Gauss’
formula [11; 73],

F (a, b; c;x) ≡ F
[
a, b;
c;

x

]
=

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, c 6= 0,−1,−2, ...

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, c 6= 0,−1,−2, ..., Re(c− a− b) > 0 (3)

96 Bulletin of the Karaganda University



Recurrence free decomposition

we symbolically express

∇(h) =
∞∑
r=0

(−δ)r(−δ′)r
(h)rr!

.

Now, by virtue of Poole’s formula [12; 26]

(−δ)rf(r) = (−1)rxr
drf(r)

dxr
,

we obtain
(−δ)rF (a, b; c;x) = (−1)r

(a)r(b)r
(c)r

xrF (a+ r, b+ r; c+ r;x)

and therefore (2) indicates the decomposition formula [8]

F2

(
a, b, b′; c, c′;x, y

)
=

∞∑
r=0

(a)r (b)r (b′)r
r! (c)r (c′)r

×

× xryrF (a+ r, b+ r; c+ r;x)F
(
a+ r, b′ + r; c′ + r; y

)
.

(4)

Through the inversion of (2) in the following form

F (a, b; c;x)F (a, b′; c′; y) = ∆(a)F2

(
a, b, b′; c, c′;x, y

)
and an associated expansion of ∆(a), which is related to (4),

F (a, b; c;x)F
(
a, b′; c′; y

)
=

∞∑
r=0

(−1)r
(a)r (b)r (b′)r
r! (c)r (c′)r

×

× xryrF2

(
a+ r, b+ r, b′ + r; c+ r, c′ + r;x, y

)
is obtained.

These expansions can be established through coefficient comparison of corresponding powers of x
and y.

Applying their way, Burchnall and Chaundy enacted 15 couples of expansions that binds Appell’s
two-variables functions to one-variables ordinary hypergeometric functions, along with many additional
expansion formulas involving hypergeometric series of many variables and confluent hypergeometric
series of Humbert.

The introduced method is applicable to functions with two arguments, relies on symbolic operators
that are mutually inverse, as detailed in subsequent literature [8].

2 Decomposition formulas for multiple Lauricella hypergeometric functions

To extend the operators ∇ (h) and ∆ (h) introduced in (1), Hasanov and Srivastava [9,10] proposed
new operators

∇̃x1;x2,...,xn (h) =
Γ (h) Γ (δ1 + ...+ δn + h)

Γ (δ1 + h) Γ (δ2 + ...+ δn + h)
,

∆̃x1;x2,...,xn (h) =
Γ (δ1 + h) Γ (δ2 + ...+ δn + h)

Γ (h) Γ (δ1 + ...+ δn + h)
,

where δk = xk
∂

∂xk
(k = 1, n), through which they successfully derived decomposition formulas for the

entire class of multiple Gauss series.
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Based on the ideas presented in [8], Hasanov and Srivastava [9] demonstrated that the recurrence
formulas [10] hold for all n ∈ N\{1}.

F
(n)
A (a,b;c;x) =

∞∑
|k′|=0

(a)|k′|(b1)|k′|

(c1)|k′|
x
|k′|
1

n∏
j=2

(bj)kj
kj ! (cj)kj

x
kj
j ×

× F
(
a+ |k′|, b1 + |k′|;c1 + |k′|;x1

)
F

(n−1)
A

(
a+ |k′|,b′ + k′; c′ + k′;x′

)
,

(5)

F
(n)
B (a,b; c;x) =

∞∑
|k′|=0

(−1)|k
′| (a1)|k′| (b1)|k′|

(c− 1 + |k′|)|k′| (c)2|k′|
x
|k′|
1

n∏
j=2

(aj)kj (bj)kj
kj !

x
kj
j ×

× F
(
a1 + |k′|, b1 + |k′|; c+ 2|k′|;x1

)
F

(n−1)
B

(
a′ + k′,b′ + k′; c+ 2|k′|;x′

)
,

(6)

F
(n)
C (a, b;c;x) =

∞∑
|k′|+|l′|=0

[
(a)|k′|

]2
(b)2|k′|+|l′|

(a)|k′| (c1)|k′|+|l′|
x
|k′|+|l′|
1

n∏
j=2

x
kj+lj
j

kj !lj ! (cj)kj+lj
×

× F
(
a+ |k′|+ |l′|, b+ 2|k′|+ |l′|;c1 + |k′|+ |l′|;x1

)
,

F
(n−1)
C

(
a+ |k′|+ |l′|, b+ 2|k′|+ |l′|; c′ + k′;x′

)
,

(7)

F
(n)
D (a,b; c;x) =

∞∑
|k′|+|l′|=0

(−1)|k
′| (a)2|k′|+|l′| (b1)|k′|+|l′| (c)2|k′|

(c− 1 + |k′|)|k′|
[
(c)2|k′|+|l′|

]2 x
|k′|+|l′|
1 ×

×
n∏
j=2

(bj)kj+lj
kj !lj !

x
kj+lj
j F

(
a+ 2|k′|+ |l′|, b1 + |k′|+ |l′|; c+ 2|k′|+ |l′|;x1

)
,

F
(n−1)
D

(
a+ 2|k′|+ |l′|,b′ + k′ + l′; c+ 2|k′|+ |l′|;x′

)
,

(8)

where
|k′| := k2 + ... + kn, k2 ≥ 0, ..., kn ≥ 0; |l′| := l2 + ... + ln, l2 ≥ 0, ..., ln ≥ 0; x′ := (x2, ..., xn);

a′ + a′ := (a2 + k2, ..., an + kn) and so on.
Certain properties of the Lauricella F

(n)
A function have been studied previously, differentiation

formulas, limit formulas, new integral representations and several decomposition formulas have been
derived [13]. Nevertheless, the recurrence that presents in formulas (5)–(8) may introduce additional
complexities when applying these expansions. Further investigation into the properties of Lauricella
functions has shown that these recurrence formulas can be simplified into more manageable forms.

3 New recurrence free decomposition formulas for the Lauricella hypergeometric functions

Until the presentation the main results, let’s determine some necessary notations

A(k) = A(k, n) =
k+1∑
i=2

n∑
j=i

mi,j , A(0) = 0; B(k) ≡ B(k, n) =
k∑
i=2

mi,k +
n∑

i=k+1

mk+1,i,

|mn| :=
n∑
i=2

n∑
j=i

mi,j , Mn! :=

n∏
i=2

n∏
j=i

mi,j !,

C(k) ≡ C(k, n) =
k+1∑
i=2

n∑
j=i

pi,j , C(0) = 0; D(k) ≡ D(k, n) =
k∑
i=2

mi,k +
n∑

i=k+1

pk+1,i,
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|pn| :=
n∑
i=2

n∑
j=i

pi,j , Pn! :=
n∏
i=2

n∏
j=i

mi,j !,

where k, n ∈ N, k ≤ n; mi,j ∈ N ∩ {0} (2 ≤ i ≤ j ≤ n); if we interpret the
s∑
i=2

as zero when s = 1, for

instance, our notations A(0) = B(1) = C(0) = D(1) = 0 are adopted.
Theorem 1. The following expansion formulas hold at n ∈ N

F
(n)
A (a,b; c;x) =

∞∑
|mn|=0

(a)A(n)

Mn!

n∏
k=1

(bk)B(k)

(ck)B(k)
×

×
n∏
k=1

x
B(k)
k F

[
a+A(k), bk +B(k);
ck +B(k);

xk

]
,

(9)

F
(n)
B (a,b; c;x) =

∞∑
|mn|=0

(−1)A(n)

(c)2A(n)Mn!
×

×
n∏
k=1

(ak)B(k) (bk)B(k)

(c− 1 +A(k)−A(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

x
B(k)
k F

[
ak +B(k), bk +B(k);
c+ 2A (k) ;

xk

]
,

(10)

F
(n)
C (a, b; c;x) =

∞∑
|mn|+|pn|=0

[
(a)A(n)+C(n)

]2
(b)2A(n)+C(n)

Mn!Pn!
×

×
n∏
k=1

x
B(k)+D(k)
k

(ck)B(k)+D(k) (a+A(k − 1) + C(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

F

[
a+A(k) + C(k), b+ 2A(k) + C(k);
ck +B(k) +D(k);

xk

]
,

(11)

F
(n)
D (a,b; c;x) =

∞∑
|mn|+|pn|=0

(−1)A(n)(a)2A(n)+C(n)

Mn!Pn!
[
(c)2A(n)+C(n)

]2×
×

n∏
k=1

(c+ 2A(k − 1) + C(k − 1))2A(k)−2A(k−1) (bk)B(k)+D(k)

(c+A(k) +A(k − 1) + C(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

x
B(k)+D(k)
k F

[
a+ 2A(k) + C(k), bk +B(k) +D(k);
ck + 2A(k) + C(k);

xk

]
.

(12)

Proof. Equality (9) is proved with the help of the mathematical induction method. Three new
equalities (10)–(12) are also proved by mathematical induction.

Corollary 1. Let a, b1,. . . , bn be real numbers with a, ck, ck− bk 6= 0, −1, −2, ... and a > |b|. Then
the ensuing limit formulas valid at n ∈ N

lim
x→0

{
x−bF

(n)
A

(
a,b; c; 1− 1

x

)}
=

Γ (a− |b|)
Γ(a)

n∏
k=1

Γ (ck)

Γ (ck − bk)
; (13)
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lim
x→0

{
x−bF

(n)
B

(
a;b; c; 1− 1

x

)}
=

Γ (c)

Γ (c− |b|)

n∏
k=1

Γ (ak − bk)
Γ (ak)

, (14)

where
x−b := x−b11 ...x−bnn ;

1

x
:=

(
1

x1
, ...,

1

xn

)
.

Proof. Due to the above decomposition formula (9) we get next formula

F
(n)
A

(
a,b; c; 1− 1

x

)
=

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
×

×
n∏
k=1

(
1− 1

xk

)B(k,n)

F

[
a+A(k, n), bk +B(k, n);
ck +B(k, n);

1− 1

xk

]
.

(15)

Now applying the well-known Boltz’s formula

F (a, b; c; z) = (1− z)−bF
(
c− a, b; c; z

z − 1

)
for each hypergeometric function within sum (15), we obtain

F
(n)
A

(
a,b; c; 1− 1

x

)
= xb

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
(xk − 1)B(k,n)×

×
n∏
k=1

F

[
ck − a+B(k, n)−A(k, n), bk +B(k, n);
ck +B(k, n);

1− xk
]
.

Utilizing the property parity of the sum

n∑
k=1

B(k) = 2
n∑
k=2

k∑
i=2

mi,k = 2
n−1∑
k=1

n∑
i=k+1

mk+1,i,

we calculate the limit

lim
x→0

{
x−bF

(n)
A

(
a,b; c; 1− 1

x

)}
=

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
×

×
n∏
k=1

F

[
ck − a+B(k, n)−A(k, n), bk +B(k, n);
ck +B(k, n);

1

]
and utilizing identity (3) to transform the hypergeometric Gauss series in the final summation, by
virtue of the previously received equality [14]

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n) (a− bk)A(k,n)−B(k,n)

(a)A(k,n)
=

=
Γ (a− |b|)

Γ(a)

n∏
k=1

Γ(a)

Γ (a− bk)
,

we obtain equality (13). Equality (14) is proved analogously to the proof of (13).
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4 Applications of the recurrence free decomposition formulas

Two dimensional case. In case n = 2, the formula (9) was known since 1940 in the work [8] (see the
expansion (4)) and it was effectively used in studying problems with boundary values for the differential
equation of elliptic type with two singular coefficients

uxx + uyy +
2α

x
ux +

2β

y
uy = 0, [2α, 2β ∈ (0, 1)]

in the works [15,16].
Three dimensional case. A following decomposition formula

F
(3)
A (a, b1, b2, b3;c1, c2, c3;x1, x2, x3) =

=
∞∑

i,j,k=0

(a)i+j+k(b1)j+k(b2)i+k(b3)i+j
i!j!k!(c1)j+k(c2)i+k(c3)i+j

×

× xj+k1 F (a+ j + k, b1 + j + k;c1 + j + k;x1)×
× xi+k2 F (a+ i+ j + k, b2 + i+ k;c2 + i+ k;x2)×
× xi+j3 F (a+ i+ j + k, b3 + i+ j;c3 + i+ j;x3)

is used in solving various problems with boundary values for the three dimensional differential equation
of elliptic type with the three singular coefficients

uxx + uyy + uyy +
2α

x
ux +

2β

y
uy +

2γ

z
uz = 0, 0 < 2α, 2β, 2γ < 1

in the works [17–19].
Four dimensional case. Sixteen fundamental solutions were constructed for degenerate elliptic type

equation with four variables [20]

ymzktluxx + xnzktluyy + xnymtluzz + xnymzkutt = 0, m, n, k, l ≡ const > 0, (16)

by means of following recurrence free expansion formula for the hypergeometric Lauricella’s series of
four independent variables

F
(4)
A (a; b1, b2, b3, b4; c1, c2, c3, c4;x1, x2, x3, x4) =

=

∞∑
m2,m3,m4,
i,j,k=0

(a)m2+m3+m4+i+j+k
(b1)m2+m3+m4

(b2)m2+i+j
(b3)m3+i+k

(b4)m4+j+k

(c1)m2+m3+m4
(c2)m2+i+j

(c3)m3+i+k
(c4)m4+j+k

m2!m3!m4!i!j!k!
×

×xm2+m3+m4
1 xm2+i+j

2 xm3+i+k
3 xm4+j+k

4

×F (a+m2 +m3 +m4, b1 +m2 +m3 +m4; c+m2 +m3 +m4;x1)

×F (a+m2 +m3 +m4 + i+ j, b2 +m2 + i+ j; c2 +m2 + i+ j;x2)

×F (a+m2 +m3 +m4 + i+ j + k, b3 +m3 + i+ k; c3 +m3 + i+ k;x3)

×F (a+m2 +m3 +m4 + i+ j + k, b4 +m4 + j + k; c4 +m4 + i+ k;x4) .

Using the obtained fundamental solutions, several boundary value problems were solved in both
finite and infinite domains. For equation (16) in an infinite domain, Neumann, Dirichlet, and several
mixed boundary value problems were solved [21, 22]. In a finite domain the Holmgren’s problem
analogue was solved [23].
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Multidimensional case. It is known that all fundamental solutions of the elliptic type differential
equation of many variables with singular coefficients

L
(m,n)
α,λ (u) ≡

m∑
i=1

∂2u

∂x2i
+

n∑
j=1

2αj
xj

∂u

∂xj
= 0, 0 < 2αj < 1, j = 1, n (17)

in the domain Rn+m := {(x1, ..., xm) : x1 > 0, ..., xn > 0} (m ≥ 2, 1 ≤ n ≤ m) are expressed by the
Lauricella hypergeometric function F (n)

A in the forms

qk(x; ξ) = γkr
−2βk

n∏
i=1

x2αi
i

k∏
i=1

(xiξi)
1−2αi ×

× F (n)
A

[
βk, 1− α1, ..., 1− αk, αk+1, ..., αn;
2− 2α1, ..., 2− 2αk, 2αk+1, ..., 2αn;

σ

]
, k = 0, n,

(18)

where

βk =
m− 2

2
+ k −

k∑
i=1

αi +

n∑
i=k+1

αi, k = 0, n;

γk = 22βk−m
Γ (βk)

πm/2

k∏
i=1

Γ (1− αi)
Γ (2− 2αi)

n∏
i=k+1

Γ (αi)

Γ (2αi)
, k = 0, n;

ξ = (ξ1, ..., ξm) : ξ1 > 0, ..., ξn > 0; σ = (σ1, ..., σn) , σj = 1−
r2j
r2
,

r2 =
m∑
i=1

(xi − ξi)2, r2j = (xj + ξj)
2 +

m∑
i=1, i 6=j

(xi − ξi)2, j = 1, n.

The singularity of fundamental solutions. By means of the expansion formula (9), it can be shown
that the received fundamental solutions (18) have their singularity at r = 0. Indeed, it is easy to
rewrite a fundamental solution qk(x; ξ) in the form

qk(x; ξ) =
1

rm−2
q̃k(x; ξ), m > 2,

where

q̃k(x; ξ) = γkX
−|b|

k∏
i=1

xiξ
1−2αi
i

r2−2αi
i

n∏
i=k+1

(
xi
ri

)2αi

F
(n)
A

(
βk,b; c; 1− 1

X

)
,

X :=

(
r2

r21
, ...,

r2

r2n

)
, X−|b| :=

k∏
i=1

(
r

ri

)2−2αi n∏
i=k+1

(
r

ri

)2αi

,

|b| := k −
k∑
i=1

αi +

n∑
i=k+1

αi, b := (1− α1, ..., 1− αk, αk+1, ..., αn) ,

c := (2− 2α1, ..., 2− 2αk, 2αk+1, ..., 2αn) , k = 0, n.

Now using limit relation (13), we see that the function q̃k(x; ξ) is a limited expression at x→ ξ:

lim
r→0

q̃k(x; ξ) =
1

4πm/2
Γ

(
m− 2

2

)
.
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So, the constructed fundamental solutions of the differential equation (17) have a singularity of the
order m− 2 when r → 0.

Introduce the following notation:

Sp = {x : x1 > 0, ..., xp−1 > 0, xp = 0,

xp+1 > 0, ..., xn > 0, −∞ < xn+1 < +∞, ...,−∞ < xm < +∞} ,

X2
p := 1 + x21 + ...+ x2p−1 + x2p+1 + ...+ x2m, p = 1, n.

Dirichlet-Neumann problem
(
DkNn−k)∞ in unbounded domains. Find a regular solution uk (x) of

equation (17) from the function class C
(
Ω
)
∩ C2 (Ω) , satisfying conditions

uk(x)|xp=0 = τp (x̃p) , p = 1, k, (19)(
x
2αp
p

∂uk(x)

∂xp

)∣∣∣∣
xp=0

= νp (x̃p) , p = k + 1, n, (20)

and
lim
R→∞

uk (x) = 0, m > 2, k = 0, n (21)

(if m = 2, then the boundedless of the desired solution at infinity is required as well), where τp (x̃p)
and νp (x̃p) are defined functions in the following form:

τp (x̃p) =
τ̃p (x̃p)

X
εp
p

, τ̃p (x̃p) ∈ C
(
Sp
)
, εp > 0, p = 1, k,

and
νp (x̃p) =

ν̃p (x̃p)

X
1−2αp+εp
p

, ν̃p (x̃p) ∈ C
(
Sp
)
, εp > 0, p = k + 1, n.

The functions τp (x̃) (p = 1, k) satisfy the coordination conditions on the initial k lateral faces Sp
of the domain and at the origin:

τ1|x2=0 = τ2|x1=0 , τ2|x3=0 = τ3|x2=0 , ...., τk−1|xk=0 = τk|xk−1=0 ;

τ1 (0, 0, ..., 0) = τ2 (0, 0, ..., 0) = ... = τk (0, 0, ..., 0) .

The vector x̃p occurring in the problem setting is obtained from a vector x by excluding its pth
component:

x̃p := (x1, ..., xp−1, xp+1, ..., xm) , p = 1, n.

The problem’s unique solution
(
DkNn−k)∞ is represented in the next form

uk (ξ) =

k∑
p=1

∫
Sp

τp (x̃p) x̃
(2α)
p

(
x
2αp
p

∂qk (x, ξ)

∂xp

)∣∣∣∣
xp=0

dSp−

−
n∑

p=k+1

∫
Sp

νp (x̃p) x̃
(2α)
p qk (x, ξ)|xp=0dSp .

(22)

In (22), we use the notation∫
Sp

...dSp :=

+∞∫
−∞

...

+∞∫
−∞︸ ︷︷ ︸

m−n

+∞∫
0

...

+∞∫
0︸ ︷︷ ︸

n−1

...dx1...dxp−1dxp+1...dxndxn+1...dxm.
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By direct calculation, we establish that the function uk(ξ), defined in (22), is a solution to the
equation (17). Using the decomposition formula (9) and limit relation (13) we can prove that the
function uk(ξ) satisfies the conditions (19)–(21) of the problem

(
DkNn−k)∞ (for details, see [24]).

Other applications of the expansion formula (9) for the multiple Lauricella special function F
(n)
A

are found in [25].
We do not yet know any applications of the decomposition formulas (10), (11) and (12) for the

well-known Lauricella’s hypergeometric series F (n)
B , F (n)

C and F (n)
D , respectively.

Conclusion

In this paper, recurrence free decomposition formulas for the four Lauricella functions were pre-
sented. The obtained formulas were proved using the mathematical induction. These expansions can
be demonstrated by comparing the coefficients of equal powers of the variables x1, ..., xn on both sides.
Formulas (21) and (22) indicate a reciprocity property of the hypergeometric Lauricella functions FA
and FB, as these functions exhibit reciprocal values in the limit. Do the FC and FD functions have
similar properties? One of these decomposition formulas for the Lauricella’s series FA is often used in
studying problems with boundary values for partial differential equations of various types.
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In this paper, a characterization of essential pseudospectra of bounded linear operators on ultrametric
Banach spaces over a spherically complete field was given and the notions of pseudospectra and condition
pseudospectra of the direct sum of linear operators on ultrametric Banach spaces were introduced. In
particular, we proved that the pseudospectra of the direct sum of bounded linear operators associated with
various ε are nested sets and that the intersection of all the pseudospectra of bounded linear operators is
the spectrum of the direct sum of bounded linear operators in the direct sum of ultrametric Banach spaces.
In addition, many results were proved about them and examples were given.

Keywords: Ultrametric Banach spaces, pseudospectrum, condition pseudospectrum, direct sum of opera-
tors, linear operator pencils.
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1 Introduction and preliminaries

In the classical theory, Trefethen and Embree [1] studied the pseudospectra of bounded linear
operators on complex Banach spaces. Recently, Otkun Çevik and Ismailov [2] studied some spectral
properties of the direct sum of operators in the direct sum of Hilbert spaces. Ismailov and Ipek Al
introduced and studied the pseudospectra of the direct sum of operators and they established some of
its properties, for more details, see [3].

In ultaremetric operator theory, the authors [4] extended and studied the concept of pseudospectra
of linear operators on ultrametric Banach spaces. The condition pseudospectra of bounded linear
operators on ultrametric Banach spaces were extended and studied by Ammar et al. [5]. Recently,
El Amrani et al. [6] studied the notion of bounded linear operator pencils on non-Archimedean Banach
spaces. The concepts of pseudospectra and condition pseudospectra of ultrametric matrices were
studied by El Amrani et al. [7].

In this paper, we will extend and study the pseudospectra and the condition pseudospectra of the
direct sum of bounded linear operators on ultrametric Banach spaces.

Throughout this paper, F is an ultrametric Banach space over an ultrametric complete valued field
K with a non-trivial valuation | · |,L(F ) denotes the set of all bounded linear operators on F and
F ∗ = L(F,K) is the dual space of F. If S ∈ L(F ), N(S) and R(S) denote the kernel and the range of
S respectively, see [8]. Recall that, an unbounded linear operator S : D(S) ⊆ F → F is called closed,
if for each (xn)n∈N ⊂ D(S) such that ‖xn − x‖ → 0 and ‖Sxn − y‖ → 0 as n → ∞ for some x ∈ F
and y ∈ F, then x ∈ D(S) and y = Sx. The collection of all closed linear operators on F is denoted
by C(F ). If S ∈ L(F ) and B is an unbounded linear operator on F, then S +B is closed if and only if
B is closed [8]. We begin with the following preliminaries.
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Definition 1. [8] Let F be a vector space over K. A non-negative real valued function ‖·‖ : F → R+

is an ultrametric norm if:
(i) for all x ∈ F, ‖x‖ = 0 if and only if x = 0,

(ii) for each x ∈ F and λ ∈ K, ‖λx‖ = |λ|‖x‖,
(iii) for any x, y ∈ F, ‖x+ y‖ ≤ max(‖x‖, ‖y‖).

Definition 2. [8] An ultrametric normed space is a pair (F, ‖ · ‖) where F is a vector space over K
and ‖ · ‖ is an ultrametric norm on F.

Definition 3. [8] An ultrametric Banach space is a vector space endowed with an ultrametric norm
which is complete.

Proposition 1. [8] The direct sum of two ultrametric Banach spaces is an ultrametric Banach space.

Definition 4. [8] An ultrametric Banach space F is said to be a free Banach space if there exists
a family (xi)i∈I of elements of F indexed by a set I such that each element x ∈ F can be written
uniquely like a pointwise convergent series defined by x =

∑
i∈I

λixi and ‖x‖ = sup
i∈I
|λi|‖xi‖.

The family (xi)i∈I is then called an orthogonal basis for F. If, for all i ∈ I, ‖xi‖ = 1, then (xi)i∈I
is called an orthonormal basis of F.

Definition 5. [8] Let F be an ultrametric Banach space over K and let A ∈ L(F ). The resolvent
set ρ(A) of A on F is defined by

ρ(A) = {λ ∈ K : (A− λI)−1 ∈ L(F )}.

The spectrum σ(A) of A on F is given by K\ρ(A).

Example 1. [8] Let F be an ultrametric free Banach space with an orthogonal basis (ei)i∈N. Consider
A on F defined by for all n ∈ N, Aen = λnen whose domain is

D(A) = {x = (xn)n∈N ∈ F : lim
n→∞

|λn||xn|‖en‖ = 0}.

If x ∈ D(A), then one can see that

Ax =
∞∑
n=0

λnxnen.

Proposition 2. [8] Consider the diagonal operator A given above. Then

ρ(A) = {λ ∈ K : λ 6= λn for all n ∈ N}.

Proposition 3. [8] The diagonal operator A : D(A) ⊂ F → F given above is closed.

Definition 6. [8] Let A ∈ L(F ). A is called an operator of finite rank, if R(A) is a finite-dimensional
subspace of F.

Definition 7. [8] Let F be an ultrametric Banach space and let A ∈ L(F ). A is said to be completely
continuous, if there exists a sequence of finite rank linear operators (An)n∈N such that ‖An −A‖ → 0
as n→∞.

The collection of all completely continuous linear operators on F is denoted by Cc(F ).
Ingleton [9] proved the following theorem.

Theorem 1. [9] Suppose that K is spherically complete. Let F be an ultrametric Banach space over
K. For all x ∈ F\{0}, there exists x∗ ∈ F ∗ such that x∗(x) = 1 and ‖x∗‖ = ‖x‖−1.

From Lemma 4.11 and Lemma 4.13 of [10], we have:
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Lemma 1. Let F be an ultrametric normed space over a spherically complete field K. If f∗1 , · · · , f∗n
are linearly independent vectors in F ∗, then there are vectors f1, · · · , fn in F such that

f∗j (fk) = δj,k =

{
1, if j = k;

0, if j 6= k.
1 ≤ j, k ≤ n. (1)

Moreover, if f1, · · · , fn are linearly independent vectors in F , then there are vectors f∗1 , · · · , f∗n in F ∗

such that (1) holds.

Definition 8. [11] We say that A ∈ L(F ) has an index when both α(A) = dimN(A) and
β(A) = dim

(
F/R(A)

)
are finite. In this case, the index of the linear operator A is defined by

ind(A) = α(A)− β(A).

Definition 9. [11] Let A ∈ L(F ). A is said to be an upper semi-Fredholm operator, if

α(A) is finite and R(A) is closed.

The set of all upper semi-Fredholm operators on F is denoted by Φ+(F ).

Definition 10. [11] Let A ∈ L(F ). A is said to be a lower semi-Fredholm operator, if

β(A) is finite.

The set of all lower semi-Fredholm operators on F is denoted by Φ−(F ).

The set of all Fredholm operators on F is defined by

Φ(F ) = Φ+(F ) ∩ Φ−(F ).

