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P.B. Abdimanapova!, S.M. Temesheva?*

! Almaty Technological University, Almaty, Kazakhstan;
2 Al-Farabi Kazakh National University,
Institute of Mathematics and Mathematical Modeling, Almaty, Kazakhstan
(E-mail: peryzat7j@mail.ru, temeshevasvetlana@gmail.com,)

Well-posedness criteria for one family of boundary value problems

This paper considers a family of linear two-point boundary value problems for systems of ordinary differential
equations. The questions of existence of its solutions are investigated and methods of finding approximate
solutions are proposed. Sufficient conditions for the existence of a family of linear two-point boundary value
problems for systems of ordinary differential equations are established. The uniqueness of the solution
of the problem under consideration is proved. Algorithms for finding an approximate solution based on
modified of the algorithms of the D.S. Dzhumabaev parameterization method are proposed and their
convergence is proved. According to the scheme of the parameterization method, the problem is transformed
into an equivalent family of multipoint boundary value problems for systems of differential equations. By
introducing new unknown functions we reduce the problem under study to an equivalent problem, a Volterra
integral equation of the second kind. Sufficient conditions of feasibility and convergence of the proposed
algorithm are established, which also ensure the existence of a unique solution of the family of boundary
value problems with parameters. Necessary and sufficient conditions for the well-posedness of the family of
linear boundary value problems for the system of ordinary differential equations are obtained.

Keywords: Family of linear boundary value problems, multipoint boundary value problem, existence of
solution, singular solution, well-posedness, necessary and sufficient condition.

Introduction
Problem statement and research methods

This paper is devoted to the study of a family of linear boundary value problems for differential
equations

WA ot S, (0 e ] < (0.7) o
Bi(z)v(z,0) + Ba(x)v(z,T) = d(x), z € [0,w], (2)
where (n x n)-matrix A(x,t) e n-vector-function f(x,t) are continuous on [0,w] x [0,T], B1(z), Ba(z)

and n-vector-function d(x) are continuous on [0,w]|, x is a parameter of the family (z € [0,w]);
[A(z, D)l < ao, [lv(z, t)]| = max [Jvi(z, D).

,n

*Corresponding author.
E-mail: temeshevasvetlana@gmail.com
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P.B. Abdimanapova, S.M. Temesheva

In the present paper problem (1), (2) is investigated by the parameterization method [1].

The originallity of the parameterization method lies in the simple idea of introducing parameters at
some points of the set on which the boundary value problem is considered, which subsequently allows
us to construct an algorithm for finding a solution, obtain sufficient solvability conditions, establish
solvability criteria for linear and nonlinear two-point boundary value problems, multipoint boundary
value problems, boundary value problems with impulse influence, singular boundary value problems,
nonlocal boundary value problems for differential equations, loaded differential equations, integro-
differential Fredholm equations, differential equations with delayed argument, partial differential equa-
tions and others. These results are presented in the works of Dzhumabaev and his students (Assanova
[2], Temesheva [3-7|, Orumbayeva [8-10|, Uteshova |11, 12], Iskakova [13, 14|, Imanchiyev [15, 16],
Bakirova [17], Kadirbayeva [18], Tleulessova [19], Abildayeva [20], Abdimanapova [21]).

Dzhumabaev and Assanova [22] studied a nonlocal boundary value problem for systems of linear
hyperbolic equations with mixed derivative. A special substitution allowed to reduce this problem to
an equivalent boundary value problem, which can be considered as a family of two-point boundary
value problems for systems of ordinary differential equations, where the spatial variable servers as a
parameter of the family.

This approach can also be used to study the linear nonlocal boundary value problem for a system
of partial differential equations (m =1,2,...)

oty o"Mu n
8758:67” —A(xat)axim—i_f(xat)a UER ’ (x7t)€ [07(")] X(OvT)7
oFu 0%
%xzo_wk‘(t)? tE[O,T], k_oala"'7m_17 @_07
0" u(x,t) 0"Mu(z,t) B
B (x) g |, + By(z) dom | d(x).

This fact motivated us to investigate problem (1), (2).

In this paper problem (1), (2) is investigated by the parameterization method with a modified
algorithm. Sufficient conditions for the existence of a unique solution are obtained. The well-posedness
criteria for problem (1), (2) are established.

Notation

e N is a natural number;

e U is a natural number;

e Q. =[0,w] X [(r—1)h,rh), h=T/N, r =1, N;

e C([0,w],R™) is the space of continuous functions d : [0,w] — R™ with the norm ||d|jo =

max ld()]];
z€[0,w
. C([O w] x [0 T] R™) is the space of continuous functions v : [0,w] x [0, 7] — R™ with the norm
[olly = oz, t)]|;
(0)e[0 X [0,7]
o the index r takes on the values 1,2,...,N;

o the index s takes on the values 1,2,..., N + 1;

o C([0,w]x[0,T], ., R™) is the space of systems of functions v(z, [t]) = (vi(z, 1), v2(z, 1), ... ,v5(z,1))

with the norm |jv|]s = max sup |lv.(z,t)|, where the function v, : Q, — R"™ is continuous
r=1,N (z,t)eQ,
and has a finite limit at ¢t — rh — 0 uniformly with respect to x € [0, w] for all r;
o C([0, w], RMN*1) is the space of functions A(z) = (A\1(x), Aa(x), ..., An11(z)) with the norm

IAlls = max max |[As(x)|, where Ag : [0,w] — R™ are continuous for all s;
s=1,N+1 z€[0,w]

6 Bulletin of the Karaganda University



Well-posedness criteria for one ...

C([0,T], R™) is the space of continuous functions v : [0,7] — R"™ with the norm |jv||s =

s o)

I is the identity matrix of size n;
O is the zero matrix of size n X n;
O is the first column of the matrix O.

1 Solvability of a family problems (1), (2)

Definition 1. v*(z,t) € C([0,w] x [0,T], R™), continuously differentiable with respect to t and
satisfying equation (1) and boundary conditions (2) for each fixed = € [0,w], is called a solution of the
problem (1), (2).

Problem (1), (2) is investigated by the parameterization method [1]. For a fixed N, we make the
partition [0,w] x [0,T) = U Q,.

According to the scheme of the parameterization method, the problem (1), (2) is transformed into
the equivalent family of multipoint boundary value problems with parameter for systems of differential
equations

v,

ot 5

= Az, 1)(0r + A (2)) + f(2,1), (3)
(2, (r = 1)h) =0, (4)
Bi(x)A(x) + Ba(2) An1a(2) = d(2), ()
(6)

() 4+ lim v.(x,t) — Apy1(z) =0, r =1, N, 6
t—rh—0

where (z,t) € Q,, x € [0,w], \r(z) = v(z,(r — 1)h), Ayyi(x) = t—ljfl’riov(x’t)’ Up(z,t) = v(x,t) —
A-(z), 7 =1, N. A solution of problem (3)—(6) is a pair (A\*(x),v*(z, [t])) ()\*(x) € C([0,w], RMN+1),

v*(w, [t]) € C([0,w] x[0,T7], ., RMV )) such that for each r is continuous and continuously differentiable
with respect to ¢ on Q, function v}(z,t) at A\.(z) = N\:(z) satisfies equation (3), condition (4), and
M(#), Mepy (), Xi(@). lim B (e1), satisly (5), (6).

If the family of pairs (/\*( ),v*(x,[t])) is a solution of the family of problems (3)—(6), then the
family of functions

(3, 1) = Ni(x) +0r(z,t) for (z,t) € Qr, r
L Ay (@) for ze€[0,w], t=

is a solution to the family of boundary value problems (1), (2

If the family of systems of functions v(z,[t]) = (vi(z,t),v2(x,t),...,Un(z,t)) is a solution to
problem (1)-(2), then the solution to problem (3)-(6) is the pair (A(x),v(x, [t])) with elements )\( )

(Al( ) >‘2( ) 'a/XN-i-l(x))? /):T(x) = i)}(l‘ (T - 1)h)7 r=1,N, /XN-I-l(x = t_lgjr_,rio’UN(w7t)7 [ ]
Uz, [t]) = @1 (2, 1), 0a(2, 1), . .., a(x, 1)), r = Op(z,t) — O(z, (r — 1)R), (2,8) € Qy, 7 =1, N.

In problem (3)—(6), the initial conditions (4) appeared for elements of the family of systems of
functions v(z, [t]). For a known A, (z), the Cauchy problem (3), (4) on €, is equivalent to the family

of Volterra integral equations of the second kind:

~—

)
)

t t t

B ) = / Az, 7)o, (2, 7)dr + / Az, 7)dr - M(x) + / f(@,7)dr. (7)

(r—=1)h (r—1)h (r—1)h

Mathematics series. No.4(112)/2023 7



P.B. Abdimanapova, S.M. Temesheva

In (7), replacing v, (x, 7) by the right hand side of (7) and repeating this process v times, we obtain
the following representation of the function v, (z,t):

Ur(z,t) = Dy p(z,t) - \e(x) + Fp(z,t) + Gy p(,t,0), (8)

where

t

1
D,/VT(JI,t) = / A(]I,Tl)dﬁ + / A(JZ,T1) / A(aﬁ,Tg)dTQdTl + ...+
(r—=1)h (r—1)h (r—1)h

T

/ Az, 1) / Az, 12) / A(z,1,)dTy ... drodTy,

(r=1)h (r—1)h (r—1)h

t T1

t
Fyp(i,1) = / f (@, m)dm + / Az, ) / f(2,72)dradrs + ...+
~1)

(r=1)h (r=1)h (r~1)h
t Ty—2 Ty—1
+ / Az, 1) ... / Az, 1y-1) / f(z,7,)drydry,—1...dm,
(r=1)h (r=1)h (r=1)h
t Ty
Gyr(t,z,v) = / Az, 1) / A(z,,)0p(x, 7))dTy . . . dT1,
(r—=1)h (r—1)h

te[(r—1)h,rh),r=1,N.
Determining from (8) the limits

. 1i1%1 OﬂT(x,t) =Dy, (x,rh) - \(z) + Fp(z,7h) + Gy p(Th,z,0), x€[0,w], 7r=1,N,
—rh—

substituting them into (5), (6) and multiplying (5) by h > 0, we obtain the family of systems of linear
algebraic equations with respect to A.(z), x € [0,w]:

hBl (.%')/\1 (.T) + th(x))\N+1(a:) = hd(:b‘), (9)

(I + Dyy(z,mh)) A\ (z) — M1 (z) = —=Fyp(z,7h) — Gy (Th,z,0), r=1,N. (10)
We write system (9), (10) in the form:

Qu(h,2)A(x) = —F,(h,z) — Gy (h,2,7), A(z) € C([0,w], R*VFD),

where
hBi(z) O o ... 0 hBs(z)
I+ Dy1(z,h) I o .. 0 0
Qhay=| O Dl S0 7
0] 0] o ... —I 0]
0 0 O ... I+Dyn(x,Nh) —I

8 Bulletin of the Karaganda University



Well-posedness criteria for one ...

F,(h,x) = (—hd(z), Fy1(h,z), Fy2(2h,x),...,F, N(Nh,z)),
Gy (h,z,0) = (00, G,y (h, 2,0), Gya(2h, 2,0), . .., Gy n(Nh, z,7)).

As can be seen, the process of finding a solution to problem (1), (2) is reduced to solving a family of
systems of linear algebraic equations (10) for some v(z, [t]) and solving the family of Cauchy problems
(3), (4) on Q, when \.(z), r =1, N is found.

Let us describe the algorithm for finding a solution to problem (3)—(6). Let the matrix @, (h,x) be
reversible for all z € [0, w].

Step 0. (a) The family of parameters AV (z) is found from the equation Q, (h, z)A(z) = —F, (h, z).

(b) We determine the components of the system of functions 9(9)(z, [t]) by solving the Cauchy
problems (3), (4) on Q, at A (z) = AV (z), r = T, V.

(c) On [0,w] x [0,T] we define the function

v(o)(x,t) _ { )\%23(3;) + ﬁﬁo)(x,t) for (z,t)€Q,, r=1,N,
AN () for ze€0,w], t=T.
Step 1. (a) The family of parameters A()(z) is found from the equation Q,, (h, z)A(x) = —F, (h,z) —
G, (h,z, o).
(b) We determine the components of the system of functions o(!)(z,[t]) by solving the Cauchy
problems (3), (4) on Q, at A\, (x) = )\fnl)(fv), r=1,(N+1).
(c) On [0,w] x [0,T] we define the function

Wy = { MW@ +T @) for @neo, r=TN
’ )\g\lfzrl(x) for ze€0,w], t=T.
At the k-th step, we find the pair (A\®)(z), %) (z, [t])), k = 0,1,2,.... On Q we define the piecewise
continuous function

g = { W@ @) for e, r=TN,
7 )\5\12_1(3:) for ze0,w], t=T.

Condition 1. For some h > 0: Nh =T, v and for any = € [0,w] the matrix Q, (h,z) : R*N+D
R™V+D s invertible and the following inequalities are satisfied:

1(Qu (B, 2) M| < Y (hy ) < 2 (h),

qy(h) _ ’}/y(h){eaoh o Z (CLO.}L)J'} 1 (11)

Jj=0

The following statement establishes sufficient conditions for the feasibility and convergence of the
proposed algorithm. It should be noted that this statement ensures the existence of a unique solution
of the family of boundary value problems with parameters (3)—(6).

Theorem 1. Let Condition 1 be met. Then the sequence of pairs (A*)(z), 7% (z, [t])) converges to
the unique solution (A*(x),v*(x, [t])) of problem (3)—(6) and the following estimates hold true:

s @) < @) e 19
A" = A ls < 7 W) A AV, (12)
55 (2, 1) = 5P (2, 8)|| < (e~ — 1) | A (2) — AP ()], (13)

where k =1,2,..., (z,t) € Q,, r=1,N.

Mathematics series. No.4(112)/2023 9



P.B. Abdimanapova, S.M. Temesheva

Proof. The continuity of the matrices A(x,t) and By (z), B2(x) on [0,w]x [0, T and [0, w], respectively,
implies the continuity of the matrix Q, (h,z) : R*N+D — R"(N‘H) on [(), w]. Let us fix 7, T € [0, w].
The matrix (Q,(h,z))~' : R*V+1) 5 RMN+D s continuous for all z € [0,w], since the inequality
1@ ) — (@, 2)) | < 22(0)Qu(h,2) — Qu(h, )| holds.

The solution of problem (3)-(6) is found by the algorithm. Solving the equation @, (h,z)\(x) =

F,(h,z), we find X9 (z). Since the matrix (Q,(h,z))"! and the vector F,(h,z) are continuous for
all z € [0,w], we have A (z) € C([0,w], R*N+1D) and

[y

v—

||)\(0)H3 < v, (h)h max {1,

}max{uduo,ufu }.

=0

.

For any r and = € [0,w], we find the function s )( ,t) from the Cauchy problem (3), (4) with

M) = 37 ()
vy
ot

= Az, )0, + Az, )N (z) + f(z,t), To(z,(r—1)h) =0, r=1,N.

Then for 7\ (x,t) we have the estimate
158 (&, )] < (eI — 1) A (@) | + (¢ = (r = Dh)e =TI ],

whence it follows that
[Ty < (e — 1)[]AO |3 + he (| £]]1.

Then, following the algorithm, we solve the equation Q, (h, z)\(z) = —F,(h,z) — G, (h,z,7®) and
find (M) (). We have

INY =XV 5 = || = (Qu(h,2) ™" - Gu(h, 2, 5O)|| < 3 (h) max |Gy (rh, 2, 5@} <
r=1,N
rh Tv—1 h)
~ aph)” |
<wmmac{ [ a0 [ ali®@n)ldn..dn} < () 2 00,
r=1,N v
(r—=1)h (r—1)h
We define the components of the system of functions o1 (z, [t]) = (’1751)(x,t),'17£1)(a:,t), ceey ﬁg)(x,t))
by solving the Cauchy problem (3), (4) with A\, (z) = )\511)(33):
v,

o = Al )5, + Az, )2V (2) + f(z,t), p(z,(r—1)h)=0, r=1,N.

The difference (5,(})(90, t) — 7 (x,t)) is estimated as follows:
1580 (2, ) = B (,1)|| < (=DM — 1) AP (@) = A ()]
We assume that the pair (A®=D (), 5+~ (z, [t])) is determined and for all (z,t) € Q, the following

inequalities hold:
A~ XDy < g, (B) A2 — AEI],
[ (@, 1) = 32 (@, )] < (eI — 1) IAFD (@) = AF2 ()] (14)

r

At the k-th step of the algorithm, solving the equation Q, (h, 2)\(z) = —F, (h, z) — G, (h, z,7~1),
we find A(®) (). Taking into account (14), we establish that

A — AE=D 13 < g, (R)IAFD — AE=D)50 k=23, (15)
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We define the components of the system of functions o) (z, [t]) = ('17§k) (x,t), 5§k) (x,t),..., 51(5) (x,t))

by solving the Cauchy problem (3), (4) with \,(z) = ) (z):
vy
ot

= Az, )0, + Az, )OAP (2) + f(2,t), Up(z,(r—1)h)=0, r=T1,N.

For all (z,t) € Q,, r=1,N (k=1,2,3,...) we estimate the difference (T)ﬁk) (x,t) — T)ﬁk_l)(az,t)):

189 (2, ) = 5D (@, )] < (eI —1)[|AF (@) = ALV (). (16)
By the condition of Theorem, g, (h) < 1, so it follows from (15), (16) that the pair (A®) (z), 7 (z, [t])),
k=0,1,2,..., converges to (\*(x),0"*(z,[t])), the solution of problem (3)-(6) in C([0,w], RMN+1) x
C([0,w] x [0,T],Q,, R™Y),
It is not difficult to establish the validity of the inequalities:

h+0) _ )y, < 2B m o)
A0~ Xy < B AR — D, a7)
1—g*(h) . (aoh), _
) _ 1-aq(h)
IA® = A0 < T2, () O O,
[55F0 (2,1) — 5 (2, 1)]| < (eE==DM) — 1) IAEFD (z) — AF) ()], (18)

55 (,) = 5 (@, 1) < (e20U=C=DR — 1) AP (2) — XD (a)]],

(v,t) € Q., 7 = 1,N, k = 1,2,.... In the inequalities (17), (18), letting £ — oo, we establish the
validity of the estimates (12), (13).

Let us show the uniqueness of the solution of problem (3)—(6). Let v*(x,t) and v(z,t) be two
solutions of problem (1), (2). Then the pairs (A\*(x),v*(z, [t])) and (X(x) v(z, [t])) are solutions to the
boundary value problem (3)—(6), here

X (z) € C([0, w], RV A*(2) = v*(z, (s —1)h),s = 1, N + 1,
vy (2, [t]) € C([0,w] x [0,T], @, R™Y),

T (2,t) = v* (2, t) — v*(x, (r — Dh), (z,t) €Qn, r=1,N,
A@) € C([0, w], R*N ) X(2) =B(x, (s — 1)h), s=TL,N+1,
i, [f]) € C(0,0] x [0,7], 2, R™),
or(z,t) =0(z,t) — 0(x, (r — 1h), (2,4)€Q,, r=1N.