Lemma 2. [12] Let F be an ultrametric Banach space over a spherically complete field K. If
S ∈ Φ(F ) and C ∈ Cc(F ), then S + C ∈ Φ(F ).

Lemma 3. [5] Let F be an ultrametric Banach space over a spherically complete fieldK. If S ∈ Φ(F ),
then for all C ∈ Cc(F ), S + C ∈ Φ(F ) and ind(S + C) = ind(S).

Definition 11. [4] Let F be an ultrametric Banach space over K, let S ∈ L(F ) and ε > 0. The
pseudospectrum σε(S) of a bounded linear operator S on F is defined by

σε(S) = σ(S) ∪ {λ ∈ K : ‖(S − λI)−1‖ > ε−1}.

The pseudoresolvent ρε(S) of a bounded linear operator S on F is defined by

ρε(S) = ρ(S) ∩ {λ ∈ K : ‖(S − λI)−1‖ ≤ ε−1},

by convention ‖(S − λI)−1‖ =∞ if and only if λ ∈ σ(S).

Theorem 2. [4] Let F be an ultrametric Banach space over a spherically complete field K and let
S ∈ L(F ). Then

σε(S) =
⋃

D∈L(F ):‖D‖<ε

σ(S +D).

Theorem 3. [5] Let F be an ultrametric Banach space over a spherically complete field K and let
S ∈ L(F ). Then

σe(S) =
⋂

K∈Cc(F )

σ(S +K).
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Definition 12. [8] Let F be an ultrametric Banach space over K and let S,B ∈ L(F ). The resolvent
set ρ(S,B) of a bounded linear operator pencil (S,B) of the form S − λB on F is defined by

ρ(S,B) = {λ ∈ K : (S − λB)−1 ∈ L(F )}.

The spectrum σ(S,B) of a bounded linear operator pencil (S,B) of the form S − λB on F is given by
K\ρ(S,B).

Definition 13. [6] Let F be an ultrametric Banach space over K, let S,B ∈ L(F ) and ε > 0. The
pseudospectrum σε(S,B) of a bounded linear operator pencil (S,B) of the form S−λB on F is defined
by

σε(S,B) = σ(S,B) ∪ {λ ∈ K : ‖(S − λB)−1‖ > ε−1}.

The pseudoresolvent ρε(S,B) of a bounded linear operator pencil (S,B) of the form S − λB on F is
defined by

ρε(S,B) = ρ(S,B) ∩ {λ ∈ K : ‖(S − λB)−1‖ ≤ ε−1},

by convention ‖(S − λB)−1‖ =∞ if and only if λ ∈ σ(S,B).

Proposition 4. [13] Let F be an ultrametric Banach space over K, let S,B ∈ L(F ) and ε > 0, we
have:
(i) σ(S,B) =

⋂
ε>0

σε(S,B).

(ii) For any ε1 and ε2 such that 0 < ε1 < ε2, σ(S,B) ⊂ σε1(S,B) ⊂ σε2(S,B).

Theorem 4. [13] Let F be an ultrametric Banach space over a spherically complete field K such
that ‖F‖ ⊆ |K|, let S,B ∈ L(F ) and ε > 0. Then

σε(S,B) =
⋃

C∈L(F ):‖C‖<ε

σ(S + C,B).

Now, we characterize the essential pseudospectra of bounded linear operator pencils in ultrametric
Banach spaces over a spherically complete field K.

Definition 14. [14] Let F be an ultrametric Banach space over K, let S,B ∈ L(F ) and ε > 0. The
essential pseudospectrum σe,ε(S,B) of a bounded linear operator pencil (S,B) of the form S − λB on
F is defined by

σe,ε(S,B) = K\{λ ∈ K : S + C − λB ∈ Φ0(F ) for all C ∈ L(F ) such that ‖C‖ < ε},

where Φ0(F ) is the set of all unbounded Fredholm operators on F of index 0.

We continue by recalling the following statements.

Theorem 5. [14] Let S,B ∈ L(F ) and ε > 0. Then,

σe,ε(S,B) =
⋃

C∈L(F ):‖C‖<ε

σe(S + C,B).

Theorem 6. [13] Let F be an ultrametric Banach space over a spherically complete field K. Let
S,B ∈ L(F ) and ε > 0. Then,

σe,ε(S,B) = σe,ε(S +K,B) for all K ∈ Cc(F ).

Remark 1. [13] From Theorem 6, it follows that the essential pseudospectrum of bounded lin-
ear operator pencils is invariant under perturbation of all completely continuous linear operators on
ultrametric Banach spaces over a spherically complete field K.
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Theorem 7. [15] Let F be an ultrametric Banach space over a spherically complete field K. Let
S,B ∈ L(F ) and ε > 0. Then

σe(S,B) =
⋂

K∈Cc(F )

σ(S +K,B).

From Example 1 of [16], we conclude the following example.

Example 2. Let F be an ultrametric free Banach space over K with an orthogonal basis (ei)i∈N.
Let S ∈ C(F ), B ∈ L(F ) be two diagonal operators such that B is invertible defined by for all
i ∈ N, Sei = λiei and Bei = µiei where for all i ∈ N, λi, µi ∈ K such that lim

i→∞
|λi| =∞ and sup

i∈N
|µi| is

finite, then
σ(S,B) = {λiµ−1

i , i ∈ N}

and for all λ ∈ ρ(S,B), we have

‖(S − λB)−1‖ = sup
i∈N

‖(S − λB)−1ei‖
‖ei‖

= sup
i∈N

∣∣∣∣ 1

λi − λµi

∣∣∣∣
=

1

inf
i∈N
|λi − λµi|

.

Thus {
λ ∈ K : ‖(A− λB)−1‖ > 1

ε

}
=

{
λ ∈ K : inf

i∈N
|λi − λµi| < ε

}
.

Hence
σε(S,B) = {λiµ−1

i , i ∈ N} ∪
{
λ ∈ K : inf

i∈N
|λi − λµi| < ε

}
.

For more details on pseudospectra and condition pseudospectra of linear operators on ultrametric
Banach spaces, we refer to [4, 5, 7].

2 Main Results

We begin with the following theorem.

Theorem 8. Let F be an ultrametric Banach space over a spherically complete field K. Let S ∈ L(F )

and ε > 0. Then λ 6∈
⋂

K∈Cc(F )

σε(S+K) if and only if for all C ∈ L(F ) such that ‖C‖ < ε, S+C−λI ∈

Φ(F ) and ind(S + C − λI) = 0.

Proof. Let λ 6∈
⋂

K∈Cc(F )

σε(S + K), then there exists K ∈ Cc(F ) such that λ 6∈ σε(S + K). By

Theorem 2, there is K ∈ Cc(F ) such that for all C ∈ L(F ) with ‖C‖ < ε, λ ∈ ρ(S +K +C), hence for
all C ∈ L(F ) such that ‖C‖ < ε,

S +K + C − λI ∈ Φ(F )

and
ind(S +K + C − λI) = 0.

The operator S + C − λI can be written in the form

S + C − λI = S + C +K − λI −K.
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Since K ∈ Cc(F ), by Lemmas 2 and 3, we have for all C ∈ L(F ) such that ‖C‖ < ε,

S + C − λI ∈ Φ(F )

and
ind(S + C − λI) = 0.

Conversely, let λ ∈ K and for all C ∈ L(F ) such that ‖C‖ < ε, we have S + C − λI ∈ Φ(F ) and
ind(S + C − λI) = 0. Put α(S + C − λI) = β(S + C − λI) = n. Let {x1, · · · , xn} being the basis
for N(S + C − λI) and {y∗1, · · · , y∗n} being the basis for R(S + C − λI)⊥. By Lemma 1, there are
functionals x∗1, · · · , x∗n in F ∗

(
F ∗ is the dual space of F

)
and elements y1, · · · , yn in F such that

x∗j (xk) = δj,k and y
∗
j (yk) = δj,k, 1 ≤ j, k ≤ n,

where δj,k = 0, if j 6= k and δj,k = 1, if j = k. Consider the operator K defined on F by

K : F → F

x 7→
n∑
i=1

x∗i (x)yi.

It is easy to see that K is a linear operator and D(K) = F. In fact, for all x ∈ F,

‖Kx‖ = ‖
n∑
i=1

x∗i (x)yi‖

≤ max
1≤i≤n

‖x∗i (x)yi‖

≤ max
1≤i≤n

(‖x∗i ‖‖yi‖)‖x‖.

Moreover, R(K) is contained in a finite-dimensional subspace of F . So, K is a finite rank operator,
then K is completely continuous. We show that for all C ∈ L(F ) such that ‖C‖ < ε, we have

N(S + C − λI) ∩N(K) = {0} (2)

and
R(S + C − λI) ∩R(K) = {0}. (3)

Let x ∈ N(S+C −λI)∩N(K), hence x ∈ N(S+C −λI) and x ∈ N(K). If x ∈ N(S+C −λI), then

x =
n∑
i=1

αixi with α1, · · · , αn ∈ K.

Then for all 1 ≤ j ≤ n, x∗j (x) =

n∑
i=1

αiδi,j = αj . If x ∈ N(K), hence Kx = 0, so

n∑
j=1

x∗j (x)yj = 0.

Therefore, we have for all 1 ≤ j ≤ n, x∗j (x) = 0. Hence x = 0. Consequently,

N(S + C − λI) ∩N(K) = {0}.
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Let y ∈ R(S + C − λI) ∩R(K), then y ∈ R(S + C − λI) and y ∈ R(K). Let y ∈ R(K), we have

y =
n∑
i=1

αiyi with α1, · · · , αn ∈ K.

Then for all 1 ≤ j ≤ n, y∗j (y) =
n∑
i=1

αiδi,j = αj .Moreover, if y ∈ R(S+C−λI), hence for all 1 ≤ j ≤ n,

y∗j (y) = 0. Thus y = 0. Therefore,

R(S + C − λI) ∩R(K) = {0}.

SinceK is a compact operator. By Lemmas 2 and 3, S+C−λI+K ∈ Φ(F ) and ind(S+C+K−λI) = 0.
Thus

α(S + C +K − λI) = β(S + C +K − λI). (4)

If x ∈ N(S +C +K − λI), then (S +C − λI)x = −Kx in R(S +C − λI)∩R(K). It follows from (3)
that (S+C −λI)x = −Kx = 0, hence x ∈ N(S+C −λI)∩N(K) and from (2), we have x = 0. Thus
α(S +K +C − λI) = 0, it follows from (4), R(S +C +K − λI) = X. Consequently, S − λI +K +C

is invertible and from Theorem 2, we conclude that λ 6∈
⋂

K∈Cc(F )

σε(S +K).

Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K. The space X = ⊕ni=1Xi endowed
by for all i ∈ {1, · · · , n}, xi ∈ Xi, ‖x1 ⊕ x2 ⊕ · · · ⊕ xn‖ = max

i∈{1,··· ,n}
‖xi‖ is an ultrametric Banach space

over K [8]. One can see that if for all i ∈ {1, · · · , n}, Ai ∈ L(Xi), then A = A1⊕A2⊕· · ·⊕An ∈ L(X).
We introduce the following definition.

Definition 15. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K and let Ai ∈ L(Xi).
The spectrum σ(A) of A on ⊕ni=1Xi is given by

σ(A) = {λ ∈ K : A− λI is not invertible in L(⊕ni=1Xi)},

where I denotes the identity operator of ⊕ni=1Xi and A = ⊕ni=1Ai. The resolvent set of A on ⊕ni=1Xi

is defined by
ρ(A) = {λ ∈ K : (A− λI)−1 ∈ L(⊕ni=1Xi)}.

For i = 2, we have the following proposition.
Proposition 5. Let X,Y be two ultrametric Banach spaces over K. Let A ∈ L(X), B ∈ L(Y ). The

spectrum of A⊕B ∈ L(X ⊕ Y ) is given by

σ(A⊕B) = σ(A) ∪ σ(B).

Proof. Let λ ∈ σ(A⊕B), then (A⊕B)− (IX⊕IY ) is not invertible, hence A−λIX is not invertible
in L(X) or B − λIY is not invertible in L(Y ), thus λ ∈ σ(A)∪ σ(B). Hence σ(A⊕B) ⊆ σ(A)∪ σ(B).
Similarly, we obtain that σ(A) ∪ σ(B) ⊆ σ(A⊕B). Consequently, σ(A⊕B) = σ(A) ∪ σ(B).

More generally, one can see that.
Proposition 6. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K and let Ai ∈ L(Xi).

Set A = ⊕ni=1Ai ∈ L(⊕ni=1Xi). Then

σ(A) =
n⋃
i=1

σ(Ai)

and

ρ(A) =
n⋂
i=1

ρ(Ai).
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Now, we define the pseudospectrum of A where A = ⊕ni=1Ai and for all i ∈ {1, · · · , n}, Ai ∈ L(Xi)
on the ultrametric Banach space ⊕ni=1Xi. We have the following definition.

Definition 16. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi)
and ε > 0. The pseudospectrum σε(⊕ni=1Ai) of ⊕ni=1Ai on ⊕ni=1Xi is given by

σε(⊕ni=1Ai) = σ(⊕ni=1Ai) ∪ {λ ∈
n⋂
i=1

ρ(Ai) : sup
i∈{1,··· ,n}

‖(Ai − λI)−1‖ > ε−1}.

Remark 2. One can see that σε(⊕ni=1Ai) =

n⋃
i=1

σε(Ai).

Proposition 7. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi)
and ε > 0, then
(i) σ(⊕ni=1Ai) =

⋂
ε>0

σε(⊕ni=1Ai).

(ii) If 0 < ε1 < ε2, then σ(⊕ni=1Ai) ⊂ σε1(⊕ni=1Ai) ⊂ σε2(⊕ni=1Ai).

Proof. (i) By Definition 16, for each ε > 0, σ(⊕ni=1Ai) ⊂ σε(⊕ni=1Ai), then σ(⊕ni=1Ai) ⊂⋂
ε>0

σε(⊕ni=1Ai). Conversely, if λ ∈
⋂
ε>0

σε(⊕ni=1Ai), since

⋂
ε>0

σε(⊕ni=1Ai) = σ(⊕ni=1Ai) ∪
⋂
ε>0

{λ ∈
n⋂
i=1

ρ(Ai) : sup
i∈{1,··· ,n}

‖(Ai − λI)−1‖ > ε−1}

and
⋂
ε>0

{λ ∈
n⋂
i=1

ρ(Ai) : sup
i∈{1,··· ,n}

‖(Ai − λI)−1‖ > ε−1} = ∅ because of for all i ∈ {1, · · · , n},

(Ai − λI)−1 are bounded linear operators. Thus λ ∈ σ(⊕ni=1Ai).
(ii) For 0 < ε1 < ε2. Let λ ∈ σε1(⊕ni=1Ai), consequently, sup

i∈{1,··· ,n}
‖(Ai − λI)−1‖ > ε−1

1 > ε−1
2 , hence

λ ∈ σε2(⊕ni=1Ai).

Let A ∈ L(X), set r(A) = lim
k→∞

‖Ak‖
1
k . We have the following lemmas.

Lemma 4. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi) and
ε > 0, then r(⊕ni=1Ai) = sup

i∈{1,··· ,n}
r(Ai). Furthermore sup

λ∈σ(⊕n
i=1Ai)

|λ| ≤ sup
λ∈σε(⊕n

i=1Ai)
|λ|.

Proof. Since for all k ∈ N, (A1 ⊕ · · · ⊕An)k = Ak1 ⊕ · · · ⊕Akn. Thus

r(⊕ni=1Ai) = lim
k→∞

‖(A1 ⊕ · · · ⊕An)k‖
1
k

= lim
k→∞

‖Ak1 ⊕ · · · ⊕Akn‖
1
k

= lim
k→∞

sup
i∈{1,··· ,n}

‖Aki ‖
1
k

= sup
i∈{1,··· ,n}

lim
k→∞

‖Aki ‖
1
k

= sup
i∈{1,··· ,n}

r(Ai).

Since σ(A) ⊆ σε(A), then sup
λ∈σ(⊕n

i=1Ai)
|λ| ≤ sup

λ∈σε(⊕n
i=1Ai)

|λ|.
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Set rε(⊕ni=1Ai) = sup
λ∈σε(⊕n

i=1Ai)
|λ|, we have the following:

Lemma 5. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi) and
ε > 0, then rε(⊕ni=1Ai) = sup

i∈{1,··· ,n}
rε(Ai).

Proof. From Remark 2, σε(⊕ni=1Ai) =

n⋃
i=1

σε(Ai). One can see that rε(⊕ni=1Ai) = sup
i∈{1,··· ,n}

rε(Ai).

We have the following examples.

Example 3. Consider (Ak)1≤k≤n defined on K2 by

Ak =

(
λk 0
0 µk

)
,

where λk, µk ∈ K for all k ∈ {1, · · · , n} and n ∈ N is fixed. Then σ(⊕nk=1Ak) =

n⋃
k=1

{λk, µk} and

σε(⊕nk=1Ak) =
n⋃
k=1

{λk, µk} ∪ {λ ∈ K : sup
1≤k≤n

‖(λI −Ak)−1‖ > 1

ε
}.

Example 4. Let F be an ultrametric free Banach space over K with an orthogonal basis (em)m∈N.
Let (Ak)1≤k≤n be defined on F by for all x ∈ F and for each k ∈ {1, · · · , n}, Akx = λkx. Set
A = ⊕nk=1Ak. One can see that

σ(A) =
n⋃
k=1

{λk}

and for all k ∈ {1, · · · , n} and for each λ ∈ ρ(Ak), ‖(λ − Ak)−1‖ = 1
|λ−λk| . Hence σε(Ak) = {λk} ∪

B(λk, ε). Consequently,

σε(A) =

n⋃
k=1

{λk} ∪
n⋃
k=1

B(λk, ε).

We introduce the following definition.

Definition 17. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi)
and ε > 0. The condition pseudospectrum Λε(⊕ni=1Ai) of ⊕ni=1Ai on ⊕ni=1Xi is defined by

Λε(⊕ni=1Ai) = σ(⊕ni=1Ai) ∪ {λ ∈ K : sup
i∈{1,··· ,n}

‖(Ai − λI)‖ sup
i∈{1,··· ,n}

‖(Ai − λI)−1‖ > ε−1},

with the convention supi∈{1,··· ,n} ‖(Ai − λI)‖ supi∈{1,··· ,n} ‖(Ai − λI)−1‖ =∞ if λ ∈ σ(⊕ni=1Ai).

Remark 3. It is easy to see that
n⋃
i=1

Λε(Ai) ⊂ Λε(⊕ni=1Ai).

Proposition 8. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi)
and ε > 0, then
(i) σ(⊕ni=1Ai) =

⋂
ε>0

Λε(⊕ni=1Ai).

(ii) If 0 < ε1 < ε2, then σ(⊕ni=1Ai) ⊂ Λε1(⊕ni=1Ai) ⊂ Λε2(⊕ni=1Ai).
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Proof. (i) By Definition 17, for each ε > 0, σ(⊕ni=1Ai) ⊂ Λε(⊕ni=1Ai). Conversely, if
λ ∈

⋂
ε>0

Λε(⊕ni=1Ai) and λ 6∈ σ(⊕ni=1Ai). Using lim
ε→→0

sup
i∈{1,··· ,n}

‖(Ai−λI)‖ sup
i∈{1,··· ,n}

‖(Ai−λI)−1‖ =

∞, we get a contradiction.
(ii) For 0 < ε1 < ε2. If λ ∈ Λε1(⊕ni=1Ai), thus for all sup

i∈{1,··· ,n}
‖(Ai − λI)‖ sup

i∈{1,··· ,n}
‖(Ai − λI)−1‖ >

ε−1
1 > ε−1

2 , then λ ∈ Λε2(⊕ni=1Ai).

Let A ∈ L(X), set r(A) = lim
k→∞

‖Ak‖
1
k . We have the following lemmas.

Lemma 6. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K, let Ai ∈ L(Xi) and
ε > 0, then sup

λ∈σ(⊕n
i=1Ai)

|λ| ≤ sup
λ∈Λε(⊕n

i=1Ai)
|λ|.

Proof. Since σ(A) ⊆ Λε(A), then sup
λ∈σ(⊕n

i=1Ai)
|λ| ≤ sup

λ∈Λε(⊕n
i=1Ai)

|λ|.

We introduce a new definition of the condition pseudospectrum of ⊕ni=1Ai as follows.

Definition 18. Let (Xi)1≤i≤n be a sequence of ultrametric Banach spaces over K and let Ai ∈ L(Xi)
and ε > 0. The condition pseudospectrum Λ′ε(⊕ni=1Ai) of ⊕ni=1Ai on ⊕ni=1Xi is

Λ′ε(⊕ni=1Ai) = σ(⊕ni=1Ai) ∪ {λ ∈ K : sup
i∈{1,··· ,n}

‖(Ai − λI)‖‖(Ai − λI)−1‖ > ε−1}.

Remark 4. (i) It is easy to see that Λ′ε(⊕ni=1Ai) =

n⋃
i=1

Λ′ε(Ai).

(ii) σ(⊕ni=1Ai) =
⋂
ε>0

Λ′ε(⊕ni=1Ai).

(iii) If 0 < ε1 < ε2, then σ(⊕ni=1Ai) ⊂ Λ′ε1(⊕ni=1Ai) ⊂ Λ′ε2(⊕ni=1Ai).

(iv) For all ε > 0, we have sup
λ∈σ(⊕n

i=1Ai)
|λ| ≤ sup

λ∈Λ′ε(⊕n
i=1Ai)

|λ|.

(v) The condition pseudospectum Λ′ε(⊕ni=1Ai) of ⊕ni=1Ai gives nice properties than Λε(⊕ni=1Ai).

We finish with the following example.

Example 5. Consider (Ak)1≤k≤n defined on K2 by

Ak =

(
0 λk
λk 0

)

for all k ∈ {1, · · · , n} and n ∈ N is fixed. Then σ(⊕nk=1Ak) =
n⋃
k=1

{−λk, λk} and

Λε(⊕nk=1Ak) =

n⋃
k=1

{−λk, λk} ∪ {λ ∈ K : sup
1≤k≤n

‖λI −Ak‖ sup
1≤k≤n

‖(λI −Ak)−1‖ > 1

ε
}

where for all k ∈ {1, · · · , n}, ‖λ − Ak‖ = max{|λ|, |λk|} and for all λ ∈ ρ(Ak), ‖(λI − Ak)
−1‖ =

max
{

|λ|
|λ2−λ2k|

, |λk|
|λ2−λ2k|

}
.
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Model-theoretic properties of J-non-multidimensional theories
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The issues of utilizing the central type to analyze the theoretical and model properties of the idea of
heredity were examined in this research, taking into account both theories and the Jonsson spectrum.
Finding solutions to issues related to the enriching language for the fixed Jonsson theory is associated
with the problems of heredity of Jonsson theory. Another feature of Jonsson theories was described in
the presented article. That is, the conclusion concerning J-non-multidimensional theories was presented
in this study. The connection between J-P -stable theories and J-non-multidimensional theories was also
characterired. In addition, the main result in the article was considered for the class of semantic pairs.

Keywords: Jonsson theory, semantic model, perfect Jonsson theory, hereditary Jonsson theory, Jonsson
spectrum, permissible enrichment, central type, existentially closed model, J-stable theory, semantic pairs,
existentially finite cover property, J-non-multidimensional theory.
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Introduction

Although the Model Theory is the youngest science in terms of its development, it has spread its
roots and is growing in all directions. It can be seen from the new concepts and findings that are
being studied and defined year after year, and from the new methods of researching these findings.
Model theorists use various limiting conditions to obtain results concerning incomplete theories. One
of the relevant directions in this sense is studying of Jonsson theories. The number and variety
of methodologies under development [1–7] indicates the tremendous expansion of the apparatus for
analyzing Jonsson theories in recent years.

The difficulty of defining the notion of heredity in Jonsson theory remains unresolved. This prob-
lem’s relevance is supported by the following significant counterexample: the elementary theory of
an algebraically closed field loses its Jonsson character when it is enhanced with a unary predicate.
Accordingly, one key model-theoretic challenge for characterizing the hereditary Jonsson theories is
the study of model-theoretic features of central types in predicate enrichment.

We will further study the J-non-multidimensional theories. The study of non-multidimensional
theories in general begins with the work of S. Shelah [8]. The theory T called non-multidimensional, if
there is a bound to the size of families of pairwise orthogonal types. A. Pillay developed a classification
of models for ω-stable non-multidimensional theories [9]. And T. Mustafin and T. Nurmagambetov
obtained the main results of non-multidimensional theories for superstable theories [10].

The purpose of the article is to show the connection between J-non-multidimensional theories
and J-P -stable theories. In general, the scope of study of P -stable theory is wide. For the first
time, French mathematician B. Poizat began to study in [11], i.e. he found the conditions for the
completeness of elementary pairs. E. Bouscaren [12, 13] further argued that a different class of stable
∗Corresponding author. E-mail: galkatai@mail.ru
This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic

of Kazakhstan (Grant No. AP23489523).
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theories should be used to address these questions. She showed that elementary pairs theories are
complete for stable and superstable theories. In the work of D. Laskar [14] it is said that those theories
should be uncountable categorical theories. And in work of T. Nurtazin [15] on the proof for the class
of uncountable categorical theories. In [16] T. Mustafin introduces the concept of T ∗-stability, which
generalizes the well-known fact of λ-stability. In a separate case, the concept of P -stability related
to the concept of elementary pairs is studied. In [10; 88–100] obtained a description of P -stability
for any superstable theories. E∗-stable theories were introduced by E. A. Palyutin in [17]. The
discontinuity requirement, which states that stability, P -stability, and other significant independent
conditions are satisfied in the trivial situation, distinguishes this idea from T ∗-stability. The types in
P -sets of P -stable theories constructed by T. Nurmagambetov and B. Poizat for types in the context
of P -models are defined [18], in addition to the definition of types in stable theories. As of right now,
A.R. Yeshkeyev’s work [19] has yielded several innovations in P -stability for the Jonsson theories, or
perfect Jonsson theories.

This paper consists of two sections. In Section 1, we give some basic information on Jonsson
theories. In Section 2, we present our results obtained for cosemanticness classes of Jonsson spectrum
in permissible enrichment, so-called J-non-multidimensional theories.

1 Basic information concerning Jonsson theories

To set the stage for the major result, let us define several terms and results associated with Jonsson
theories that are well known.

Definition 1. [20] A theory T is called a Jonsson theory, if
1. T has at least one infinite mode;
2. T is an inductive theory;
3. T has the joint embedding property (JEP );
4. T has the amalgam property (AP ).

The main properties and theorems related to Jonsson theory can be found in work [20].
Any inductive theory has a nonempty class of existential closed models, and the class of Jonsson

theories is a subset of inductive theories. Consequently, by including more Jonsson theory properties,
the description of the class of existential closed models above can be strengthened. One of these
characteristics is the power saturation of the semantic model. Such theories are called perfect Jonsson
theories. Let’s become acquainted with the features of these theories.

Definition 2. [20; 162] A Jonsson theory T is called a perfect theory, if its semantic model is
saturated.

As the examples below (Fig.) make abundantly evident, any Jonsson theory can be perfect; not all
Jonssons can be perfect.

One of the striking examples of such a phenomenon is the example of the theory of fields of a
fixed characteristic. In this example, the interpretation of an one-place predicate is realized by an
existentially closed submodel of the semantic model of this theory. It is well known that an algebraic
closed field with the same characteristic will serve as this theory’s semantic model. The notion of a
hereditary Jonsson theory was defined with the knowledge of such cases. Hereditary Jonsson theories
are those in which the qualities of jonssonness are retained, that is, the enriched theory stays Jonsson
despite any permissible enrichment of the theory’s language. The term “admissibility of enrichment”
refers to the preservation of the definability of any new language type with respect to the stability of
the enriched theory, where stability is considered in relation to the enrichment framework. The idea
of a Jonsson theory’s central type was established in order to research hereditary hypotheses.

Concepts of “hereditary” and “permissible enrichment” belongs to professor Yeshkeyev A.R.
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Figure. Examples of Jonsson theories

Definition 3. Let T be an enrichment of Jonsson theory T, Γ = {P} ∪ {c}, P be some unary
predicate symbol and c be a constant symbol. T is called permissible, if any ∆-type in this enrichment
is definable within TΓ-stability, where ∆ is a subset of Lσ, a ∆-type means that any formula of this
type belongs to ∆.

The following definition shows only the necessity of the concept, and the sufficient condition has
not yet been defined. Let’s give the definition.

Definition 4. A Jonsson theory is called hereditary, if with any of its permissible enrichments, any
expansion of it in this enrichment will be Jonsson theory.

The subsequent discussion will solely focus on permissible enrichments, specifically examining those
for the Jonsson spectrum that comprise solely of hereditary Jonsson theories [21–26].

Then the JSp(A) = {T| A ∈ ModT, T − Jonsson theory of the signature σ} is the Jonsson spec-
trum of the model A.

Definition 5. If two models A,B have the same semantic model, then we will state that they are
cosemantic among themselves. Symbolically A ./ B.

The relation ./ is the equivalence relation between models, which generalizes the concept of ele-
mentary equivalence. Therefore we consider the factor set JSp(A)/./ for the model A.

The task of describing the properties of heredity of Jonsson theory is significantly complicated by
the transition of the theory to a spectrum. We set ourselves the task of studying the cosemanticity
classes of a fixed Jonsson spectrum with respect to all the above-mentioned arising questions, their
consequences and all possible combinations. In this case, the cosemanticity classes from the considered
Jonsson spectrum will, as a rule, be convex, that is, the theories from this class will be convex.
Accordingly, the central types will reflect the essence of the permissible enrichment of the considered
hereditary Jonsson theory along with the convexity of the obtained theories.

Definition 6. [12] A class JSp(A)/./ is called perfect (hereinafter, PJSp(A)/./), if each class
[T] ∈ JSp(A)/./ is perfect, [T] is called perfect, if C[T] is a saturated model.

Note that for perfect Jonsson theories T ∈ [T] their central types are equal.
The study in article heavily relies on the central type. The law of first-order logic, which states that

a constant can be substituted by a variable when the constant was not belong of the theory’s language
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prior to enrichment, is used in its construction. Following this substitution, the formal expression that
was formerly a sentence becomes a formula. The central type is a complete 1-type that results, if this
formal expression represents complete theory.

The concept of “central type” was first introduced in 2008 by professor A.R. Yeshkeyev. We enter
the central type according to the following algorithm:

1. We enrich the σ signature, i.e. σΓ = σ
⋃

Γ, where Γ = {P}
⋃
{c}.

2. We write the enriched theory accordingly T = Th∀∃ (C, ca)a∈C
⋃
Th∀∃(ET)

⋃
{P (c)}

⋃
{”P ⊆ ”},

in the language of the signature σΓ, the interpretation of the symbol P is an existentially closed sub-
model, as expressed by the infinite set of sentences {”P ⊆ ”}.

3. The solution to the equation P (C) = M ∈ ET in the signature σ̄ is the interpretation of the
symbol P .

4. We take into account all complements in the σ̄ signature of the T theory. The center T̄∗ of the
theory T̄ is one of the complements of the theory T̄ exhibited since the theory T is a Jonsson theory.

5. We restrict the σ̄ signature to the signature σ ∪ {P}.
6. The constant c is not included in the new signature because of constraints.
7. We substitute any variable, such x, for the constant symbol in accordance with the law of

first-order logic.
8. Accordingly, we designate the theory T̄∗ by pc, which is a complete type 1 in the admissible

enrichment.
This enrichment is denoted by �.
The concept of the Jonsson set, which is a definable set with the aid of an existential formula

and whose definable closure defines some existentially closed submodel of the semantic model under
consideration, is useful for manipulating the properties of elements and subsets of a semantic model.

Definition 7. [20]. In the theory T, a set X is referred to as a Jonsson set, if it meets the following
criteria:

1) X is a definable subset of CT , where CT is a semantic model of the theory T;
2) dcl(X) is a universe of existentially closed submodel CT , where dcl(X) is definable closure of X.

2 The connection between J-P -stable theory and J-non-multidimensional theory

From the main result in paper [10], for superstable theories, the notions of P -stability and
P -superstability and non-multidimensional theories for complete theories coincide.

Theorem 1. [10; 90] Let T be a superstable theory. Then the following conditions are equivalent:
1) the theory T is non-multidimensional;
2) the theory T is P -superstable;
3) the theory T is P -stable.
Now a stable theory is superstable iff every type does not fork over a finite set. A generalization

of stability for Jonsson theories is proved in the work [19].
We’ll also talk about the idea that “type p does not fork over” in relation to Theorem 8 from [5].
Definition 8. Let p be complete ∃-type over A, A is a Jonsson subset of C. Then p is J-stationary

over A, if
1) p does not fork over A;
2) p has a unique consistent extension that does not fork over A.
Definition 9. 1) A is a Jonsson subset of C, if p(x̄1), q(x̄2) are complete ∃-types over A. If and only

if p(x̄1) ∪ q(x̄2) is a ∃-complete type (over A), then p is J-weakly orthogonal to q.
2) For each p1 and p2, let us consider two ∃-complete or J-stationary types, respectively. If A is

the universe of a ∃1-saturated model, then p1 is J-orthogonal to p2, and q1 is weakly J-orthogonal to
q2, where q1, q2 are any J-nonforking extensions of p1 and p2 over A, respectively.
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Definition 10. Given a CT semantic model and a Jonsson theory T, let A be a Jonsson subset of the
model. If p is orthogonal to any complete ∃-type over A, then p is considered J-multidimensional and
a ∃-complete type. If T has a J -multidimensional type, then it is called a J-multidimensional theory.
In the absence of this, the theory T is called the J-non-multidimensional theory or the J-restricted
dimension theory.

Definition 11. A class [T] is called J-non-multidimensional, if every theory in this class does not
have a J-multidimensional type.

We consider the class of semantic pairs as the main result [27].

Definition 12. [27; 188]. An existentially closed pair (CT,M) is a semantic pair, if the following
conditions hold:

1) M is |T|+-∃-saturated (it means that it is |T|+-saturated restricted up to existential types);
2) for any tuple ā ∈ C each its ∃-type in sense of T over M ∪ {ā} is satisfiable in C.

Let [∇] be ∃-complete and J-λ-stable class of Jonsson theories, C[∇] be a semantic model of the
theory [∇], [∇] = [∇] in the enrichment of �, [∇]

∗
is the center of the [∇], p, q ∈ S([∇]

∗
), ∇′ =

Th∀∃(C,M).

Theorem 2. [27; 189]. (C[∇],M1) and (C[∇],M2) are two semantic pairs, ā and b̄ tuples taken from
each of them, M1, M2 ∈ E[∇]. Then (C[∇],M1) ≡∀∃ (C[∇],M2), if their central types are equivalent by
the fundamental order ∇∗.

Definition 13. [27; 187] Let T be the Jonsson L-theory and f(x̄, ȳ) be an ∃ formula of L language.
If for any arbitrary large n exists ā0, . . . , ān−1 in some existentially closed model of T and ā0, . . . , ān−1

satisfies ¬(∃x̄)
∧
k<n f(x̄, āk) and for any l < n ¬(∃x̄)

∧
k<n f(x̄, āk), then f(x̄, ȳ) is said to have e.f.c.p.

(existentially finite cover property).

Theorem 3. [27; 189]. Let [∇] be a hereditary, ∃-complete perfect, and J-λ-stable class of Jonsson
theories. Then the following conditions are equivalent:

1) [∇]
∗
does not have e.f.c.p.

2) Any |T|+-saturated model from ∇′ is a semantic pair.
3) Two tuples ā and b̄ from the models of [∇]

∗
have the same type if and only if their central types

in sense of [∇]
∗
overM are equivalent by fundamental order [∇]

∗
.

4) Two tuples ā and b̄ from models of ∇′ and that are in C[∇] \M have the same central types in
the sense of [∇] if and only if they have the same central types in the sense of [∇]

∗
.

Theorem 4. Let [∇] be a hereditary, ∃-complete perfect, and J-λ-stable class of Jonsson theories.
If [∇]

∗
does not have e.f.c.p. and λ-stable class, then [∇]′ is J-λ-stable and does not have e.f.c.p.

Let be K = {(C,M)|M �∃1 C, (C,M)is semantic pair}, JSp(K) = {∆|∆ is Jonsson theory,
∆ = Th∀∃(C,M), where (C,M) ∈ K}, let [∆] ∈ JSp(K)/./. Let [∆] be a ∃-complete and J-λ-stable
class of Jonsson theories, the class [∆] be [∆] in an permissible enrichment �, let [∆]

∗
be the center of

the class [∆].

Theorem 5. Let T be a perfect, J-λ-stable ∃-complete Jonsson theory, K be the class of J-beautiful
pairs of T . Let [∆] ∈ JSpK/./ be a complete for ∃-sentences. Then the following conditions are
equivalent:

1) the class [∆]
∗
is non-multidimensional (in the classical sense);

2) the class [∆] is J -non-multidimensional.

Proof. Let us prove implication 2)⇒ 1). Suppose [∆] is a J-non-multidimensional class. That is,
not every theory in this class is J-multidimensional. p⊥A, where A is the ϕ-Jonsson set of the semantic
model C[∆], is a J-multidimensional orthogonal ∃-type, if the theory is not J-multidimensional. [∆] is a
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J-stable and ∃ -complete class according to the theorem’s condition, which is equivalent to the Morley
rank condition. Furthermore, a measure of forking is Morley rank. Furthermore, the Lindenbaum
theorem states that each theory in the class [∆] can be extended to the maximum, or to complete
theories, because the theories in this class are incomplete.

The proof of 1)⇒ 2) is trivial.

Theorem 6. If the class [∆] is J-P -λ-stable, then it is J-non-multidimensional and does not have
e.f.c.p.

Proof. If [∆] is J-non-multidimensional, then every elementary extension of a semantic pair is a
semantic pair. Indeed, let (C,M) be a semantic pair, that is, for each dimension the cardinality of M
is at least |T|+. Then, by Theorems 3 and 4, [∆] does not have e.f.c.p.
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This article is about Minkowski difference of sets, which is one of the Minkowski operators. The necessary
and sufficient conditions for the existence of the Minkowski difference of given regular polygons in the
plane were derived. The method of finding the Minkowski difference of given regular tetrahedrons in the
Euclidean space R3 was explained. At the end of the article, the obtained results were summarized and a
geometric method for finding the Minkowski difference of the convex set M and compact set N given in Rn

was shown. The theory of foliations was applied to find the Minkowski difference of sets. New geometric
concepts such as “dense embedding” and “completely dense embedding” were introduced. An important
geometric property of the Minkowski operator was introduced and proved as a theorem.

Keywords: Minkowski sum, Minkowski difference, orthogonal projection, foliation, dense embedding in a
foliation.
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Introduction

Not all operations on sets may have a geometric meaning. For sets with elements of any kind, we
can perform operations such as union, intersection, and difference.

So, the above operations do not necessarily mean geometrically in some cases. The Minkowski sum
and difference on the sets were introduced precisely for the purpose of solving geometric problems, and
these operations depend on the nature of the elements that make up the sets. That is why Minkowski
operations are not performed for the sets given in the above example.

Definitions and some properties of Minkowski operators are presented in works [1, 2]. Among the
known scientific works, the Minkowski difference was first used in [3] to solve the problem of pursuit in
differential games under the name “geometric difference”. Later, in other works such as [4, 5], various
properties of this “geometric difference” were studied, and with their help, the conditions for solving
the problem of chasing were eased. Also, many geometric properties of Minkowski difference and sum
are presented in [6–9]. To date, several scientific researches have been conducted to find algorithms for
calculating the Minkowski sum. Y. Yan, D.S. Chirikjian, A. Baram, E. Fogel, D. Halperin, M. Hem-
mer, S. Morr, O. Eduard, M. Sharir, A. Kaul, M.A. O’Connor, V. Srinivasan, S. Das, S.D. Ranjan,
S. Sarvottamananda, W. Cox, L. While, M. Reynolds and other scientists obtained fundamental results
on the calculation of the Minkowski sum of polygons in the plane [10–15].

Finding the Minkowski difference of sets is more complicated than finding their Minkowski sum.
There are also not many works on finding the Minkowski difference of given sets [16, 17]. Several
properties and calculation methods of the Minkowski difference are presented in the works of specialists
such as L.A. Tuan, L. Yang, H. Zhang, J.B. Jeannin, N. Ozay, Y.T. Feng, Y. Tan, Y. Zhang, W. Qilin
[18–21]. However, so far, the conditions for the Minkowski difference of an arbitrary given set to be
empty or non-empty have not been obtained.
∗Corresponding author. E-mail: nuritdinovjt@gmail.com
Received: 9 February 2024; Accepted: 12 September 2024.
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The theory of foliation is one of the developing branches of modern geometry, and it has applications
to many areas of geometry [22–28]. In summarizing the obtained results in this article, the foliation
theory was also used. Through new geometrical concepts, an efficient method for finding the Minkowski
difference of given compact sets in Rn has been created.

This article presents important geometric properties of the Minkowski operator and geometric
ways to find the Minkowski difference of some sets using these properties. In this article, we solved
the following problems:

1) a new geometric method and exact formula for finding the Minkowski difference of given regular
polygons in the plane R2;

2) finding the Minkowski difference of two given regular tetrahedrons in the Euclidean space R3;
3) a new geometric property for finding the Minkowski difference of arbitrary sets;
4) applying foliation theory to finding the Minkowski difference.

1 Research Methodology

Definition 1. Let the sets A and B be non-empty sets of the n dimensional Euclidean space Rn.
Their Minkowski sum is the set of points formed by adding each point of set A to each point of set B,
i.e.

A+B = {c ∈ Rn : c = a+ b, a ∈ A, b ∈ B}.

Using this introduced operation, the Minkowski difference of two sets is defined as follows.

Definition 2. Let the sets A and B be non-empty sets of the n dimensional Euclidean space Rn.
The following set is called their Minkowski difference:

D = A∗B = {d ∈ Rn : d+B ⊂ A}.

Definition 3. The Minkowski operators of a multi-valued mapping G : Rn → 2R
n are the operators

AG : 2R
n → 2R

n and BG : 2R
n → 2R

n given by the formulas

AGS =
⋃
x∈S

(x+G(x)),

BGS = Rn\(AG(Rn\S)),

for any set S.

If, in particular, we take the multi-valued mapping G to be constant G(x) = G0 for all x ∈ S, the
Minkowski operators correspond to Minkowski sum and difference, respectively:

AGS = S +G0, BGS = S ∗(−G0).

Minkowski sum and Minkowski difference have been used to obtain sufficient conditions for ending the
game in differential games [3–5]. Today, the approximate calculation of Minkowski sum and difference
takes an important place in solving practical problems with the help of differential games. At the same
time, it is one of the most important issues to evaluate the Minkowski difference from below and above
in theoretical studies.

Minkowski operator were first applied to the study of differential games in the works of L.S. Pon-
tryagin [3, 4]. He called this operator geometric difference and marked it as (∗). In [17], a necessary
and sufficient condition for the Minkowski difference of two squares to be non-empty was obtained.
Formulas for calculating Minkowski differences are also presented in these works.
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2 Minkowski Difference of Regular Polygons

On the Euclidean plane R2, let regular n-sided polygons PA and PB be given by verticesA1, A2, ..., An
and B1, B2, ..., Bn, respectively. Using these points, we can express vectors corresponding to the sides
of regular polygons PA and PB:

−−→
A1A2 = ~a1,

−−→
A2A3 = ~a2, ...,

−−→
AnA1 = ~an,

−−→
B1B2 = ~b1,

−−→
B2B3 = ~b2, ...,

−−→
BnB1 = ~bn.

Theorem 1. In order for the Minkowski difference PA ∗PB of regular polygons PA and PB given
on the Euclidean plane R2 to be non-empty, the following relation is necessary and sufficient:

|~a1|
2 tan π

n

≥

∣∣∣~b1∣∣∣
2 sin π

n

· cos
(π
n
− αi

)
. (1)

Here αi = min
i=1,n

{
arccos

(
〈~a1,~bi〉
|~a1||~bi|

)}
is the smallest angle between vectors ~a1 and ~bi, i = 1, n.

Proof. Since PA is a regular polygon, the centers of the circumcircle and incircles of this polygon are
at the same point. Let’s denote this point as OA. In the same way, we mark the center of circumcircle
and incircles of the polygon PB as OB. PA ∗PB 6= ∅ means that the set PB can be nested inside the
set PA. For this, we move the set PB parallel until the point OB falls on the point OA, that is, we
move the set PB parallel along the vector

−−−−→
OBOA. There can be two cases.

 

Figure 1. The Minkowski difference of regular polygons with parallel sides

In the first case, it can be ~a1 ↑↑ ~b1, ~a2 ↑↑ ~b2, ...,~an ↑↑ ~bn (Fig. 1). In such a situation, the images
of points B′1, B′2, ..., B′n formed by parallel displacement of points B1, B2, ..., Bn along vector

−−−−→
OBOA

will be located on straight lines OAAi, i = 1, n. In order for the points B′1, B′2, ..., B′n to belong to the
regular polygon PA (here, the points inside the polygon are also considered to belong to the polygon),
it is necessary and sufficient to satisfy the relation∣∣OAAi∣∣ ≥ ∣∣OAB′i∣∣ , i = 1, n. (2)

The length of the segments OAB′i, i = 1, n is equal to the radius of the circumcircle of the PB

polygon, i.e ∣∣OAB′i∣∣ =
∣∣∣~b1∣∣∣

2 sin π
n

, i = 1, n. (3)
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The length of the segment OAAi, i = 1, n is equal to the radius of the circumcircle of polygon PA, but
if we express it by the radius of the incircle of the polygon PA, it will be in the form of

∣∣OAA′i∣∣ = |~a1|
2 tan π

n

· 1

cos πn
, i = 1, n. (4)

Since ~a1 ↑↑ ~b1, follows that αi = min
i=1,n

{
arccos

(
〈~a1,~bi〉
|~a1||~bi|

)}
= 0. From this we can write equation(4) as

∣∣OAA′i∣∣ = |~a1|
2 tan π

n

· 1

cos
(
π
n − αi

) , i = 1, n. (5)

If we put equations (5) and (3) to relation (2), condition (1) is obtained.

 

Figure 2. The Minkowski difference of regular polygons with corresponding sides not parallel

In the second case, relations ~ai ∦ ~bj ; i, j = 1, n are appropriate, that is, none of the sides of the
polygons PA and PB are parallel to each other (Fig. 2). In studying this situation, we must first
determine the smallest angle between the vectors ~a1 and ~bi, i = 1, 4 and we denote this angle as αi
and calculate it as follows

αi = min
i=1,n

arccos


〈
~a1,~bi

〉
|~a1|

∣∣∣~bi∣∣∣
 .

Suppose this angle is the angle between the vector
−−→
A1A2 and the vector

−−→
BkBk+1, k = 1, n(Bn+1 = B1).

In that case, we construct the vector
−−−→
OAA, whose beginning is at the point OA, and whose end is at

the point A, the middle of the segment A1A2. This vector forms an angle π
n − αi, i = 1, n with the

vector
−−−→
OAB′k, whose beginning is at point OA and whose end is at point B′k. In order for the points

to belong to the regular polygon PA, it is necessary and sufficient that the length of the orthogonal
projection of the vector

−−−→
OAB′k onto the vector

−−−→
OAA is not greater than the length of the vector

−−−→
OAA

(Fig. 3), i.e ∣∣∣∣−−−→OAA

∣∣∣∣ ≥ ∣∣∣∣−−−→OAB′k

∣∣∣∣ · cos(πn − αi) . (6)

The length of the vector
−−−→
OAA is equal to the radius of the incircle of the regular polygon PA,∣∣∣∣−−−→OAA

∣∣∣∣ = |~a1|
2 tan π

n

. (7)

130 Bulletin of the Karaganda University



Geometric properties of ...

The length of the vector
−−−→
OAB′k is equal to the radius of the circumcircle of the regular polygon PB,∣∣∣∣−−−−→OAB′k

∣∣∣∣ =
∣∣∣~b1∣∣∣

2 sin π
n

. (8)

If we put equations (8) and (7) to relation (6), condition (1) is obtained. This completes the proof.

3 Minkowski Difference of Regular Tetrahedrons

We know that a polyhedron is called a regular polyhedron, if all its faces are congruent regular
polygons and all dihedral angles are also congruent. Since at least three edges of the polyhedron pass
through each vertex, the sum of all plane angles at that end is less than 2π. A regular tetrahedron is
a pyramid with all faces consisting of equilateral triangles, and it has 4 vertices, 4 faces and 6 edges.
The spheres drawn inside and outside a regular tetrahedron have their centers at the same point. To
define a tetrahedron in a three-dimensional Euclidean space, it is enough to give the coordinates of its
vertices.

Let’s say that the points corresponding to the vertices of the tetrahedron TA are given by
Ai =

{
α1
i , α

2
i , α

3
i

}
, i = 1, 4 coordinates, and the points corresponding to the vertices of the tetra-

hedron TB are given by Bi =
{
β1i , β

2
i , β

3
i

}
, i = 1, 4 coordinates. Then the coordinate of the center of

the circumsphere and insphere of the tetrahedron TA is in the form

OA = {a1, a2, a3}, aj =
1

4

4∑
i=1

αji , j = 1, 3.

Similarly, the coordinate of the center of the circumsphere and insphere of the tetrahedron TB is
also in the form

OB = {b1, b2, b3}, bj =
1

4

4∑
i=1

βji , j = 1, 3.

We denote the vectors starting at point OA and ending at the points where the medians of the
faces of the tetrahedron TA intersect as ~rAi , i = 1, 4 and the coordinates of these vectors are in the
form

~rAi =
1

3
{a1 − α1

i , a2 − α2
i , a3 − α3

i }, i = 1, 4.

The lengths of these vectors are the same and equal to the radius of the insphere of the tetrahedron
TA, i.e. ∣∣~rAi ∣∣ = √612 |~a1| , i = 1, 4.

Where ~a1 =
−−→
A1A2 and represents the vector corresponding to the edge of the tetrahedron TA.

Let’s denote the vectors starting at OB and ending at points Bi, i = 1, 4 as ~RBi , i = 1, 4 respectively,
and the coordinates of these vectors are in the form

~RBi = −{b1 − β1i , b2 − β2i , b3 − β3i }, i = 1, 4.

The lengths of these vectors are equal to the radius of the circumsphere of the tetrahedron TB:∣∣∣~RBi ∣∣∣ = √64 ∣∣∣~b1∣∣∣ , i = 1, 4,

where ~b1 =
−−−→
B1B2 and represents the vector corresponding to the edge of the tetrahedron TB. By α

we denote the smallest angle between ~rAi , i = 1, 4 vectors and ~RBi , i = 1, 4 vectors.
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Figure 3. Minkowski difference of tetrahedrons

Theorem 2. In order for the Minkowski difference TA ∗TB of regular tetrahedrons TA and TB given
in Euclidean space R3 to be non-empty, the following relation is necessary and sufficient:

|~a1| ≥ 3|~b1| cosα. (9)

Proof. To calculate the difference TA ∗TB, we move the tetrahedron TB parallel to the vector
−−−−→
OBOA. Let us denote the images of points Bi =

{
β1i , β

2
i , β

3
i

}
, i = 1, 4 in this parallel displacement

as B′i, i = 1, 4 respectively (Fig. 3). In order for the difference TA ∗TB not to be empty, these points
must lie inside the tetrahedron TA or at most on its faces.

Let the points B′i, i = 1, 4 lie on the faces of the tetrahedron TA. The radius of the insphere of
the tetrahedron TA drawn from the point OA to the face formed by the vertices A2 =

{
α1
2, α

2
2, α

3
2

}
,

A3 =
{
α1
3, α

2
3, α

3
3

}
, A4 =

{
α1
4, α

2
4, α

3
4

}
of the tetrahedron TA falls on the point where the medians of the

triangle M A2A3A4 intersect and is perpendicular to this face. Let’s designate the vector corresponding
to this radius as ~rA1 , its coordinate will be in the form

~rA1 =
1

3
{a1 − α1

1, a2 − α2
1, a3 − α3

1}.

The length of the orthogonal projection of all vectors starting from OA and ending at points lying
on the face A2A3A4 onto the vector ~rA1 is equal to

∣∣~rA1 ∣∣. Hence, if any point B′i, i = 1, 4 belongs to
face A2A3A4, equality

proj~rA1

−−−→
OAB′i =

∣∣~rA1 ∣∣ , i = 1, 4 (10)

holds. Points B′i, i = 1, 4 can also be located inside the tetrahedron TA, so we generalize equation (10)
and write it in the form

proj~rA1

−−−→
OAB′i ≤

∣∣~rA1 ∣∣ , i = 1, 4. (11)

We can write the same relation for other faces of the tetrahedron TA:

proj~rA2

−−−→
OAB′i ≤

∣∣~rA2 ∣∣ , i = 1, 4,

proj~rA3

−−−→
OAB′i ≤

∣∣~rA3 ∣∣ , i = 1, 4,

proj~rA4

−−−→
OAB′i ≤

∣∣~rA4 ∣∣ , i = 1, 4.

(12)

Summarizing relations (11) and (12), we can write as follows

proj~rA
j

−−−→
OAB′i ≤

∣∣~rAj ∣∣ , i = 1, 4, j = 1, 4. (13)
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We know that the lengths of vectors
−−−→
OAB′i are the same and equal to the radius of the circumsphere

of the tetrahedron TB. ~rAj vectors have the same length and are equal to the radius of the insphere
of the tetrahedron T . Based on these, we write relation (13) in form (9), were α is the smallest of
the angles between vectors ~rAj , j = 1, 4 and vectors

−−−→
OAB′i, i = 1, 4. Because the cosine of a smaller

angle is greater than the cosine of a larger angle. This means that if relation (9) holds for the smallest
angle, it holds for the rest of the angles as well. Therefore, (9) is considered a necessary and sufficient
condition for the relation TA ∗TB not to be empty.