Under our assumptions, the following equations hold:

t ¢
Uy (x,t) / A(z, 7)oy (z, 7)dT + / A(z,7)dT - X3 () + / fx,7)dr,
(r—1)h (r—1)h (r—1)h
t t t
a(x,t) = / A(]),T)%T(JJ,T)dT + / Az, 7)dT - M\ () + / f(z, T)dT,
(r=1)h (r—=1)h (r—=1)h

Q;l(h,x))\*(x) = _(Fu(h>x) + Gu(hvxaa*))a
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Q; M (h,2)A(x) = —(Fy(h, 2) + Gy (h, 2,7)).

Then the following inequalities are true
7% =¥l < (e = 1) - |3 = s, (19)

A" = Alls < @ (R) X" = Alls.
Hence, by virtue of inequality (11), A*(z) = A(z). Then from (19) we obtain that v*(z,t) = (x, t)
for (z,t) € [0,w] x [0,T]. Theorem 1 is proved.
Since problem (1), (2) and problem (3)—(6) are equivalent, the following statement holds true.

Corollary 1. Let Condition 1 be met. Then the sequence v¥)(z,t) (k= 0,1,2,...) converges to the
unique solution v*(x,t) of problem (1), (2) and the following estimates are true:

Vu(h)eaoh ) (CLOh)V ((eaoh 1

* _ 0, <
e S R

max  max |[v(z, (s — Dh)|| + h€a0h||f||1> -
s=1,N+12€[0,w]

2 Well-posedness criteria for the family of problems (1), (2)

Definition 2. The boundary value problem (1), (2) is called well-posed if for any f(z,t) € C(]0,w] x
[0,T],R™), d(z) € C(]0,w],R™) it has a unique solution v(z,t) and

lolly < & max { ], 111},

where K is a constant, independent of f(z,t) and d(z). The number K is called the well-posedness
constant of problem (1), (2).

Let us consider the equation

%Q*(h, 2)\(z) = —Fu(h, A, f.d,x),  Az) € C([0,w], R"N ),

1
where Q. (h,x) = le Qu(h,x), Fi(h, A, f,dx)= le EFV(h’ x).

Theorem 2. The boundary value problem (1), (2) is well-posed for all 2 € [0,w] if and only if there
exists hg € (0,7 such that for any h € (0,hg] : Nh = T there is a number v = v(h), such that the
matrix Q, (h,z) : RMN+1D — RN+ g invertible and the following inequalities hold:

1(Qu(hy )~ < 7 (h), (20)
() =rwmfent -3 0} <1 (21)
7=0

Proof. The sufficiency of the conditions of Theorem 2 for the well-posedness of problem (1), (2)
follows from Corollary 1.

Necessity. Let problem (1), (2) be well-posed with a constant K. Problem (1), (2) for every fixed
T € [0,w] is a linear two-point boundary value problem for the ordinary differential equation:

dv

== Ao+ f(t), te(0,T), DeR" (22)

~ ~

B15(0) + Boo(T) = d. (23)
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~

Here 0(t) = v(Z,t), A(t) = A(Z,1), f(t) = f(@,t),B1 = B1(2), Bs = B(%), d = d(2).
Since for f(x,t) = f(t), ( ) = d we have:
= B < “(z,0)| < K d =K d, | ]
1074 = nas [o* (@, £)] (@eﬁgﬁm’ﬂ\lv (@,t)]| < K max{||d|jo, fll1} = K max{]|d|[, || f[l},

then the correct solvability of problem (1), (2) follows from the correct solvability of problem (22), (23)
with constant K for every fixed = € [0,w].
For any € > 0 there is hg € (0,71, satisfying the inequality

1 €
T (e0h0 1 aghg) <
aoho (e aoho) < (2+e)(1+e)

Then, by Theorem 3 [1; p. 42|, we obtain the following estimate for all h € (0, ho] : Nh =T

(14+¢e)K

@)1 < =

In view of the arbitrariness of Z € [0, w], we obtain

1Qu () < TR v o,

Let us choose vq such that:

2(1 +5)K{ea0h < (aoh)j} -
h 4! ‘
7=0

For any v, we have there is the inequality

1Qu(hy2) = Qu(ha)ll < S (agh) _{ Z

i
j:y+]_ '7 ] =0

)

Then it follows from the theorem on small perturbations of boundedly invertible operators that for all
v > vy the matrix Q, (h,z) : R*V+1) — RN+ g invertible and

o 1(Q.(h.2) | 21 + 0K
1@ () S T @) - Q) — )]~ k-
2(1+¢e)K

Thus, for all v > vy, h € (0,hy] : Nh =T and z € [0,w], taking 7, (h) =
that the inequalities (20), (21). Theorem 2 is proved.

, we obtain
h

Theorem 3. The boundary value problem (1), (2) is well-posed if and only if for any v there exists
h = h(v) : Nh = T, such that the matrix Q,(h,z) : R*N+D — R™N+1 i invertible for all z € [0, w]
and the inequalities (20), (21) are true.

Proof. Sufficiency. The well-posedness of problem (1), (2) under the conditions of Theorem follows
from Corollary 1.

Necessity. Let the problem (1), (2) be well-posed with constant K. Reasoning as in the proof of
Theorem 2, for a given € > 0 we find hy = ho(e) such that for all h € (0,ho] : Nh =T and z € [0, w]
the matrix Q. (h,z) : R™N+D — R*NV+1) g invertible and

1(Qu(h 1 < LEEE
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We choose hy € (0, ho] such that the relation is satisfied:

2 +e)K {eaom N ZV: (a0hn)? } <1 (24)

h
1 =

Since [[(Q«(h, z)) 7| - [|Q«(h, z) — Qu(h, )| < 0.5, then, by virtue of (24), by the small perturbation
theorem of boundedly reversible operators, for all h € (0,h;] : Nh = T and z € [0,w] the inequality

21l+¢)K
holds /(@ (h,2)) 1| < 2L
2(1 K
Taking 7, (h) = i, by virtue of choosing h € (0, hi] : Nh =T, we obtain the fulfillment of

inequalities (20) and (21). Theorem 3 is proved.

Theorem 4. Let for some v there exist hg = hg(v) such that for all h € (0,hg] : Nh = T and
z € [0,w] the matrix Q, (h, z) : R*W+1) — RMN+1) ig invertible and

- g
1@Qu(h @)l < 5,
where 7 is a constant, independent of h and z. Then problem (1), (2) is well-posed with constant
K =n.

Proof. For any £ > 0 there is hg € (0,T] satisfying the inequality
€

7(ea0ho N aOhO) < m

aphg

We choose hy € (0, hg] : Nhy = T such that the following inequality is satisfied:

v

hll{eaom B Z (aohl)j} <1

1
=0

Then ¢, (h) < q,(h1) < 1 for all h € (0,h;1] : Nh =T and, by Corollary 1, the problem (1), (2) has a
unique solution v*(z,t) and

h)” el —1
*(z,1)]| < aoh(( v (aoh)” 1)
(m,t)eI[{)l,i?x[O,T] o™ (@, 8)ll < e 1—qy(h) V! h )X
v—1 ;
(aoh)J g (aoh)y aoh aoh
x vmaX{Lj;) Ty et maslldlo 1} + e
Letting h — 0 in the above inequality, we obtain that
max }Hv*(w,t)\l < ymax{||dljo, [ f]l1}-

(z,t)€[0,w]x[0,T
Theorem 4 is proved.

Theorem 5. Let problem (1), (2) be well-posed with constant K. Then for any v and £ > 0 there
exists hg = ho(v,e) such that for all b € (0,ho] : Nh = T and x € [0,w] the matrix Q,(h,z) :
RMNHD 5 RN+ s invertible and

(1 +€)K‘

1@ (k)7 < =
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Proof. For a given € > 0, find hg = ho(e) such that for all h € (0,hg] : Nh =T and z € [0,w] the
matrix Q,(h,x) : RMN+D s R™N+1) ig invertible and the following estimate holds true:

. 2+e)K
1(Qx ()M < e

Let us choose hy € (0, hg] satisfying the inequality:

(2 + s)K{eaohl B Z”: (aohl)j} L€

.' .
h1 = 7 1+e¢

1
Since ||(Q«(h,2)) 7| - |Q«(h,2) — Qu(h,2)| < 5 % then, the theorem on small perturbations of

boundedly invertible operators, for all h € (0,h;] : Nh =T and x € [0, w] the following estimate holds

1(Qu(h, )71 < (1+h€)K = 7,(h) and, based on (24),

v

g (h) = %(h){e“oh = (ao,h)j} <<l

= 4! 24¢

Then, according Corollary 1, there exists a unique solution v*(x,t) of problem (1), (2) and the
following estimate holds:

a 1+e)K (agh)” e®h -1
oo ] < oot (DS 0 EE 2L 1)1k oy
(

max
(z,t)€[0,w] x[0,T]

v—1
a h J 1+¢ aph)” , a
xmax{l,z 0 }+ JK (aoh)” o) max{ o, If]11} + eI .

_ |
= 1—qy(h) V!

Letting h — 0, we obtain the estimate max lv*(z, )] < (1 +¢e)K max{||d|o, || f]]1}
(z,t)€[0,w] x[0,T)

Theorem 5 is proved.

Conclusion

The paper proposes a modified algorithm of the parameterization method: an additional parameter
is introduced and at the last point of the segment on which the boundary value problem is considered.
This is the difference between the proposed modified algorithm and the classical algorithm of the
parameterization method. This modification allows us to simplify the structure of the linear operator
equation with respect to the introduced parameters. Sufficient conditions for the existence of a single
solution of the problem (1),(2) and criteria of correct solvability of the family of linear boundary
value problems for the system of ordinary differential equations are obtained. Note that the idea of
the methodology used in this paper has wide prospects of development for the study of problems of
solutions of linear and nonlinear boundary value problems.
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I1.B. Agmuvananosal, C.M. Tememnena?

L Aamamor mexnonozuasy yrusepcumemi, Aamamaos, Kazaxcman;
204 Papabu amundaete Kasax yammok yrusepcumemi;
Mamemamura stcone mamemamurasy modeavdey urncmumymat, Aamamo, Kasaxcman

IIleTrTik ecenTin Oip yiipiHiH KUCHIHIbI IHENTiM/IIJTiK
KpUTepHitjaepi TypaJibl

Maxkanana auddepeHnuaaabk TeHIeyIep XKyiiegepl VIMH CBHI3BIKTBIK, €Ki HYKTEJ IIeTTIK ecenTep yii-
ipi kapacreipburran. OHbIH, 1entiMiepinin 6ap 60y cypakTapbl 3epTTein, XKybIK, mentiMi taby sicrepi
yebiabLaran. 2Koi muddepeHuaiablK TeHaey ep Kyieci YIMH ChI3bIKTHIK, €Ki HYKTeJIi MeTTiK ecenrep Yii-
ipiHiH »KeTKIJTIKTI mapTTapbl aHbIKTAJIFaH. KapacThIPbLIFaAH €CENTIiH MEeNTiMiHiH KAJIFbI3AbIFbI [MOJIEIICHTI.
I.C. 2KymabaeBTbiH, mapaMerpJiey 9iciHin ajropurMiepinig, 6ip Moaudukanuscyl HerisiHie 3eprreserin
€CeIITiH, XKYBIK IIeNMiH Tady aJropuTMIepi OeplIreH >KoHe OJIap/IblH YKUHAKTBLIBIFGI JoJiesaeHres. [la-
paMeTrpJiey oiciHiH cxemachl GoUbIHINA ecen auddepEeHINAIbIK, TEHIEYIED XKyiieaepi YIIiH KOm HYKTEl
MIETTIK ecenTepiHiH SKBUBAJIEHTTI yifipine Typsengipinren. 2Kana 6esriciz pyHKIUsAIapabl eHrizy apKbi-
JIBI 0i3 3epTTesIeTiH ecenTi 6asaMaJibl ecellke, eKiHmIi TeKTi BosibTeppa MHTErpaablk TeHIeyiHe KeaTipemis.
[Tapamerpmerpti mreTTik ecenTep yitipiHiH XKaJFBI3 MIEITiMiHIH 6ap GOJIyBIH KAMTAMACHI3 €TETIH YCHIHBIIFAH
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AJITOPUTMHIH, OPBIHBLIBIFBI MEH *KUHAKTBIIBIFBIHBIH, *KETKLTIKT] mapTTapbl aHbIKTa b 2Koi nuddepen-
MUAJIBIK TeHJIEeyJIep YKYHecl YIIiH ChI3bIKTBIK, IETTIK ecenTep YHipiHiH KUCBIH/IbI MM/ TN HIH, KayKeTTi
JKOHE KETKIJIIKTI MapTTapbl aJIbIH/IbI.

Kiam ce30dep: CHI3BIKTBIK IIETTIK ecenTep Yiipi, KOMHYKTENI METTIK ecem, mentiMHig 6ap 60Iybl, KAJFbI3
IIeNTiM, KUCBIHABI MIETTiMIITIK, KaXKeTTi 2KOHe YKETKIIIKTI 1MapT.

I1.B. A6aumananosal, C.M. Tememmena?

L Anmamumcruti mezmonozuneckuti ynusepcumem, Aamamor, Kasazcman;
2 Kasaxcrutl Hauuonaisruill yuueepcumem umenu ano-Dapabu;
Hncmumym mamemamury u Mamemamuseckozo modeauposanus, Asmamol, Kaszaxcman

O kpuTepusax KOPpPEKTHOI pa3perinMOCTh OJHOTO ceMeiicTBa
KpaeBbIX 3a/1a4

B crarbe paccMoTpeHo ceMelcTBO JIMHEHHBIX JIBYXTOYEUHbIX KPAEBbIX 3324 JJis cucTeM JuddepeHImaiib-
HBIX ypaBHeHuii. VcciemoBalbl BOIPOCH CYIIIECTBOBAHUST €r0 PEIEHUN U MPeIjIoyKeHbl MEeTOIbI HAXOXKIe-
HUSI TPUOJINKEHHBIX PEIIEHUil. YCTAHOBJIEHBI IOCTATOYHBIE YCIOBUS CYIIECTBOBAHMS CEMENCTBA JIMHEWHBIX
JIByXTOYEYHBIX KPAEBbIX 33124 JJIsl CUCTEMbl OOBIKHOBEHHBIX juddepennuaibHbix ypaBHenunii. Jlokasana
€JIMHCTBEHHOCTD PEIEeHUs] PACCMaTPUBaeMoii 3a/1a4u. JlaHbl aJropuTMbl HAXOXKIEHUST TPUOIUKEHHOTO pe-
[TEHUsT UCCIIETyeMOl 3aJ1ar, OCHOBAHHBIE HA OTHON MOMM(PUKAIINN AJITOPUTMOB METOJA IMapaMEeTPU3AIUN
J.C. IxxymabaeBa, u Jjokazana ux cxoauMoctb. [lo cxeme Merosa napamerpusanuu 3ajada 6ymuer npeob-
pa3oBaHa B SKBUBAJIEHTHOE CEMENCTBO MHOIOTOYEYHBIX KPAEBBIX 3aJ1a4 JJjIsi CUCTeM TudbepeHnaaIbHbIX
ypaBHeHui. BBeqisi HOBbIe HeM3BeCTHBIE (DYHKIMM, CBEJIEM HCCIEAYEMYIO 3a/1a9y K SKBUBAJIEHTHON 3ajate,
MHTErpaJibHOMY ypaBHEHUIO BoJibreppa Broporo poja. YCTaHOBJIEHBI JOCTATOYHBIE YCIOBUS OCYIECTBAMO-
CTH, CXOJUMOCTH TPEJIOZKEHHOTO aJITOPUTMa, BMECTE C TeéM 00ECTIEINBAIOIINE CYIIECTBOBAHNE €TUHCTBEHHO-
rO pEIeHnsI CEMECTBa KPAeBhIX 3a/1a4 ¢ mapamerpamu. [lomydeHb HeoOXOAMMBbIE U TOCTATOYHBIE YCIOBHUST
KOPPEKTHOM Pa3pelmMOCTH CeMefCTBa JIMHEHHBIX KPaeBbIX 3aJad [IJisi CUCTeMbl OOBIKHOBEHHBIX Judde-
peHIMATBHBIX yPABHEHUI.

Kmouesvie caosa: ceMeiCTBO JIMHEMHBIX KPAEBBIX 3aJa4, MHOTOTOYEYHAS KpaeBas 3a/a4a, CyIIeCTBOBAHIE
pellenusi, e TUHCTBEHHOE PEITIeHIe, KOPPEKTHAs Pa3peIInMOCThb, HEOOXOAMMOE U JOCTATOIHOE YCJIOBUE.
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Coefficients of multiple Fourier-Haar series and variational modulus
of continuity

In this paper, we introduce the concept of a variational modulus of continuity for functions of several
variables, give an estimate for the sum of the coefficients of a multiple Fourier-Haar series in terms of the
variational modulus of continuity, and prove theorems of absolute convergence of series composed of the
coefficients of multiple Fourier-Haar series. In this paper, we study the issue of the absolute convergence
for multiple series composed of the Fourier-Haar coefficients of functions of several variables of bounded
p-variation. We estimate the coefficients of a multiple Fourier-Haar series in terms of the variational
modulus of continuity and prove the sufficiency theorem for the condition for the absolute convergence
of series composed of the Fourier-Haar coefficients of the considered function class. This paper researches
the question: under what conditions, imposed on the variational modulus of continuity of the fractional
order of several variables functions, there is the absolute convergence for series composed of the coefficients
of multiple Fourier-Haar series.

Keywords: Fourier-Haar series, variational modulus of continuity, coefficients of multiple Fourier-Haar series.

Introduction

It is known that the definition of p-variation functions for one variable was introduced by Wiener [1],
for functions of two variables this definition was given by Clarkson and Adams [2|. Similar questions for
trigonometric and multiplicative systems were considered in the works [3,4]. Let us give the necessary
definitions.