During the proof of the theorem, we derived the algorithm for finding the Minkowski difference
of two tetrahedrons given by their vertices in the Euclidean space R3. According to it, the following
should be done in sequence:

1) Let’s say that the points corresponding to the vertices of the tetrahedron TA are given by
Ai =

{
α1
i , α

2
i , α

3
i

}
, i = 1, 4 coordinates, and the points corresponding to the vertices of the tetrahedron

TB are given by Bi =
{
β1i , β

2
i , β

3
i

}
, i = 1, 4 coordinates. First of all we determine the Minkowski

difference of tetrahedrons TA and TB is not empty. For this we check relation (10) according to the
above theorem. The numbers |~a1| and

∣∣∣~b1∣∣∣ in relation (10) are lengths of vectors
−−→
A1A2 and

−−→
B1B2

respectively, and they are founded by following equality:

|~a1| =
∣∣∣−−→A1A2

∣∣∣√(α1
2 − α1

1

)2
+
(
α2
2 − α2

1

)2
+
(
α3
2 − α3

1

)2
,∣∣∣~b1∣∣∣ = ∣∣∣−−→B1B2

∣∣∣√(β12 − β11)2 + (β22 − β21)2 + (β32 − β31)2.
2) Suppose that as a result of the check, equality |~a1| = 3|~b1| cosα is satisfied. This means that

difference TA ∗TB consists only one point and this point is in the form OA −OB.
3) Suppose that as a result of the check, relation |~a1| > 3|~b1| cosα is satisfied. In this case to

calculate the difference TA ∗TB, we construct a tetrahedron T̃B such that, the edges are parallel to the
edges of the tetrahedron TA, and the vertices of the tetrahedron TB lie on the faces of this tetrahedron.
Such a tetrahedron is unique, the center of the insphere of this is at point OB and the radius is equal
to
√
6
4

∣∣∣~b1∣∣∣ · cosα. If we designate the vertices of the tetrahedron T̃B as B̃i, i = 1, 4 the directions of the

vectors
−−−→
OBB̃i, i = 1, 4 are the same as the directions of the vectors

−−−→
OAAi, i = 1, 4, and their lengths are

equal to the radius of the circumsphere of the tetrahedron T̃B. Since the radius of the circumsphere of
the regular tetrahedron is three times longer than the radius of its insphere, the lengths of the vectors−−−→
OBB̃i, i = 1, 4 are equal to the number 3

√
6

4

∣∣∣~b1∣∣∣ · cosα. The coordinates of the vectors
−−−→
OAAi, i = 1, 4

are as follows: −−−→
OAAi =

{
α1
i − a1, α2

i − a2, α3
i − a3

}
, i = 1, 4.

From these we can find the coordinates of vectors
−−−→
OBB̃i, i = 1, 4:

−−−→
OBB̃i =M ·

−−−→
OAAi, i = 1, 4, M =

3
∣∣∣~b1∣∣∣ · cosα
|~a1|

.

Using these vectors, we find the points B̃i, i = 1, 4 the vertices of the tetrahedron T̃B:

B̃i =M
{
α1
i − a1 + b1, α

2
i − a2 + b2, α

3
i − a3 + b3

}
, i = 1, 4.

4) We find the vertices of the tetrahedron formed as a result of difference TA ∗TB by subtracting
the corresponding coordinates of the points found from the coordinates of points Ai =

{
α1
i , α

2
i , α

3
i

}
,

i = 1, 4:
Ai − B̃i.
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4 Generalization of the results

In this section, we summarize the results obtained above [23–26]. Let, we are given convex set M
and compact set N in Rn. We denote by ∂M0 = L0 the boundary of a convex compact set M = M0.
Mα, ∂Mα = Lα, α ∈ A are chosen in such a way that: 1)

⋃
α∈A

Lα =M ; 2) Mα
∗Mβ 6= ∅ for arbitrary

α, β ∈ A and α ≤ β. Based on I. Tamura [23], we call F = {Lα : Lα = ∂Mα, α ∈ A} a foliation and
Lα, α ∈ A a leaves of the foliation. Let ∂

(
Mα

∗Mβ

)
∈ F be for arbitrary α, β ∈ A.

Theorem 3. If the condition N ⊂Mα is satisfied for the convex compact sets M , Mα and compact
set N given in Rn, the equality

M ∗N =
(
M ∗Mα

)
+
(
Mα

∗N
)

holds.
Proof. Let be z ∈M ∗N , then we show that there are elements z1 ∈M ∗Mα and z2 ∈Mα

∗N such
that z = z1+z2. We can write the relation z+N ⊂M using the definition of the Minkowski difference
for the element z ∈M ∗N . Therefore, for any c ∈ N , there is an element a ∈M such that the equality
z + c = a holds. From this we get the expression

c = a− z ∈ N. (14)

By condition, since N ⊂ Mα, relation Mα
∗N 6= ∅ is valid. Let z2 ∈ Mα

∗N . It follows that
z2 +N ⊂Mα. This relation holds for all elements of the set N . Hence, according to (14), we can
write the relation

z2 + a− z ∈Mα. (15)

According to the condition, M ∗Mα 6= ∅. Let z1 ∈ M ∗Mα. Then, z1 +Mα ⊂ M is appropriate.
Since this relation holds for all elements of the set Mα, it also holds for the element z2 + a − z in
expression (15)

z2 + z1 + a− z ∈M.

Since a ∈M , z1 + z2 − z = 0 and hence, the equality z1 + z2 = z holds true.
Now, let z ∈

(
M ∗Mα

)
+
(
Mα

∗N
)
, then there are elements z1 ∈ M ∗Mα and z2 ∈ Mα

∗N such
that z1 + z2 = z. According to the definition of Minkowski difference from relation z1 ∈ M ∗Mα, we
can write relation z1 +Mα ⊂ M , similarly, we get the expression z2 + N ⊂ Mα from the relation
z2 ∈ Mα

∗N . From these two expressions we get z1 + z2 + N ⊂ M , which leads to z1 + z2 ⊂ M ∗N .
The theorem is proved.

Definition 4. A compact set N is said to be embedded in a foliation F , if such a leaf Lα = ∂Mα,
α ∈ A and an element z ∈ Rn are found for which the relation z +N ⊂Mα holds.

Definition 5. A compact set N is said to be densely embedded in a foliation F , if z + N ⊂ Mα0

and the index α0 is the smallest among the numbers α ∈ A for which the relation z +N ⊂Mα holds.
It is easy to understand from this definition that if the compact set N is densely embedded in

foliation F , the dimension of the geometric difference Mα
∗N is smaller than the dimension of the

space Rn.
Definition 6. A compact set N is said to be completely densely embedded in a foliation F , if

Minkowski difference Mα
∗N = {a} consists of a single point.

Theorem 4. If compact set N completely densely embedded in a foliation F , then the equality

M ∗N =
(
M ∗Mα

)
+ a

holds.
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Using the concept of “complete dense embedding”, we can write the following results for cases where
the “subtrahend” set in the theorem 1 and theorem 2, above is an arbitrary compact set N .

Theorem 5. For polygons PA and PB in the Euclidean plane R2, condition (1) holds. If compact
set N is completely dense embedded in set PB, then the equality PA ∗N = PA ∗PB holds.

Theorem 6. For tetrahedrons TA and TB in the Euclidean space R3, condition (9) holds. If compact
set N is completely dense embedded in set TB, then the equality TA ∗N = TA ∗TB holds.

Conclusion

The Minkowski difference is actually useful as a research and conceptual tool. But, unfortunately,
it is well known that there are serious difficulties in finding the Minkowski difference for given arbi-
trary forms of sets. This is the main obstacle for using the Minkowski difference in various practical
applications. The results of the analysis of the work done by experts so far on finding the Minkowski
difference and sum have shown that the Minkowski sum of sets is sufficiently studied, but there is a
lack of data and literature on the Minkowski difference and its calculation.

Above, we introduced new methods for finding Minkowski differences of regular polygons given by
vertices in the plane R2, regular tetrahedron given by vertices in space R3. Taking these results, we
came to the conclusion that the form of the Minkowski difference of these sets will be similar to the
“minuend” set.

But we cannot state this conclusion for the Minkowski difference of n-dimensional cubes in Rn.
Because the Minkowski difference of two cubes can also be a rectangular parallelepiped edges of which
are parallel to the edges of the “minuend” cube. At the end of the article, we stated a theorem that
helps to calculate the Minkowski difference of arbitrary convex compact sets in Rn using the elements
of the theory of foliation.
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The article is devoted to the study of a singularly perturbed initial problem for a linear differential equation
with a piecewise constant argument second-order for a small parameter. This paper is considered the
asymptotic expansion of the solution to the Cauchy problem for singularly perturbed differential equations
with piecewise-constant argument. The initial value problem for first order linear differential equations with
piecewise-constant argument was obtained that determined the regular members. The Cauchy problems for
linear nonhomogeneous differential equations with a constant coefficient were obtained, which determined
the boundary layer terms. An asymptotic estimate for the remainder term of the solution of the Cauchy
problem was obtained. Using the remainder term, we construct a uniform asymptotic solution with accuracy
O(εN+1) on the θi ≤ t ≤ θi+1, i = 0, p segment of the singularly perturbed Cauchy problem with a piecewise
constant argument.

Keywords: singular perturbation, asymptotics, small parameter, boundary layer part, piecewise constant
argument.
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Introduction

The singularly perturbed differential equations arise in various fields of chemical kinetics, mathe-
matical biology fluid dynamics and in a variety models for control theory. These problems depend on
a small positive parameter such that the solution varies rapidly in some domains and varies slowly in
other domains. Asymptotics of the solution of singularly perturbed initial and boundary value prob-
lems with the phenomenon of an initial jump for ordinary differential equations with smooth coefficients
in the general formulation were studied by K.A. Kasymov [1] and others. Asymptotics of the solution
of the first boundary value problem for the linear ordinary differential equation of the second order
with piecewise smooth coefficients and a small parameter at the highest derivative was first studied in
the work of V. G. Sushko [2]. In particular, in the work of Kasymov [3] the case is considered when
the highest coefficient of a degenerate equation has discontinuities of the first kind at points t = ti,
i = 1, n and it is proved that the desired solution of the boundary value problem has initial jumps at
these points. However, the case when the coefficients of the of a linear differential equation depend on
a piecewise constant variable has not been investigated by them and others. The initial and boundary
value problems considered in the studies [4–11] are equivalent to the Cauchy problem with the initial
jump for differential and integro-differential equations in the stable case. Methods of solving nonlocal
problems for hyperbolic equations with piecewise constant argument of the generalized type are given
in papers [12–14]. A mathematical model including a piecewise constant argument was first considered
by Busenberg and Cooke in 1982. Systematic studies of theoretical and practical problems involving
∗Corresponding author. E-mail: kuralaimm7@gmail.com
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piecewise constant arguments were initiated in the early 1980s. Since then, differential equations with
piecewise constant arguments have attracted great attention from researchers in mathematics, biology,
engineering, and other fields. They constructed a first-order linear equation to investigate vertically
transmitted diseases. Following this work, using the method of reduction to discrete equations, many
authors have analyzed various types of differential equations with piecewise constant arguments. A
system of differential equations with piecewise constant argument of generalized type was introduced
in [15, 16]. Asymptotic estimations of the solution to a singularly perturbed equation with piecewise
constant argument were published [17, 18].

1 Statement of the problem

We consider the initial value problem for linear differential equations with a piecewise constant
argument of a small parameter

εy′′(t) +A(t)y′(t) +B(t)y(t) + C(t)y(β(t)) = F (t), (1)

y(0, ε) = d0, y
′(0, ε) = d1, (2)

where ε > 0 is a small parameter, d0, d1 are known constants. The piecewise constant argument is
determined with the function β(t) = θi, if t ∈ [θi, θi+1), i = 1, p, 0 < θ1 < θ2 < ... < θp < T .

Let us assume that the following conditions are satisfied:
C1) A(t), B(t), C(t), F (t) ∈ C[0, T ];
C2) A(t) > 0, 0 ≤ t ≤ T .

Theorem 1. Suppose that conditions (C1)-(C2) are fulfilled. Then, for the solution of the initial
problem (1), (2) and its derivatives in the interval 0 ≤ t ≤ T for ε > 0, the following limit transitions
are valid

lim
ε→0

y(t, ε) = y(t), 0 ≤ t ≤ T, (3)

lim
ε→0

y′(t, ε) = y′(t), 0 < t ≤ T,

where y(q)(t), q = 0, 1 is the solution to the following initial problem:
if t ∈ [0; θ1) {

A(t)y′(t) +B(t)y(t) = F (t)− C(t)− d0,
y(0) = d0,

and if t ∈ [θi; θi+1), i = 1, p {
A(t)y′(t) +B(t)y(t) = F (t)− C(t)y(θi),

y(θi) = y(θi).

The convergence (3) can be nonuniform near several points, that is to say, that multi-layers emerge.
These layers occur on the neighborhoods of t = 0 and t = θi, i = 1, p.

For example, we take A(t) = 1, B(t) = 0, C(t) = −3, β(t) =
[
t
2

]
, F (t) = 1 and t ∈ [2n, 2n + 2),

n = 0, 1, 2, d0 = 1, d1 = 3. Then the graph of the solution is shown in Figure.

Mathematics Series. No. 4(116)/2024 139



A.E. Mirzakulova, K.T. Konisbayeva

Figure. The blue, pink and red lines are graphs of solutions of example with initial values
d0 = 1, d1 = 3 with values of ε : 0.1, 0.05, 0.01 respectively. The green line is the solution of

unperturbed problem.

The derivative of solution of unperturbed problem is a discontinuity of the first kind.

2 Uniform asymptotic expansion of the solution for the initial problem

In the interval θi ≤ t ≤ θi+1, i = 0, p , we look for a uniform asymptotic expansion of the solution
to the initial problem (1), (2) in the following form

y(t, ε) = yε(t) + εw(i)
ε (τi), τi =

t− θi
ε

, (4)

where

yε(t) = y0(t) + εy1(t) + ε2y2(t) + ...+ εkyk(t) + ... (5)

w(i)
ε (τi) = w

(i)
0 (τi) + εw

(i)
1 (τi) + ε2w

(i)
2 (τi) + ...+ εkw

(i)
k (τi). (6)

(5) is called the regular part of the asymptotics, and (6) is called the boundary-layer part of the
asymptotics.

If we substitute expression (4) into equation (1), we obtain the following equality

ε
(
y′′ε (t) +

ε

ε2
ẅ(i)
ε (τi)

)
+A(t)

(
y′ε(t) +

ε

ε
ẇε(i)(τi)

)
+ (7)

+B(t)
(
yε(t) + εẇ(i)

ε (τi)
)

+ C(t)(yε(θi) + εw(i)
ε (0)) = F (t).

From equation (7) we select equations that depend on the variables t and τ separately:

εy′′ε (t) +A(t)y′ε(t) +B(t)yε(t) + C(t)yε(θi) = F (t), (8)

ẅ(i)
ε (τi) +A(θi + ετi)ẇ

(i)
ε (τi) + εB(θi + ετi)w

(i)
ε (τi) + εC(θi + ετi)w

(i)
ε (0) = 0. (9)

We substitute expression (5) into equation (8)
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ε
(
y′0(t) + εy′1(t) + ...+ εky′k(t) + ...

)
+A(t)

(
y′0(t) + εy′′1(t) + ...+ εky′′k(t) + ...

)
+ (10)

+B(t)
(
y0(t) + εy1(t) + ...+ εkyk(t) + ...

)
+

+C(t)
(
y0(θi) + εy1(θi) + ...+ εkyk(θi) + ...

)
= F (t).

Equating the coefficients for a small parameter of the same degree in both sides of equation (10), we
obtain a sequence of equations defining the yk(t), k = 0, 1, ... functions

ε0 : A(t)y′0(t) +B(t)y0(t) + C(t)y0(θi) = F (t),

ε1 : A(t)y′1(t) +B(t)y1(t) + C(t)y1(θi) = −y′′0(t),

εk : A(t)y′k(t) +B(t)yk(t) + C(t)yk(θi) = −y′′k−1(t).

We classify the functions A(θi + ετi), B(θi + ετi), i = 0, p into a Taylor series in the neighborhood
of the point θi by degree ε

A(θi + ετi) = A(θi) +
ετi
1!
A′(θi) +

(ετi)
2

2!
A′′(θi) + ...+

(ετi)
k

k!
A(k)(θi) + ... (11)

B(θi + ετi) = B(θi) +
ετi
1!
B′(θi) +

(ετi)
2

2!
B′′(θi) + ...+

(ετi)
k

k!
B(k)(θi) + ...

C(θi + ετi) = C(θi) +
ετi
1!
C ′(θi) +

(ετi)
2

2!
C ′′(θi) + ...+

(ετi)
k

k!
C(k)(θi) + ...

Substituting formulas (6), (11) into equation (9), we obtain the following expression

ẅ
(i)
0 (τi) + εẅ

(i)
1 (τi) + ...+ εkẅ

(i)
k (τi) + ...+

(
A(θi) +

ετi
1!
A′(θi)+ (12)

+
(ετi)

2

2!
A′′(θi) + ...+

(ετi)
k

k!
A(k)(θi) + ...

)
(ẅ

(i)
0 (τi) + εẅ

(i)
1 (τi) + ...+ εkẅ

(i)
k (τi) + ...)+

+ε

(
B(θi) +

ετi
1!
B′(θi) + ...+

(ετi)
k

k!
B(k)(θi) + ...

)
(ẅ

(i)
0 (τi) + εẅ

(i)
1 (τi) + ...+ εkẅ

(i)
k (τi) + ...)+

+ε

(
C(θi) +

ετi
1!
C ′(θi) + ...+

(ετi)
k

k!
C(k)(θi) + ...

)
(ẅ

(i)
0 (τi) + εẅ

(i)
1 (τi) + ...+ εkẅ

(i)
k (τi) + ...) = 0.

By equalizing the coefficients for a small parameter of the same degree in both sides of the equation
(12), we obtain a sequence of equations defining the w(i)

k (τi), k = 0, 1, ... functions

ε0 : ẅ
(i)
0 (τi) +A(θi)ẇ

(i)
0 (τi) = 0, (13)
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ε1 : ẅ
(i)
1 (τi) +A(θi)ẇ

(i)
1 (τi) = Φ1(τi), (14)

where

Φ1(τi) = −τiA′(θi)ẇ(i)
0 (τi)−B(θi)w

(i)
0 (θi)− C(θi)w

(i)
0 (0),

εk : ẅ
(i)
k (τi) +A(θi)ẇ

(i)
k (τi) = Φk(τi), (15)

where

Φk(τi) = −
k∑

m=1

(τi)
m

m!
A(m)(θi)ẇ

(i)
k−m(τi)− (16)

−
k∑
l=1

(τi)
l−1

(l − 1)!

(
B(l−1)(θi)w

(i)
k−l(τi) + C(l−1)(θi)w

(i)
k−l(0)

)
.

Consider the interval t ∈ [0, θ1). Applying conditions (2) to the uniform asymptotic expansion of
solution (4), equating the coefficients in front of the small parameter ε of the same degree, we determine
the following conditions:

y0(0) + εy1(0) + ...+ εkyk(0) + ...+

+ε
(
w

(0)
0 (0) + εw

(0)
1 (0) + ...+ εkw

(0)
k (0) + ...

)
= d0,

y′0(0) + εy′1(0) + ...+ εky′k(0) + ...+

+ε
(
ẇ

(0)
0 (0) + εẇ

(0)
1 (0) + ...+ εkẇ

(0)
k (0) + ...

)
= d1.

ε0 : y0(0) = d0, ẇ
(0)
0 (0) = d1 − y′0(0),

ε1 : y1(0) = −w(0)
0 (0), ẇ

(0)
1 (0) = −y′1(0),

εk : yk(0) = −w(0)
k−10, ẇ

(0)
k (0) = −y′k(0).

To determine the w(i)
k (τi), k = 0, 1, ... functions of the boundary layer, one more condition is nec-

essary, since the order of equations (13)-(15) is equal to two. If we integrate equation (13) over [τi,∞)

and take into account condition w(i)
0 (∞) = 0, ẇ

(i)
0 (∞) = 0, we determine the following expression

w
(i)
0 (τi) = − ẇ

(i)
0 (τi)

A(θi)
. (17)

We substitute τ0 = 0 into equation (17):

w
(0)
0 (0) = −d1 − y

′
0(0)

A(0)
.
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We continue this process and find the following conditions

w
(0)
k (0) = − 1

A(0)

(
−y′k(0) +

∫ ∞
0

Φk(s)ds

)
. (18)

Let us determine the initial conditions for the interval θi ≤ t ≤ θi+1, i = 1, p:

y0(θi) + εy1(θi) + ...+ εkyk(θi) + ...+ ε
(
w

(i)
0 (0) + εw

(i)
1 (0) + ...+ εkw

(i)
k (0) + ...

)
= y(θ0),

y′0(θi) + εy′1(θi) + ...+ εky′k(θi) + ...+ ε
(
ẇ

(i)
0 (0) + εẇ

(i)
1 (0) + ...+ εkẇ

(i)
k (0) + ...

)
= y′(θi).

ε0 : y0(θi) = y(θi), ẇ
(0)
0 (0) = y′(θi)− y′0(θi),

ε1 : y1(θi) = −w(i)
0 (0), ẇ

(i)
1 (0) = −y′1(θi),

εk : yk(θi) = −w(i)
k−1(0), ẇ

(0)
k (0) = −y′k(θi).

To determine the functions w(i)
k (τ0), k = 0, 1, ... of the boundary layer, one more condition is

necessary, since the order of equations (13)–(15) is equal to two. If we integrate equation (13) over
[τi,∞), i = 1, 2, 3, ... and take into account the conditions w(i)

0 (∞) = 0, ẇ
(i)
0 (∞) = 0, we determine the

following expression:

w
(i)
0 (τi) = − 1

A(θi)
ẇ

(i)
0 (τi). (19)

If we substitute τi = θi, i = 1, 2, 3, ... into equation (19),

w
(i)
0 (0) = − 1

A(θi)
(y′(θi)− y′0(θi)).

Continuing this process, we obtain the following conditions

w
(i)
k (0) = − 1

A(θi)

(
−y′k(θi) +

∫ ∞
θi

Φk(s)ds

)
, i = 1, 2, 3, ...

Problems defining regular terms for the interval t ∈ [0, θ1){
A(t)y′0(t) +B(t)y0(t) + C(t)y0(0) = F (t),

y0(0) = d0.
(20)

From the initial calculation (20), the y0(t) term of the regular part of the asymptotics is determined
uniquely: {

A(t)y′1(t) +B(t)y1(t) + C(t)y1(0) = −y′′0(t),

y1(0) = −w(0)
0 (0).

(21)

From the initial calculation (21), the y1(t) term of the regular part of the asymptotics is determined
uniquely: {

A(t)y′k(t) +B(t)yk(t) + C(t)yk(0) = −y′′k−1(t),
yk(0) = −w(0)

k−1(0).
(22)

From the original description (22) the term yk(t) of the regular part of the asymptotics is determined
uniquely.

Problems defining boundary-layer members for the interval t ∈ [0, θ1)

ẅ
(0)
0 (τ0) +A(0)ẇ

(0)
0 (τ0) = 0, (23)
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w
(0)
0 (0) = −d1 − y

′
0(0)

A(0)
,

ẇ
(0)
0 (0) = d1 − y′0(0).

From the initial calculation (18) and (23), the zeroth approximation w(0)
0 (τ0) of the boundary-layer

part of the asymptotics is uniquely determined:

ẅ
(0)
k (τ0) +A(0)ẇ

(0)
k (τ0) = Φk(τ0), (24)

w
(0)
k (0) = − 1

A(0)

(
−y′k(0) +

∫ ∞
0

Φk(s)ds

)
,

ẇ
(0)
k (0) = −y′k(0),

where the function Φk(τ0) is determined by formula (16). From the initial calculation (24) the
w

(0)
k (τ0) k−th approximation of the boundary layer part of the asymptotics is uniquely determined.
Problems defining regular terms for the interval t ∈ [θi, θi+1), i = 1, 2, ...{

A(t)y′0(t) +B(t)y0(t) + C(t)y0(θi) = F (t),

y0(θi) = y(θi),{
A(t)y′k(t) +B(t)yk(t) + C(t)yk(θi) = −y′′k−1(t),
yk(0) = −w(0)

k−1(θi).

Problems of determining boundary-layer elements for the interval t ∈ [θi, θi+1), i = 1, 2, ...

ẅ
(i)
0 (τi) +A(0)ẇ

(i)
0 (τi) = 0, i = 1, p

w
(i)
0 (0) = − 1

A(θi)

(
y′(θi)− y′0(θi)

)
,

ẇ
(i)
0 (0) = y′(θi)− y′0(θi).

ẅ
(i)
k (τi) +A(θi)ẇ

(i)
k (τi) = Φk(τi), i = 1, p

w
(i)
k (0) = − 1

A(θi)

(
−y′k(θi) +

∫ ∞
θi

Φk(s)ds

)
,

ẇ
(i)
k (0) = −y′k(θi).

3 Justification of the asymptotic behavior of the solution to the initial problem

Theorem 2. Let conditions (C1), (C2) be satisfied. Then, for a sufficiently small value of the small
parameter ε (1), the initial problem (2) has a solution y(t, ε) on the interval θ ≤ t ≤ θi+1, i = 0, p ,
which is unique and is expressed as

y(t, ε) = yN (t, ε) +RN (t, ε),

where the function yN (t, ε) is defined by the formula

yN (t, ε) =
N∑
k=0

εkyk(t) + ε
N∑
k=0

εkw
(i)
k (τi), τi =

t− θi
ε

, θi ≤ t ≤ θi+1, i = 0, p (25)

144 Bulletin of the Karaganda University



Uniform asymptotic expansion...

and the following estimates are suitable for the remainder term RN (t, ε)

|R(q)
N (t, ε)| ≤ CεN+1, q = 0, 1, θi ≤ t ≤ θi+1, i = 0, p, (26)

where C > 0 is a quantity independent of ε.

Proof. We obtain the independent sum of series (25) from (4). If we substitute function (25) into
equation (1), we obtain an equation

εy′′N (t, ε) +A(t)y′N (t, ε) +B(t)yN (t, ε) + C(t)y′N (β(t)) +D(t)yN (β(t)) = F (t) +O
(
εN+1

)
. (27)

That is, the function yN (t, ε) satisfies the equation with accuracy O
(
εN+1

)
.

Satisfying the function (25) with conditions (2), we define the following conditions

yN (0, ε) = d0 +O
(
εN+1

)
, y′N (0, ε) = d1. (28)

Let us introduce the difference between the exact solution and the approximate solution in the following
form

RN (t, ε) = y(t, ε)− yN (t, ε)⇒ y(t, ε) = yN (t, ε)−RN (t, ε). (29)

The function RN (t, ε) is called the remainder term of the asymptotics.
Substituting formula (29) into equation (1), taking into account that the function yN (t, ε) satis-

fies equation (27) and conditions (28), we obtain the following equation defining the remainder term
RN (t, ε)

εR′′N (t, ε) +A(t)R′N (t, ε) +B(t)RN (t, ε) + C(t)R′N (β(t)) +D(t)RN (β(t)) = O
(
εN+1

)
, (30)

RN (0, ε) = O
(
εN+1

)
, R′N (0, ε) = 0.

Since the type of problem (30) is the same as the type of problem (1), (2), to solve problem (26)
we use the solution estimate (1), (2)

|y(q)(t, ε)| ≤ C
(
|d0|(1 + max

θi≤t≤θi+1

|C(t)|) + ε|d1|+ max
θi≤t≤θi+1

|F (t)|
)

+

+Cε1−q exp−γ
t−θi
ε

(
|d0|(1 + max

θi≤t≤θi+1

|C(t)|) + |d1|+ max
θi≤t≤θi+1

|F (t)|
)
, q = 0, 1, i = 0, p+ 1.

Then we obtain the following estimate for the solution

|RN (t, ε)| ≤ CεN+1 + CεN+2 exp−γ
t−θi
ε ≤ CεN+1, θi ≤ t ≤ θi+1, i = 0, p+ 1

|R′N (t, ε)| ≤ CεN+1 + CεN+1 exp−γ
t−θi
ε ≤ CεN+1, θi ≤ t ≤ θi+1, i = 0, p+ 1.

The following conclusion follows: the function yN (t, ε) is called an asymptotic solution obtained
with an accuracy of O

(
εN+1

)
. From Theorem 2 it is clear that for the solution of the perturbed

problem there is a uniform limit transition and it has a discontinuity of the 1st kind. Theorem 2 is
proved.
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Conclusion

In this paper, we considered the asymptotic expansion of the solution to the Cauchy problem
for a singularly perturbed initial value problem for a linear differential equation with a piecewise
constant second-order argument in a small parameter. We have obtained the initial problem for first-
order linear differential equations with piecewise constant argument that determine the regular terms.
Cauchy problems were also obtained for linear nonhomogeneous differential equations with a constant
coefficient, which determine the terms of the boundary layer. Using an estimate for the solution to
the initial problem, we obtained an asymptotic estimate for the remainder term for the solution to the
Cauchy problem. And using the remainder term, we constructed a uniform asymptotic solution with
an accuracy of O(εN+1) on θi ≤ t ≤ θi+1, i = 0, p segment of a singularly perturbed Cauchy problem
with piecewise constant argument.
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Conditions for maximal regularity of solutions to fourth-order
differential equations
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This article investigates a fourth-order differential equation defined in a Hilbert space, with an unbounded
intermediate coefficient and potential. The key distinction from previous research lies in the fact that the
intermediate term of the equation does not obey to the differential operator formed by its extreme terms.
The study establishes that the generalized solution to the equation is maximally regular, if the interme-
diate coefficient satisfies an additional condition of slow oscillation. A corresponding coercive estimate is
obtained, with the constant explicitly expressed in terms of the coefficients’ conditions. Fourth-order differ-
ential equations appear in various models describing transverse vibrations of homogeneous beams or plates,
viscous flows, bending waves, and etc. Boundary value problems for such equations have been addressed in
numerous works, and the results obtained have been extended to cases with smooth variable coefficients.
The smoothness conditions imposed on the coefficients in this study are necessary for the existence of the
adjoint operator. One notable feature of the results is that the constraints only apply to the coefficients
themselves; no conditions are placed on their derivatives. Secondly, the coefficient of the lowest order in
the equation may be zero, moreover, it may not be unbounded from below.

Keywords: fourth-order differential equation, unbounded coefficient, solution, existence, uniqueness, smooth-
ness, operator, separability, regularity, coercive estimate.

2020 Mathematics Subject Classification: 34A30, 34C11.

1 Introduction. Formulation of the problem

Fourth-order differential equations describe various physical phenomena, such as transversal oscilla-
tions of homogeneous beams or plates, viscoelastic and inelastic flows, bending waves, and other [1, 2].
The issues of existence and uniqueness of solutions to boundary value problems posed for linear and
nonlinear fourth-order differential equations have been studied extensively in the literature [3–5]. In
the case of an infinite domain, the Cauchy problem for a fourth-order waves equation is considered
in [6]. However, in these works, the coefficients of the equations are either constant or assumed to be
bounded functions. Additionally, when investigating nonlinear equations, excessively strict restrictions
are imposed on the coefficients to ensure the uniqueness of solutions [3–5]. In light of both theoretical
and practical needs, there is a growing relevance in studying the solvability of fourth-order differential
equations with variable coefficients and relaxing constraints on these coefficients. This concern is
particularly pertinent to differential equations with independently growing coefficients that are given
in an infinite domain.

Consider the following fourth-order differential equation defined on the real line:

L0y = y(4) + p (x) y(3) + q (x) y = F (x) , (1)

where x∈R = (−∞,∞) , p (x) > 0, p (x)∈C(3)
loc (R), q (x) is a continuous function, and F (x)∈L2 (R).
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Let L denote the closure in the L2 (R) norm of the operator

L0y = y(4) + p (x) y(3) + q (x) y

defined on the set C(4)
0 (R) of continuously differentiable up to the fourth order functions with compact

support. A solution to equation (1) is an element y∈D (L) satisfying the equality Ly = F .
Our goal is to establish conditions sufficient for the fulfillment of the inequality∥∥∥y(4)

∥∥∥
2

+
∥∥∥py(3)

∥∥∥
2

+ ‖(1 + |q|)y‖2≤C (‖F‖2 + ‖y‖2) , (2)

for a solution y, where ‖·‖2 denotes the norm of the L2 (R) space. Inequality (2) is referred to as a
coercive estimate or an estimate of maximal regularity of the solution.

The equation (1) has been primarily studied in the case of p = 0 [7]. In addition, if q≥δ > 0,
then (1) is a unique solvable. And if the oscillation of q satisfies certain additional conditions, then
the inequality (2) is satisfied for a solution of (1). However, when p(x) is a non-zero, rapidly growing
function, the method of [7] is inapplicable. This is because the operator p d3

dx3 may not obey d4

dx4 +q (x)E
(E is the identity operator). For the sake of completeness, we provide statements about the existence
and uniqueness of solutions with proofs.

The aforementioned problem of unique and coercive solvability has been addressed in [8, 9] for
second-order differential equations with rapidly growing intermediate coefficients, and in [10] for third-
order differential equations. In [11], the authors developed an effective method for investigating the
spectrum of a degenerate symmetric fourth-order differential operator. We build upon the ideas of the
last four works. Unique and coercive solvability of various types of singular differential equations with
intermediate coefficients is studied in [12–15].

In what follows, by C we will denote positive constants, which may have, in general, different values
in the different places.

2 On an auxiliary binomial differential equation

Let us consider the operator l0y = y(4) + p (x) y(3), D (l0) = C
(4)
0 (R). We denote its closure in

L2 (R) by l.

Lemma 1. Suppose the function p (x)∈C(3)
loc (R) such that

p (x)≥ε > 0. (3)

Then, for any y∈C(4)
0 (R), the following estimate holds∥∥∥√py(3)

∥∥∥
2
≤
∥∥∥∥ l0y√p

∥∥∥∥
2

. (4)

Proof. Let y∈C(4)
0 (R). We concider the scalar product A =

(
l0y, y

(3)
)
. Since y is a function with

compact support, the following equalities hold:

A =

∫ ∞
−∞

y(4)(x)y(3)(x)dx +

∫ ∞
−∞

p (x)
[
y(3)(x)

]2
dx =

∫ ∞
−∞

p (x)
[
y(3)(x)

]2
dx . (5)

On the other hand, using condition (3) and the Holder inequality, we obtain:

A≤
(∫ ∞
−∞
|l0y|2

1

p (x)
dx

) 1
2
(∫ ∞
−∞

p (x)
∣∣∣y(3)

∣∣∣2 dx) 1
2

.

From this and (5), inequality (4) follows. The right-hand side of (4) is bounded under the condition (3).
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Let ρ (t) and v (t) 6= 0 be given continuous functions, and k is a natural number. We introduce the
following notations:

αρ,v,k = sup
x>0

(∫ x

0
ρ2(t)dt

) 1
2
(∫ ∞

x
t2(k−1)2v−2 (t) dt

) 1
2

,

βρ,v,k = sup
x<0

(∫ 0

x
ρ2(s)ds

) 1
2
(∫ x

−∞
s2(k−1)v−2 (s) ds

) 1
2

,

γρ,v,k = max (αρ,v,k, βρ,v,k) .

Lemma 2. [11] If functions ρ (t) and v (t) satisfy the relation

γρ,v,k <∞ (k∈N) ,

then for each f∈C(k)
0 (R) the following inequality holds:

‖ρf ‖2≤
2

(k − 1)!
γρ,v,k

∥∥∥vf (k)
∥∥∥

2
.

Lemma 3. Suppose the function p (x) satisfies condition (3) and γ1,
√
p,3 <∞. Then the operator l

is invertible, and for each y∈D (l) , the inequality holds

‖y‖2 +
∥∥∥√py(3)

∥∥∥
2
≤C ‖ly‖2 . (6)

Proof. Let y∈C(3)
0 (R). According to the condition γ1,

√
p,3 < ∞, Lemma 2, and estimate (4), we

obtain the following inequalities:

‖y‖2≤C
∥∥∥√py(3)

∥∥∥
2
≤C

∥∥∥∥ l0y√p
∥∥∥∥

2

.

By (3), we have ∥∥∥√py(3)
∥∥∥

2
≤
√
ε ‖l0y‖2 (7)

and
‖y‖2≤C

√
ε ‖l0y‖2 . (8)

Since D (l0) = C
(3)
0 (R) and l is the closure of the operator l0, from (7) and (8), the inequalities∥∥∥√py(3)

∥∥∥
2
≤
√
ε ‖ly‖2

and
‖y‖2≤C

√
ε ‖ly‖2

follow for each y∈D (l), respectively. Combining them yields (6).

Consider the equation
ly = y(4) + p (x) y(3) = f (x) . (9)

An element y∈D (l) satisfying ly = f is called a solution to (9).

Lemma 4. Suppose that the conditions of Lemma 3 hold for p (x). Then the solution to equation
(9) is unique.
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Proof. If y and z are two solutions to equation (9), then by definition, y, z∈D (l) and ly = f ,
lz = f . For v = y − z, we have lv = 0. Then, by inequality (6), ‖v‖ = 0, i.e., y = z.

Lemma 5. Suppose that the conditions of Lemma 3 hold for p (x). Then, for any f (x)∈L2 (R), a
solution to equation (9) exists.

Proof. According to Lemma 3, the operator l is invertible. It suffices to show that its range R(l)
coincides with the entire space L2(R). By Lemma 3, y(3)∈L2 (R), if y∈D (l). Let y(3) = z and
Θz = z

′
+ p (x) z. Then z∈L2 (R), and equation (9) takes the form:

Θz = z
′
+ pz = f∈L2 (R) .

The equality R (l) = R (Θ) holds. Indeed,

R (Θ) = {v∈L2 (R) : ∃z∈D (Θ) , Θz = v} =

= {v∈L2 (R) : ∃y∈D (l) , ly = v} = R (l) .

According to (6), R (Θ) is a closed set. It suffices to demonstrate that R (Θ) = L2 (R). Let us assume
the opposite. Suppose that R (Θ) 6=L2 (R). Then there exists a non-zero element w ∈ L2 (R), which
is orthogonal to the set R (Θ): (w,Θz) = 0, z∈D (Θ). Since (w,Θz) = (Θ∗w, z), and the set D (Θ) is
dense in L2 (R), the function w∈D (Θ∗) satisfies the following homogeneous equation:

Θ∗w = w − w′ = 0.

Therefore, as p (x) is continuous, it follows that w′∈L2,loc (R), then w∈W 1
2,loc (R). Consequently, the

function w (x) is continuous, and

|w (x)| = |c| e
∫ x
a p(t)dt , ∀x∈R.

Hence, |w (x)| ≥ |c| for x≥a, we obtain w/∈L2 (R). This leads to a contradiction, demonstrating that
R (Θ) = L2 (R).

3 Conditions for the separability of a binomial operator

Let λ∈R+ = [0,+∞). Consider the following differential operator Θ0λz = z
′

+ (p+ λ) z,
D (Θ0λ) = C

(1)
0 (R). Its closure in the space L2 (R) we denote by Θλ.

Definition 1. It is said that the operator Θλ is separable in the space L2 (R), if for any z∈D (Θλ),
the following inequality holds:∥∥z′∥∥

2
+ ‖pz‖2 + λ ‖z‖2≤C(‖Θλz‖2 + ‖z‖2). (10)

It is evident that the operator Θλ is separable in the space L2 (R), if and only if there exists µ∈R
such that the operator Θλ+µ = Θλ + µE is separable in this space.

Lemma 6. Let the coefficient p satisfy the conditions of Lemma 3 and the following relation:

sup
x,η∈R,|x−η|≤1

p (x)

p (η)
<∞. (11)

Then, the operator Θλ is separable in L2 (R).
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Proof. Let us observe that the conditions of Lemma 3 remain valid for the function p, and λ≥0.
According to Lemma 4 and Lemma 5, the inverse operator Θ−1

λ (λ≥0) exists and is continuous. We
will now demonstrate that the operator Θλ is separable for at least one λ≥0.

Let ∆j = [j, j + 1) , Ωj =
(
j − 1

2 , j + 3
2

)
(j∈Z). We choose the functions ϕj(x) (j ∈ Z) from

C∞0 (Ωj) (j∈Z), satisfying the following conditions:
a) 0≤ϕj(x)≤1, ϕj (x) = 1 ∀x∈∆j , sup

x∈Ωj

max
j∈Z

∣∣∣ϕ′j (x)
∣∣∣≤M.

Then
∆́j⊂Ωj⊂∆j−1∪∆j∪∆j+1,∆j∩∆k = ∅ (j 6=k) ,

Ωj∩Ωm = ∅ (|j −m| ≥2) ,
∞∑

j=−∞
ϕj (x)χ∆j (x) = 1.

Here χ∆j is a characteristic function of ∆j . Recall that the sequence {ϕj(x)}∞j=−∞, satisfying condi-
tions a), exists [7].

Let pj (x) (j∈Z) be the extension to the entire R of the restriction in Ωj (j∈Z) of the function p (x)
such that

1

2
inf
z∈Ωj

p(z) ≤ pj(x) ≤ 2 sup
z∈Ωj

p(z), x ∈ R. (12)

According to condition (11), such an extension exists [7]. Let

θ̃j,λz = z′ + (pj + λ) z, z∈C(1)
0 (R) .

Denote the closure of the operator θ̃j,λ in the space L2 (R) as θj,λ. By Lemma 3, for any z∈D (θj,λ) ,
we have ∥∥∥√pj + λz

∥∥∥
2
≤

∥∥∥∥∥
√

1

pj + λ
θj,λz

∥∥∥∥∥
2

.

Then,

‖z‖2≤
1

inf
x∈R

(pj (x) + λ)
‖θj,λz‖2 (j∈Z) . (13)

In particular, based on (3) and (12), we obtain

‖z‖2≤
2

ε+ 2λ
‖θj,λz‖2 (j ∈ Z). (14)

Therefore, the operator θj,λ is invertible. Due to Lemma 5, the operator θ−1
j,λ (j∈Z) is continuous. Let

f∈C(1)
0 (R). Consider the following operators Mλ and Bλ:

Mλf =
∑
j

ϕjθ
−1
j,λ

(
χ∆jf

)
, Bλf =

∑
j

ϕ′jθ
−1
j,λ

(
χ∆jf

)
.

Since f is a function with compact support, the number of terms in the sums on the right-hand
side of the last equalities is finite. By our choice, for z ∈ Ωj , the equality Θλz = θj,λz, z∈D (Θλ),
holds. Considering this and the properties of the function ϕj∈C∞0 (Ωj) , we can easily demonstrate the
equality

Θλ (Mλf) = (Bλ + E) f. (15)
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Note that the multiplicity of the intersection of intervals Ωj (j∈Z) is at most two. Therefore, the
following inequalities hold:

‖Bλf‖22 =
∞∑

j=−∞

∫
∆j

|Bλf |2 dx≤
∞∑

j=−∞

∫
∆j

 j+1∑
k=j−1

∣∣ϕ′k(x)
∣∣ ∣∣∣θ−1

k,λ (χ∆k
f)
∣∣∣
2

dx≤

≤3
∞∑

j=−∞

∫
∆j

j+1∑
k=j−1

∣∣∣ϕ′k (x)
∣∣∣2 ∣∣∣θ−1

k,λ (χ∆k
f)
∣∣∣2 dx≤3M2

∞∑
j=−∞

∫
∆j

j+1∑
k=j−1

∣∣∣θ−1
k,λ (χ∆k

f)
∣∣∣2 dx =

= 3M2
∞∑

j=−∞

∥∥∥θ−1
j,λ

(
χ∆jf

)∥∥∥2

2
.

According to inequality (14), we have

‖Bλf‖22 ≤ 3M2

(
2

ε+ 2λ

)2

‖f‖22.

Therefore, if we denote λ0 =
√

3Mθ−1 − 0, 5ε, then for λ≥λ0, we have

‖Bλ‖L2(R)→L2(R)≤µ (0 < µ < 1) ,

where ‖·‖ = ‖·‖L2(R)→L2(R) is the operator norm. By the well-known Banach theorem on small per-
turbations of a linear operator, for λ≥λ0, the operator E+Bλ is invertible, and its inverse (E +Bλ)−1

is bounded. The following inequalities are easily proven:

1

1 + µ
≤
∥∥∥(E +Bλ)−1

∥∥∥
L2(R)→L2(R)

≤ 1

1− µ
(λ≥λ0). (16)

By (15), we obtain the following operator equality

Θ−1
λ = Mλ (E +Bλ)−1 , λ≥λ0. (17)

Let us estimate the norm
∥∥(p+ λ)Θ−1

λ

∥∥
L2(R)→L2(R)

. By (16) and (17),

∥∥(p+ λ) Θ−1
λ

∥∥
L2(R)→L2(R)

≤ 1

1− µ
‖(p+ λ)Mλ‖L2(R)→L2(R) .

But

‖(p+ λ)Mλf‖22 =

∞∑
j=−∞

∫
∆j

(p (x) + λ)2

∣∣∣∣∣∣
j+1∑

k=j−1

ϕk (x) θ−1
k,λ (χ∆k

f)

∣∣∣∣∣∣
2

dx≤

≤ 3
∞∑

j=−∞

∫
∆j

(p(x) + λ)2

[∣∣∣ϕj−1θ
−1
j−1,λχ∆j−1f(x)

∣∣∣2 +
∣∣∣ϕjθ−1

j,λχ∆jf(x)
∣∣∣2] dx+

+3

∞∑
j=−∞

∫
∆j

(p(x) + λ)2
∣∣∣ϕj+1θ

−1
j+1,λ

(
χ∆j+1f

)∣∣∣2 dx ≤
≤3

(
sup
x∈Ωj

p (x) + λ

)2 ∞∑
j=−∞

∫
R

∣∣∣ϕj (x) θ−1
j,λ

(
χ∆jf

)∣∣∣2 dx .
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According to inequality (13), property a) of the sequence {ϕj(x)}∞j=−∞ and condition (11), we
obtain

‖(p+ λ)Mλf‖22≤3

(
sup
x∈Ωj

p (x) + λ

)2 ∞∑
j=−∞

∫
R

∣∣∣θ−1
j,λ

(
χ∆jf

)∣∣∣2 dx≤
≤3

(
sup
x∈Ωj

p (x) + λ

)2
1(

inf
x∈R

pj (x) + λ

)2

∞∑
j=−∞

∫
R

∣∣(χ∆jf
)∣∣2 dx≤

≤12

 sup
t∈Ωj

p (t) + λ

sup
t∈Ωj

p (t) + λ


2 ∫

R

 ∞∑
j=−∞

χ2
∆j

 f2 (x) dx≤12

(
sup
x∈Ωj

p (x)

p (t)
+ 1

)2

‖f‖22 .

So

‖(p+ λ)Mλf‖22≤12(K + 1)2 ‖f‖22 (λ≥λ0) , K = sup
x∈Ωj

p (x)

p (t)
. (18)

For z∈D (Θλ) , Θλz = f, λ≥λ0, we have z = Θ−1
λ f . Therefore, according to (17), (18) and (16),

‖(p+ λ) z‖2 =
∥∥∥(p+ λ)Mλ (E +Bλ)−1 f

∥∥∥
2
≤

≤2
√

3 (K + 1)
∥∥∥(E +Bλ)−1 f

∥∥∥
2
≤2
√

3 (K + 1)
1

1− µ
‖f‖2 .

Furthermore ∥∥z′∥∥
2

= ‖f − (p+ λ) z‖2≤
[
2
√

3 (K + 1)
1

1− µ
+ 1

]
‖f‖2 .

Consequently, ∥∥z′∥∥
2

+ ‖pz‖2 + ‖λz‖2≤(6
√

3(K + 1)
1

1− µ
+ 1) ‖f‖2 .

So, we have proven the inequality (10), and lemma.

From this lemma, taking into account the notation (l + λE) y = y(4) + (p+ λ) y(3), y(3) = z, and
Lemma 3, we come to the following conclusion.

Lemma 7. Let the function p satisfy the conditions of Lemma 3 and the relation (11). Then, the
operator l+λE( λ≥0) is boundedly invertible in L2 (R). Moreover, for any y∈D(l+λE), the following
inequality holds: ∥∥∥y(4)

∥∥∥
2

+
∥∥∥(p+ λ)y(3)

∥∥∥
2

+ ‖y‖2≤C ‖(l + λE ) y‖2 .

Remark 1. The condition (3), which was used in the proofs of Lemmas 3, 6, and 7, can be replaced
with the condition p (x)≥1. Indeed, if we denote x = ε−1t ( t > 0) , ŷ (t) = y

(
ε−1t

)
and p̂ (t) =

p
(
ε−1t

)
. The operator ly = y(4) + p (x) y(3) is transformed into

ε4 l̂ŷ (t) = ŷ(4) (t) + ε−1p̂ (t) ŷ(3) (t) ,

where ε−1p̂ (t)≥1.
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4 Main result and its proof

Theorem 1. Assume that p (x) satisfies conditions (3), γ1,
√
p,3 < ∞ and γq,p,3 < ∞. Then for any

f∈L2 (R) there exists a solution to equation (1) and it is unique. If, in addition, the relation (11)
holds, then the solution y satisfies the following maximal regularity estimate∥∥∥y(4)

∥∥∥
2

+
∥∥∥py(3)

∥∥∥
2

+ ‖(1 + |q|)y‖2≤C ‖f‖2 . (19)

Proof. In equation (1), we introduce a new variable t using the formula x = t
a . Let us denote:

ỹ (t) = y
(
a−1t

)
, p̃ (t) = p

(
a−1t

)
, q̃ (t) = q

(
a−1t

)
, F̃ (t) = a−4F

(
a−1t

)
(t ∈ R).

Then, equation (1) takes the form:

L̃0aỹ = ỹ(4) (t) + a−1p̃ (t) ỹ(3) (t) + a−4q̃ (t) ỹ (t) = F̃ (t) . (20)

Let la be the closure of the differential operator

l0aỹ = ỹ(4) (t) + a−1p̃ (t) ỹ(3) (t) , ỹ∈C(4)
0 (R) ,

in the space L2 (R). It can be easily verified that γ
1,
√
a−1p̃,3

= a3γ1,
√
p,3 < ∞ . By Lemma 3, the

operator la is continuously invertible. Moreover, by Lemma 6, for each ỹ∈D(la), we have∥∥∥ỹ(4)(t)
∥∥∥

2
+
∥∥∥a−1 (p̃ (t) + λ) ỹ(3) (t)

∥∥∥
2

+ ‖ỹ‖2≤Ca ‖laỹ‖2 . (21)

Further, γa−4q̃,a−1p̃,3 = 1√
a
γq,p,3. Consequently, by Lemma 1, we obtain

∥∥a−4q̃ỹ
∥∥

2
≤ 2√

a
γq,p,3Ca ‖laỹ‖2.

If we choose the parameter a such that a≥max
(

4C2
a

ν2
γ2
q,p,3, 1

)
(0 < ν < 1), then the following

inequality holds: ∥∥a−4q̃ỹ
∥∥

2
≤ν ‖laỹ‖2 , 0 < ν < 1. (22)

Then, by the theorem on small perturbations, the closure L̃a in L2 (R) of the operator L̃0aỹ = laỹ +
a−4q̃ (t) ỹ (t) is invertible, and its inverse L̃−1

a is continuous. So, for each right-hand side F̃ (t)∈L2 (R),
the solution ỹ of the equation (20) exists and is unique. Furthermore, by (22),∥∥∥l̃aỹ∥∥∥

2
≤ 1

(1− ν)

∥∥∥L̃aỹ∥∥∥
2
.

In accordance with (21), we have∥∥∥ỹ(4)(t)
∥∥∥

2
+
∥∥∥a−1p̃ (t) ỹ(3) (t)

∥∥∥
2

+
∥∥a−4q̃ỹ

∥∥
2
≤
[
Ca +

1

1− ν

] ∥∥∥L̃aỹ∥∥∥
2
.

Returning by the substitution x = 1
a t to the variable x in this inequality, we obtain the estimate∥∥∥y(4)
∥∥∥

2
+
∥∥∥py(3)

∥∥∥
2

+ ‖qy‖2≤C ‖F‖2 .

From here, the inequality (19) easily follows.

Conclusion

The qualitative properties of a fourth-order differential equation with unlimited intermediate and
minor coefficients are studied in the work. For a wide class of coefficients the correctness of equation is
proved and a maximal regularity estimate of the solution in the norm of the Hilbert space is obtained.
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Cesàro polynomials have been extended in various ways and applied in diverse areas. In this paper, we aim
to introduce a multivariable and multiparameter generalization of Cesàro polynomials. Then we explore
several generating functions, an addition formula, a differential-recurrence relation, a multiple integral
formula for this extended Cesàro polynomial, as well as a multiple integral formula whose kernel is this
extended Cesàro polynomial. Also we present several bilinear and bilateral generating functions for this
extended Cesàro polynomial, two of whose examples are demonstrated.
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Introduction

The generalized Cesàro polynomials g(s)n (λ, x) are defined by [1]

g(s)n (λ, x) =

(
s+ n

n

)
2F1

[
−n, λ;

−s− n;
x

]
, (1)

where
g(s)n (x) := g(s)n (1, x), n ∈ N0 := N ∪ {0} (2)

are the Cesàro polynomials [2–7]. Here 2F1 denotes the hypergeometric function (or Gaussian hyper-
geometric function) [8]:

2F1 (a, b; c;x) = F (a, b; c;x) =
∞∑
k=0

(a)k(b)k
(c)kk!

xk,

where (λ)ν denotes the Pochhammer symbol.
The generalized Cesàro polynomials g(s)n (λ, x) in (1) have the following generating function [9]:

∞∑
n=0

g(s)n (λ, x)tn = (1− t)−s−1(1− xt)−λ. (3)

Recall the following double series manipulations: Let f, g : N0 × N0 → C be functions and p ∈ N.
Then

∞∑
n=0

[n/p]∑
k=0

f(k, n) =
∞∑
n=0

∞∑
k=0

f(k, n+ pk), (4)
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n∑
k=0

[k/p]∑
j=0

g (k, j) =

[n/p]∑
j=0

n−pj∑
k=0

g (k + pj, j) , (5)

where [λ] denotes the integer part of λ ∈ R.
Cesàro polynomials have been generalized in various ways and used in diverse areas [1–7], [10; 62].

For example, Malik [11] has introduced Cesàro polynomials in two and three variables and has given
their generating functions. In this paper, we provide a multivariable and multiparameter generaliza-
tion of Cesàro polynomials. Then we investigate several generating functions, an addition formula,
a differential-recurrence relation, a multiple integral formula for this extended Cesàro polynomial, as
well as a multiple integral formula whose kernel is this extended Cesàro polynomial. Also we explore
several bilinear and bilateral generating functions for this extended Cesàro polynomial, two examples
of which are considered.

1 Multivariable and multiparameter Cesàro polynomials

In this section, we define a multivariable and multiparameter extension of the generalized Cesàro
polynomials g(s)n (λ, x) in (1) and obtain their generating functions. Also, we derive several properties
for these polynomials.

Definition 1. Let m ∈ N; n ∈ N0; s ∈ C \ N0; λj , xj ∈ C (j = 1, . . . , m). Then an m variable and
m parameter extension of the generalized Cesàro polynomials is defined by

g(s)n (λ1, . . . , λm;x1, . . . , xm) :

=
∑

r1+···+rm=n

(
s+ n

n

)
(−n)δm

(−s− n)δm

m∏
j=1

(λj)rj x
rj
j

(rj)!
,

(6)

where

δm := r1 + · · ·+ rm. (7)

The summation notation
∑

r1+···+rm=n
in (6) represents the following m-ple series:

∑
r1+···+rm=n

=

n∑
r1=0

n−r1∑
r2=0

· · ·
n−r1−···−rm−1∑

rm=0

. (8)

Figure demonstrates the surfaces of the generalized Cesàro polynomials g(s)n (λ1, λ2, x1, x2) in two
variables for some parameter values. We should remark that the special case of m = 1 in (6) im-
mediately reduces to the generalized Cesàro polynomials g(s)n (λ, x) in (1). Also if we take λj = 1
(j = 1, . . . ,m) in (6), we get the following multivariable generalization of the Cesàro polynomials
g
(s)
n (x) in (2):

g(s)n (x1, . . . , xm) :=
∑

r1+···+rm=n

(
s+ n

n

)
(−n)δm

(−s− n)δm

m∏
j=1

x
rj
j .
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(a) n = 3 (b) n = 4

(c) n = 5 (d) n = 6

Figure. Surfaces of the generalized Cesàro polynomials g(s)n (λ1, λ2, x1, x2) in two variables for the
parameter values s = 4, λ1 = 1/10, λ2 = 1/20 and n = 3, 4, 5, 6

In the study of special functions, a theoretical relationship to the unification of generating functions
is critical. Several researchers have made strides in this approach [12–14].