Let f(x1,...x,) be defined on the set [0,1]Y and p = p1 x p2 X ... X py, here p; = {0 = :17? < x} <
.. <zj=1}s; > 1, j=1,..,N is an arbitrary partition of a set [0, 1]V, Variational sum of order p
of the function f(z1,...x,) with respect to the partitions p is called the quantity (1 < p < o0)

S1 1/2’

SN
RO(F) = D D A faf 2 TR RO )

ri=1 ry=1

here
Al(f7 X1,y TN, h17 ceey hN) = 27171:0 Z%n:O(_l)nl—‘rm—‘ran(xl + nlhla o TN + nNhN)a

(z1,...,zN) €0, 1]N,h]~ > O,h;j =gl — gt

J j 77’]':1,2,...8]',‘]':1’2’_”7”'

Variational modulus of continity w;_y/,(f,d1,...,0n) of an order 1 — % of the function f(x1,...xz,) is
called the value

wl—l/p(f7517“'>5]\7) = sup Ng(f)’ (1)
lps1<d;

*Corresponding author.
E-mail: talgat _a2008@mail.ru
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T o
here [p;| = 13;?2{53(% x] 1)
We say that f € V,[0,1]V, 1 < p < oo, if Vj, (f,
C’p[O, 1]N, 1< p< oo, if (Slimowlfl/p(f, 51,...,(5]\[) =
i
continuity was studied by A.P. Terekhin (see [5,6]).
Modulus of continuity w(f, d1, ...,dn) for function f(z1,...zy) is called the value

[0,1]Y) = w;y_ 1p(f;1,..,1) < oo, and if f €
0.. The properties of a variational modulus of

w(f, o1, ...,5N) = Sup(S ‘f(.%'l 4+ hi,..,eN + hN) - f(xl, v, i + hy, ...,:rN) — ...t f({L‘l, ...,IL‘N)’.
0<h;<d;
The functions of the Haar system on the semi-open interval [0, 1) is defined by ho(z) = 1ifz € [0, 1);

ifn=2"4j, ke P=NU{0},0<j<2"and A¥ = [;—;,%),then

ok/2 3 A(kH)
hy(z) =< —2K2 g ¢ Agjﬁ) )
0,2 € 0,1)\ AW

(see [7]).
Then the multiplicative Haar system is defined as follows:

P (B0 oy T) = iy (1) P, (20),

(1, ..., xn) € [0, l)N

The Fourier-Haar coefficients for functions of several variables are determined by the equality:
any,..nn () = fo ) fo (1, oo, N ) Bny (1) By (N )dzy . dXy, N, .oyny € N

This paper researches the questlon: under what conditions, imposed on the variational modulus of
continuity of the fractional order of several variables functions, does the series converge?

where ay,, .. ny (f) are the Fourier-Haar coefficients of the function f. For the case of functions of one
variable, such questions were considered by S.S. Volosivets [8].

1 Formulas and theorems

Theorem 1. Let f € Cp[0,1], 1 < p < oo and ay,(f fo x)dx, n € N. The following
inequality is valid
2k+171 )
P LY -k
Yoo laHP ] <wiiay Figr)22
i=2k

You can see the proof of Theorem 1 in [8].
Further, we are considering the functions of several variables. We need the following auxiliary
statements.

Lemma 1. Let f € V,[0,1]V, 1 < p < oou 0 <, < 1. The following inequality is valid

1 1
W(f, 517 ) 5N)Lp < wlfl/p(fv 517 EREX) 6N)51p§]1<7
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This lemma is an analogue of the corresponding lemma from the work [5], it is proved for the case
of functions of one variable, for functions of several variables, the proof is proved similarly to the one
variable case.

The following theorem gives an estimate for the Fourier-Haar coefficients of two variables functions
in terms of the variational modulus of continuity of the order (1 — 1/p).

Theorem 2. Let f € C,[0,1]V, 1 < p < oo and

ny .y (

1 1
1) :/ / f(@1, e, zN)hn, (21). by (zN)dzy . dey, 1, ...,ny € N,
0 0

the following inequality is valid

hmri-1 2Nl % 1 1 kyt...+k
hypfethy
Z Z |air.in (PP ] Swiigp <f7 BT 2kN> 2 2 g (2)
i=2F1 in=2FN

Proof of Theorem 2. We present the proof for the two variables case [9,10]. In many variables it
is proved in a similar way. Using the definition of the Haar function hy, n,(x,y) = hn, (z) hp, (z) if
ny = 2k 4+ mi,ng = ok2 4 Mo, we have

1 1
ﬂzAAfMWm@%MWWZ

Qny,na (

mq+1

E E
2k1 2k2
= f($, y)hnl (.T)th (y)dmdy =
my m2
2k1 2k2
2mq+1 2mo+1 mq+1 2mo+1
kq+ko NIES! eS| Skl SFkot1
=22 f(z,y)dedy — f(z,y)dedy—
my mg 2mq+1 2mo+1
oF1 oo SF1 1 ko
27]:,1:-11 m2k+1 m%+l m%c-‘—l
271 272 271 2Kk2
— z,y)dxd x,y)dxd
/m1 /Qm2+1 fz,y) y+/ml+1 pgs 1 (@ Y)dzdy |
ok1 oko+1 ok1+1 oko+1

then, replacing the variables taking the shift of the arguments, we get

mq+1 2mo+1
k1+k2 2k1+1 2k2+1 2k1 oko+1 kr—1
_ K —
Anyna (f) ( / (z,y)dxdy — | flz+2 y)dwdy—
mq+1 2mo+1
ok1+1 2k2

2mq+1

ok1+1
mi

ok1

m2+1
2k2

sy S0y 27 dady+
SR +1

m1+1 m2+1
2k1 ok2 L I A
flz427F=t gy 497k 1)dxdy> =

2mq+1 2mo+1

ok +1 ok +1
2mq+1 2mo+1

kq+ko okl +1 ko F1 —ki—1
=22</ / Fa,y) — fla 27870 )

my m2
2k1 oka

—f(ry+27R Y ¢ fla+ 27y 4 2*’“2*1))da:dy> .
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Now, based on Holder and Lemma 1, we have (here 1% + % =1)

< 2@ 2—k1—1
Qny,ng (f) = (k1 +1) (ko+1) |(f(l',y) - f(CL' + ’y)_
Ale A2777,2

kg ke kg v 1 a
—flmy+27 )+ fa+ 27y 4 27R 1))|pd$d3/)p <2k1+k2+2> <

1

P

< 2" u / / o(f,x,y, b1, he)|Pdzd L e <
= 2 S p y Ly Y, N1, 112 Yy k >
ki+1 ko+1 1+k2+2
ms g - ﬁgﬂh ) A< 2 ) 2
h2<211€2_‘_1

k1+kg m; mp+1 mo mo + 1
SQ 2 ‘/p<f7 |:2]€17 2k1 :|7|:2]€27 2k:2 :|>X

1\ 1 \»

X<2k1+k2+2> <2k:1+k:2+2) -
g o5 27 225 ()
o[ ] ) ()

P - ) m; mp+1 mo mo + 1
=2 2 va <f7 |:2k:1’ 2k1 :| ) |:2k27 2k:2 :|> .

Therefore

_r _ m; mp+1 mo mo + 1 p
any iy (F)[P < 2750 HED 720 (Vp (f, Lk 0 } 7 [Qk ka | @
We take ¢ > 0 such that m; =0,1,...,251 —1 and mg = 0,1, ..., 22 — 1 and find partition Em, and 1m,
squares [m ml“} and [M mﬁl} (look (1)) such that

le 9 2k1 2k2 9 2k2
P mp my+1 mo mo + 1 p 5
P 14 B _Z _
(mewmz (f )) = <Vp (f’ [% ok } ’ [2’“2 » k2 ])) 2k1—he
Combining all these partitions of the square [0, 1]? with a diameter no more 2%1, 2%2 accordingly and,

summing inequalities (3), we get

2k1+171 2k2+171 1
k1+ko
. P D _ ——5p—2p
S P <l (fgm g o) 2
i=2k1  =2k2
and since £ we can be made arbitrarily small, then inequality (2) is proved. Theorem 2 is proved.
In the case of one variable functions, a similar estimate for the Fourier-Haar coeflicients was obtained
in [8].
The following theorem gives sufficient conditions for the convergence of double series, composed of
Fourier-Haar coefficients.
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Theorem 3. Let f € C,[0,1]V, 1 < p < oo and

am’m’nN(f):/ / f(@1, oo, zN)hn, (1) By (2N)dxy . dey, 1, ...,ny € N.
0 0

1) Let 8> 0, p > . Then, under the condition of convergence for the series
B_B 1 1
—5-2 5
27 p — ey —
> e Y () F Rl ()
the following series converges

Z Z ’am-..mv (f) p

ni=1 ny=1

2) Let >0,p>03,v> % + %, ~v € R. Then, under the condition of convergence for the series

the following series converges

Z Z )|,y ()] < 0.

7’L11 an

Proof of Theorem 3. We present the proof for the two variables case [9,10]. In many variables it is
proved in a similar way. Consider the case 1).
Using Holder’s inequality and Theorem 2, we have

2kl _q2l+1_1 2k+1_q0l+l_g v 2kl _q i+l 5
)OS ISR IRCGTL B I DED DY B
m=2k n=2! m=2k n=2! m=2k n=21

< @

2kt _q il 7

= (2k2l)1—% Z Z ’amn (f) ’B% < <2k+l)1—;2( —2)B 118 1p (f’ i 1> —

k9l

m=2k n=2! 282
_ okt (1-2-8 1
=2 ( P 2) (fa2k72l

Summing up both sides of the resulting inequality, we have

ok+1_19l+1_1

YUY S a0 <

k=0 =0 m=2k n=21

E+)(1-2_8 1 1 S
<o > 20D (155 ) S e (P <
k=0 1=0 k=1 =l
e (k+)(1-2-8 8 1 1 S 8.8 3 11 .
SCZZQ ( 2)w1_1/p <f’2k’2l (mn) 2 pwl_l/p fvavﬁ -
k=0 =0 m=1n=1
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o0 o0 —(ntm _E_ﬁ B ]_ 1 n+m _
2 ZZQ ( )2 : pwlfl/p (f727n72n 2( )_

m=0n=0
Therefore o o
_B_8 11
S5 mnE R, (1 L) <o
m=1n=1
oo oo
SN Jamn ()17 < 00
m=1n=1
Now we consider the case 2)
2k+1_1 2l+1_1 2k+1_1 2l+1_1 % 27€+1_1 2l+1_1 %
oD ) ama (DP < D0 D0 lamn (HIP YooY (mn)| <
m=2k n=21 m=2k n=21 m=2k n=2!

2’“’ 2!

_ oy—2okH) (v i3 LY ksl
= 27749 ( q 2) wy_ 1/p<f’2k’2l 2 2,

1

Summing up both sides

Theorem 3 is proved.
Theorem 3 is an extension to the two-dimensional case of the corresponding theorem from the

work [8].
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Xaapa / T.B. Axaxanos // Becru. Espas. nan. yu-ta. — 2010. — Ne 6. — C. 57-62.

T.B. Axaxanos', H.A. Bokaes!, /I.T. Marun', T. Axtocyn?

YILH. Tymunes amvmdazo, Eypasus yammowk yrusepcumemi, Acmana, Kaszaxcman;
) ol ol
2 Aprunemondaen, Texac ynusepcumemi, Apaunemon, AKIII

Eceni ®ypre-Xaap KaTapblHBIH KOO PUINEHTTEPI KIHE
BapUaNUAIbIK Y31JTiCCI3TiK MOyl

MakaJsrazia ke afHbIMaJIbl DYHKIMSIAD VIIIH BapUAlMSAIbIK Y31IICCI3IIK MOIYJIHIH YFBIMBI €HIi3iareH,
Oypne-Xaap K03DDUIMEHTTEPIHEH KYPBIJIFaH ecesli KaTapJap/Ibl BApHalAsIbIK, Y3lIicci3 ik Moyt apKpl-
Jbt HGarasay koHe Dypbe-Xaap KOIDOUITMEHTTEPIHEH KYPBUIFAH €Cesli KaTapIapablH a0COTIOTTI KUHAKTA-
JIyBIHBIH TeopeMaJiapbl jpuieiienred. Aspropiap @ypoe-Xaap koadduimeHTTepiHeH KYPbUIFaH ecesi Ka-
TapJIapAblH BApUANUIIBIK, V31IicCi3MiK MOyl apKbIIbl OarajlaHybIH YKoHE KapaCThIPBLIBII OTBIPFaH (DYHK-
nustap KiackiHaH aabiaraH Pypre-Xaap KodbUIMEHTTEpIHEH KYPBUIFAH ecesli KaTapapabiH, abCOTIOTTI
JKHHAKTAJIybIHbIH YKETKUIIKT] mapTsiH pasengered. Kem aitabivans! dyukuusuiapapy (1 —1/p) perri Bapu-
aIuUsIIBIK, Y3LTiCCi3 ik Moy TiHe KaHaai maprrap koiranaa, Oypre-Xaap koadpuimeHTTepiHeH KyphLIFaH
ecesti KaTapsap/IblH a0COTIOTT] KUHAKTAJY JIET€H MOCEJIE 3€PTTEJITeH.

Kiam cesdep: @ypbe-Xaap Karapbl, BapUaIlUsJIbIK, y3liiccizmik momyii, eceni @ypoe-Xaap koaddunment-
Tepi.

Mathematics series. No.4(112)/2023 27


https://doi.org/10.2307/1989593
https://doi.org/10.2307/1989593

T.B. Akhazhanov, N.A. Bokayev et al.

T.B. Axaxanos!, H.A. Bokaes!, JI.T. Marun', T. Axtocyn?

! Bepasutickuti nayuonaavhod yrusepcumem umeny JI.H. Dymusesa, Acmana, Kasaxeman;
2 .
Texaccxuti ynusepcumem 6 Apaurnemone, Apaunemon, CIIIA

Kosdduimuentsr kpaTtHoro psjga @Pypbe—Xaapa m BapualMmOHHBIN
MO/1yJIb HENPEPbIBHOCTU

B crarpe BBemeHO MOHSTHE BAPHAIIMOHHOTO MOJYJIsI HEMPEPBIBHOCTHU It (DYHKIMI MHOTHX MEPEMEHHBIX,
MIPUBEJIEHBI OllEHKAa CYMMbI K03 duimeHToB KpaTHoro psija Pypre—Xaapa depe3 BapUaIllMOHHBIA MOJLY/Ib
HEIPEPBIBHOCTH, U JIOKA3AHBI TEOPEMBI 00 aDCOJTFOTHOM CXOMMOCTHU PsJIOB, COCTABJIEHHBIX U3 KO huIineH-
TOB KpaTHbIX psifoB Pypbe—Xaapa. ABropaMu MCCae0BaH BONPOC 06 abCOMIOTHON CXOMUMOCTH KPATHBIX
psi/1oB, cocTaBjieHHbIX U3 Ko3dddumuenToB @ypre—Xaapa GYHKIMIA MHOTHX TEPEMEHHBIX OTPAHUYEHHON
p-Bapuaruu. [IpuBenena onenka KoadduimeHToB KpaTHoro psina Pypre—Xaapa depe3 BapUAIMOHHBINA MO-
Jy7Ib HEIPEPBIBHOCTU, U JIOKA3aHA TEOPEMA JTOCTATOYHOCTH YCJIOBHS AOCOJIFOTHOM CXOMMMOCTH PSIOB, CO-
craBjieHHbIX 13 Kodddurmenros Pypre—Xaapa paccMaTrpuBaeMoro KJiacca pyHKIMI. 31eCh U3y 9eH BOIIPOC:
«IIpr KakuMX yCIOBHSIX, HaKJIAIbIBAEMBIX Ha BapPHUAIMOHHBIA MOJY/Ib HENPEPBIBHOCTH JIPOOHOrO MOPSIIKA
GYHKIU MHOTUX TEPEMEHHBIX, TMEET MEeCTO abCOIOTHAST CXOIMMOCTh KPATHBIX PS0OB, COCTABJIEHHBIX U3
ko3 PpurmenToB Pypre—Xaapa?»

Kmouesvie crosa: psaasl Pypbe—Xaapa, BAPUAIMOHHBIN MOIY/Ib HETPEPBIBHOCTH, KOI(MMUIIMEHTHI KPATHOTO
psana Pypoe—Xaapa.
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On a boundary problem for the fourth order equation with the third
derivative with respect to time

In this paper, we consider a boundary value problem in a rectangular domain for a fourth-order homogeneous
partial differential equation containing the third derivative with respect to time. The uniqueness of the
solution of the stated problem is proved by the method of energy integrals. Using the method of separation
of variables, the solution of the considered problem is sought as a multiplication of two functions X ()
and Y (y). To determine X (z),we obtain a fourth-order ordinary differential equation with four boundary
conditions at the segment boundary [0,p], and for a Y (y) — third-order ordinary differential equation
with three boundary conditions at the boundary of the segment [0, ¢]. Imposing conditions on the given
functions, we prove the existence theorem for a regular solution of the problem. The solution of the problem
is constructed in the form of an infinite series, and the possibility of term-by-term differentiation of the
series with respect to all variables is substantiated. When substantiating the uniform convergence, it is
shown that the “small denominator” is different from zero.

Keywords: Initial boundary problem, Fourier method, uniqueness, existence, eigenvalue, eigenfunction,
functional series, absolute and uniform convergence.

Introduction

Problems about the vibrations of rods, beams and plates, which are of great importance in structural
mechanics, lead to differential equations with a higher order than the string equation.

The study of many problems of gas dynamics, the theory of elasticity, the theory of plates and
shells comes to the consideration of differential equations with higher order partial derivatives. From
the point of view of physical applications, the fourth order differential equations are also of great
interest (see [1-6]).

In the field of modern science and technology, initial-boundary value problems for fourth-order
equations are of great importance. For example, aircraft wings, bridge slabs, floor systems, and window
panes are modeled as plates with various types of end supports, which are successfully described in
terms of fourth-order equations [7-9].

The monograph by T.D. Dzhuraev, A. Sopuev [10] is devoted to the classification of differential
equations with partial derivatives of the fourth order, the formulation and solution of boundary value
problems for such equations.

In the paper [11], a problem with boundary conditions for a non-homogeneous fourth-order equation
with multiple characteristics and one lower term was considered.

In [12], a boundary value problem for a fourth-order equation of the form

Uggry — Utt = f (.%’, t)

was investigated.

*Corresponding author.
E-mail: meliquziyevadilshoda@gmail.com
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In [13], a problem was solved with initial and boundary conditions for the beam oscillation equation
of the form
a2uzxmc +up = 07

in which a beam of length [ is clamped with ends in a massive vise.

In [14], a boundary value problem for a degenerate higher order equation with lower terms was
studied.

In [15-19], the boundary value problems for a third-order equation with multiple characteristics
containing second derivatives with respect to time were discussed.

The boundary value problems for fourth-order equations with the third derivative in time have
been little studied [20,21].

1 Formulation of the problem

In the domain D = {(z,y) : 0 < x < p,0 < y < ¢} we consider the equation

otu  u
Lu=-——-5==0 1
[u] Ozt ay3 ’ ( )
where p,q € R.
Problem A. Find a solution to equation (1) in the domain D from the class u (z,y) € Cay (D) N
C;Z’;f, (E) such that satisfies the following boundary conditions:

u(0,9) = u(p,y) = ez (0,y) = uea (p,y) =0, 0<y <y, (2)
Uy (2,0) =1 (x),  uyy (2,0) =2 (2),  uyy(z,q) =3(x), 0<z<p, (3)

where 1; (z), i = 1,3 are the given sufficiently smooth functions, and
L0 =di(p) =1 () =4 (p)=0,  ¥i(0)=¢i(p) =0, i=23. (4)

2 The uniqueness of the solution to the problem A

Theorem 1. If the problem A has a solution, then it is unique.

Proof. Let the problem A have two solutions u; (z,y) and ug (z,y). Then the function u (z,y) =
ui (x,y) — ug (z,y) satisfies equation (1) and the uniform boundary conditions. Let us prove that
u(z,y) =0in D.