The following theorems present two generating function relations for the multivariable-multiparameter
Cesàro polynomials in (6).

Theorem 1. The multivariable-multiparameter generalized Cesàro polynomials in (6) are generated
by the following function:

∞∑
n=0

g(s)n (λ1, . . . , λm;x1, . . . , xm) tn = (1− t)−s−1
m∏
j=1

(1− xjt)−λj , (9)

where |t| < min
{
|x1|−1 , . . . , |xm|−1 , 1

}
and m ∈ N.

Proof. Let L1 be the left member of (9).
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Replacing the g(s)n (λ1, . . . , λm;x1, . . . , xm) with (6) and (8), we get

L1 =
∞∑
n=0

n∑
r1=0

n−r1∑
r2=0

· · ·
n−r1−···−rm−1∑

rm=0

(
s+ n

n

)

×
(−n)δm

(−s− n)δm

m∏
j=1

(λj)rj x
rj
j

(rj)!
tn.

(10)

Employing the case p = 1 of (4) in the first double sums in (10) gives

L1 =
∞∑
r1=0

∞∑
n=0

n∑
r2=0

n−r2∑
r3=0

· · ·
n−r2−···−rm−1∑

rm=0

(
s+ n+ r1
n+ r1

)

×
(−n− r1)δm

(−s− n− r1)δm

m∏
j=1

(λj)rj x
rj
j

(rj)!
tn+r1 .

(11)

Applying the same procedure as in getting (11) to the 2nd and 3rd double sums (11), and repeating
the similar process, we find

L1 =

∞∑
n=0

∞∑
r1=0

· · ·
∞∑

rm=0

(
s+ n+ δm
n+ δm

)
(−n− δm)δm

(−s− n− δm)δm

m∏
j=1

(λj)rj x
rj
j

(rj)!
tn+δm , (12)

where δm is given in (7).
Consider the following easily-derivable identity:

(−m− p)p = (−1)p
(m+ p)!

m!
(m, p ∈ N0) . (13)

Employing (13) in (12) offers

L1 =

∞∑
n=0

(
s+ n

n

)
tn

∞∑
r1=0

...

∞∑
rm=0

m∏
j=1

(λj)rj x
rj
j

(rj)!
tδm

=

∞∑
n=0

(s+ 1)n
tn

n!

∞∑
r1=0

(λ1)r1 (x1t)
r1

r1!
· · ·

∞∑
rm=0

(λm)rm (xmt)
rm

rm!
.

(14)

Using the generalized binomial theorem

(1− z)−α =
∞∑
n=0

(α)n
zn

n!
(|z| < 1, α ∈ C)

in each sum of the 2nd equality in (14), we arrive at the right member of (9).

Remark 1. The casem = 1 of the generating function relation (9) reduces to the generating function
relation (3).

Theorem 2. The multivariable-multiparameter generalized Cesàro polynomials in (6) are generated
by the following generating function:

∞∑
n=0

(
n+ k

n

)
g
(s)
n+k(λ1, . . . , λm;x1, . . . , xm) tn = (1− t)−s−k−1

×
m∏
j=1

(1− xjt)−λjg(s)k

(
λ1, . . . , λm;

x1(1− t)
1− x1t

, · · · , xm(1− t)
1− xmt

)
,

(15)

162 Bulletin of the Karaganda University



Advances in the generalized ...

where m ∈ N, k ∈ N0, and |t| < min
{
|x1|−1 , . . . , |xm|−1 , 1

}
.

Proof. Replacing t by t+ u in (9) gives

∞∑
n=0

g(s)n (λ1, . . . , λm;x1, . . . , xm)(t+ u)n = (1− t− u)−s−1
m∏
j=1

(1− xjt− xju)−λj ,

which, upon using binomial theorem, yields

∞∑
n=0

g(s)n (λ1, . . . , λm;x1, . . . , xm)

n∑
k=0

(
n

k

)
tn−kuk = (1− t)−s−1

×
(

1− u

1− t

)−s−1 m∏
j=1

(1− xjt)−λj
(

1− xju

1− xjt

)−λj
.

(16)

Using (9) on the right member of (16), with the aid of the case p = 1 of (4), offers

∞∑
n=0

∞∑
k=0

(
n+ k

k

)
g
(s)
n+k(λ1, . . . , λm;x1, . . . , xm)tn uk

= (1− t)−s−1
m∏
j=1

(1− xjt)−λj

×
∞∑
k=0

g
(s)
k

(
λ1, . . . , λm;

x1(1− t)
1− x1t

, . . . ,
xm(1− t)
1− xmt

)(
u

1− t

)k
,

which, upon equating the coefficients of uk on both sides, yields the desired identity (15).

Theorem 3. The following identity holds true:

g(s1+s2+1)
n (λ1 + µ1, . . . , λm + µm;x1, . . . , xm)

=
n∑
k=0

g
(s1)
n−k(λ1, . . . , λm;x1, . . . , xm)g

(s2)
k (µ1, . . . , µm;x1, . . . , xm).

(17)

Proof. From (9), we find

∞∑
n=0

g(s1+s2+1)
n (λ1 + µ1, . . . , λm + µm;x1, . . . , xm)tn

= (1− t)−s1−s2−2
m∏
j=1

(1− xjt)−λj−µj

=
∞∑
n=0

g(s1)n (λ1, . . . , λm;x1, . . . , xm)tn
∞∑
k=0

g
(s2)
k (µ1, . . . , µm, x1, . . . , xm)tk

=
∞∑
n=0

n∑
k=0

g
(s1)
n−k(λ1, . . . , λm;x1, . . . , xm)g

(s2)
k (µ1, . . . , µm;x1, . . . , xm) tn.

Matching the coefficients of the first and last members yields the desired identity (17).
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Theorem 4. The following differential-recurrence relation holds true:

∂

∂xj0
g
(s)
n+1(λ1, . . . , λm;x1, . . . , xm)

= λj0g
(s)
n (λ1, . . . , λj0 + 1, λj0+1, λm;x1, . . . , xm),

(18)

where 1 ≤ j0 ≤ m.
Proof. We will prove, when j0 = 1. By symmetry, it will be easy to interpret the result into the

general 1 ≤ j0 ≤ m.
Differentiating both sides of (9) with respect to x1, we have

∞∑
n=1

∂

∂x1
g(s)n (λ1, . . . , λm;x1, . . . , xm) tn−1

= λ1 (1− t)−s−1
(1− x1t)−λ1−1

m∏
j=2

(1− xjt)−λj

 ,
which, upon using (9), yields

∞∑
n=0

∂

∂x1
g
(s)
n+1(λ1, . . . , λm;x1, . . . , xm) tn

= λ1 g
(s)
n (λ1 + 1, λ2, . . . , λm;x1, . . . , xm) tn.

(19)

Equating the coefficients of tn on both sides of (19) leads to the identity (18) when j0 = 1.

Integrating both sides of (6) with respect to each of the variables xj (j = 1, . . . , m) from 0 to 1
gives the result in the following theorem.

Theorem 5. Let m ∈ N; n ∈ N0; s ∈ C \ N0; λj ∈ C (j = 1, . . . , m). Then∫ 1

0
· · ·
∫ 1

0
g(s)n (λ1, . . . , λm;x1, . . . , xm) dx1 · · · dxm

=
∑

r1+···+rm=n

(
s+ n

n

)
(−n)δm

(−s− n)δm

m∏
j=1

(λj)rj
(rj + 1)!

,

where δm is the same as in (7).

The following theorem provides an integral representation of the multivariable-multiparameter gen-
eralized Cesàro polynomials.

Theorem 6. Let m ∈ N; n ∈ N0; s ∈ C \ N0; λj , xj ∈ C (j = 1, . . . , m). Also let < (s+ 1) > 0,
< (λj) > 0 (j = 1, . . . ,m). Then

g(s)n (λ1, . . . , λm;x1, . . . , xm)

=
1

n! Γ(s+ 1)
m∏
j=1

Γ(λj)

∞∫
0

· · ·
∞∫
0

e−(u+u1+···+um)

×
(
u+

m∑
j=1

ujxj

)n
usuλ1−11 · · ·uλm−1m dudu1 · · · dum.

(20)
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Proof. Recall that the well-known identity as

c−v =
1

Γ(v)

∞∫
0

e−cttv−1dt (<(c) > 0, < (ν) > 0) . (21)

Using (21) in each factor of the right member of (9), under the restrictions in Theorem 1, we obtain

∞∑
n=0

g(s)n (λ1, . . . , λm, x1, . . . , xm)tn

=
1

Γ(s+ 1)

∞∫
0

e−(1−t)uusdu
1

Γ(λ1)

∞∫
0

e−(1−x1t)u1uλ1−11 du1

× · · · 1

Γ(λm)

∞∫
0

e−(1−xmt)umuλm−1m dum

=
1

Γ(s+ 1)Γ(λ1) · · ·Γ(λm)

∞∫
0

· · ·
∞∫
0

e−(u+u1+···+um)usuλ1−11 · · ·uλm−1m

×
∞∑
n=0

(u+ u1x1 + · · ·+ umxm)n

n!
dudu1 · · · dum tn.

Equating the coefficients of tn on the first and last members of the last resulting identity yields the
desired integral representation (20).

2 Miscellaneous generating function relations

Now, we obtain new substantial families of bilinear and bilateral generating function relations for
the multivariable-multiparameter generalized Cesàro polynomials in (6).

Throughout this section, let m, p, q, r ∈ N; l ∈ N0; µ, ν ∈ C; ak ∈ C \ {0} (k ∈ N0). Also let

Ωµ : Cr −→ C \ {0}

be a bounded function.

Theorem 7. Let

Λµ,ν(y1, . . . , yr; η) :=
∞∑
k=0

akΩµ+νk(y1, . . . , yr) η
k

and
Θµ,ν
n,p (λ1, . . . , λm, x1, . . . , xm; y1, . . . , yr; ξ)

:=

[n/p]∑
k=0

akg
(s)
n−pk (λ1, . . . , λm, x1, . . . , xm) Ωµ+νk(y1, . . . , yr) ξ

k.

Then
∞∑
n=0

Θµ,ν
n,p

(
λ1, . . . , λm, x1, . . . , xm; y1, . . . , yr;

η
tp

)
tn

= (1− t)−s−1
m∏
j=1

(1− xjt)−λjΛµ,ν(y1, . . . , yr; η).
(22)
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Proof. Let L2 be the left member of (22). Then we have

L2 =
∞∑
n=0

[n/p]∑
k=0

akg
(s)
n−pk (λ1, . . . , λm, x1, . . . , xm) Ωµ+νk(y1, . . . , yr)η

ktn−pk.

Using (4), we obtain

L2 =

∞∑
n=0

∞∑
k=0

ak g
(s)
n (λ1, . . . , λm, x1, . . . , xm) Ωµ+νk(y1, . . . , yr)η

ktn

=

∞∑
n=0

g(s)n (λ1, . . . , λm, x1, . . . , xm) tn
∞∑
k=0

akΩµ+νk(y1, . . . , yr)η
k

= (1− t)−s−1
m∏
j=1

(1− xjt)−λjΛµ,ν(y1, . . . , yr; η),

which is the right member of (22).

Theorem 8. Let

Nµ,p
n,l,q(y1, . . . , yr; z) :=

[n/q]∑
k=0

(
l + n

n− qk

)
akΩµ+pk(y1, . . . , yr)z

k. (23)

Also let
Λµ,pl,q [λ1, . . . , λm, x1, . . . , xm; y1, . . . , yr; t]

:=
∞∑
n=0

ang
(s)
l+qn(λ1, . . . , λm, x1, . . . , xm)Ωµ+pn(y1, . . . , yr) t

n.

Then
∞∑
n=0

g
(s)
l+n(λ1, . . . , λm, x1, . . . , xm)Nµ,p

n,l,q(y1, . . . , yr; z)t
n

= (1− t)−s−l−1
m∏
j=1

(1− xjt)−λj

× Λµ,pl,q

[
λ1, . . . , λm,

x1(1− t)
1− x1t

, . . . ,
xm(1− t)
1− xmt

; y1, . . . , yr; z
( t

1− t

)q]
.

(24)

Proof. Let L3 be the left member of (24). Using (23), we have

L3 =
∞∑
n=0

[n/q]∑
k=0

g
(s)
l+n(λ1, . . . , λm, x1, . . . , xm)

(
l + n

n− qk

)
akΩµ+pk(y1, . . . , yr)z

k tn.

Employing (4), in view of the result in Theorem 2, we may write

L3 =

∞∑
n=0

∞∑
k=0

g
(s)
l+n+qk(λ1, . . . , λm, x1, . . . , xm)

(
l + n+ qk

n

)
×akΩµ+pk(y1, . . . , yr)z

ktn+qk
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= (1− t)−s−l−1
m∏
j=1

(1− xjt)−λj

×
∞∑
k=0

akg
(s)
l+qk

(
λ1, . . . , λm,

x1(1− t)
1− x1t

, . . . ,
xm(1− t)
1− xmt

)
×Ωµ+pk(y1, . . . , yr)

zktqk

(1− t)qk

= (1− t)−s−l−1
m∏
j=1

(1− xjt)−λj

×Λµ,pl,q

[
λ1, . . . , λm,

x1(1− t)
1− x1t

, . . . ,
xm(1− t)
1− xmt

; y1, . . . , yr; z

(
t

1− t

)q]
,

which is the right member of (24).

Theorem 9. Let

Λn,pµ,ν(λ1 + β1, . . . , λm + βm, x1, . . . , xm; y1, . . . , yr; z)

:=

[n/p]∑
k=0

akg
(s1+s2+1)
n−pk (λ1 + β1, . . . , λm + βm, x1, . . . , xm)Ωµ+νk(y1, . . . , yr)z

k.

Then, for n ∈ N0, we have

n∑
k=0

[k/p]∑
l=0

alg
(s1)
n−k(λ1, . . . , λm, x1, . . . , xm)g

(s2)
k−pl(β1, . . . , βm, x1, . . . , xm)

× Ωµ+νl(y1, . . . , yr)z
l

= Λn,pµ,ν(λ1 + β1, . . . , λm + βm, x1, . . . , xm; y1, . . . , yr; z).

(25)

Proof. Let L4 be the left member of (25). Using (5) and then using addition formula (17) for the
multivariable-multiparameter generalized Cesàro polynomials, we get

L4 =

[n/p]∑
l=0

n−pl∑
k=0

alg
(s1)
n−k−pl(λ1, . . . , λm, x1, . . . , xm)g

(s2)
k (β1, . . . , βm, x1, . . . , xm)

×Ωµ+νl(y1, . . . , yr)z
l

=

[n/p]∑
l=0

alg
(s1+s2+1)
n−pl (λ1 + β1, . . . , λm + βm, x1, . . . , xm)Ωµ+νl(y1, . . . , yr)z

l

= Λn,pµ,ν(λ1 + β1, . . . , λm + βm, x1, . . . , xm; y1, . . . , yr; z),

which is the right member of (25).

3 Concluding remarks and examples

We proposed an extension of Cesàro polynomials to several variables and parameters. Then we
investigated several generating functions, an addition formula, a differential-recurrence relation, a
multiple integral formula for this extended Cesàro polynomial, as well as a multiple integral formula
kernel of which is this extended Cesàro polynomial. Also we explored several bilinear and bilateral
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generating functions for this extended Cesàro polynomial, two examples of which are demonstrated in
Examples 1 and 2.

Since the multivariable function Ωµ+νk(y1, . . . , yr) is very general, we may deduce a number of
particular formulas from the results in Sections 1 and 2. We just use Theorem 7 to present the following
two examples.

Example 1. The Bessel function Jµ (x) are generated by (see, e.g., [15; p. 141])(
1− 2t

x

)−µ/2
Jµ

(√
x2 − 2xt

)
=
∞∑
n=0

Jµ+n (x)
tn

n!
. (26)

If we take r = 1, ak = 1
k! , ν = 1 and substitute the Bessel function for Ωµ+νk in Theorem 7, using

the relation (26), we can obtain the following result providing a class of bilateral generating function
relation for the multivariable generalized Cesàro polynomials and the Bessel functions:

∞∑
n=0

[n/p]∑
k=0

g
(s)
n−pk (λ1, . . . , λm, x1, . . . , xm) Jµ+k(y)ηktn−pk

=

(
1− 2η

y

)−µ/2
Jµ

(√
y2 − 2yη

)
(1− t)−s−1

m∏
j=1

(1− xjt)−λj .

Example 2. Taking r = m, ak = 1, µ = 0, ν = 1 and substituting the multivariable-multiparameter
generalized Cesàro polynomials for Ωµ+νk in Theorem 7, and using the generating relation (9), we may
get the following class of bilinear generating functions for the multivariable-multiparameter generalized
Cesàro polynomials:

∞∑
n=0

[n/p]∑
k=0

g
(s)
n−pk (λ1, . . . , λm, x1, . . . , xm)

× g(s)k (β1, . . . , βm, y1, . . . , ym) ηktn−pk

= [(1− t)(1− η)]−s−1
m∏
j=1

(1− xjt)−λj (1− yjη)−βj ,

where each variable, each parameter, and each index can be suitably restricted so that this formula is
meaningful.

Obviously, many other particular cases of Theorem 7 can be provided. Further, the results in the
other theorems in Sections 1 and 2 can reduce to yield a variety of identities about the extended Cesàro
polynomials (6) and their simpler ones.
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Solving Volterra-Fredholm integral equations by non-polynomial
spline functions
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It depends on our information, non-polynomial spline functions have not been applied for solving Volterra-
Fredholm integral equations of the second kind yet. In this paper, we want to use such functions for
finding approximation solutions of Volterra-Fredholm integral equations. In our approach, the coefficients
of the non-polynomial spline were found by solving a system of linear equations. Then, these functions
were utilized to reduce the fredholm integral equations to the solution of algebraic equations. Analysis of
convergences investigated. Finally, three examples were presented to show the effectiveness of the method.
This was done with the help of a computer program that used the Python code program version 3.9.

Keywords: Volterra integral equation, Fredholm integral equation, non-polynomial spline function.

2020 Mathematics Subject Classification: 45B05, 45B05, 41A15.

Introduction

Integral equations are a fundamental class of equations in mathematical analysis that involve an
unknown function under an integral sign. They arise naturally in various fields such as physics,
engineering, and applied mathematics, where they model phenomena ranging from heat conduction to
quantum mechanics [1–3].

Volterra-Fredholm integral equations are vital in numerous scientific and engineering disciplines,
such as mechanics, electrical engineering, and physics. These equations are instrumental in modeling
intricate phenomena involving integration, which is essential for comprehending and addressing issues in
these areas. To approximate solutions for these equations, numerical methods utilizing non-polynomial
spline functions have been developed. This technique serves as an effective means for resolving integral
equations lacking analytical solutions, delivering precise numerical answers for a range of significant
problems. In recent years, there has been a growing interest in using non-polynomial splines to find
numerical solutions for integral equations and other types of equations, as evidenced by the increasing
number of published articles on the topic. Non-polynomial spline functions are a type of interpola-
tion function that can be used to approximate the solution of integral equations. Non-polynomial
spline functions are particularly useful because they can provide good approximation properties and
can often handle irregularities in the solution or the kernel function better than polynomial-based
methods. Numerous researchers utilize non-polynomial splines to solve Volterra and Fredholm integral
equations [4–16].

Recently, the interplay of Volterra-Fredholm integral equation using many numerical techniques
has been investigated [17–24]. For the first time, Salim, et al [25–27] used linear, quadratic and cubic
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c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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spline function for solving the following linear Volterra-Fredholm integral equation of the second kind,

u(x) = f(x) + λ1

∫ x

a
K(x, t)u(t)dt+ λ2

∫ b

a
L(x, t)u(t)dt, (1)

where the functions f(x), and the kernels K(x, t) and L(x, t) are known L2 analytic functions and λ1,
λ2 are arbitrary constants, x is variable and u(x) is the unknown continuous function to be determined.

In this paper, we introduce a novel non-polynomial spline function to obtain the numerical solution
of equation (1) for the first time.

The structure of this paper is as follows: Section 2 introduces our method for solving equation (1).
Section 3 details our methodology, while Section 4 focuses on the convergence analysis. Section 5
presents several numerical examples to demonstrate the effectiveness of our technique. Finally, Sec-
tion 6 offers some tentative conclusions.

1 Non-polynomial spline function

We describe the non-polynomial spline for solving equation (1) in similar manner of [11] The
numerical scheme has been developed on the domain of integration ω = [a, b] with partitions

a = x0 < x1 < · · · < xn = b,

where xi = x0 + ih, i = 0, · · · , n and h =
b− a
n

. Let Si(x) be the interpolating non-polynomial spline
function which interpolate y at xi defined by [11–13]

Si(x) = ai + bi(x− xi) + ci sin τ(x− xi) + di cos τ(x− xi), (2)

where ai, bi, ci and di are real numbers and τ is an arbitrary parameter. We denote the following
relations

Si(xi, τ) = yi, Si(xi+1, τ) = yi+1, S′′i (xk, τ) =Mi, S′′i (xi+1, τ) =Mi+1. (3)

Using equation (2) and equation (3) we have the following expressions

ai = yi +
Mi

τ2
, bi =

yi+1 − yi
h

+
Mi+1 −Mi

τθ
, ci =

Mi cos θ −Mi+1

τ2 sin θ
,

di =
−Mi

τ2
. (4)

With the continuity of first derivatives of Si−1(x) and Si(x) at x = xi, i = 1, 2, · · · , n − 1, we obtain
the following consistency relation,

αMi−1 + 2βMi + αMi+1 =
1

h
(yi+1 − 2yi + yi−1), (5)

where α = ( 1
θ2
)(θ csc θ − 1), β = ( 1

θ2
)(1− θ cot θ).

Using the finite difference operator E = ehD in the above consistency relation whereD is differential
operator and by expanding in powers of hD, the error for relation equation (5) can be expressed as
follows:

Error = (2α+ 2β − 1)(Mi − y′′i ) +D2h2
(
α− 1

12

)
(Mi − y′′i )+

+D4h4
(
α

12
− 1

360

)
(Mi − y

′′
i ) +O(h6). (6)
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The consistency relation equation (5) for the above equation leads to the equation 2α+2β = 1, which

may also be expressed as tan
(
θ
2

)
=

(
θ

2

)
. This equation has a zero root and an infinitely many of

non-zero roots, the smallest positive root being θ = 8.98881.
We use this θ as an optimal value in the convergence analysis and numerical computation. In this

case, we have ∣∣Mi − y′′i
∣∣ ≤ k2h2, k2 = 0.22max

∣∣y4i ∣∣ ,
provided that 2α+ 2β = 1.

If we let α =
1

12
and β =

5

12
, the second term in the error equation (6) is also zero and the method

can be modified and has a precision of the order O(h4) to calculate vector M :

Mi+1 + 10Mi +Mi−1 =
12

h
(yi+1 − 2yi + yi−1),

∣∣Mi − y′′i
∣∣ ≤ k2h4, k2 =

1

240
max

∣∣y6i ∣∣ . (7)

Provided that 2α + 2β = 1. If we let, α =
1

12
and β =

5

12
the second term in the error equation (6)

is also zero and the system (5) with natural cubic Spline initial condition M0 = Mn = 0 is strictly
diagonally dominant and has a unique solution to obtain M1,M2, · · · ,Mn−1.

From equation (7), we get

1 0 0 0 · · · · · · 0 0 0 0
1 10 1 0 · · · · · · 0 0 0 0
0 1 10 1 · · · · · · 0 0 0 0
...

...
. . . . . . . . . · · ·

...
...

...
...

...
...

...
. . . . . . . . .

...
...

...
...

0 0 0 0 · · · · · · 1 10 1 0
0 0 0 0 · · · · · · 0 1 10 1
0 0 0 0 · · · · · · 0 0 0 1





M0

M1

M2
...
...

Mn−2
Mn−1
Mn


=

12

h2



0
y0 − 2y1 + y2
y1 − 2y2 + y3

...

...
yn−3 − 2yn−2 + yn−1
yn−2 − 2yn−1 + yn

0


. (8)

The above matrix form can be expressed as follows:

WM =
12

h2
JY ⇒ M =

12

h2
W−1JY, (9)

where Y = (y0, y1, y2, · · · , yn−1, yn)T and M = (M0,M1,M2, · · · ,Mn−1,Mn)
T .

2 Methodology

In this section, we present numerical scheme to approximate equation (1). From equation (2) and
equation (4) we have

Ui = yi +
Mi

τ2
+

(
yi+1

h
+
Mi+1

h

)
(x− xi)−

(
yi
h

+
Mi

h

)
(x− xi)+

+
Mi cos θ

τ2 sin θ
sin τ(x− xi)−

Mi+1 cos θ

τ2 sin θ
sin τ(x− xi)−

Mi

τ2
cos τ(x− xi). (10)
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By replacing equation (10) in equation (1) and using the collocation method, we have

Ui = f(xi) +

∫ x

a
K(xi, t)u(t)dt+

∫ b

a
L(xi, t)u(t)dt

= f(xi) +

i∑
j=0

∫ xj+1

xj

K(xi, t)uj(t)dt+

n−1∑
j=0

∫ xj+1

xj

L(xi, t)uj(t)dt

= f(xi) +
i∑

j=0

uj(t)

∫ xj+1

xj

K(xi, t)dt+
n−1∑
j=0

uj(t)

∫ xj+1

xj

L(xi, t)dt

= f(xi) +
i∑

j=0

(yj +
Mj

τ2
)

∫ xj+1

xj

K(xi, t)dt+
n−1∑
j=0

(yj +
Mj

τ2
)

∫ xj+1

xj

L(xi, t)dt

+
i∑

j=0

(
yj+1

h
+
Mj+1

τθ

)∫ xj+1

xj

K(xi, t)(t− tj)dt+
n−1∑
j=0

(
yj+1

h
+
Mj+1

τθ

)∫ xj+1

xj

L(xi, t)(t− tj)dt

−
i∑

j=0

(
yj
h

+
Mj+1

τθ

)∫ xj

xj

K(xi, t)(t− tj)dt−
n−1∑
j=0

(
yj
h

+
Mj+1

τθ

)∫ xj+1

xj

L(xi, t)(t− tj)dt

+

i∑
j=0

Mj cos θ

τ2 sin θ

∫ xj+1

xj

K(xi, t) sin τ(t− tj)dt+
n−1∑
j=0

Mj cos θ

τ2 sin θ

∫ xj+1

xj

L(xi, t) sin τ(t− tj)dt

+

i∑
j=0

Mj+1 cos θ

τ2 sin θ

∫ xj+1

xj

K(xi, t) sin τ(t− tj)dt+
n−1∑
j=0

Mj+1 cos θ

τ2 sin θ

∫ xj+1

xj

L(xi, t) sin τ(t− tj)dt

+
i∑

j=0

Mj

τ2

∫ xj+1

xj

K(xi, t) cos τ(t− tj)dt+
n−1∑
j=0

Mj

τ2

∫ xj+1

xj

L(xi, t) cos τ(t− tj)dt

= f(xi) +
i∑

j=0

(yj +
Mj

τ2
)aij +

n−1∑
j=0

(yj +
Mj

τ2
)a∗ij +

i∑
j=0

(
yj+1

h
+
Mj+1

τθ

)
bij+1

+
n−1∑
j=0

(
yj+1

h
+
Mj+1

τθ

)
b∗ij+1 −

i∑
j=0

(
yj
h

+
Mj

τθ

)
cij −

n−1∑
j=0

(
yj
h

+
Mj

τθ
)c∗ij +

i∑
j=0

Mj cos θ

τ2 sin θ
dij

+
n−1∑
j=0

Mj cos θ

τ2 sin θ
d∗ij +

i∑
j=0

Mj+1

τ2sinθ
eij+1 +

n−1∑
j=0

Mj+1

τ2 sin θ
e∗ij+1 +

i∑
j=0

Mj

τ2
pij +

n−1∑
j=0

Mj

τ2
p∗ij

= f(i) +

i∑
j=0

(yj +
Mj

τ2
)aij +

n∑
j=0

(yj +
Mj

τ2
)a∗ij + (−yn −

Mn

τ2
a∗in)

− (
y0
h

+
M0

τθ
)bi0 +

i∑
j=0

(
yj
h

+
Mj

τθ
)bij +

(
yi+1

h
+
Mi+1

τθ

)
bi,i+1 − (

y0
h

+
M0

τθ
)b∗i0

+

n∑
j=0

(
yj
h

+
Mj

τθ

)
b∗ij −

i∑
j=0

(
yj
h

+
Mj

τθ
)cij −

n∑
j=0

(
yj
h

+
Mj

τθ

)
c∗ij +

(
−
(
yn
h

+
Mn

τθ

))
c∗in

+
i∑

j=0

Mj cos θ

τ2 sin θ
dij +

n−1∑
j=0

Mj cos θ

τ2 sin θ
d∗ij −

Mn cos θ

τ2 sin θ
d∗in −Moeio +

i∑
j=0

Mj

τ2 sin θ
eij

+Mi+1ei,i+1 −Moe
∗
io +

n∑
j=0

Mj

τ2 sin θ
e∗ij +

i∑
j=0

Mj

τ2
pij +

n∑
j=0

Mj

τ2
p∗ij −

Mn

τ2
pin
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= f(i) +

i∑
j=0

(yj +
Mj

τ2
)aij +

n∑
j=0

(yj +
Mj

τ2
)a∗ij +

i∑
j=0

(
yj
h

+
Mj

τθ

)
bij

+
n∑
j=0

(
yj
h

+
Mj

τθ
)b∗ij −

i∑
j=0

(
yj
h

+
Mj

τθ
)cij −

n∑
j=0

(
yj
h

+
Mj

τθ

)
c∗ij +

i∑
j=0

Mj cos θ

τ2 sin θ
dij

+
n−1∑
j=0

Mj cos θ

τ2 sin θ
d∗ij +

i∑
j=0

Mj

τ2 sin θ
eij +

n∑
j=0

Mj

τ2 sin θ
e∗ij +

i∑
j=0

Mj

τ2
pij

+
n∑
j=0

Mj

τ2
p∗ij +O(h4), i = 0, 1, 2, · · · , n. (11)

After finding the above integration by quadrature rules, we assuming a∗in = bi0 = b∗i0 = bi,i+1 =
c∗in = d∗in =ei0 = ei,i+1 = e∗i0 = p∗in = 0. Now, if we suppose aij = A, bij+1 = B, cij = C, dij = D,
eij+1 = E and pij+1 = P . Also, a∗ij = A∗, b∗ij+1 = B∗, c∗ij = C∗, d∗ij = D∗, e∗ij+1 = E∗, p∗ij+1 = P ∗,

aij =

∫ xj+1

xj

K(xi, t)dt, a∗ij =

∫ xj+1

xj

L(xi, t)dt,

bij+1 =

∫ xj+1

xj

K(xi, t)(t− tj )dt, b∗ij+1 =

∫ xj+1

xj

L(xi, t)(t− tj)dt,

cij =

∫ xj+1

xj

K(xi, t)(t− tj )dt, c∗ij =

∫ xj+1

xj

L(xi, t)(t− tj)dt,

dij =

∫ xj+1

xj

K(xi, t)sinτ(t− tj )dt, d∗ij =

∫ xj+1

xj

L(xi, t) sin τ(t− tj)dt,

eij+1 =

∫ xj+1

xj

K(xi, t) sin τ(t− tj )dt, e∗ij+1 =

∫ xj+1

xj

L(xi, t) sin τ(t− tj)dt,

pij =

∫ xj+1

xj

K(xi, t) cos τ(t− tj )dt, p∗ij =

∫ xj+1

xj

L(xi, t) cos τ(t− tj)dt,

M̂ ≈M = (M0,M1,M2, · · · ,Mn−1,Mn)
T , û ≈ U = (U0, U1, U2, · · · , Un−1, Un)T ,

F = (f0, f1, f2, · · · , fn−1, fn)T ,

we have
Û = F + [(A+ Â) +

1

h
(B + B̂)− 1

h
(C + Ĉ)]Û +

1

τ2
[(A+ Â) +

1

h
(B + B̂)

−1

h
(C + Ĉ) + cot θD − csc θE − P ]M̂.

Using equation (9) we have

[I − [(A+ Â) +
1

h
(B + B̂)− 1

h
(C + Ĉ)]− 12

θ2
[(A+ Â) +

1

h
(B + B̂)

− 1

h
(C + Ĉ) + cot θD − cscθE − P ]Z]Û = F. (12)

Let
H1 = [(A+ Â) +

1

h
(B + B̂)− 1

h
(C + Ĉ)],
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and
H2 = [(A+ Â) +

1

h
(B + B̂)− 1

h
(C + Ĉ) + cot θD − csc θE − P ]Z],

where Z =W−1J . This implies that

[I − (H1 +H2Z)]Û = F.

If we suppose W−1 = (uij), 1 ≤ i, j ≤ n+ 1, then

Z =


u1,2 u1,3 − 2u1,2 z1,3 · · · z1,n−1 u1,n−1 − 2u1,n u1,n
u2,2 u2,3 − 2u2,2 z1,3 · · · z2,n−1 u2,n−1 − 2u2,n u2,n
u3,2 u3,3 − 2u3,2 z1,3 · · · z3,n−1 u3,n−1 − 2u3,n u3,n
...

...
...

...
...

...
un+1,2 un+1,3 − 2un+1,2 zn+1,3 · · · zn+1,n−1 u1,n−1 − 2un+1,n un+1,n

 ,

where zi,j = ui,j−1 − 2ui,j + ui,j+1 for 3 ≤ j ≤ n− 1 and 1 ≤ i ≤ n+ 1.
Finally we can approximate the exact solution y by the non-polynomial Spline function Û such

that Û = Ûi on [xi, xi+1], i = 0, 1, 2, · · · , n− 1, where

Û(x) = ŷi +
M̂i

τ2
+

(
ŷi+1

h
+
M̂i+1

τθ

)
(x− xi)−

(
ŷi
h

+
M̂i

τθ

)
(x− xi)

+

(
M̂i cos θ

τ2 sin θ

)
sin τ(x− xi)−

(
M̂i+1

τ2 sin θ

)
sin τ(x− xi)−

(
M̂i

τ2

)
cos τ(x− xi). (13)

3 Analysis of convergence

Lemma 1. [28] Let A be a n × n matrix with ‖A‖∞ < 1, then the matrix (I − A) is invertable.
Moreover

∥∥(I −A)−1∥∥∞ < 1
1−‖A‖∞

.

Theorem 1. Let f ∈ C4(I) and k ∈ C4(I × I) such that. 3
2 ‖K‖∞ ‖L‖∞ (b − a) < 1, then equa-

tion (13) defines a unique approximate and the resulting error ê = y − Û satisfies

‖ê‖∞ < γh4, ∀ r ∈ I,

where γ is a constant.

Proof. It is essay to show that ‖A‖∞, ‖A∗‖∞, ‖D‖∞, ‖D∗‖∞, ‖E‖∞, ‖E∗‖∞ and ‖P‖∞, ‖P ∗‖∞ ≤

(‖K‖∞ + ‖L‖∞)(b− a) also ‖B‖∞, ‖B∗‖∞, ‖C‖∞, ‖C∗‖∞ ≤ (‖K‖∞ + ‖L‖∞)
(b− a)h

2
.

Hence
‖H1‖∞ ≤ 2(‖K‖∞ + ‖L‖∞)(b− a)

and
‖H2‖∞ ≤

48

100
(‖K‖∞ + ‖L‖∞)(b− a),

then we have
(‖H1 +H2Z‖∞) <

3

2
(‖K‖∞ + ‖L‖∞) < 1.

Now by Lemma 1, the system (12) has a unique solution ŷ. It follows that the equation (13) defines a
unique solution Û .
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Now, let ê = y − ŷ = (y0 − ŷ0, y1 − ŷ1, · · · , yn − ŷn)T . Then from equation (11), we get

(I − (H1 +H2Z))ê = O(h4).

Therefore,
ê = (I − (H1 +H2Z))

−1 = O(h4),

for which implies by Lemma 1, that there exists α0 such that

‖ê‖∞ ≤
α1h

4

1− 3

2
(‖K‖∞ + ‖L‖∞)(b− a)︸ ︷︷ ︸

α2

.

On the other hand, from equation (8), we have (M − M̂) = ( 12
h2
)Zê. Therefore,∥∥∥Z − Ẑ∥∥∥

∞
≤ 12α2h

4.

In consequence, for all i = 0, 1, · · · , n− 1 and x ∈ [xi, xi+1], we have∣∣∣Ui(X)− Ûi(X)
∣∣∣ ≤ 12α2h

4.

It follows that ∥∥∥Y − Û∥∥∥
∞
≤ ‖Y − U‖∞ +

∥∥∥U − Û∥∥∥
∞
≤ α1h

4 + 12α2h
4.

Thus, the proof is completed by taking γ = α1 + 12α2.

4 Numerical results

In this section, we present three examples to illustrate the efficiency and accuracy of the proposed
method. The computed errors ei are defined by ei = |ui − Si|, where ui is the exact solution of
equation (1) and Si is an approximate solution of the same equation. Also we compute Least square
error(LSE)=

∑n
i=0(ui − Si)2 and all computations are performed using the Python program.

Example 1. Consider the linear Volterra-Fredholm integral equation

u(x) = −x
2

2
− 7x

2
+ 2 +

∫ x

0
u(t)dt+

∫ 1

0
xu(t)dt.

The exact solution to this equation is given by u(x) = x+ 2.

Example 2. Consider the linear Volterra-Fredholm integral equation

u(x) = 2 cos(x)− 1 +

∫ x

0
(x− t)u(t)dt+

∫ π

0
u(t)dt.

The exact solution to this equation is given by u(x) = cos(x).

Example 3. Consider the linear Volterra-Fredholm integral equation

u(x) = −9x5

10
+ 2x3 − 3x2

2
− 3x

2
+

19

10
+

∫ x

0
(x+ t)u(t)dt+

∫ 1

0
(x− t)u(t)dt.

The exact solution to this equation is given by u(x) = 2x3 + 1.
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T a b l e 1

The Numerical Results for Example 1 with n = 5 and τ = 1

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0

0.2 2.2 2.2 8.8817842× 10−16 7.88860905× 10−31

0.4 2.4 2.4 0 0

0.6 2.6 2.6 1.33226763× 10−15 1.77493704× 10−30

0.8 2.8 2.8 1.33226763× 10−15 1.77493704× 10−30

1 3. 3. 1.33226763× 10−15 1.77493704× 10−30

LSE 6.113672015× 10−30

T a b l e 2

The Numerical Results for Example 1 with n = 5 and τ = 5

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0

0.2 2.2 2.2 8.88178420× 10−16 7.88860905× 10−31

0.4 2.4 2.4 4.44089210× 10−16 1.97215226× 10−31

0.6 2.6 2.6 4.44089210× 10−16 1.97215226× 10−31

0.8 2.8 2.8 8.88178420× 10−16 7.88860905× 10−31

1 3. 3. 2.22044605× 10−15 4.93038066× 10−30

LSE 6.902532920× 10−30

T a b l e 3

The Numerical Results for Example 1 with n = 5 and τ = 179.7764

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0

0.2 2.2 2.2 0 0

0.4 2.4 2.4 4.4408921× 10−16 1.97215226× 10−31

0.6 2.6 2.6 8.8817842× 10−16 7.88860905× 10−31

0.8 2.8 2.8 8.8817842× 10−16 7.88860905× 10−31

1 3. 3. 0 0

LSE 1.77493703674× 10−30

T a b l e 4

The Numerical Results for Example 1 with n = 10 and τ = 1

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0

0.1 2.2 2.2 4.4408921× 10−16 1.97215226× 10−31

0.2 2.4 2.4 0 0

0.3 2.6 2.6 4.4408921× 10−16 1.97215226× 10−30

0.4 2.8 2.8 4.4408921× 10−16 1.97215226× 10−31

0.5 3. 3. 8.88178420× 10−16 7.88860905× 10−31

0.6 2 2 1.77635684× 10−15 3.15544362× 10−30

0.7 2.2 2.2 1.33226763× 10−15 1.77493704× 10−30

0.8 2.4 2.4 1.33226763× 10−15 1.77493704× 10−30

0.9 2.6 2.6 1.33226763× 10−15 1.77493704× 10−30

1 2.8 2.8 1.33226763× 10−15 1.77493704× 10−30

LSE 1.16356983520× 10−29
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T a b l e 5

The Numerical Results for Example 1 with n = 10 and τ = 5

xi ui Si |ui − Si| |ui − Si|2

0 2 2 0 0

0.1 2.2 2.2 0 1.97215226× 10−31

0.2 2.4 2.4 0 0

0.3 2.6 2.6 0 0

0.4 2.8 2.8 4.44089210× 10−16 1.97215226× 10−31

0.5 3. 3. 8.88178420× 10−16 7.88860905× 10−31

0.6 2 2 4.44089210× 10−16 1.97215226× 10−31

0.7 2.2 2.2 8.88178420× 10−16 7.88860905× 10−31

0.8 2.4 2.4 1.77635684× 10−15 3.15544362× 10−30

0.9 2.6 2.6 8.88178420× 10−16 7.88860905× 10−31

1 2.8 2.8 0 0

LSE 6.113672015462× 10−30

T a b l e 6

The Numerical Results for Example 1 with n = 10 and τ = 179.7764

0 2 2 0 0

0.1 2.2 2.2 0 1.97215226× 10−31

0.2 2.4 2.4 0 0

0.3 2.6 2.6 1.77635684× 10−15 3.15544362× 10−30

0.4 2.8 2.8 4.44089210× 10−15 1.97215226× 10−31

0.5 3. 3. 8.88178420× 10−16 7.88860905× 10−31

0.6 2 2 1.33226763× 10−15 1.97215226× 10−31

0.7 2.2 2.2 8.88178420× 10−16 7.88860905× 10−31

0.8 2.4 2.4 1.77635684× 10−15 3.15544362× 10−30

0.9 2.6 2.6 2.22044605× 10−15 7.88860905× 10−31

1 2.8 2.8 1.77635684× 10−15 3.15544362× 10−30

LSE 6.113672015462× 10−29

T a b l e 7

The Numerical Results for Example 2 with n = 5 and τ = 1

xi ui Si |ui − Si| |ui − Si|2

0 1 1.00692878 0.00692878 4.80080263× 10−5

π
5

0.80901699 0.81390488 0.00488789 2.38914209× 10−5

2π
5

0.30901699 0.31128372 0.00226672 5.13803977× 10−5

3π
5

−0.3090169 −0.30814317 0.00087382 7.63563793× 10−7

4π
5

−0.8090169 −0.80948866 0.00047166 2.22464285× 10−7

π −1. −0.9488828 0.00057887 3.35087778× 10−7

LSE 7.835860281× 10−5
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T a b l e 8

The Numerical Results for Example 2 with n = 5 and τ = 5

xi ui Si |ui − Si| |ui − Si|2

0 1 −1.93012882 2.93012882 8.5856549
π
5

−2.08618179 0.81390488 2.89519878 8.3821759
2π
5

−2.24223476 0.31128372 2.55125175 6.5088855
3π
5

−2.39828773 −0.30814317 2.08927073 4.36505219
4π
5

−2.55434069 −0.80948866 1.7453237 3.04615481

π −1. −2.71039366 1.71039366 2.92544648

LSE 33.813369868

T a b l e 9

The Numerical Results for Example 2 with n = 5 and τ = 179.7764

xi ui Si |ui − Si| |ui − Si|2

0 1 1.0178317 1.78316984× 10−2 3.17969468× 10−4

π
5

0.80901699 0.82402291 1.50059187× 10−2 2.25177596× 10−4

2π
5

0.30901699 0.31686699 7.84999480× 10−3 6.16224183× 10−5

3π
5

−0.30901699 −0.30908288 6.58812345× 10−5 4.34033706× 10−9

4π
5

−0.80901699 −0.8129492 3.93220113× 10−3 1.54622057× 10−5

π −1. −2.71039366 1.21137812× 10−3 1.46743694× 10−6

LSE 0.0006217034654

T a b l e 10

The Numerical Results for Example 2 with n = 10 and τ = 1

xi ui Si |ui − Si| |ui − Si|2

0 1 1.00094592 9.45917105× 10−4 8.9475917× 10−7

π
10

9.51056516× 10−1 9.51847558× 10−1 7.91041543× 10−4 6.25746722× 10−7

2π
10

5.87785252× 10−1 8.09581066× 10−1 5.64072056× 10−4 3.18177284× 10−7

3π
10

3.09016994× 10−1 3.09309388× 10−1 4.08708268× 10−4 1.67042448× 10−7

4π
10

6.12323400× 10−17 2.05322609× 10−4 2.92393614× 10−4 8.54940254× 10−8

5π
10

−3.09016994× 10−1 −3.08878314× 10−1 2.05322609× 10−4 4.21573737× 10−8

6π
5

−5.87785252× 10−1 −5.87699570× 10−1 7.84999480× 10−4 1.92321364× 10−8

7π
5

−0.30901699× 10−1 −8.08974167× 10−1 1.38679978× 10−4 7.34153214× 10−9

8π
5

−8.09016994× 10−1 −9.51067784× 10−1 8.56827412× 10−5 1.83414589× 10−10

9π 9.51056516× 10−1 −9.51915530× 10−1 4.28269295× 10−5 1.26963313× 10−9

π −1. −9.99915530× 10−1 8.44696327× 10−5 7.13511885× 10−9

LSE 2.169046919839× 10−6
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T a b l e 11

The Numerical Results for Example 2 with n = 10 and τ = 5

xi ui Si |ui − Si| |ui − Si|2

0 1 9.99828516× 10−1 1.71483912× 10−4 2.940676226× 10−8

π
10

9.87412008× 10−8 9.51847558× 10−1 0.95184745 0.90601358
2π
10

2.01267331× 10−7 8.09581066× 10−1 0.80951045 0.65530718
3π
10

1.60929543× 10−7 3.09309388× 10−1 0.30930922 9.56721979× 10−1

4π
10

6.07030052× 10−8 2.05322609× 10−4 2.05261906× 10−4 4.21324500× 10−8

5π
10

1.39447547× 10−9 −3.08849005× 10−1 0.3088490064 9.53877087× 10−1

6π
5

2.82203126× 10−8 −5.87699570× 10−1 0.58769959 0.34539081
7π
5

9.68987137× 10−8 −8.08974167× 10−1 0.80897426 0.65443935
8π
5

1.14481596× 10−7 −9.51067784× 10−1 0.95106875 0.904531772

9π 2.97953270× 10−8 −9.51915530× 10−1 0.951915559 0.90614323

π −1. −1.00001557 1.557× 10−5 2.424249× 10−10

LSE 4.5628859

T a b l e 12

The Numerical Results for Example 2 with n = 10 and τ = 179.7764

xi ui Si |ui − Si| |ui − Si|2

0 1 0 1. 1
π
10

9.51056516× 10−1 0 9.5105651× 10−1 9.04508497× 10−1

2π
10

8.09016994× 10−1 0 8.09016994× 10−1 6.54508497× 10−1

3π
10

5.87785252× 10−1 0 5.87785252× 10−1 3.45491503× 10−1

4π
10

3.09016994× 10−1 0 3.09016994× 10−1 9.54915028× 10−2

5π
10

6.12323400× 10−17 0 6.12323400× 10−17 3.74939946× 10−33

6π
5

−3.09016994× 10−1 0 3.09016994× 10−1 9.54915028× 10−2

7π
5

−5.87785252× 10−1 0 5.87785252× 10−1 3.45491503× 10−1

8π
5

−8.09016994× 10−1 0 8.09016994× 10−1 6.54508497× 10−1

9π −9.51056516× 10−1 0 9.5105651× 10−1 9.04508497× 10−1

π −1. 0 1 1

LSE 5.9999999999

T a b l e 13

The Numerical Results for Example 3 with n = 5 and τ = 1

xi ui Qi |ui −Qi| |ui −Qi|2

0 1 0.99806294 0.00193706 3.75221081× 10−6

0.2 1.016 1.01417071 0.00182929 3.34628927× 10−6

0.4 1.128 1.12604257 0.00195743 3.83151884× 10−6

0.6 1.432 1.42968468 0.00231532 5.36072097× 10−6

0.8 2.024 2.02005699 0.00394301 1.55473138× 10−5

1 3 3.00220523 0.00220523 4.86302129× 10−6

LSE 3.6701074960× 10−5
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T a b l e 14

The Numerical Results for Example 3 with n = 5 and τ = 5

xi ui Qi |ui −Qi| |ui −Qi|2

0 1 0.99806294 0.00193706 1.84295248× 10−7

0.2 1.016 1.01417071 0.00182929 4.02037755× 10−7

0.4 1.128 1.12604257 0.00195743 1.27690052× 10−6

0.6 1.432 1.42968468 0.00231532 4.74011424× 10−6

0.8 2.024 2.02005699 0.00394301 2.86127439× 10−5

1 3 3.00220523 0.00220523 2.14332879× 10−6

LSE 3.73594204345× 10−5

T a b l e 15

The Numerical Results for Example 3 with n = 5 and τ = 179.7764

xi ui Qi |ui −Qi| |ui −Qi|2

0 1 0.98349595 0.01650405 2.72383633× 10−4

0.2 1.016 1.00261956 0.01338044 31.79036304× 10−4

0.4 1.128 1.11802403 0.00997597 9.95200562× 10−5

0.6 1.432 1.42833778 0.00366222 1.34118860× 10−5

0.8 2.024 2.03365712 0.00965712 9.32599357× 10−5

1 3 3.03761808 0.03761808 1.41511981× 10−3

LSE 0.0020727316215

T a b l e 16

The Numerical Results for Example 3 with n = 10 and τ = 1

xi ui Si |ui − Si| |ui − Si|2

0 1 0.9997679 0.0002321 5.3870937910−8

0.1 1.002 1.0017762 0.0002238 5.00871848× 10−8

0.2 1.016 1.0157778 0.0002222 4.93746997× 10−8

0.3 1.054 1.05377251 0.00022749 5.17498550× 10−8

0.4 1.128 1.12775968 0.00024032 5.77557608× 10−8

0.5 1.25 1.249738 0.000262 6.86443139× 10−8

0.6 1.432 1.43170555 0.00029445 8.67031218× 10−8

0.7 1.686 1.68565824 0.00034176 1.16799251× 10−7

0.8 2.024 2.02360244 0.00039756 1.58055550× 10−7

0.9 2.458 2.45741921 0.00058079 3.37315181× 10−7

1 3 3.00023429 0.00023429 5.48933512× 10−8

LSE 1.085249207159× 10−6
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T a b l e 17

The Numerical Results for Example 3 with n = 10 and τ = 5

xi ui Si |ui − Si| |ui − Si|2

0 1 0.99986069 1.39312375× 10−4 1.94079379× 10−8

0.1 1.002 1.0018592 1.40802641× 10−4 1.98253837× 10−8

0.2 1.016 1.01585209 1.47913604× 10−4 2.18784343× 10−8

0.3 1.054 1.0538375 1.62496806× 10−4 52.64052120× 10−8

0.4 1.128 1.12781298 1.87016823× 10−4 3.49752920× 10−8

0.5 1.25 1.24977517 2.24826927× 10−4 5.05471470× 10−8

0.6 1.432 1.43171956 2.80436529× 10−4 7.86446468× 10−8

0.7 1.686 1.68563868 3.61320281× 10−4 1.30552345× 10−7

0.8 2.024 2.02353461 4.65394696× 10−4 2.16592223× 10−7

0.9 2.458 2.45727901 7.20992595× 10−4 5.198303221× 10−7

1 3 3.00001603 1.60253886× 10−5 2.56813081× 10−10

LSE 1.1189157570× 10−6

T a b l e 18

The Numerical Results for Example 3 with n = 10 and τ = 179.7764

xi ui Si |ui − Si| |ui − Si|2

0 1 0.99986069 0.13930000× 10−4 1.940727610× 10−8

0.1 1.002 1.00185920 1.40800000× 10−4 1.98246400× 10−8

0.2 1.016 1.01585209 1.47910000× 10−4 2.18773681× 10−8

0.3 1.054 1.05383750 1.62500000× 10−4 2.64062500× 10−8

0.4 1.128 1.12781298 1.87020000× 10−4 3.49764804× 10−8

0.5 1.25 1.24977517 2.24830000× 10−4 5.05485289× 10−8

0.6 1.432 1.43171956 2.80440000× 10−4 7.86465936× 10−8

0.7 1.686 1.68563868 3.61320000× 10−4 13.05521424× 10−8

0.8 2.024 2.02353461 4.65390000× 10−4 21.65878521× 10−8

0.9 2.458 2.45727900 7.21000000× 10−4 51.9841000× 10−8

1 3 3.00001603 1.60000000× 10−4 2.56000000× 10−8

LSE 10.40243756× 10−8

Conclusion

This paper presents numerical solutions for Volterra-Fredholm integral equations and investigates
the convergence analysis. Three test examples from previous studies [25–27] are considered. The nu-
merical results from Tables 1-18, indicate that accuracy decreases as τ increases and as n decreases.
Additionally, we found that when the exact solution is a linear function, the accuracy is significantly
high.
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First of all, we have to note that in this article, we introduced the new concepts of relations between Jonsson
theories in the class of cosemanticness for some considered Jonsson spectrum. All consideration of this new
approach was done under sufficiently important class of Jonsson theories, which we called as normal Jonsson
theories class. The main result, that we obtained, describes the model-theoretical properties of syntactical
and semantical similarities inside the fixed cosemanticness class. For all new concepts in the article, we
provided classical samples. The main result of this paper is considering normal Jonsson theories class by
similarity to some fixed class of polygons (S-acts).

Keywords: Jonsson theory, perfect Jonsson theory, normal Jonsson theory, Jonsson set, almost Jonsson set,
Jonsson fragment, syntactic similarity, semantic similarity, Jonsson specrtum, cosemanticness, S-act.
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Introduction

The content of this article actually belongs to new approach and studying of generally speaking
incomplete theories, and partically more exactly we focused our researches on studying Jonsson the-
ories. Our new approach consists of applying syntactically and semantically similarities inside some
considered class of cosemanticness from fixed Jonsson spectrum for some subclass of existentially closed
models for considered fixed Jonsson theory. Such new method of studying Jonsson theories by our pro-
posals allowed to penetrate in more details when we have operated with classical settlements of many
tasks and problems which appears under considering and researching Jonsson spectra.