In the domain D the following identity is valid:

0 0 1
ul [u] = % (qu;p;p - Uzuzx) - 87@/ (uuyy - 2ug2J> + u?}x =0.

Integrating the identity over the domain D, we have

[u (p, y) Uzzx (p, y) —u (07 y) Uzzx (07 y)]dy_

=

[ua: (p7 y) Uz (p, Y) — Uy (07 y) Uzz (07 y)]dy_

Ct—
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Taking the homogeneous boundary conditions into consideration we obtain

. p P q
2/u§ (x,q) d:l:—l—//uixdxdy:().
0 00

From the second term we obtain

Uz =0 = wu(z,y)=z-fi(y)+rf2(y), (z,y)€D.

Assuming x = 0 we get
u(0,y)=fa(y) =0 = faly) =0,

and supposing x = p we attain

u(p,y)=p-fily) =0 = fi(y)=0.

Hence, u (z,y) = 0, (z,y) € D.
Theorem 1 is proved.

3 Existence of a solution to the problem A

In order to prove the existence of the solution of the problem A, we will first consider the following
auxiliary problem: find a nontrivial solution of equation (1) such that satisfies conditions (2) and can
be represented as

u(z,y) =X (z) Y(y). (5)

Substituting (5) into equation (1) and separating the variables, we find the following ordinary
differential equations with respect to the functions X (z) and Y (y):

XW (2) = MNX (z) =0, (6)

Y® (y) = XY (y) =0, (7)

where \* is the split parameter.
Considering the boundary conditions (2), we generate the following problem for equation (6):

{ XW _\1x =, ®)
X0)=X({p =X"(0)=X"(p)=0.

A nontrivial solution to problem (8) exists if and only if

4
P <m>  n=1,2,3,...
p

These numbers are the eigenvalues of problem (8), and their corresponding eigenfunctions have the

following form:
2 ™
X, (z) = \/7 sin —u. 9
() =4/ 55 9)
A general solution (7) has the form

Y, (y) = Crefnv + e~ zkny <C’2 cos (?k,ﬁ) + C3sin (égk‘ny)) , (10)
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4/3 -
where k, = {/\4 = (7;7") ,m € N and Cj, ¢ = 1,3 are unknown constants for now.
According to (9) and (10), it follows from equation (5) that the functions

2
Uun (2,y) = \/; (C’lek"y + e—%k‘ny (Cz cos (?km;) + C3sin (?k,ﬂ))) sin %x

are the particular solutions of equation (1), which satisfy homogeneous conditions (2).
Due to the linearity and homogeneity of (1), the sum of the particular solutions can also be the
solution of equation (1). Taking this into account we will seek the solution of problem A in the form

u(z,y) = \/zz <C’lekny 4 e~ zhny (Cg cos (?lﬂﬁ/) + C3sin (?k,ﬂ) )) sin %m (11)
n=1

Assuming temporarily that the series in (11) and its derivatives converge uniformly and requiring
the function defined by the series (11) to satisfy the boundary conditions (3) we obtain

Uy (2,0 \/>Zzb1nsma:
P n=1

Uyy (2,0) \/; Z oy, Sin —a:
Uyy (z,q) = Y3 () = Engl Y3 sin ?%

where
( knCi — %knCQ + \fkan = Y1p,
k:C, — %k%CQ — \231@2103 = Yoy, (12)
1 1
kiek”qcl + kie_ﬁknq cos (?knq — 237r> Cy + k,%e_iknq sin <\g§knq 27T> C3 = Y3,.
\

We can see from (12) that the numbers 1, are the Fourier coefficients of the function v; (x) when
they are expanded into the Fourier series in terms of sines on the interval (0,p) , i.e

p
Yo = ﬁ 0/ oi(€sin Tede, i=T3

Let us calculate the determinant of the system (12), i.e

1
kn **k;n ékn
2 %[
1 3
3 2 3 2
k2ekna kzgef%k"q cos \2[14: q-— ;) k%efék”q sin \ka q— ;)

_ _ 1 3
= VBkeln A, A= o ¢~ 2knd gin (*gknq - W) .
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Lemma. For an arbitrary positive g, the inequality A > 0 holds .
Proof. Write the determinant in the form

- - 1
A = VB3 IA(z,), Alx,) = 3 4 e V3o gip (:cn — —) ,

3 3
where, z, = \kanq = \gi’/ Atg>0,n€eN.
Find the minimum value of A(x,). To do this, calculate the first order derivative

dA
di‘zn) — 9¢~V3%n gin (g — xn) )
1) When 0 < z, < % , we have A’(z,) > 0 .This means that A(z,) increases at finite discrete

values of x,, , but it does not reach its maximum value. Then the function A(x,) takes its minimum
value at n = 1 and we have the estimation

1 3y T
A(xn)2§+e ‘/glsm(xl—g> =01> 0,

where 77 = ?\3/ Aq.

_ 4
2) If z, > g, then the function A(x,) takes its first minimum when the argument is ?ﬂ and we

achieve 1
> _ —4/\/§7r _
A (xy) 5 (1 e ) =09 > 0.

3) For sufficiently large values of x , it is obvious that the function A(z) tends to % . From here we
find B
A>H= min{51;52} > 0.

Considering the above considerations we conclude that A, > 0 . The lemma is proved.
Hence, the system of equations (12) has a unique solution.
Below, we determine all unkown numbers C;, i = 1, 3:

1

Cl:Z

7#1”]{:;%67%]%‘1 sin (?knq> - ’(/}2,”,1{;%67%]671(1 CcOs <\g§knq + 7T> \/g

“a nk3 9
6t 3 n]

2
1 A —lkng . V3 ™ V3 kng
Cy = A [¢1nkn (e 2" sin (2 knq + 3 €

- ankg <eéknq sin (?knq + 7;) + \ggeknq> + \/ngnkz] ’

_ l 4 knq 1_ *éknq @ E 3 knq *éknq é E _1
C3 = A ll/anne (2 e 2" cog 5 kng + 3 + Yan ke e 2" cos 5 kng + 3 5 .

In what follows, the maximum value of all found positive known numbers in estimates will be
denoted by M .

Taking account condition (4), we integrate ¢ () by parts four times, and 1; (z), i = 2,3 by parts
two times we get the following estimates:

‘\I’ln|
n4

\I’in .
’ ’¢Z| §M| |7 7’:2)37 (13)

n2

l1] < M
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where
P

P
U, = / o9 (€) X, (6) de. / (6 X, (€)de, i=2,3.
0

0

For C;, i = 1,3 we can write the following estimations:

n| —= n| —= n \Iln \Pn \Iln
’C’enq<M<W1’ k”q—i-hi;’e knq_i_‘wfﬂ ’)<M<‘ 1 \+] ?4!_1_] ;134|>’

n 3 ns ns3

n TL

n n _3 3 n| _ ‘Ifn \Ifn \Iln

k2 2 k‘2 n 3 ns ns

1 1 \\ 14
= o (1 <2 ) Lo (2 )) o (0] o)
n n n3 n 3

Theorem 2. If 1 (z) € C*[0,p], i (z) € C?[0,p], i = 2,3 and the corresponding conditions (4) are
satisfied, then the solution of the problem A exists and it is represented by the series (11).

Proof. If the series (11) and its derivatives Uzzzz, Uyyy converge uniformly in the region D, then
the function u (x,y) defined by this series will be the solution of the problem A.

From (11) we have

<> (IG5 + [Col + |G ) | X (@), (14)
n=1

Then, taking account of (13) it is obtained from (14) that

|u(w,y)|§M<Z |‘1f1n| ZI\Ifznl Z‘%n)

n=1 n=1 T3 1 N3

This implies that the series (11) converges absolutely and uniformly.

Now let us prove that the partial derivatives of the series (11) with respect to both variables included
in the equation also converge absolutely and uniformly in the region D. Calculating the derivatives
with respect to y, it follows from (11) we obtain

Fu 3 V3 V3
9 nz:lk: Crebn¥ 4 e~ 2hny (C’gcos (k;ny> —i—C’gSlD( 5 kny Xn (x). (15)

From (15) we determine the estimation

Zk3 (IC1] 57 + |Cal + 1Cal) 1 X, (&)] < M (Z Wil 5~ Mol 5 "“:‘) . (1)

Using the Cauchy-Bunyakovsky and Bessel inequality we attain

<M(21j;"'+\/zr%nr \/zwsn\ zlng)

Vin
<M<z' i A2 H,/zngﬂwgnu zng><oo,

83
' oy?

n=1 n3 n=1 n=1
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where
2

\pn2<H (4):17’ : xpm2<’
nz:l! n|” < %()L?[O;p] ;| ” <

Therefore, the series (16) converges absolutely and uniformly. The absolute and uniform convergence
o o3
of the partial derivative of the fourth order in x series (11) follows from the equality 8—1: = 8—1; .
x y

2
e (x)’ i=23.

Lo [O’Zﬂ ’

Theorem 2 is proved.

Conclusion

The article considers an initial boundary value problem for a fourth-order equation containing the
third time derivative with multiple characteristics. Uniqueness theorems are proved using the method
of energy integrals. The existence of a solution is shown with the help of conditions imposed on given
functions constructed as a series by the Fourier method and a regular solution of this series.
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IO.I1. Anakos!?, JI.M. Meukysuesa?

L @s6excman Pecnybaukacss Fouivim axademuacoiony
B.U. Pomanosckuti amwirdazv, Mamemamuxa uncmumymoi, Tawxenm, ©36excman;
2 Hamanean unotcenepair Ky poavce unemumymo, Hamarean, Osbexcmarn

YakbIT OOUMBIHIIA YIMIHIMNI TYBIH/IBICHI Oap TOPTIHIMNI PeTTi TeHAeY YIIIiH
MIEKaPAaJIbIK €Cell >KANbIH/Ia

MakaJjajga yakbIT OOMBIHINA VIIIHIN TYBIHIBICE 6ap OipTekTi TepTiHII perTTi Jepbec TybIHIBLILI audde-
PEHIMAJIIBIK TEHIEY YIIH TiKOYPBIITHI OOJIBICTAFBI IIEKAPAJIBIK eCcell KapacThIPHLIALI. Koiiblran ecentTiy
MIENTIMIHIH YKAJIFBI3/IBIFBl SHEPrUsl MHTErPasgapbl oficiMeH osesjienred. AHbIMaabLIapabl 6oty 9icin
Kosanbl, ecentiy mermimi X (z) xone Y (y) exi dynkuusansig kebehringici Typinge i3necripineni. X ()
anbikTay yuiiH [0, p] KeciHiciHiH meKapachlHZa TOPT MIEKAPAJIbIK IAPTHL 6ap TOPTIHII peTTi Kapamaibim
nuddepenimanapk Teraeyin, an Y (y) ambikray ymin [0, ¢] xecingiciniy ImekapachlHZa YII IMIEKAPAJIbIK,
mapTel 6ap ymnHIm perTi KapamaibiM auddepeHuaiblK, TeHIeyal ajlaMbi3. bepiiren dyHKIustapra
mIapTTapbl KOIO apKbLIbl €CeNTiH TYPaKThl IIENIiMiHiH 0ap eKeHiri TypaJbl Teopema Jpiesenei. Koii-
BLIFAH €CENTiH IIelriMi MIEeKCi3 KaTap TYPiHie KypPBLIbI, KATAPALIH OapJ/blK, afHBIMAJILLIAPF KATHICThI
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KaTapabl Mytiesien puddepeHimaiay MyMKIHIIN aHbBIKTaJIFaH. BipKaJIbIIThI XKUHAKTAJIYAbI TaOy Ke3iHe
«KiIi OeJIriiry HeJre TeH eMeC eKeHi aHBIKTAJIIbI.

Kiam cesdep: bacrankbl-eTTiK ecen, Pypbe oici, IMIEMIMHIE *KaJFbI3AbIFbl, 6ap OOJIybI, MEHITIKTI MOH,
MeHImKTI GyHKIMs, OYHKITHOHAIBIK KaTap, aOCOMIOTTI KoHe OIPKAJIBINTEI KIHAKTATY.

IO.I1. Anaxos!?, JI.M. Menukysuesa?

! Hnemumym mamemamuru umenu B.H. Pomanoscrozo Axademuu nayr Pecnybrurwu Ysbexucman, Tawmenm,
Vaberxucman;
2 o .
Hamanezarcruil unorcenepro-cmpoumenoroil uncmumym, Hamanean, Ysbexucmar

O rpasmyHOIi 3a7a49e AJisd yPaBHEHUsI Y€eTBEPTOrO MOPsIKa,
coiep>Kalllero TPeThio MPON3BO/IHYIO MO BPEMEHM

B crarbe paccmoTpena kpaeBast 3a/1a4a B IPSMOYTOIBHOM 00JIACTH /1151 OMHOPOAHOTO AU DEPEHITNATHEHOTO
YPaBHEHUsI B YaCTHBIX IIPOU3BOJHBIX YETBEPTOIO MOPsIJIKA, COLEPIKAIIEr0 TPETHIO IPOU3BO/HYIO 110 BPEMe-
HU. EIMHCTBEHHOCTD pellleHns: TOCTABIEHHON 3a/1a9M TOKA3aHa METOJOM WHTErpajioB 3Heprun. Vcmoib3yst
METOJ Pa3/IeIeHus] IePEMEHHDIX, PEIlleHre 3a/a49u UINEeTCs B BUJE NpousBeeHus asyx dyukuuit X (z) n
Y (y). Jna onpenenenus X () noiydaeM OObLIKHOBEHHOE auddepeHnnaabHoe yPaBHEeHNEe YeTBEPTOrO I0-
psiZiKa C YeTHIPbMsi IDAHUYHBIME YCJIOBUsIMM Ha rpaHuiie cermerra [0,p], a mist Y (y) — OOBIKHOBEHHOE
nuddepeHnpraIbHOe yPpABHEHHE TPETHErO MOPSIJIKA ¢ TPEMsl TPAHUYHBIMU YCJIOBUSIMU Ha IPAHUIE CETMEHTA
[0, ¢]. Hanarasi onpeesieHHble yCJIoBUsI Ha 3aJaHHble (DYHKIUM, JOKA3aHA TeopeMa CyIeCTBOBAHUS Pery-
JISIDHOTO DEeIIeHusI 3a/1a49u. Pelerne MOCTaBICHHOM 3a/adu IIOCTPOEHO B BUE OECKOHEYHOIO psifia, 060cC-
HOBAHA BO3MOXKHOCTD IIOYJIEHHOTO JinddepeHnupoBanusl psijia o BCeM IepeMeHHbIM. [Ipu joKa3areibcTBe
PaBHOMEPHOI CXOAMMOCTH YCTAHOBJIEHA OTJIUIHOCTH OT HYJIS «MAJIOTO 3HAMEHATEJIS».

Karouesvie crosa: HagapHO-KpaeBast 3aja4a, Mmetos Pypbe, eIMHCTBEHHOCTD, CYIIECTBOBAHNE, COOCTBEHHOE
3HaveHne, cOOCTBEeHHAsT PYHKIWS, (DYHKIIMOHAIBHBIN psifl, aOCOIOTHASI U PABHOMEPHAST CXOIUMOCTb.
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Boundary value problems with displacement for one mixed
hyperbolic equation of the second order

The paper studies two nonlocal problems with a displacement for the conjugation of two equations of second-
order hyperbolic type, with a wave equation in one part of the domain and a degenerate hyperbolic equation
of the first kind in the other part. As a non-local boundary condition in the considered problems, a linear
system of FDEs is specified with variable coefficients involving the first-order derivative and derivatives of
fractional (in the sense of Riemann-Liouville) orders of the desired function on one of the characteristics
and on the line of type changing. Using the integral equation method, the first problem is equivalently
reduced to a question of the solvability for the Volterra integral equation of the second kind with a weak
singularity; and a question of the solvability for the second problem is equivalently reduced to a question
of the solvability for the Fredholm integral equation of the second kind with a weak singularity. For the
first problem, we prove the uniform convergence of the resolvent kernel for the resulting Volterra integral
equation of the second kind and we prove that its solution belongs to the required class. As to the second
problem, sufficient conditions are found for the given functions that ensure the existence of a unique solution
to the Fredholm integral equation of the second kind with a weak singularity of the required class. In some
particular cases, the solutions are written out explicitly.

Keywords: wave equation, degenerate hyperbolic equation of the first kind, Volterra integral equation,
Fredholm integral equation, Tricomi method, method of integral equations, methods of fractional calculus
theory.

Introduction. Notation. Formulation of the problem

In the Euclidean plane with independent variables x and y we consider the equation
m m—2
0= (_y) Ugpy — Uyy T A (_y) 2 U, y <0, (1)
Uzz — Uyy + [, y >0,
where A\, m are given numbers, and m > 0, |A| < f = f(x,y) is the given function; u = u (x, y) is
the desired function.
Equation (1) for y < 0 coincides with the equation form

m.
2

m—2

(_y)m Upy — Uyy + A (_y)T U, = 0, (2)
and for y > 0 equation (1) is a inhomogeneous wave equation
Uggy — Uyy + f (l’, y) = 0. (3)

Equation (2) belongs to the class of degenerate hyperbolic equations of the first kind [1; 21]. An
important property in equation (2) is that at |[A| < % the Cauchy problem is valid in its ordinary
formulation with type degeneration along the line y = 0, even though it violates Protter condition [2].

*Corresponding author.
E-mail: GiraslanQyandex.Tu
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At m = 2 equation (2) turns into the Bitsadze-Lykov equation [3; 37], [4], [5; 234, while when A\ = 0
equation (2) turns into the Gellerstedt equation [6], applicable to determine the shape of a slot in a
dam [7; 234]. A special case of equation (2) is also the Tricomi equation, which plays an important role
in the theory of aerodynamics and gas dynamics [8; 38|, [9; 280], [10; 373] .

Equation (1) is considered in the domain Q = Q; U Qg U I, where Q; is the domain bounded by

m+2 m—+2
characteristics o9 = AC : = — miw (—y) 2 =0,00=CB: x+ mi+2 (—y) 2 = r of equation (2)

2
at y < 0, emanating from the point C' = (r/2,y.), ye = — [W] "+2 | passing through the points

A = (0,0) and B = (r,0), and the segment I = AB of the line y = 0; 23 is the domain bounded by
characteristics 03 = AD : x —y =0, 04 = BD : +y = r of equation (3), emanating from the points
A and B, intersecting at the point D = (%, %) and the line segment [ = AB.

By a regular solution to Eq. (1) in the domain £ we mean the function v = u (x, y) which belongs
to the class C' (Q) NC' (Q) NC? (Q1 UQs), ug, uy € Ly (I), substitution of which turns Eq. (1) into
an identity.

Problem 1. Find a regular solution of equation (1) in the domain €2 that satisfies the conditions

wlfr ()] = ¢u(z),  O0<z<m, (4)

ay(z) (r— x)’BQ D,{;ﬁl {u[br0 ()]} + az(:c)D,{;ﬁu (t,0) + ag(z)uy (2,0) =o(z), O<z<r, (5)

where a1 (), as(x), az(x), ¥1(z), ¥2(z) are defined functions on the segment 0 < x < r and o2(x) +
a3(z) +a3(x) £0Vz € [0,r].

Problem 2. Find a regular solution to equation (1) in the domain € that satisfies the nonlocal
condition (5) and the boundary condition

ulfor(2)] = ¢1(z), O<z<r, (6)

where a1 (z), as(z), as(z), ¥1(z), ¥2(z) defined functions on the segment 0 < x < 7 while o (z) +
a3(x) + ad(x) £0Vax € [0,r].

Hence 6o (x) = (4, — (2= 28)° 7 @178 ): 61 (2) = (3, 5); brola) = (552, — (2 28)" " (r = ) P);

0r1(z) = (Z52, 5%) are affixes of intersection of characteristics emanating from the point (z, 0) with
m—+2X

characteristics of AC, AD, BC, BD correspondingly; affixes of points #; = ;Zlm;fé\), Bo = 20mta)
B = B1+ B = 5 Dgyg (t) is a fractional integro-differential operator (in the sense of Riemann-
Liouville) of an order || with origin at the point ¢ [5], [7], [11].

The Goursat problem for a hyperbolic equation degenerating inside a domain was previously studied
in [12,13]. In [12], the criterion for the continuity of the solution to the Goursat problem for an
equation of form (2) is studied and in [13], the solution to the Goursat problem for a model equation
that degenerates inside the domain is written explicitly. Paper [14] considers the first boundary value
problem for a hyperbolic equation degenerating inside a domain. Papers [15-17] study boundary value
problems for degenerate hyperbolic equations in a characteristic quadrangle with data on opposite
characteristics.

Problems 1 and 2 formulated above and studied in this paper belong to the class of boundary
problems with the Zhegalov-Nakhushev displacement [18-20]. Problems with a displacement for hyper-
bolic equations degenerate inside the domain were previously studied in [21-25]. Previously, various
problems with a displacement for parabolic-hyperbolic type equations of the second and third orders
were studied in the works [26,27]. A more complete scientific literature review on boundary value
problems with a displacement one can find in monographs [28-34]. As part of this work, we established
sufficient conditions for the given functions ay(z), aa(z), as(x), ¥1(x), Ya(x) and f (z, y), for a unique
regular solution to problems 1 and 2 in the considered domain. In some special cases, the solutions are
written out explicitly.
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Study of Problem 1

The study of problem 1. The following Theorem holds.
Theorem 1. Assume the given functions «q(z), az(z), as(z), ¥1(x), ¥e(x) and f (z, y) are such
that

a1 (), as(z), az(x), Yo (x) € C[0,r] N C*(0,7), (7)
Y1 (z) € CHO,r] N C%(0,r), (8)
f(z,y) € C(Q), (9)

and one of the below conditions is met: either

az(z) —ypai(x) #0 Yz e|0,r] (10)

ag(x) — yeai(x) =0, ag(x) +v1a1(x) #0 Yz €[0,r]. (11)

Then there exists a unique regular solution to Problem 1 in the domain ).
Proof. Let there is a solution to problem (1), (4), (5) and let

u(z,0)=7(x), 0<z<r, (12)

uy (z,0)=v(z), 0<z<r. (13)

At [A| < 7 the solution to Cauchy problem (12)-(13) for equation (2) is written out according to
one of the formulas [35; 14]

1
u(z, y) T B) (—y) =) (2t — 1)} I (R L T
/31 B2) 0/
1
+ (1_51’ T /,, B) (—y)/ = (2t-1)} A (1 —t) A, [N < % (14)
0
wla,y) =7 o+ (1= B) ()] +
1
+0=B)y [v]er@-p) (P e-1] (-0 e A=T, (15)
0
we,y) =7 e (1-8) (9" +
1
+a=B)y [v]era-p) ()P 0-2] A=t e A= (16)
0
where 7(z) € C[0,7] N C%(0,r), v(z) e CL(0, 7“) NL1(0,7); p1= QT(nm;i’Q\), B = QTJJEQ ,B=p1+B2=
s T(p) = joexp t) tP=tdt, B(p, q fti” -~ Ldt are Euler integrals of the first and
0
second kind, B (p, q) = FIQE’;E((;)I).
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Consider first the case for |A| < . By (14) and taking into account (8), we have

ulbe)] = (T35 - 228/ ) )

1
/T s+ (r—2)tf] 21—t dt—
0

Bla ﬁQ

1
B(1—-p1,1—p)

1
(2-28)"" (r— )" /” [z + (r—a)t] t% (1—t)"7at.
0

Introducing a new variable z = x + (r — x) t, we can rewrite the last equality as follows

dz.

r—z) 8 TTZ r—z)Ph1 —2B8)t 7"l/z r—z) P
NN AT Ly S CTLEE GR PRI iy (Y EE

B (B1, B2) J (z—a) ™" 7B (1 =51, 1—po) (z —x)h

x

In terms of fractional differentiation operators (in the sense of Riemann-Liouville) defined above, we
rewrite the last equality

ulfro(z)] = I‘F((gl)) (r — x)lfﬁ Dr_z62 [T ) (r — t)ﬁlfl} B
L@-8) ) st o .
T 2T PR 0 o0 an)

Next, let us use the laws of weighted composition operators of fractional differentiation and integration
with the same origins [5], [7; 18], [36; 20]

D' Dy (s) = p(z), (18)
Dg |t —[*™ Dl (s) = |z — " DE |t — |0 (1), (19)

where 0 < a < 1,7 <0, a+v > —1; ¢(x) € Lla,b], and for « + v > 0 the function ¢(z) has a
fractional derivative D& 7o (t).

Applying the operator D5 to both parts of equality (17) and using composition laws (18), and
(19) we obtain

(r — )7 DL [0r ()] = Dy 7 (t) — yav(), (20)
_I(B _ I(2-B) (2—2B)°~1
where 1 = £z}, 92 = SRR —

Substituting (r — ) Diz " u [0 ()] by (20) we can specify condition (5) as follows

[z () + y100.(2)] Dy 77 (1) + [a3(2) — 201 (2)] v(z) = tha (). (21)

Relation (21) is fundamental between the desired functions 7(x) and v(x), the domain €4 to the line
y = 0 for |A] < F. At A = 3 by (15) under condition (5) we arrive again at (21) but in this case for
f1=0, == "5 n=0 1= 20-1(1 — 5)6, while for X = —% by (16) and (5) we get (21) for
Bi=B= 1 B=0,m=17=C@2-08)@2-28""

Next, we should obtain the fundamental relation between 7(z) and v(x) transferred to the liney = 0
from Q.

44 Bulletin of the Karaganda University



Boundary value problems with displacement ...

For this purpose, we study a representation of the regular solution to problem (12), (13) in Qg for
equation (3), which is written out by the d’Alembert formula [37; 59]:

z+y y x+y—t
T(x+y)+7(x—1y)

u(z,y) = 5 +;/y(t)dt+;/ / f(s,t)dsdt, (22)

T—y 0 z—y+t

where 7(z) € C[0,r]NC%(0,r), v(z)e€ C*0,r)NL:(0,r), f(z, y)€C(Q).
Satisfying condition (4) in (22) obtain

T 2
— 1
w1 (2)] = u <7"-|2-$’ r 2x> _ T(r)—zw(x) +/y(t)dt+2 / /f(s’ t)dsdt = 1 (2),
T 0 z+t
whence, using the differentiation, we get the relation form
T;I
(z) —v(z) — / f (x4t t)dt = 24 (x). (23)

0

Relation (23) is the fundamental relation between 7(x) and v(x), transferred from Qs to the segment
I of the straight line y = 0.

Eliminating the desired function v(x) from the above relations (21) and (23) and taking into account
the matching condition 7 (r) = 1 (r) and condition (10) of Theorem 1, with respect to 7(z) we arrive
at the first-order ordinary differential equation with a fractional-order derivative in lower terms

T—x

Vs (x) [

7(x) + a(z) D}, 7 (t) = 20 (x
( )+ ( )D%x (t) le( )+a3(;p)—’yga1($

)+O/f(a:+t,t)dt, 0<z<r, (24)

T(r)=41(r), (25)
aa(z)+rai(z)
a3(z)—y201 ()
We integrate equation (24) from z to r, in view of the initial condition (25), and get the integral

equation corresponding to problem (24)-(25)

where a(x) =

1 T
d@—NmZK@ﬁT@ﬁ:E@, (26)

t !
where K (x, t) = a xlﬁ + f (a (s)dt

(
(t—z)* t—s)1 =8
r w2(t) T (T—t)/2
Fl(ﬂ:‘):2w1<$)—w1(r)—gmdt—xf ‘({‘ f(t+8,8)d3dt

The properties of the given functions (7), (8), (9) suggest that equation (26) is a Volterra integral
equation of the second kind with the kernel K (x, t) € Ly ([0,7] x [0,7]) having a weak singularity for
x =t and the right side Fy(z) € C[0,7] N C?(0,r). According to the general theory of Volterra integral
equations, a solution to Eq. (26), is the unique solution, and can be written out by the formula

ﬂ@:ﬂ@+/K@ﬂE@ﬁ, (27)
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where R (z,t) = Z I{fﬁrf(g)) is the resolvent kernel K (z,t); Ko(z,t) = K (z,t), Kpt1(z, t) =

[ K (z, s) Ky (s, t)ds are the iterated kernels.
t

Let us show that the resolvent R (z, t), like the kernel K (x, t) of Eq. (26), belongs to the class
R(x,t) € L1 (]0,7] x [0,7]) and has a weak singularity at x = ¢, and the solution to Eq. (27), and its
right-hand side Fy(z), belongs to 7(x) € C[0,7] N C2(0, 7).

Indeed, considering a(z) € C[0,7] N C?(0,7) we get estimates for iterated kernels anlx(;)) Let
la(x)] < My and |o/(z)] < My ¥V x € [0,7] . Then for the first iterated kernel we have the estimate

Sl 0] o [ M sy
T | e s
[Ml (1’2(5)51 + ]\?((ﬁtﬁ;ﬁ dt = ij(l;) j (s — )’ (t — s)P L dt+
+W§”F1?gz+l)/t(s 21 (¢ — 5) dt—i—mgj(s—x)ﬁ(t—s)ﬁ_ldt—F
e
Similarly,
ng (z, t) ' K (z, ) K1 (s, t)] _ M} (t— )3~ 3M2M, (t —x)%°

2(3) |= 7 TEB | TG+

BMy MG (t— )t M (¢ — 2)P?
' (38+2) I'(38+3)

It’s clear that

n o~k oarn—kagk (g onB+k—1
Kn_l (JT, t) S Z Cn Ml M2 (t fL') 7 (28)
r(p) | & T (nB+ k)
where C = m is a number of combinations of n elements taken k.
Noting that I' (n8 + k) > T'(nf) V k=0, 1, 2, ... from (28) we obtain the estimate

nB—1 n nB—1
‘Kn 1(z, t) ‘ (t— ) (=2 M+ My (t—2)]™.  (29)

E gk gk (f— )k —
Tgy 2 O MM () = T

For sufficiently large n index nff—1 at (t — x) in (29) is positive. And in this case, the difference (¢t — z)
can be replaced by a higher numerical value r. Thus, for the resolvent R (x, t) of the kernel K (z, t)
we obtain the estimate:

2 Ky (x, t) 2 (M + Myr)™ rnf-1
R(z, t)] = —ne e V) < 30
RO 1 TG <X T )
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Using the Stirling formula for the Gamma function:

I'(n) = Ln”e*”*#,o <n<l1.
2mn

Cauchy criterion for the convergence of numerical series, it is easy to see that the right side series of
inequality (30) converges. Thus, the series for the resolvent R (z, t) of the kernel K (z, t) in Eq. (26)
converges absolutely and uniformly, and we can conclude that the resolvent of the kernel is continuous
for any 0 < § < 1 and any z # t € [0, 7], having a weak singularity for x = ¢.

Further, by representation (27) and estimates (29), (30) with a continuous right-hand side, obtain
the estimate

My + Mor)™ rnb
' (np) ’

|7(z)| = [Fi(z) + /K(az, t) Fy(t)dt| < Ms |1+ Z ( (31)
x n=1

where M3 = max |Fi(z)|.
0<z<r

The convergence of the majorizing sequences (the right side of inequality (31) ) implies the absolute
and uniform convergence according to the Weierstrass test. Whence we conclude the continuity of the
limit function 7(z) € C[0, r].

Now Fy(z) € C%(0, r). In this case, by double integration by parts on the right side of representation
(27), we can see clearly that 7(z) € C2(0,7) that is, the solution to Eq. (26), as well as its right side
is belong to 7(x) € C[0,7] N C?(0,7).

When a(z) = a = const, the solution to (26) is written out explicitly using the formula:

T(z) = Fi(z) +a /R(az, t; a) Fi(t)dt,

where R (z,t; a) = (t — )P E% {a (t —x)°; B}, and E, (z;p) = ). F(u—fi’:p*l) is the Mittag-Leffler
n=0
type function [38; 117], which coincides with the Mittag-Leffler function E, (2;1) = B/, (2) at p =1,
If condition (11) is satisfied, then using system (21), (23) we can immediately get:
. . (r—x)/2
r(x) = D1 [ Ve (1) } v(z) = D5 [ va (1) } — 29 (z) — / f(z+tt)dt

g (t) +maq () az (t) + v (t) )

Study of Problem 2

Now we proceed to the study of problem 2. Satisfying condition (6) for (22) we obtain:

x x/2 z—t
ulbn (@) =u (3, 7) = W + ;/y(t) dt + % / / £ (s, 1) dsdt = vy (),
0 0t
then by differentiation, we get
z/2
v(z) +7'(x) + / f(z—t, t)dt =2¢) () (32)
0

Mathematics series. No.4(112)/2023 47



Zh.A. Balkizov

Relation (32) is the fundamental relation between 7(x) and v(x), transferred from € to the segment
I of the strait line y = 0, in case with Problem 2.

Thus, when |A\| < % with respect to the desired 7(x) and v(x) one gets a system of equations
expressed through (21) and (32). Eliminating from (21) and (32) the unknown v(x) with respect to
7(z), in view of the matching condition 7 (0) = 11 (0), the same way as with problem 1, we arrive at the
following boundary value problem for a first-order ordinary differential equation with a fractional-order

derivative in lower terms

7 (z) — a(x) Di;ﬁT (t) = Fa(x), O<zxz<r, (33)
7(0) =1 (0), (34)
z/2
where Fy(z) = 2¢)(z) — #@11(@ — Of [ (z—t, t)dt.

Integrating equation (33) with respect to the variable = from x to r, considering condition (34), we
obtain the integral equation corresponding to problem (33)-(34)

T

1 €T
@)+ £ 5 0/ Lz, #) 7 (£) dt = oy (0) + O/ B (1) dt, (35)

K (0,t)— K (x, 1), 0<z<t,
K (0, 1), t<z<r.

If the given functions aq(z), ae(x), as(z), ¥1(x), Pa(z) and f (x,y) have the properties (7)—(9)
listed in Theorem 1, then equation (35) is a Fredholm integral equation of the second kind with
the kernel L (z, t) € Ly ([0,7] x [0,7]), with a weak singularity at x = ¢, and a right-hand side of
C[0,7] N C2%(0, 7).

Let us further find sufficient conditions that ensure the unique solvability to Eq. (35). To this end,
let’s consider a homogeneous problem corresponding to Problem 2, setting ¢i(x) = 0, 1a(z) = 0
Vo e[0,r]and f(z,y) =0 V (z,y) € Qo. In this case, problem (33)-(34) turns into the corresponding
homogeneous problem

where L (z, t) = {

1
s} 7(x) - D} Pr(t) =0, O<az<m (36)
7(0) =0. (37)
Multiplying equation (36) by the function 7(x), and integrating the resulting equality with respect
to the variable = from 0 to r, with condition (37) we have
-1 ! 1-8 _
/a () 7(z) 7' (x)dx — /T(a:) D, Pt (t)dx =
0 0
9 s , T
i G / CAL) 20— / (z) DB (1) da = 0. (38)
0

0

,

To estimate [ 7(z) D577 (t) dx, we use Lemma 1 by [39], according to which 7(z) D2, (t) > & D2 * (1),
0

0 < a < 1. With this inequality, we have

T T

/ (@) D7 (1) da > % / D422 (1) dy — er(ﬁ) / =122 (1) dt > 0. (39)
0 0 0
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If the function a(x) is a nonincreasing negative, then, as follows by (39), equality (38) can take place
if and only if 7(x) = 0 Va € [0,r]. Then by (21) and (32) at ¢1(x) = 0, ¢a(x) = 0 Vz € [0,7],
flr,y) =0 V(z,y) € Q2 and [a3(z) — Y201 (7)] [aa(x) + y1a1(z)] # 0 V2 € [0,7] it follows that
v(z) = 0Vax € [0,r] as well. Therefore, under the above conditions Eq. (32) has a unique solution
within 7(x) € C[0,7] N C?(0,7).

Thus, we have proved the following theorem.

Theorem 2. Let the given functions ay(x), as(x), az(x), ¥i(x), ¥2(x) and f(x, y) be such that
they have properties (7)—(9) and let

a(z) <0, d'(z) <0 Vz€0,r], (40)

s () = e (2)] [az(2) + mau(x)] # 0 Va € [0,7]. (41)

Then there exists a unique regular solution to Problem 2 in €.
In the case when a(x) = a = const the solution to problem (33)-(34) is written out explicitly
according to

—a(r—z)° r—a/:
T(z) = o [Eﬁ [Earﬁ]) ]¢1 (0)+ Eﬁ “ar?] /E,g atﬁ Fy (t) dt— /Eﬁ a(r—x) } Fy (t) dt,

Eg [—arﬁ} # 0. (42)

As follows from conditions (40)-(41) Theorem 2, inequality (42) will be satisfied, for example, for all
a <0.
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Koadanbarv, mamemamura sicone asmomamuka uHcmumymo, — Peceti Fouavim axademuacoimviry
Kabapdur-Barkap evinvimu opmanvieviioity, uauansv,, Harvuuk, Pecet

Ekimmi perrti apajac-runep0oJiabiK TeHJeY YIIMiH BIFbICYbI 0ap
HIETTIK ecernrTep

MakaJtazia 06sIbICTBIH, 6ip OeJIiriHIe TONKBIH/BIK TEHIACY/ICH YKoHe eKIHIM OeJtirine 6ipiHi TumTi rumepoo-
JIAJIBIK, TEHJIEyIeH TYPATBIH EKIiHI peTTi rumepboJIasIbIK TUITI €Ki TeHJAEY/IH TYHiHAeCyiHIe BIFBICYBI 6ap
eki GeityIoKasI bl ecell 3epTTe/ireH. 3ePTTEJINeH ecenTepieri 6eiyIoKaIbl MEeTTIK MapT PeTiHe CHuIaTTaMa-
JIap/IbIH, OipiH/Ie >KoHEe THUIITI 63repTy ChI3bIFBIHA KayKeT (DYHKIUAHBIH OIpiHII pETTI TYBIHIBI KoHE OOJIIeK
perTi Tybraab (Puman-JInyBrus MaFBIHACBIHIA ) MOHIEPIHIH, affHBIMATBI KO3 PuImenTTepi 6ap ChI3LIKTHIK
KOMOMHanusChl 6epinren. MHTErpa/ bk TeHIEYIep 9ICiH KOJIJaHa OTHIPbIN, OipiHiI ecenTiy menmiMiri-
ri eKiHII TeKTi 9JICi3 CHHIYJIPJIBLIFEI Oap BoJsibTeppa MHTErpasIblK TeHEYiHIH menriMaiIirine, aag exinmi
€CEIITiH, IMIENTIeTIHAIrT TypaJjbl Macesie 9JICI3 CHHTY/ISIPJIBIFBI 6ap eKkiumr TekTi PpearosbM WHTErPasIIbIK,
TeHJIeyiHIH menriMaririne kemmeai. Bipinmn ecen yinin ekinm TekTi BoJsibTeppa MHTErpasiblK TeHIEYiHIH
HOTHUKECIH/E AJIBIHFAH SIPOHBIH, PE30JIbBEHTACHIHA OIPKAJIBINTHl YKUHAKTHIIBIFBIH YKOHE OHBIH, IIENNMi Ka-
JKETTi KJIACKA YKATATBHIHBI JoJejiaeHred. KKIHI ecern VIMH TaJamn eTiIeTiH KJIACTaH 9JICIi3 epeKIIesiKIIeH
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ekinmmi TekTi @pearosibM UHTErPAJIILIK, TEHIEYIHIH KAJIFBI3 MIENiMiHiH 00/IybIH KAMTAMACHI3 eTeTiH Oepi-
red yHKIMsUIAp YIIIH »KeTKigikTi maprrap Tabbuiasl. Keiibip epekime »xaraiiap yIniH ecenTep/iy Iie-
nriMaepi aHbIK *Ka3bIJIFaH.