The notion of syntactical and semantical similarities was appeared in the works of T.G. Mustafin,
for example in [1], when he introduced those notions for studying complete theories under stability
consideration terms. By main result of this article it turned out that many concepts from stability
theory saved their properties under semantical similarity, starting from basic notions of formulas and
types and up to orthogonality, and independence, and forking, and spectral functions, which appears
under studying of stability theories and their types. It turned out that, for any complete theories, it
follows that there exists syntactically similar elementary theory of some given polygon (S-act) over a
fixed monoid S. With the help of such consideration it became clear that all researches in the field of
studying Model Theory in complete theories we can operate working with some fixed polygons. And in
other side, in the case of incomplete theories after works [2–13] such implementation by using polygons
is possible for Jonsson theories. This approach is sufficiently new, moreover not only Jonsson theories
and some concepts which linked with Jonsson theories, for example hybrids of Jonsson theories, allowed
us to wirk and describe Jonsson theories even for different signatures.

This paper consists of 3 sections. In Section 1, we give some basic information on Jonsson theories
and related concepts, and introduce the new notion of normal Jonsson theory. In Section 2, the concepts
∗Corresponding author. E-mail: ulbrikht@mail.ru
This research was funded by the Science Committee of the Ministry of Science and Higher Education of the Republic

of Kazakhstan (Grant No. AP23489523).
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of syntactic and semantic similarities for complete theories and for Jonsson theories are described. In
Section 3, we present our results obtained for double factorization equivalence class of some fixed
Jonsson spectrum and show its syntactic similarity to the class of theories of some polygon.

Note that here and after we will use the termin “S-act” instead of “polygon”.
Now let us introduce the notation and determine the frame of our study.
We work in a first-order countable language L. By theory, we mean a consistent set of sentences

in the given language.
If T is an L-theory, then ET denotes a class of existentially closed models of the theory T .
Let A be an L-structure. By T 0(A), we mean the theory Th∀∃(A) that is a set of all ∀∃-sentences

of L true for the structure A. The theory T 0(A) is called a Kaiser hull of A.

1 Jonsson theories

We start with some basic information on Jonsson theories and related concepts. In this section the
apparatus of the study of Jonsson theories is described.

Before presenting the concept of Jonsson theories let us remind the definitions of two properties
that are essential for studying this class of incomplete theories.

Definition 1. [14; 80] A theory T has the joint embedding property, if, for any models A and B of
T , there exists a model M of T and isomorphic embeddings f : A→ M , g : B →M .

Definition 2. [14; 80] A theory T has the amalgamation property, if for any models A, B1, B2 of T
and isomorphic embeddings f1 : A → B1, f2 : A → B2 there are M |= T and isomorphic embeddings
g1 : B1 →M , g2 : B2 →M , such that g1 ◦ f1 = g2 ◦ f2.

We write “JEP” and “AP” as shorter forms for the joint embedding and amalgamation properties,
correspondingly.

Now let us recall the main definition of this section.

Definition 3. [14; 80] A theory T is called Jonsson, if:
1) the theory T has an infinite model;
2) the theory T is inductive;
3) the theory T has the joint embedding property (JEP);
4) the theory T has the amalgamation property (AP).

There are a lot of classical examples of Jonsson theories:
1) group theory;
2) the theory of abelian groups;
3) the theory of Boolean algebras;
4) the theory of linear orders;
5) field theory of characteristic p, where p is zero or a prime number;
6) the theory of ordered fields;
7) the theory of modules et cetera.

In [6], it is proved that the theory of differentially closed fields of the fixed characteristic is a Jonsson
theory as well.

The special properties of Jonsson theories, namely AP and JEP, can be syntactically described by
the following two theorems:

Theorem 1. [15] For the first order theory T of the language L (of arbitrary cardinality) the following
conditions are equivalent:

1) T has JEP;
2) For all universal sentences α, β of L, if T ` α ∨ β then T ` α or T ` β.
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If ϕ and ψ are existential L-sentences such that T ∪ {ϕ} and T ∪ {ψ} are consistent then T ∪ {ϕ,ψ}
is consistent.

Theorem 2. [16] The following are equivalent:
1) T has the Amalgamation property;
2) For all universal L-formulas α1(x), α2(x) with T ` ∀x(α1(x) ∨ α2(x)) there are existential

L-sentences β1(x), β2(x) such that

T ` ∀x(βi(x)→ αi(x)), i = 1, 2,

and
T ` ∀x(β1(x) ∨ β2(x)).

Another fundamental property of Jonsson theories follows from the theorem of W. Hodges and
shows the connection between existentially closed models of such theories:

Theorem 3. [17; 363] Suppose T be an L-theory, and let T admit JEP. Let A and B be existentially
closed model of T . Then each ∀∃-sentence that is true in A is true in B as well.

In this paper, we study a special subclass of Jonsson theories, namely perfect Jonsson theories. To
describe them we need the following definitions of Mustafin Ye.T.

Definition 4. [18] Let κ ≥ ω. ModelM of theory T is called:
1) κ-universal for T , if each model of theory T with the power strictly less κ isomorphically imbedded

inM;
2) κ-homogeneous for T , if for any two models A and A1 of theory T , which are submodels ofM

with the power strictly less then κ and for isomorphism f : A → A1 for each extension B of model
A, which is a submodel of M and is model of T with the power strictly less then κ there exists the
extension B1 of model A1, which is a submodel ofM and an isomorphism g : B → B1 which extends f .

Definition 5. [18] A model C of the Jonsson theory T is called a semantic model, if it is ω+-
homogeneous-universal.

Definition 6. [18] The center of Jonsson theory T is an elementary theory of its semantic model C
and denoted through T ∗, i.e. T ∗ = Th(C).

Definition 7. [19] A Jonsson theory T is called perfect, if a semantic model of T is ω+-saturated
model of T .

The criterion for the perfectness of the Jonsson theory was obtained by Yeshkeyev A.R. and it is
as follows:

Theorem 4. [19] For any Jonsson theory T following conditions are equivalent:
1) T is perfect;
2) T ∗ is the model companion of T .

Let us also demonstrate some properties of a perfect Jonsson theory and its center.

Theorem 5. [20; 1243] Let T be a Jonsson theory. Then for any model A ∈ ET theory T 0(A) is
Jonsson, where T 0(A) = Th∀∃(A).

We can see that in case of perfectness of T its center T ∗ is also a Jonsson theory.

Proposition 1. [21] Let T be a perfect Jonsson theory, then for every sentence ϕ ∈ T ∗\T the theory
T ′ = T ∪ {ϕ} is a Jonsson.

The following definition was introduced by Mustafin T.G.

Definition 8. We say that the Jonsson theory T1 is cosemantic to the Jonsson theory T2 (T1 ./ T2),
if CT1 = CT2 , where CTi are semantic model of Ti, i = 1, 2.
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The properties of cosemantic Jonsson theories were studied by Mustafin Ye.T. in [18]. This binary
relation between two theories is an equivalence relation as it is easy to see. In the framework of study
of Jonsson theories, it was introduced as a special tool for comparing Jonsson theories from the point
of view of their semantic invariants, i.e. their semantic models. A lot of important model-theoretic
properties coincide for Jonsson theories that are cosemantic. In this manner, when considering such
properties, we may describe not just a Jonsson theory but the whole class of theories that are cosemantic
to it.

In our research, we often apply so-called semantic method, whose essence is to study the properties
of L-structures with the help of the theories of these structures. This is why the following notion was
introduced by the first author of this paper.

Definition 9. [20] Let K be a class of L-structures. A Jonsson spectrum JSp(K) of K is the
followng set of theories

JSp(K) = {T | T is a Jonsson theory and ∀A ∈ KA |= T}.

The particular case of a Josson spectrum is a Robinson spectrum. Robinsonian theories are
∀-axiomatizable Jonsson theories.

Definition 10. [20] Let K be a class of L-structures. A Robinson spectrum RSp(K) of K is the
following set of theories

RSp(K) = {T | T is a Robinsonian theory and ∀A ∈ KA |= T}.

The following proposition is important for studying Robinsonian theories and Robinson spectrum.

Proposition 2. [22] LetK be an arbitrary class of L-structures (possibly, it consists of one structure),
RSp(K)/./ be a factor set of the Robinson spectrum of K with respect to cosemanticness. Then
every cosemanticness class [∆] contains exactly one theory. In other words, for any two Robinsonian
L-theories T and T ′, the relation of cosemanticness is equivalent to the equality (logical equivalence)
of theories, i.e. T ./ T ′ ⇔ T = T ′.

That is in Robinson spectrum factorized by cosemanticness, each cosemanticness class is single-
element.

To study Jonsson theories through their semantic invariants, we often consider specific subsets of
the semantic models of these theories. Let us describe them.

Definition 11. Let T be a Jonsson theory, CT be its semantic model, X ⊆ C. X is said to be a
Jonsson subset of CT , if X is an ∃-definable set and cl(X) = M , where M ∈ ET .

For each Jonsson subset X ⊆ CT for the theory T , we always can construct the fragment of X:

Definition 12. The fragment of a Jonsson subset X is a theory Fr(X) = Th∀∃(M), where
M = cl(X).

Let T be a Jonsson theory, X ⊆ CT and let cl(X) = M ∈ ET . That is X is a Jonsson subset of
CT . Then Fr(X) = Th∀∃(M) and, moreover, the following lemma is true:

Lemma 1. [19; 299] For any Jonsson set X ⊂ CT , the fragment Fr(X) is a Jonsson theory.

Obviously, all axioms of T are true in a semantic model of Fr(X), that is CFr(X) ∈ Mod(T ) and
moreover CFr(X) is existentially closed over T . It means that whenever X is a Jonsson set for T the
semantic model of Fr(X) is always embedded in CT and an existentially closed submodel of CT for
any Jonsson theory T . To generalize this case and refine possible situations in the context of study of
Jonsson theories, we introduce the following notions:
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Definition 13. Let T be a Jonsson theory, CT be its semantic model, X ⊆ C. X is called an almost
Jonsson subset of CT , if X is an ∃-definable set and cl(X) = M , where M ∈ Mod(T ), and Th∀∃(M)
is a Jonsson theory.

By analogy with the concept of a Jonsson set, for an almost Jonsson subset X ⊆ CT of the theory
T , we consider the fragment of X:

Definition 14. The fragment of an almost Jonsson subset X is a theory Fr(X) = Th∀∃(M), where
M = cl(X).

Thus the following definition refines the class of Jonsson theories whose properties we study in this
paper:

Definition 15. A Jonsson theory T is called normal if for each almost Jonsson subset X ⊆ CT ,
CFr(X) ∈Mod(T ) and CFr(X) is an existentially closed submodel of CT .

There are natural examples of normal Jonsson theories, let us describe the following.
Example 1. Let TAG be the theory of all abelian groups and let X be a set such as cl(X) ∈

M ∈ Mod(TAG), i.e. X is an almost Jonsson set and M is an abelian group. It is well-known that
Fr(X) = Th∀∃(M) is a Jonsson theory. Therefore, TAG is a normal Jonsson theory.

Besides, there are non-normal Jonsson theories. The following example confirms this fact.
Example 2. Let TV be the theory of all vector spaces. It is known that this theory is Jonsson. Let

us consider a vector space that is the semantic model of T and its subspace V ⊆ CTV . The domain
of V is a Jonsson set, and, consequently, is an almost Jonsson set. If X is the domain of V , then
cl(X) = V . However, V is not an existentially closed submodel of CTV , since V may have another
dimension that differs from dimension of CTV . Dimension of V can be formed by an ∀∃-sentence, and
this sentence fails in CTV . According to Theorem 3, V is not existentially closed in CTV ). Thus, TV is
a Jonsson theory that is not normal.

The following theorem is necessary for our study.
Lemma 2. Let T be a perfect normal Jonsson theory. Then T ∗ is also a normal Jonsson theory.
Proof. Firstly we should note that it follows from Theorem 5 that T ∗ is also a perfect Jonsson

theory. Moreover, it is easy to see that T ./ T ∗, which means that

CT = CT ∗ . (1)

Let X be an arbitrary almost Jonsson subset of CT ∗ . Then cl(X) = M ∈Mod(T ∗), and CFr(X) ∈
Mod(T ∗). According to Theorem 4, Mod(T ∗) = ET , therefore CFr(X) ∈ ET , which means that CFr(X)

is an existentially closed submodel of CT . By (1), CFr(X) is also an existentially closed submodel of
CT ∗ . Thus T ∗ is a normal Jonsson theory.

2 Syntactic and semantic similarities of Jonsson theories

In this sections, we describe the notions of Mustafin T.G. that he introduced for complete theories,
and Jonsson analogies of these notions proposed by the first author of this article.

To study and compare complete theories, especially theories of different languages, Mustafin T.G. [1].
used binary relations, which ha called syntactic similarity and semantic similarity. Let us describe them.

We start with the concept of syntactic similarity of complete theories. Let Fn(T ), n < ω be the
Boolean algebra of formulas of T with exactly n free variables v1, . . . , vn and F (T ) =

⋃
n Fn(T ).

Definition 16. [1] Complete theories T1 and T2 are syntactically similar if and only if there exists
a bijection f : F (T1)→ F (T2) such that

1) f � Fn(T1) is an isomorphism of the Boolean algebras Fn(T1) and Fn(T2), n < ω;
2) f(∃vn+1ϕ) = ∃vn+1f(ϕ), ϕ ∈ Fn+1(T ), n < ω;
3) f(v1 = v2) = (v1 = v2).
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The following example of syntactic similarity of complete theories was given in [1].
Example 1. The following theories T1 and T2 of the signature σ = 〈ϕ,ψ〉 are syntactically similar,

where ϕ,ψ are binary functions:

T1 = Th(〈Z; +, ·〉), T2 = Th(〈Z; ·,+〉).

Now we describe the concept of semantic similarity of complete theories. For this, we need the
following definitions.

Definition 17. [1]
1) 〈A,Γ,M〉 is called the pure triple, where A is not empty, Γ is the permutation group of A and

M is the family of subsets of A such that from M ∈M follows that g(M) ∈M for every g ∈ Γ.
2) If 〈A1,Γ1,M1〉 and 〈A2,Γ2,M2〉 are pure triples and ψ : A1 → A2 is a bijection then ψ is an

isomorphism, if:
(i) Γ2 = {ψgψ−1 : g ∈ Γ1};
(ii)M2 = {ψ(E) : E ∈M1}.

Definition 18. [1] The pure triple 〈C,Aut(C), Sub(C)〉 is called the semantic triple of complete
theory T , where C is a domain of Monster model C of theory T , Aut(C) is the automorphism group
of C, Sub(C) is a class of all subsets of C each of which is a domain of the corresponding elementary
submodel of C.

Definition 19. [1] Complete theories T1 and T2 are semantically similar if and only if their semantic
triples are isomorphic.

The following example of the semantic similarity of complete theories was given in [1].
Example 2. The following theories T1 and T2 are semantically similar, where

T1 = Th(〈M1;Pn, n < ω; anm, n,m < ω〉),
M1 = {anm : n,m < ω},
Pn(M1) = {anm : m < ω},

and

T2 = Th(〈M2;Qn, n < ω;Qnm, n,m < ω; bnmk, n,m, k < ω〉),
M2 = {bnmk : n,m, k < ω},
Qn(M2) = {bnmk : m, k < ω},
Qnm(M2) = {bnmk : k < ω}.

It turned out that the above types of similarity are not equivalent to each other.

Proposition 3. [1] If T1 and T2 are syntactically similar, then T1 and T2 semantically similar. The
converse implication generally fails.

Let us recall the definition of semantic property.

Definition 20. [1] A property (or a notion) of theories (or models, or elements of models) is called
semantic if and only if it is invariant relative to semantic similarity.

For example from [1] it is known that:

Proposition 4. The following properties and notions are semantic:
(1) type;
(2) forking;
(3) λ-stability;
(4) Lascar rank;
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(5) Strong type;
(6) Morley sequence;
(7) Orthogonality, regularity of types;
(8) I(ℵα, T ) is the spectrum function.

The following definition was introduced in the frame of Jonsson theories study by first author of
this article in [19].

Let T be an arbitrary Jonsson theory, then E(T ) =
⋃
n<ω En(T ), where En(T ) is a lattice of

∃-formulas with n free variables, T ∗ is a center of Jonsson theory T , i.e. T ∗ = Th(C), where C is
semantic model of Jonsson theory T in the sense of [18].

Definition 21. [19] Let T1 and T2 are arbitrary Jonsson theories. We say that T1 and T2 are Jonsson
syntactically similar, if a bijection f : E(T1) −→ E(T2) exists such that:

1) restriction f to En(T1) is isomorphism of lattices En(T1) and En(T2), n < ω;
2) f(∃vn+1ϕ) = ∃vn+1f(ϕ), ϕ ∈ En+1(T ), n < ω;
3) f(v1 = v2) = (v1 = v2).

The examples of syntactic similarities of two Jonsson theories are given in [21].
As in the case of complete theories, the first author of this article defined in [19] a semantic similarity

between two Jonsson theories.

Definition 22. [19] The pure triple 〈C,Aut(C), Sub(C)〉 is called the Jonsson semantic triple, where
C is a domain of semantic model C of theory T , Aut(C) is the automorphism group of C, Sub(C) is a
class of all subsets of C which are domains of the corresponding existentially closed submodels of C.

Definition 23. [19] Two Jonsson theories T1 and T2 are called Jonsson semantically similar, if their
Jonsson semantic triples are isomorphic as pure triples.

The correctness of this definition follows from the fact that the perfect Jonsson theory has a unique
semantic model up to isomorphism. Otherwise, all semantic models are only elementary equivalent to
each other.

For the convenience of further exposition we introduce the following notation. The syntactic and
semantic similarities of the complete theories T1 and T2 will be denoted T1

S
./ T2 and T1 ./

S
T2 re-

spectively. In the case when we consider Jonsson theories T1 and T2, through T1

S
o T2 will denote the

Jonsson syntactic similarity of theories T1 and T2, and through T1 o
S
T2 Jonsson semantic similarity of

theories T1 and T2.

Theorem 6. [19] Let T1 and T2 are ∃-complete perfect Jonsson theories, then following conditions
are equivalent:

1) T1

S
o T2;

2) T ∗1
S
./ T ∗2 .

An analogous result of Proposition 3 in the case of two Jonsson theories was obtained by Yeshkeyev A.R.

Theorem 7. Let T1 and T2 be two Jonsson theories and let T1 and T2 be Jonsson syntactically
similar. Then T1 and T2 are Jonsson semantically similar.

Thus it is true that

T1

S
o T2 ⇒ T1 o

S
T2

for any two Jonsson theories T1 and T2. That is Jonsson syntactic similarity is a sufficient condition
of Jonsson semantic similarity of theories. There are also some cases when this condition is necessary.

Mathematics Series. No. 4(116)/2024 191



A.R. Yeshkeyev et al.

In this paper, we consider such specific classes of Jonsson theories for which these two relations are
equivalent. We denote this relation by the following:

T1

SS
o T2.

Lemma 3. [21] Any two cosemantic Jonsson theories are Jonsson semantically similar.

The proof follows from the definition of cosemantic Jonsson theories.
The converse result is also true:

Lemma 4. Let T1 and T2 be Jonsson theories and let T1 o
S
T2. Then T1 ./ T2.

Proof. Let CT1 and CT2 be semantic models of T1 and T2, correspondingly. Let T1o
S
T2, then Jonsson

semantic triples (CT1 , Aut(CT1), Sub(CT1) and (CT2 , Aut(CT2), Sub(CT2) are isomorphic as pure triples.
Then it is clear that there exists an isomorphism between CT1 and CT1 , which means that T1 ./ T2.

Thus we obtain that, for any two Jonsson theories T1 and T2 of language L, it follows that

Corollary 1. T1

S
o T2 ⇒ T1 o

S
T2 ⇔ T1 ./ T2.

The definitions of relations of Jonsson semantic and syntactic similarity were also generalized for
classes of Jonsson theories in [21]:

Definition 24. [21] Let A ∈ Modσ1, B ∈ Modσ2, [T ]1 ∈ JSp(A)/./, [T ]2 ∈ JSp(B)/./. We say that

the class [T ]1 is Jonsson syntactically similar to class [T ]2 and denote [T ]1
S
o [T ]2, if for any theory

∆ ∈ [T ]1 there is theory ∆′ ∈ [T ]2 such that ∆
S
o ∆′.

Definition 25. [21] The pure triple 〈C,Aut(C), E[T ]〉 is called the Jonsson semantic triple for class
[T ] ∈ JSp(A)/./, where C is the semantic model of [T ], AutC is the group of all automorphisms of C,
E[T ] is the class of isomorphically images of all existentially closed models of [T ].

Definition 26. [21] Let A ∈ Modσ1, B ∈ Modσ2, [T ]1 ∈ JSp(A)/./, [T ]2 ∈ JSp(B)/./. We say that
the class [T ]1 is Jonsson semantically similar to class [T ]2 and denote [T ]1 o

S
[T ]2, if their semantically

triples are isomorphic as pure triples.

3 Properties of classes of S-acts

In this section, we show our main result using the concepts from the previous sections, for the
special class of structures, namely for S-acts. Let us shortly describe this class.

Definition 27. [1] By an S-act over a monoid S (sometimes it is called S-acts) we mean a structure
with only unary functions 〈A; fα : α ∈ S〉 such that:

1) fe(a) ∀a ∈ A, where e is the unit of S;
2) fαβ(a) = fα(fβ(a)) ∀α, β ∈ S, ∀a ∈ A.

The following results show that any complete theory has some syntactic similar theory.

Theorem 8. [1] For every theory T2 in a finite signature there is a theory T1 of S-acts such that
some inessential extension of T1 is an almost envelope of T2.

Theorem 9. [1] For every theory T2 in an infinite signature there is a theory T1 of S-acts such that
some inessential extension of T1 is an envelope of T2.
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Now we present the settlement of our research’s problem and the main result of our paper.
Let T be a Jonsson L-theory, ET be a class of the existentially closed models of T , K ⊆ ET . Let us

construct a Jonsson spectrum JSp(K) of the class K and on this spectrum we introduce the following
relations: cosemanticness, Jonsson syntactic similarity and Jonsson semantic similarity of Jonsson
theories. It is obvious that all these relations are equivalence relations, so we obtain a factor-set of
the Jonsson spectrum of K with respect to relations introduced that we denote by JSp(K)/SS

./
. [T ] is

an equivalence class of a theory T from JSp(K)/SS
./
. The examples of such classes do exist and let us

demonstrate some of them. Let us consider RSp(K) which is a partial case of JSp(K). We introduce
the relation of Jonsson syntactic similarity of theories on RSp(K). According to Corollary 1, all theories
from the equivalence class [T ] ∈ RSp(K)/S

o
are also Jonsson semantically similar and cosemantic. So

we get RSp(K)/SS
./
. According to Theorem 2, in any cosemanticness class in Robinsonian spectrum,

there is only one theory with respect to logical equivalence.

Theorem 10. Let T be a Jonsson L-theory, K ⊆ ET , [T ] ∈ JSp(K)/SS
./

be an ∃-complete perfect
normal class (i.e. such that all Ti ∈ [T ] are perfect normal Jonsson theories). Then there exists
[T ′Π] ∈ JSp(K ′)/SS

./
, where K ′ is a class of some S-acts in the corresponding language, such that [TΠ]

is an ∃-complete perfect class and [T ] is Jonsson syntactically similar to [T ′Π].

Proof. Let [T ] be a perfect normal ∃-complete equivalence class in JSp(K)/SS
./
. Since the center

T ∗ of this class is a complete theory, according to Theorem 8 in the case of a finite signature and
Theorem 9 in the case of an infinite signature, there is a complete theory of the S-act TΠ such that
T ∗

S
./ TΠ. But then, according to Proposition 3, it follows that T ∗ ./

S
TΠ. Since the concept of type is a

semantic notion (Proposition 4), the concept of a formula is also semantic. It follows from Theorem 1
and Theorem 2 that the properties of JEP and AP are formulated using some L-formulas, i.e. JEP
and AP are semantic concepts. It is clear that ∀∃-axiomatizability is also a semantic property, since
all axioms are true in the semantic model. This means that the property "to be a Jonsson theory" is
a semantic concept, and therefore TΠ is also a Jonsson theory.

Since [T ] is a normal class the center T ∗ is a normal theory as well according to Lemma 2. In
this manner, the property of being normal Jonsson theory is also transferred to TΠ, as this notion is
semantic. It means that the theory TΠ is a normal Jonsson theory.

Since T ∗ is a perfect Jonsson theory, then semantic model CT of the class [T ] is ω+-saturated. But
T ∗ ./

S
TΠ and, by definition, the semantic triples of these theories are isomorphic, then C[T ]

∼= CTΠ
,

therefore CTΠ
is also ω+-saturated and therefore TΠ is a perfect Jonsson theory. Let K ′ be a class of

S-acts such that TΠ ∈ JSp(K). Then the equivalence class [TΠ] ∈ JSp(K ′)/SS
./

is a perfect class, since
all theories in this equivalence class has the same semantic model, which is ω+-saturated.

Consider JSp(CTΠ
). Since the theory TΠ is perfect then |JSp(CTΠ

)/./| = 1 due to the fact that
TΠ is normal. Let ∆ ∈ JSp(CTΠ

), i.e. ∆ is Jonsson theory and ∆∗ = TΠ. We show that ∆ is perfect
∃-complete Jonsson theory. By virtue of T ∗ ./

S
∆∗, then from the definition of semantic similarity for

complete theories it follows that ∆ is a perfect Jonsson theory. If ∆ is ∃-complete, then we take ∆ and

then by Theorem 6 it follows that T
S
o∆ = T ′Π. If ∆ is not ∃-complete, then we carry out the following

replenishment procedure for this theory. As ∆ ⊂ TΠ, then for any existential sentence ϕ, of the
signature language of ∆ such that ∆ 0 ϕ and ∆ 0 ¬ϕ, but ϕ ∈ TΠ, consider the theory ∆′ = ∆∪ {ϕ}.
Since ∆ ⊂ ∆′ ⊂ TΠ, and ∆, TΠ are Jonsson theories, it follows from Proposition 1 that ∆′ is also a
Jonsson theory. If ∆′ is not ∃-complete, then we continue the procedure of adding existential sentences
ϕ ∈ TΠ until ∆′ it becomes ∃-complete. We make this procedure for each T ′ ∈ JSp(K ′)/SS

./
and obtain

an ∃-complete equivalence class.
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Let ∆ = ∆ ∪ {ϕ|ϕ ∈ Σ1, ϕ ∈ TΠ} is the result of replenishment procedure of the theory ∆, i.e.
∆ is ∃-complete and at the same time ∆ is a Jonsson theory. We show that ∆ ∈ JSp(CTΠ

), hence
the perfection of the theory of ∆ will follow from here. Suppose the contrary, let ∆ /∈ JSp(CTΠ

),
then CTΠ

/∈ Mod(∆), but this is not true since CTΠ
|= ∆ and for any sentence ϕ ∈ ∆\∆, ϕ ∈ TΠ.

Consequently, CTΠ
|= ϕ and CTΠ

∈ Mod(∆). We obtain a contradiction, i.e. ∆ ∈ JSp(CTΠ
). But CTΠ

is saturated, therefore, ∆ is a perfect Jonsson theory. Then by Theorem 6 we have T ∗
S
./ ∆

∗ ⇔ T
S
o∆,

where ∆ = T ′Π. It follows that, for each theory T ∈ [T ] ∈ JSp(K)/SS
./
, there exists such theory

T ′Π ∈ [T ′Π] ∈ JSp(K ′)/SS
./

such that T
S
o ∆. Thus, according to Definition 24, the class [T ] is Jonsson

syntactically similar to the class [T ′Π].

It should be noted that, in this manner, the results of [21] are special cases of Theorem 10 considering
the theories as single-element equivalence classes in some Jonsson spectrum.
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