Kiam ce3dep: TONKBIHABIK, TeHJEY, OIpiHITI TEKTi e3relesieHreH rumnepOoIaibIK TeHIey, Bosbpreppa uH-

TerpasiblK TeHeyi, @pearosbM UHTErpabIK TeHgeyi, TpukoMu 9ici, MHTErpaJIblK TeHJIEYJIep 9JIici,
GOJIIIIEKT] ecenTey TEOPUSICHIHBIH 9/IicTepi.

7K. A. Bankuzos

Hrnemumym npukaadnot mamemamury u asmomamusayuy — puauan Kabapouro-Baakapckozo naywrnozo yenwmpa
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Poccutickoti axademuu nayx, Harvuuxr, Poccus

KpaeBble 3a/1a4m co cMeIeHneM AJIsi OJJHOTO
CMeNIaHHO-TUIEepPO0JIMIeCKOTO0 YPaBHEHNSI BTOPOTO ITOPSAIKa

B crarbe wucciieioBaHbl JiBe HEJIOKAJIbHBIE 3aJa9l CO CMEIEHUEM Ha COIpsiKEHWE JIBYX ypaBHEHUH Iiu-
epOOIMIECKOTO THUIIA BTOPOTO IMOPSI/IKA, COCTOSIINEr0 U3 BOJTHOBOTO yPABHEHUs B OJHOM YacTH OOJIACTH U
BBIPOXK/IAIOIIErOCs TUIEPOOJIMIEeCKOT0 ypaBHEHNs [IEPBOrO pojia — B JPyroil. B kadecTBe HEIOKAJILHOTO
IPAHUYHOTO YCJIOBUsI B UCCJIEYEMBIX 3ajladaxX 3a/aHa JIMHeHash KOMOUHAIMS C TIepEMEHHBIMU KO DuUIm-
€HTaMU 3HAYEHUI TPOM3BOHON MIEPBOTO TOPSIKA U MTPOM3BOHBIX JIPOOHOrO (B cMbIciae Puvana—JInysuis)
[OPsIJIKA OT UCKOMOM (DYyHKITMY HA OJIHOM U3 XapAKTEPUCTHK U Ha JMHUK u3MeHeHus Tura. C UCrosib30Ba-
HUEM MeTOJa MHTErPAJIbHBIX YPaBHEHUI BOIPOC Pa3permMOCTH MIEPBOii 3a]a4n SKBUBAJEHTHBIM 00Pa3oM
peyIupoBaH K BOIPOCY Pa3pelmMOCTH WHTErPAJIHHOTO ypaBHeHusi BosibTeppa BTOpOro poma co ciaboit
0COGEHHOCTDIO, & BOIIPOC PA3PEIINMOCTH BTOPOH 331491 — K BOIIPOCY Pa3PEeIINMOCTHA UHTEIPAJIHLHOIO yPaB-
venust Ppesrosapma BTOPOro pojia co ciiaboit ocobennocrnio. 1o mepBoil 3amade moka3aHbl paBHOMEPHAs
CXOIMMOCTDb PE30JIbBEHTHI sSIpa IOJTyYaIOIIEerocsi NHTErPAJILHOTO YpaBHeHusT Boabreppa BTOPOro poma u
[IPUHA/JIE’KHOCTH €r0 pelleHust TpebyemoMy kjiaccy. I1o Bropoii 3ajiate HaiiIeHbl I0CTATOYHbBIE YCJIOBUSI HA
3aJjaHHble (DYHKIMH, 0O6ECIIeYNBAOIINEe CYyIeCTBOBAHNE €IMHCTBEHHOI'O PEIEHNsI MHTErPAJIHLHOTO ypaBHe-
Hust PpearosibMa BTOPOro Pojia €O ¢raboit 0COOEHHOCTRHIO M3 TpeOyeMoro Kjacca. B HEKOTOPBIX YaCTHBIX
CJlydasiX pellleHusl 3a/1a49 BbIIUCAHBI B sIBHOM BHJIE.

Karouesvie caro6a: BOTHOBOE ypaBHEHNE, BHIPOXKIAIOIIEECS TUIEPOOINTIECKOe YPAaBHEHNE [IEPBOrO POJIa, MH-
TerpaJjbHoe ypaBHeHune Bosibreppa, narerpajibHoe ypaBuenne Dpejirosbma, Meros TpuKoMu, METO, MHTE-
rPaJbHBIX YPABHEHUHN, METOMBI TEOPUU JTPOOHOTO UCUUCTICHUS.
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Best approximation by «angle» and the absolute Cesaro summability
of double Fourier series

This article is devoted to the topic of absolute summation of series or Cesaro summation. The relevance of
this article lies in the fact that a type of absolute summation with vector index which has not been previously
studied is considered. In this article, a sufficient condition for the vector index absolute summation method
was obtained in terms of the best approximation by «angle» of the functions from Lebesgue space. The
theorem that gives a sufficient condition proves the conditions that are sufficient in different cases, which
may depend on the parameters. From this proved theorem, a sufficient condition on the term mixed
smoothness modulus of the function from Lebesgue space, which is easily obtained by a well-known
inequality, is also presented.

Keywords: trigonometric series, Fourier series, Lebesgue space, best approximation by «angle», absolute
summability of the series.

Introduction and preliminaries

Let Iy = {(21,72) € R?: 0 < x; < 27}
We denote by Ly(I2) the space of all measurable by Lebesque, 2m-periodic on each variable functions
f(z1,x2), such that

27 27 q
1 fllq = (/ / |f(951,552)|qd$1d962> < +00,1 < g < +o0.
o Jo

Let Yy n,(f)q is two-dimensional best approximation by «angle» of function f € L,(I3). By

definition [1-3],
Yoins (f)g = Tnl,ciryl%:oo,ng 1f = Thi o0 = Toopme Hq )

where the function T}, oo € Lg(I2) is a trigonometric polynomial of degree at most ny in z1, and the
function T p, € Lg(I2) is a trigonometric polynomial of degree at most ny in .

Let r € N, hy, ho € R. For a function f € Ly(I2), the difference of order r € N with respect to
the variable 1 and the difference of order » € N with respect to the variable x5 are defined as follows
[1-3]:

r

Azl,xlf(xh'%?) = Z <_1)T_V1 : Cvlﬂjl : f(xl + h’lylvx?)v

V1 :0

and, respectively
T

AZ@Qf(mlal‘Z) = Z (—1)T_V2 . C;/Q . f(l‘l,l‘g + hgl/g).

v2=0

*Corresponding author.
E-mail: bitimsamat10Qgmail.com
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Denote by Q,.(f;t1,t2), the mixed module of smoothness of an order r of function f € Ly(I3) [1-3]:

Qr(f;tlth)q = \hs~|1ipt< HAZQ,.TQ ( 7;11@1 (f)) ”q
J'= "7
j=1,2

Consider a double trigonometric series
(o] oo
E E (anhn2 COSN1X1 COSN2Ty + bm,,12 sinnjxi cosnoxg +

ni=1ng=1
0o %s)

+Cny ny COSNITT SINN2T2 + dpy) ny SINN 2 SINNQT2) = g E B, (21, 22).

ni=1ng=1

Let’s write it down

4B _ BED(B+2). . (B+n)

" n! ’

where (8 is a real number, n is a natural number.
The sum

o onea = 50 SUTALY (42) Bt

k1 1k2 1] 1

called (C; 1, B2) mean of series (1).

The series (1) called |C; 1, B2|x, r,-summable (or absolute summable with vector index), A; > 1,

j = 1,2, at the point (z1,x2) € I, if the following series converges:

o182 (w1, 20) — o 0VR) (21, 29) —

00
2 :nggfl 2 :n)\l 1

no=1 ni=1
A2

)\1] A1
2

—1
ni no

Ao = (1142 3 3 (TD0A ) musnon
k1=1ko=1

=1 =

_0_(51,,32) (z1,22) + 0 (B1,62) (21, 22)

ni,na2—1 n1 1,n2—1

Let

Then the convergence of the series (2) is equivalent to the convergence of the following series

Ao

>\1] A1

P08 (11, 35)

>t |3 i

no=1 ni=1

In case Ay = A\ = X we will write |C; 81, f2| (absolute summability with scalar index) instead of

’Ca /Bla B2|)\1,)\2'

Issues related to the absolute Cesaro summability of series began to be studied intensively in the
twentieth century. Among the many scientists we can mention the work of F.T. Wang [4], [.E. Zhak and
M.F. Timan [5], K. Tandori [6], L. Leindler [7], M.F. Timan [8|, Yu.A. Ponomarenko and M.F. Timan [9],
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I. Szalay [10,11], G. Sunouchi [12], who studied the conditions of the absolute Cesaro summability
of trigonometric and orthogonal series. In recent years, various generalizations of absolute Cesaro
summability have been defined, and the former classical results have been proved for these generalizations.
For example, we can cite the works of H. Bor [13-15], Yu. Dansheng and Zhou Guanzhen [16], S. Sonker
and A. Munjal [17,18], E. Savas [19,20], B. Rhoades and E. Savag [21]. In addition, L. Leindler [22]
and H. Bor [23| gave a new application of power increasing sequence by applying absolute Cesaro
summability for an infinity series. Problems of absolute Cesaro summability of multiple trigonometric
Fourier series of functions from different spaces studied in works [24-29]. Almost all of this work is
devoted to the topic of absolute Cesaro summability with scalar index. The absolute Cesaro summability
with vector index was first defined in [24]. In the article [24] the condition 5; = [3 is considered and
only sufficient conditions are obtained. Feature of our work is that under sufficient conditions 31 # Ss.

Main results

Now we prove the main results.
_ 2 2 2 2
We denote  pg,k, = \/akle + bk ks T ity T Dk
Theorem 1. Let 1 < g <2, 1<) <)\ <gq, %+qi, = 1. Then for |C; B1, B2|x; \,-summability

almost everywhere on I Fourier series of function f(z1,z2) € Ly(I2) is sufficiently,
1) in case of qi/ < f1 < +o0, qi, = [y, for the condition to be met:

o0 2 o [e/e] . Yl
S () % (7Y 1[271?1(3 ) 1'Y7ﬁ1n2(f)q] | < oo

no=2 ni=1

2) in case of qi, < B <40, —1< < qi,, for the condition to be met:

3) in case of —1<f; < qi,, q—l, = py for the condition to be met:

A2
oo

> ”22(%71)71(111”2)%2 [Z nl(%fﬁl)hil ' Ynﬁlm(f)q] | < foo.

no=2 ni=1

Proof of item 1). It was proved in work [29] that in case of q—l, < B < 400, qi, = [, if the next

series
A

22
A1 X
S 00 gnitl_q1 gnatl_j a

22| X 2 gk

na=0 | n1=0 \ k1=2"1  ko=272

converges, then series (1) is |C; 1, B2|x,,n,-summable almost everywhere on Is.
By simple calculations, we get

)

A bY}

Al
S onitl_1 onotl_j q

S = Z Z Z Z p%ﬂ@lnk’? =

n2=0 | n1=0 k1=2™1 ko=2"2
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A2
2173
00 oo f2mitl_1 gnatl_g a
2—
S D3l 15 SRR SIS I
no=0 | n1=0 k1=2"1 =212
A
SRR
2mitl_p gnatl_g a
<OX |5 (e By )| s
n2=0 | n1=0 k1=2"1 =2m2
A
+1 +1_ Mo
00 Ao 00 9 21T -1 2m2 1 q
n2)\2 271 7 nl)\l =—1
no=1 n1=0 k1=2™1 —=on2
Hence, using the Hardy-Littlewood theorem [30], we obtain
A2
2n1+171 2n2+1 1 Al A1

SS 8. i 2n2)\2<%—1 )‘72 Z 2n1)\1 *—1) Z Z Bk1k2 : ) (3)

na=1 n1=0 k=21 =272

Now, using inequality [1]

2n1+1_1 2n2+1 1

Z Z By o (- < C-Yoni_19m-1(f)qs (4)

kp=2n1 =2n2
q

due to the monotonicity of the best approximation by an «angle» from (3), we have

Ao

00 Py
s<c z 2n2>\2(%—1> 22 [Z 2n1)\1(7_1)Y2>7‘11 1,272 — l(f) ] ' <
no=1 n1=0
Ao
oo 2 N\ 00 2 1\ Py
<C Z (lnng)%2 n;\2(q 1) ' [Z nl\l(q 1> IYTL)\llTLQ(f)q] 1 .
no=2 ni=1

Proof of item 2). In case of <P <400, —-1<f< qi,, by Theorem 2 in [29], the convergence
of series
A

A2
AL Xy
S 00 oritl_1 gretl_j q

SIS (2 3

n2=0 | n1=0 k1=2"1 ko=2"2

implies the |C; 81, B2|a, \,-sSummability of series (1) almost everywhere on Is.

Carrying out simple calculations, using the Hardy-Littlewood theorem [30] and inequality (4), we
obtain

A1
00 00 onitl_1 9gnretl_j q

POND DN ED DD DI =

n2=0 | n1=0 k1=2"1 ko=2m2

A1

Mathematics series. No.4(112)/2023 59



S. Bitimkhan, O. Mekesh

o0 oo

> |2

n2=0 | n1=0

<C Z 2712)\2 *—52

no=0

<C Z 2n2>\2 *—,32

no=0

<C i 2n2>\2(

no=0

o0

5,\1
<CZn2 2 | A2

no=1

Proof of item 3). Let —1 < 1 < qi,,

o [e.e]

2|2

no=0 | n1=0

Ny o 22

2177 A

2n1+1 1 2n2+1 1 q 1

q—21,9(1—=B2)—1
Z § o, (Biko) T2k (kiko)®~ <
=2"1 =2"2

A
M5

onitl_q P2+l a

nl/\1 7—1
Z 2 Z Z pk’1k2 k1k2 <
n1=0 k1=2"1 =2"2
Ao
A (2-1) gritl_1 gna+l_g Al h
2: ni 1 £ — 2:
2 Z B/ﬂkg('a') S
n1=0 k1=2™1 ko=2"2 q
A2
A M
n1 1 A1
E 2 Y2n1 1ome1(Ng| <
n1=0

oo

[nl 1

)\11

A1
nin2

Z”q (f)q] l-

qi, = (3. Then by Theorem 2 in [29] the convergence of series

A2
SRy IRVY
2mitl_1 onatl_jg a
a q(1-p1)—1
> D Pkl Ik,
kp=2m1  kp=2n2

implies the |C; 81, B2|x, r,-summability of series (1) almost everywhere on Is.
In a similar way to the proof of the previous points, using the Hardy-Littlewood theorem [30] and

inequality (4), we get

[e.9] o0

> |2

no=0 | n1=0

00 %s) on1tl_g
no=0 | n1=0 =21
o0 A
2 4\ A2
<Cy gra(3-1) K

no=1

e 2
<cy o2 (i7),,

no=1

60

A2
A1 3
gnitl_1 9gnatl_jq a
q q(1-p1)-1 _
> > Pkl Ink, -
k=271 k=272
A
M5
2n2tl_q a
2,.9(1-p1)-1
Z Pl (k) T2 TP 7 (e ky) 20 Iy <
—2n2
A
M Ar
) 2mitl_1 onati_jg q
nl)\l *—51
Z > Z P (1 ki2)? <
1=0 kp=271 =22
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Ao ) 2mitl_1 onatl_jg A
i 2: n1)\1 *—51 2:
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Ao

o 2 ) _ 00 1 _ A

<C Z n;Q(i 1) 1(lnn2)%2 Z nl((ll 51)>\1 ! . YTf\llnz(f)q '
no=2 ni=1

Thus, the theorem is fully proved.

Using the following inequality [1]:

1 1

Ynlnz(f) <C Q(f n1+1 n2+1q

we can formulate another result.

Theorem 2. Let 1 < ¢ <2, 1< X <A <gq, % —|—qi, = 1 and r is a natural number. Then for

|C; 1, B2|x \-summability almost everywhere on I Fourier series of function f(z1,22) € Lg([2) is
sufficiently,

1) in case of qi, < B < +0, qi, = (9, for the condition to be met:

> L2 *—1 ——1 1 1 A1
Z (Inny) « [Z ny ’Q;\l(f%n,)q] < 400

no=2 ni=1

2) in case of qi/ <L <400, —-1<pf< qi/, for the condition to be met:

Ag
o0 A
)\2 1 Arl 1 1 !
S [ g L D] <o
no=1 ni=1 1 2
3) in case of —1<f; < qi,, q—l, = f9 for the condition to be met:
Ag
(2-1) 2 | o= (5-81)M-1 11"
Z n2 111712) a [Z nl(q ) -Q;\l(f;n—,n—)q < +00.
no=2 ni=1 1 2
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C. Birimxan!, O. Mekerr?

1 .
JI.H. Tymunes amoimdaen, Eepasus yammus yrueepcumemi, Acmana, Kasaxcman;
2C. Cetipyrrun, amoindaen Kaszax azpomernuxary ynusepcumemi, Acmana, Kasaxcman

«BypsbIlneH» eH »KaKChl XKYBIKTay »KoHe eKi ecejli Pypbe KaTapbIHbIH
Yezapo OoibIHITIA aOCOJIIOTTI KOCHIH/IBIJIAHYbI

Maxkasia KaTapaapabiH aOCOTIOTTI KOCBIHABLIAHYBI HeMece 1e3apo OOMBIHITA KOCHIHIABIIAHY TAKBIPBHIOBIHA
apHaJiFraH. ByJ1 )KyMBICTBIH, ©3€KTLIII MbIHA/[a: OYPBIH KO 3€PTTEJIMEreH BEKTOPJIBIK NHJIEKCTIH aOCOTIOTTI
KOCBIHBIJIAHY TYPi KAPaCThIPbLIATHIHIBIFBIHIA. ABTOpJIapP BEKTOPJIBIK WHIEKCTIH aOCOIOTTI KOCHIHIBLIAHY
Tociai yrmiu Jleber keHicTiri pyHKIMACHIHBIH, «OYPBIIIIIEH» €H YKAKCHI KYBIKTaybl TEPMUHIHIET] KETKLTKTI
mapTThl ajrad. 2KeTKUTKTi maprTsl 6epeTin TeopeMa napamerpJepre 0aillaHbICTBI OPTYPJIi JKaraaiiaapia
JKETKITIKTI maprrapab! goasesaeiai. Ockl Jo/esIeHreH TeopeMaial 6eriii TeHci3aikTiH kemerimen Jleber
KEHICTIr byHKIUSCHIHBIH, apaJiac TEriCTIK MOMYJ/l TEPMUHIHAETI KETKUTKTI IIapT aJbIHAIbL.

Kiam cesdep: Tpuronomerpusiiibik katap, @ypbe karapsl, Jleber KeHicriri, «OyphIIIIeH» eH KaKChl XKYbIK-
Tay, KaTap/iblH aOCOIOTTI KOCHIHIBIIAHYbI.

C. Burnmxan'!, O. Mexem?

! Bepasutickuti nayuonaavhod yrusepcumem umeny JI.H. Dymusesa, Acmana, Kasaxeman;
2 Kasazcruti azpomexnuveckuti ynusepcumem umerny C. Cetigyrnumna, Acmana, Kasaxcman

Hanny4aniee npubiim>keHne «yrjoM» W aOCOJIOTHAsI CyMMUPYEMOCTD
nmo Yezapo ABOITHBIX psijioB Pypbe

Crarbst IOCBsIIIEHA TeMe abCOJIOTHOIO CyMMHUPOBAHUS PsJIOB, MJIM CyMMHUPOBaHus de3apo. AKTyaIbHOCTH
JAHHON pabOTHI 3aK/II0YAETCS B TOM, YTO PACCMATPHUBAETCS HE W3YyUEHHBIN paHee BUJ abCOTIOTHOTO CYyM-
MHUPOBAHUs C BEKTOPHBIM MHJIEKCOM. ABTOpaMU IIOJIy9€HO JOCTATOYHOE YCJIOBUE sl METOAa abCOIIOTHOTO
CYMMHPOBAHUS C BEKTODHBIM HHJIEKCOM B TEPMHHAX HAWJIYYIIEero IPUOJIMKEHUsS <«YIJIOM» (DYHKIHUH 13
npoctpancTBa Jlebera. Teopema, marorast J0CTATOYHOE YCIOBUE, JOKA3BIBAET JOCTATOYHBIE YCJIOBUS B Pa3-
JIMYHBIX CJIydasX, KOTOPble MOTYT 3aBHCETH OT mapaMerpoB. /3 3Toit HOKa3aHHOI TEOPEeMBbI BBIBOIUTCS
TaK’Ke JIOCTATOYHOE yCJIOBHE B TEPMHUHE CMENIAHHOIO MOIYJIs IVIQIKOCTU (DYHKIIMU U3 IIpOocTpaHCcTBa Jlebe-
ra, KOTOpoe JIErKO MOJIyYaeTCsl C IIOMOIIbIO U3BECTHOIO HEPABEHCTBA.

Kmouesvie crosa: TpuroHOMeTpUIeCcKuit ps, psaia Pypbe, npoctpaHcTBo Jlebera, Hamtydinee mpubInKeHne
«yIJIOM», abCOJIIOTHAST CYMMUPYEMOCTD Psijia.
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Kelvin-Voigt equations with memory: existence, uniqueness and
regularity of solutions

In general, the study of inverse problems is realizable only in the case when the corresponding direct
problems have the unique solution with some necessary properties such as continuity and regularity. In this
paper, we study initial-boundary value problems for the system of 2D-3D nonlinear Kelvin-Voigt equations
with memory, which describes a motion of an incompressible homogeneous non-Newtonian fluids with
viscoelastic and relaxation properties. The investigation of these direct problems is related to the study of
inverse problems for this system, which requires the continuity and regularity of solutions to these direct
problems and their derivatives. The system, in addition to the initial condition, is supplemented with one
of the boundary conditions: stick and slip boundary conditions. In both cases of these boundary conditions,
the global in time existence and uniqueness of strong solutions to these initial-boundary value problems were
proved. Moreover, under suitable assumptions on the data, the regularity of solutions and their derivatives
were established.

Keywords: Kelvin-Voigt system, slip and stick boundary conditions, strong solutions, global existence and
uniqueness, smoothness.

Introduction

Let Q € R, d = 2,3, be a bounded domain with a smooth boundary 89, and Q7 = Q x (0,T) be
a cylinder with a lateral I'r = 9€Q x [0, T]. Let us consider the following initial-boundary value problem
for the system of nonlinear Kelvin-Voigt (Navier-Stokes-Voigt) equations with memory

¢

vi+ (v V)V —xAv, — vAvV — /K(t —1)Av(x,7)dT+ Vp=f, (z,t) € Qr, (1)
0

divv(x,t) =0, (x,t) € Qr, (2)

supplemented with the initial condition
v(x,0) =vp(x), x€ (3)
and one of the following boundary conditions: stick boundary condition
v(x,t) =0, (x,t)elp (4)
or slip boundary condition
va(X,t) =v-n=0, rotvxn=0, (x,t) € I'r. (5)

System (1)-(2) is called a Kelvin-Voigt (also called Navier-Stokes-Voigt) system with memory
or an integro-differential Kelvin-Voigt system, and models a motion of viscoelastic incompressible

*Corresponding author.
E-mail: nugymanovank@gmail.com
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non-Newtonian fluids [1-5]. Most of hydrodynamics problems were considered with stick-boundary
condition (4), however, in recent years works have appeared on initial-boundary value problems with
a slip-boundary condition like (5), see for instance [6-8] et al. Because this is related to the fact that
these boundary conditions have an important meaning for non-Newtonian fluids [9,10]. In the case of
slip boundary condition (5), we assume that € is a simply connected bounded domain [11]. System
(1)-(2), in some particular cases, can be considered as a nonlinear pseudoparabolic equation due to
the term Avwvy, therefore all established below results will be hold true also for initial-boundary value
problems for such type PDEs.

The issue of study of problems (1)—(4) and (1)—(3), (5) is aroused due to the investigation of inverse
problems for system (1)-(2) that is supplemented with some additional conditions on solutions of the
corresponding direct problem. In generally, the study of inverse problems are realizable only there is
information such as unique solvability of the corresponding direct problems and smoothness of their
solutions [12-14]. The direct problems for (1)-(2) with various statements have been studied before in
some works as [5,7,15,16], where the existence and uniqueness of weak solutions were established. The
existence, uniqueness, and the regularities of smooth solutions of the initial-boundary value problems
for system (1)-(2) without the memory term have been investigated in [17] for homogeneous fluids,
and in [18], in the case for non-homogeneous fluids. However, by our knowledge, there is not work for
smooth solutions for problems (1)—(4) and (1)—(3), (5). By this purpose, in this paper, we investigate the
existence and uniqueness of strong solutions of problems (1)—(4) and (1)—(3), (5), and their regularities.
First we work on problem (1)—(4) and the study problem (1)—(3), (5) is similar to the first one, therefore,
we omit some details of proofs.

1 Preliminaries

In this section, we introduce the main functional spaces and some useful inequalities related to
boundary conditions (4) and (5) from [8]. We distinguish vectors from scalars by using boldface letters.
The symbol C will denote a generic constant — generally a positive one, value of which will not be
specified; it can change from one inequality to another. We denote by L?(Q) the usual Lebesgue space
of square integrable vector-valued functions on Q, and by W™2(Q) the Sobolev space of functions
in L2(Q) whose weak derivatives of an order not greater than m are in L?(2). The norm and inner
product in L2(€2) denoted by || - ||2.0 and (, ), o, respectively.

Let us introduce the function spaces regarding to the slip and stick boundary conditions (5) and
(4), respectively (see [3,6]):

Hy(Q)={veL*Q):divv =0, vnlygg =0}; H(Q)={veL*(Q):divv =0, v|y, =0};
HL(Q) = {v e W(Q) :divv =0, vp|yg = 0}; HY(Q) ={ve W3(Q) :divv =0, v|yq = 0};
HZ(Q) = {v € HL(Q) N W?%(Q) : (rot v x n)|,o = 0}; H*(Q) = {ve H(Q) NnW»?(Q)}

and for the simplicity, we use the following common notation for both cases

Voo H(Q), in the case (4); Vi H!(2), in the case (4);
| Hu(9), in the case (5), H, (), in the case (5), i = 1,2.

The scalar product and the norm in V() we define by (rot v, rot u), o and [[v|[y1(g) = [[rot vy,
respectively. According to [3,6,8,11] and the references cited in them (see for example [9,19]), the
following inequalities are hold:
Poincare’s inequality

Va0 < C1(®) [V¥]50, v € VHQ) (©)

N1(Q) [Vliwag) < 1ot vlipg < Na(2) [Vliwrag ¥V € VH(Q);
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N3(Q) [IVllwzz2(0) < AVl 0 = [[rotrot vlly o < Na(Q) [VIlwyzzq), ¥V € VZ(Q); (7)

and Ladyzhenskaya inequalities [6].
Let us introduce a bilinear and continuous form a on V!, associated with the operator A:

a(v,u) = (Vv,Vu)y o, Vv,ue ViQ) (8)

in case (4), and
a(v,u) = (rotv,rotu)y g, Vv,ue viQ) (9)

in case (5). It is clear that a(v,v) is a norm on V!(Q), which is equivalent to W12(Q)-norm. In
particular, due to (6), in V! the norm || rot v||2,0 is equivalent to the norm ||v|lwu1.2(q), and therefore
equivalent to the norm [|Vv||2q.

Thus, a defines an isomorphism A from V1(Q) to V=1(Q),

(Av,u) = a(v,u), Vv,ue V(Q),
where (-, -) denotes the pairing of V! and V1. There hold the following continuous inclusions
ViQ) = L}(Q) = V1),

where each of the first two spaces is dense in the next one.

It follows from (7) also that in V? the norm ||Av||, o = [[rotrot v|, o is equivalent to the norm
IVIlwz2(0)-

Regarding to sliding condition (5), we have the Green formulas (see [6] and [8,9]):

(—Av,u)y g =—(Vdivv,u)y g + (1?0‘52 v, u)2 0= —/ divv - u, dS+
+ (divv,divu), o + / u- (rotv x n) dS + (rot v,rotu), o = (rot v,rotu), ¢,
) 8Q k) )

in case d = 3, and

(—Av,u)y g = (divv,divu), o + (rot(rot v),u), o, =

(11)

= /asz (rot v x m) udS + (rot v,rot u), o = (rot v,rot u), o,

in case d = 2, where roty is the vector (¢g,, —goxl)Q’Q for the scalar function .

The regularity properties of solutions will be proved under the following lemma, which the proof is
given in [20].

Lemma 1. If f € LP(0,T;X) and % € LP(0,T;X) (1 < p < ), then f, after, which can be
changing on a set of measure zero (from segment (0,7")) be a continuous mapping [0, 7] — X.

Definition 1. A vector function v(x,t) is a strong solution to problem (1)—(4) ((1)-(3), (5)) if:

1 v(x,t) € C(0,T; VL) N V() N W1(0,T; VI{Q) N VZ(Q));

2 Each equation in (1)-(4) ((1)-(3), (5)) holds in the distribution sense in the their corresponding

domain.
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2 Main results
Throughout the work, we assume that
K(t) € L*([0,T)) and || K|l 2(0,77) = Ko < o0. (12)

For the problems (1)-(4) and (1)—(3), (5) the following results are hold.
Theorem 1. Suppose that

f e L2(0,T;L3(Q)), voe VH(Q)NVZQ),

and (12) are hold. Then problems (1)—(4) and (1)—(3),(5) have a unique strong solution and the
following estimate is valid

2 2 2
VI 0m:vi@nve) T Vil omvi@nve) T IVILzorvi @) < € < oo,
where C' is a positive constant depending on data of the problem.

Proof. The proof consists of following steps: by Gelerkin’s method constructing a sequence of
approximated solutions; obtaining a priori estimates and passage to limit.

2.1 Galerkin’s approzimations

To prove the existence of a strong solution to problem (1)—(5), we use the Faedo-Galerkin method
with a special basis of eigenfunctions of the spectral problem

—Apj + Vg =\, pj € V(Q)

is closely connected with problems (1)—(4) and (1)—(3), (5). In case (5), it is equivalent to the problem
[6, 8]
Ap; = —Ap; = Njpj, ¢ € VA(Q)

since Vg = 0 due to the fact
(A, Vp) =0, for any ¢ € V*(Q) and any p € Wy (Q).

For the problem (1)-(3), (4), Ap; = Ap; [21]. Given m € N, let us consider the m-dimensional spaces
X" gpanned by the first m eigenfunctions @1, ..., om. For each m € N, we search for approximate
solutions in the form

m

Ve ) =Y (tpslx), g5 e X
j=1

where unknown coefficients c;-”(t), j = 1,...,m are defined as solutions of the following system of
ordinary differential equations derived from

d m m m m m
2 (™ @R)a0 = # AV, 1)a0 ) + (V™ V)V™, 0r)y 0 = v (AV™, 1)y g —

t (13)
_ /K(t — ) (AV™, pp)nq d7 = (£, 01)50
0
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for k=1, 2, ..., m. System (13) is supplemented with the Cauchy data
v™(0) = vy, (14)
where

m
Z (Vo, ©j)2.0 i
J=1

is a sequence in L2(Q) N V1(Q) such that
vl — vo(x) strong as m — oo in V1(Q)NVZ(Q). (15)
According to a general theory of ordinary differential equations, Cauchy problem (13)—(14) has a

solution ¢}'(t) in [0, 7%]. By a priori estimates which we shall establish below, [0, %] can be extended

to [0, 7.

2.2 A priori estimates

Lemma 2. Assume that
f € L%(0,T;L3(Q)), vo(z) € VI(Q),

and the conditions (12) and (15) are fulfilled. Then, for all ¢ € [0, T}, the following a priori estimate is
valid
2 2
V™ [Lee 0, v vy + IV 20, mvi ) < Mo < oo, (16)
where M is a positive constant depending only on data of the problem.
Proof. Multiply k-th equation of (13) by ¢}*(t) and summing up from 1 to m, then using Green’s
formulas (10)-(11), we obtain

d
= (V" + ™ B ) + v IV s gy =

_ /K(t — ) (v (1), V(7)) dr -+ (E,v™)y 0 = I, (17)

where a is defined by (8) and (9), regarding to the boundary conditions. Next, we estimate the terms
on the right-hand side of (17) by Hélder’s and Young’s inequalities

t

L S/!K(t—T)! V" (Dlvi@) V" Ollvig) dm + V7 o0 [[Ell0 <
0

14 2 K2 2 1 2 1
< IV By + 58 [ IV dm+ 5 V"B +

Substituting last inequality into (17), and integrating by s from 0 to ¢, we obtain

2 2 2 2 2 2
V" + v iy + v [ V" Ry ds < Ivo(@E + #lIvala) sy + [ IV I3adst

t (18)

t s
K2 m m m
+20 [ / V™) oy drds + €13, < Cr [ (Iv" [+ l1v" ey ds + Co,
0 0
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where

Ch =

2 2 2
= [IVo(@)ll2,0 + > [IVo(@) 51 o) + Ifll2.5 -

Omitting the third term on the left hand side of (18) and applying Gronwall’s lemma and taking
supremum, we get

m||2 m||2
sup A% + ||V < (3 < 0,
sel0, ](H HQ,Q | HVl(Q)) 3 (19)

where Cs = C3(v, 5, T, Cq,C2). Plugging (19) with (18), we obtain the first energy estimate (16).
Lemma 8. Assume that all conditions of Lemma 2 are fulfilled. Then the following estimate is valid
2 2
V™ Lo 0, 7v@nvi @) + IV L2 0, rv@)nvi @) < Mr < oo, Vi e [0,T], (20)
where M is a positive constant depending on data of the problem.

Proof. Multiplying both sides of k-th equation of (13) by % and summing up from k = 1 to

k = m, we obtain

VP B+ IV sy + 5 3 IV gy = (67 - V)V v ™)y

t (21)
/K (t—m7)a(v™(r ),v{”(t))err(f,v;”)z’Q = Io + oo
0
Using Holder and Ladyzhenskaya together with Young inequalities, we have
Q)
Iy < (V™ - V) v, v < "ia < ||Vt 3710y + o, V™ v () » (22)
K 1
Ly <22 Hvt O + 5> /IIV iy dr + = Hvt ()Hg,QJrng I Iz - (23)

Plugging (22)-(23) with ¢; = §,i = 1,2,3 into (21), and integrating the result by s in [0,¢], t < T,
we have
2 2 2
vVl F2 IV O, + 2 IV (DllLz0r v @) <
304(Q)
»

3K?
2
< vvollvi M§ + OM T+— HfH2 Qr = C1 <0

which follows that (20).

Lemma 4. Assume that in addition to the conditions of Lemma 2 holds
vo € V(Q) N V(Q).
Then for all ¢ € [0,T], the estimate is valid

sup [[AV™5.q + 1AVY|l3,q, < M2 < o, (24)
t€(0,17]

where A = A for the problem with (4), and A = A for the problem with (5).
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Proof. Let us multiply the k" equation of (13) by —uy dcgt(t) and sum with respect to k, from 1 to

™ to obtain

VI Ry + # IV 3.0 + 5 VT3 g = (V™ - V) V™, AV"),  —

2 dt ‘
/ (25)

/K t — ’7' (T),Avln(t))zg dr + (f(t),AV%n)ZQ = I31 + I39.

0

Estimating the terms on right hand side (25) by using Hoélder, Ladyzhenskaya, Sobolev and Young
inequalities, we get the following inequalities

€1 2 C*(Q) 2 2
I3 < mH47Q ||va”4@ < b} HAVT”ZQ + %, ||VmHV1(Q) ||Ava2,Qa
€2 2 1 2
o2 2 AP Ol + 5 [ Il + 2 g + e LTSCO

where C'(Q2) is a constant from embeddlng inequalities.
Substituting (26) with ¢; = §,i = 1,2, 3 into (25) and integrating the result by 7 € (0,¢) and using
estimates (16), (20), we have

v lAvPI2 o + / IV ) B g -+ 2 / JAVP ()2 dr < Cs / |AVE () g dr +Cs,  (27)
0 0

where 3K
O =220 (CQ(Q) +KoT), Cs=vlvol32q +

By applying Granwall’s lemma and the standard techniques, we get from (27) estimate (24).

Along with the above estimates, one can establish the following more regular estimate assuming
an additional smoothness for data.

Lemma 5. Assume that in addition to the conditions of Lemma 5 holds
f € L®(0, T; L%(Q)).

Then for all ¢ € [0,T] the following estimate is valid

sup |[|vy' Hvl + sup [[Avy ”29 < M3 < oo. (28)
te[0,7] te[0,1]
Proof. Let us multiply the k" equation of (13) by —pug dcgt(t), and sum with respect to k, from 1

to m. Then we have
IVE R 0y + 2 AV 5.0 = (V™ V) V™ AV, o —
/ (29)
/K (t—71)(AvV™(1), szf/’”‘(t))zQ dr + (£(¢t), AV?)ZQ —v (Avm,Av;”)Z’Q = 141 + Iyo,
0

where

Iy = ((v™-V) Vm>AV?L)2,Q>
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lp = —/K(t —7) (AV™(7), Avi™(t))y g dT + (£(2), Av{")y o — v (AV™, Avi®), o

Estimating I4; and I4e by using Holder and Cauchy inequalities as above, we obtain the following
inequality

€1 2 | CHQY) 2 2
I < 1AV laq IVl IVv" g < 2 1AVP IR0 + SE2 IV 1AV Bg. (30)
€2
I < Z AP0+ 52 /IIA Badr+ 2 IAVFOBe + 5

v
+ en ||Ava27Q + - HAvt (t)HQQ

€4
Choosing ¢; = §,i=1,2,3,4 in (30) (31), and substituting into (29), we get
202(12)

2 x 2 2
HVTHVl(Q +5 ||AV?||2,Q = HVmﬂvl(Q) HAVm”zQJF
(32)

2K .
0/nA DB gdr+ 2 lElq + o |AvTEe.

Now, taking the supremum by ¢ € [0, 7] on both sides of (32), and using (20) and (24), we obtain

2C%(Q 2K? 2v
) o, +=0 0y T2 I o7y T Me < K < oo

2 x 2
sup (V" Ry + 5 1AV I3.0) <
te[0,T]

2.8 Passage to the limit as m — oo

By means of reflexivity and up to some subsequences, estimates (16), (20), (28) imply that

v™ —~ v weakly-x in L®(0,T; V(Q) N V(Q)), asm — oo, (33)
v —~v weakly in L*(0,T; V(Q) N V(Q)), asm — oo, (34)
vt —~v; weakly in L*(0,T;V(Q) N V(Q)), asm — oo, (35)
v™ —~ v  weakly-x in L>(0,T;V?(Q)), asm — oo, (36)
v™ —~v weakly in L?(0,T; V3(Q)), as m — oo, (37)
vt —~v; weakly in L*(0,T;V3(Q)), asm — oo. (38)

On the other hand, due to the compact embedding Wé’2(Q) <3 L2(Q) and the Aubin-Lions
compactness lemma, it follows that

v™ — v strongly in L?(Qr) as m — cc. (39)

Let ¢(t) € C§° ([0,T7]) be an arbitrary function. Multiplying (13) by ¢(¢) and integrating the result by
t from 0 to T', we obtain

/ v - prpCdxdt + / (v V) v™ - ppCdxdt + v Av™ - o Cdxdt+
T T Qr
) (10)
+ AV - ppCdxdt = / / K(1 — s)Av™ - prpCdsdT + / f - ppldxdt
Qr Iy T
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for k € {1,...,m}. Then, fixing k, we can pass in equation (40) to the limit m — oo, by using the
convergence results (33)—(39). Then, we obtain

/ v - prCdxdt + / (v-V)v - ppldxdt + v Av - ppCdxdt+
T T Qr
. (41)
+ Avy - prldxdt = / / K(1 — s)Av - pi(dsdr + / f - ppldxdt.
Qr T J0 Qr

for k € {1,...,m}.

By linearity, equation (41) holds for any finite linear combination of {z; = ¢y, - ((¢)},, with ((¢) €
Cs° ([0,T)), and, by a continuity argument, it is still true for any z € L%(0,7; V(f2)). Hence, we can
see that v satisfies to

/ vy - zdxdt + / (v-V)v-zdxdt +v Av - z(dxdt+
T T Qr

+ Avy - zdxdt = / / K(1T — s)Av - zdsdT + / f - zdxdt,
Qr 70 Qr
i.e. v is a strong solution to problem (1)—(4).

3 Regularity of solutions
Theorem 2. Let all conditions of Theorem 1 be fulfilled. Then
v € C(0,T; V() NVEQ)), pe C0,T;G(N)).

If, in addition,
feC(0,T;L*Q))

holds, then for all ¢t € (0,7
v e CHO,T; V(Q) NV3(Q)), pe C0,T;G(Q)) (42)
holds.

Proof. Embedding (42) follows from Lemma 1, under estimates (16), (20), (24). The second assertion
follows from the embedding theorems under the estimates from |20, 22].

Acknowledgments

This research work has been funded by Grant number AP19676624 of the Ministry of Science and
Higher Education of the Republic of Kazakhstan.

References

1 Barnes H.A. A Handbook Of Elementary Rheology / H.A. Barnes. — University of Wales,
Cambrian Printers, Aberystwyth, 2000. — 200 p.

2 Joseph D.D. Stability of Fluid Motions / D.D. Joseph. — New York: Springer-Verlag Berlin
Heidelberg, 1976. — 278 p.

74 Bulletin of the Karaganda University



Kelvin-Voigt equations ...

3

10

11

12

13

14

15

16

17

18

Oskolkov A.P. Initial boundary-value problems with a free surface condition for the modified
Navier-Stokes equations / A.P. Oskolkov // Journal of Mathematical Sciences. — 1997. — 84. —
P. 873-887. https://doi.org/10.1007/BF02399939

Pavlovsky V.A. On the theoretical description of weak water solutions of polymers / V.A. Pavlovsky
// Dokl. Akad. Nauk SSSR. — 1971. — 200. — No. 4. — P. 809-812.

Zvyagin V.G. The study of initial-boundary value problems for mathematical models of the
motion of Kelvin-Voigt fluids / V.G. Zvyagin, M.V. Turbin // Journal of Mathematical Sciences.
— 2010. — 168. — P. 157-308. https://doi.org/10.1007 /s10958-010-9981-2

Ladyzhenskaya O.A. On the global unique solvability of some two-dimensional problems for the
water solutions of polymers / O.A. Ladyzhenskaya // Journal of Mathematical Sciences. — 2000.
— 99. — P. 888-897. https://doi.org/10.1007/BF02673597

Oskolkov A.P. Nonlocal problems for the equations of Kelvin-Voight fluids and their e-approxima-
tions in classes of smooth functions / A.P. Oskolkov // Journal of Mathematical Sciences. — 1997.
— 87. — P. 3393-3408. https://doi.org/10.1007 /BF02355590

Kotsiolis A.A. The initial boundary value problem with a free surface condition for the e-

approximations of the Navier-Stokes equations and some of their regularizations / A.A. Kotsiolis,

A.P. Oskolkov // Journal of Mathematical Sciences. — 1996. — 80. — No. 3. — P. 1773-1801.

https://doi.org/10.1007/BF02362777

Ghidaglia J.M. Regularite des solutions des certain problemes aux limites lineaires lies aux

equations d’Euler / J.M. Ghidaglia // Comm. Part. Diff. Equations. — 1984. — 9. — P. 1265-1298.

https://doi.org/10.1080,/03605308408820363

Rajagopal K.R. On the Oberbeck-Boussinesq approximation / K.R. Rajagopal, M. Ruzicka,

A.R. Srinivasa // Mathematical Models and Methods in Applied Sciences. — 1996. — 6. — No. 8.

— P. 1157-1167. https://doi.org/10.1142/S0218202596000481

Baranovskii E.S. The Navier-Stokes-Voigt equations with position-dependent slip boundary condi-
tions / E.S. Baranovskii // Z. Angew. Math. Phys. —2023. — 74. — No. 6. https://doi.org/10.1007/
s00033-022-01881-y

Prilepko A.I. Methods for solving inverse problems in mathematical physics / A.I. Prilepko,

D.G. Orlovsky, I.A. Vasin. — Marcel Dekker, New York, Basel, 2000. — 744 p. https://doi.org/

10.1201,/9781482292985

Huntul M.J. Inverse coefficient problem for differential equation in partial derivatives of a fourth
order in time with integral over-determination / M.J. Huntul, I. Mekin // Bulletin of the
Karaganda University. Mathematics Series. — 2022. — No. 4(108). — P. 51-59.

Kozhanov A.I. Inverse problems of determining coefficients of time type in a degenerate parabolic
equation / A.I. Kozhanov, U.U. Abulkayirov, G.R. Ashurova // Bulletin of the Karaganda
University. Mathematics Series. — 2022. — 2(106). — P. 128-142

Karazeeva N.A. Solvability of initial boundary value problems for equations describing motions

of linear viscoelastic fluids / N.A. Karazeeva // Journal of Applied Mathematics. — 2005. — 25.

— No. 8. — P. 59-80.

Yushkov E.V. On the blow-up of a solution of a non-local system of equations of hydrodynamic
type / E.V. Yushkov // Izvestiya Mathematics. — 2012. — 76. — No. 1. — P. 190-213. https://doi.org/
10.1070/IM2012v076n01 ABEH002580

Baranovskii E.S. Strong Solutions of the Incompressible Navier—Stokes—Voigt Model / E.S. Baranovskii
// Mathematics. — 2020. — 8. — No. 2. — 181. https://doi.org/10.3390 /math8020181

Antontsev S.N. The classical Kelvin-Voigt problem for nonhomogeneous and incompressible
fluids: existence, uniqueness and regularity / S.N. Antontsev, H.B. de Oliveira, Kh. Khompysh //

Mathematics series. No.4(112)/2023 75



Kh. Khompysh, N.K. Nugymanova

19

20

21

22

Nonlinearity. — 2021. — 34. — No. 5. — P. 3083-3111. https://doi.org/10.1088/1361-6544 /abe51e
Agmon S. Estimates near the boundary for solutions of elliptic partial differential equations
satisfying general boundary conditions / S. Agmon, A. Douglis, L. Nirenberg // Communications
on pure and applied mathematics. — 1964. — No. 17. — P. 35-92. https://doi.org/10.1002/
cpa.3160170104

Lions J.-L. Quelques methodes de resolution des problemes aux limites non liniarires / J.-L. Lions.
Paris: Dunod, 1969. — 570 p.

Ladyzhenskaya O.A. The Mathematical Theory of Viscous Incompressible Flow / O.A. Lady-
zhenskaya. — New York: Gordon and Breach, 1969. — 224 p. https://doi.org/10.2307 /3613759
Galdi G.P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations: Steady-
State Problems / G.P. Galdi. — New York: Springer, 2011.

X. Xowmmnbim, H.K. Hyremmanosa

Oa-Dapabu amovimdaze. Kasax yammok yrusepcumemi, Aamamo, Kaszaxcman

Xaapl mynieci 6ap KeabBuH-PoiirT TeHaeyaepi: mienriMaepais, 6ap

76

60J'Iy1:>1, 2KaJIFbISAbITBI 2KoHE pPeryJjidpJiblrbl

2Kanmer anranga Kepi ecenTepii 3epTTey oJiapra CoMKeC KeJETIH Typa eCenTepiH OGIpMOH/II IMIernmiM/IiTi-
ri JkoHe menriMaepiuiy y3imicci3miri MeH KOorapbl PeryJspbIFbl CHSIKTBI Keiibip KaxKeTTi KacueTrepre ue
OoJiraH Karjafifa raHa »Ky3ere achIpbliaanbl. Makastaa TYTKBIP CEPIIMl »KOHE PeJIaKCAIUAJIBIK KaCUEeT-
Tepi eCKepiireH ChIFbLAMANTHIH OipTeKTI HBIOTOHIBIK eMeC CYHbIKTap/IblH, KO3FAIBICHIH CUIATTARTBIH YKa b
wmytreci 6ap 2D-3D emmremai cer3pikThl emec Kenppuu-Doiirt Tenmeystep Kyiieci yImiu Koibuiran 6acTamKbi-
IIEKTIK ecemnTep 3eprTesnreH. Byi Typa ecentepmi 3epTTey OCHI 2XKyiie YIIH KONBLIFAH Kepi ecenrep/i 3epT-
TeymeH GaitanbicThl. Cebebi, OHMTa OCBI Typa eCelTep/IiH, MeITiM/IePiHiH, XKOHe OJIAP/IBIH TYbIHIBLIAPBIHBIH
y3isiccizmiri MeH peryssipJbIFbl CUSKTBI KacueTrTepi KaxKkeT erijeri. KapacThIPBLIbIIT OTBIPFaH ecenTepie
TeHJeysep 2Kyileci 6acTankpl IIApPTIIEH KATap KYFY *KOHE ChIPFaHAy CHSKTHI IIEKapPAJIbIK, MIapTTapPbIHBIH
OipiMeH TOJIBIKTBIPHLIAALI. OChI €Ki IMeKapaJIbIK, IapTTap KardalblH1a 6acTalKbl-IIeKapaJIbIK eCelTePIiH
QJIJIi mIenriMIepiniy yakbIT GONbIHIIA TIO6AIbIbl 6ap GOJIybl YKOHE YKAJIFBI3ILIFbL jpJieiaeHred. CoHbIMeH
KaTap, ecelnTiH Oepiireniepi yImiH KOJaiabl yirapbIMIap »Kacail OTBIPHII, IIEeIIiMIepMeH OJIap/IbIH TYbIH-
JIBLIAPBIHBIH, PETYJISIPJIBIFBI KOPCETLIII.

Kiam cesdep: KenbBun-DoirT xKyiteci, XKyFy KoHe ChIPpFAHAYIbIH, [IIEKAPAJIBIK, IIaPTTAPBI, OJIJI MIEITiMIep,
r100aIBIbI 6ap GOJIYBI YKOHE KAJIFBI3IBIFBI, TETICTIK.

X. Xowmmnbrim, H.K. Hyrermanosa

Kaszazxcrul HOUUOHAADHIT YyHUBEpCUMeM umeny asv-Dapabu, Aamamo, Kaszaxcman

YpaBuennsa KeabBuna—®@oiirra ¢ mnamMsTbIO: CyIIIeCTBOBaHNE,
€JIMHCTBEHHOCTh U PEryJsIPHOCTb PeIleHuit

B obmem ciiydae nsydenue o6paTHBIX 33/a9 OCYIECTBUMO TOJILKO B TOM CJIydae, KOrJla COOTBETCTBYIOIINE
MpsiMbIe 33/Ia91 UMEIOT €IMHCTBEHHOE pelllenne, 00/1aao1ee HEKOTOPBIMEA HEOOXOUMBIMUA CBOMCTBAMU, Ta-
KMMU KaK HEIPEPHIBHOCTD U PETYASPHOCTD. B cTaThe ncciie10BaHbl HAYAJIbHO-KPaEeBbIe 3a1a49N JJTsI CHCTEMBbI
2D-3D nenuneiinbix ypaBuenuit Kenbuna—QPoiirra ¢ nmaMsaTbiO, ONUCHIBAIOIIEH JIBUXKEHUE HECKUMAEMOM
OHOPOJTHOM HEHBIOTOHOBCKOU >KUJKOCTHU C BA3KOYIPYTUMU U PEJIAKCAIMOHHBIMU cBoiicTBaMu. VccienoBa-
HH€ TAKNX IPSMBIX 33/1a9 CBA3AHO C U3YUYEHHEM COOTBETCTBYIONUX OOPATHBIX 332t /I JJAHHONW CHUCTEMBI,
KOTOpOe TpedyeT CBOMCTB KaK HEIPEPHIBHOCTH U PErYJISIPHOCTH PEIIeHUs] U UX TPOU3BOIHBIX ITUX HPIMbBIX
3agau pemrennit. CucrteMa ypaBHEHUI, MIOMUMO HAYAJIBLHOTO YCJIOBUS, JOMOJIHSIETCS OMHUM W3 TPAHUIHBIX
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yCJ'IOBPIfII ycaoBueM IpUJIUNIaHUA UJIN CKOJIb2KEHU . B oboux ClIy4dadX JOKa3aHbI ryiobajibHOE BO BpeEMEHU
CyIIeCTBOBaHUE U €JIUHCTBEHHOCTH CHJIBHBIX peH_IeHI/Iﬁ 9TUX HAYaJIbHO-KPaeBbIX 3a/1a4. Boitee TOTrO, IIpU
COOTBETCTBYIOUX IIPEAIIOJIOKEHUAX Ha JaHHBIE ObLIa YCTaHOBJICHA PETYJIdPHOCTDb peHleHI/Iﬁ n UxX 1Ipomu3-
BO/IHBIX.

Karouesvie caosa: cucrema Kenpuna—®oiirra, rpaHnYHbIE YCIOBUS CKOJIBYKEHUS U IPUINIIAHUS, CUIbHBIE
petieHust, r00aIbHOE CYIIECTBOBAHUE U €UHCTBEHHOCTD, VI IKOCTb.
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A study on new classes of binary soft sets in topological rough
approximation space

Soft binary relation is used to define new classes of soft sets, namely BR-soft simply open set and BR-soft
simply™* alpha open set, in topological rough approximation space over two different universes. The defined
set provides information on the missing elements of a BR-soft set and can help in simplifying decision
making. Approximation operators are defined and the characteristics of the proposed sets are studied with
examples. The relationship between the defined sets and other soft sets is brought out. An accuracy check
was done to compare the proposed method with other methods. It is identified that the proposed method
is more accurate.

Keywords: Soft set, rough set, simply open, approximation space, topological space.

Introduction

Decision making becomes complicated while handling problems with inappropriate or uncertain
data. To deal with complex problems with uncertainty, many researchers developed various mathematical
tools and theories. Soft set theory, one of the prominent theories of uncertainty, is highly helpful in
decision making due to the presence of its parameters. This theory was developed by Molodtsov [1] in
1999. Further developments in soft set theory and its application were done by many researchers [2-6].
Though soft and rough set theories are different for handling problems with uncertainty, efforts have
been made to combine both for solving complex problems [7,8]. The relationship between soft sets,
soft rough sets and topologies were investigated by Li [9]. Covering soft rough sets and their topologies
were also studied by many other researchers [10,11]. While dealing with soft rough sets, Feng [12] used
parametrized subsets to find upper and lower approximations of a subset. These soft rough sets, soft
[ rough sets, soft rough approximations, soft pre-rough approximations etc., are further studied by
many researchers in decision making [13-17].

Soft set theory was also extended over rough approximation space, nearness approximation spaces
and ideal rough topological spaces in [18-20]. In recent years, theories of uncertainty have been extended
over two universal sets. However, approximation operators between two different universal sets are less
explored. Zhang and Wu [21] were the first to study approximation operators between two different
universal sets by the constructive approach of a random approximation space. Following them, a few
other authors started working over two different universes using fuzzy rough set, intuitionistic fuzzy
rough set, neutrosophic set, etc. [22-25]. In [26], the author constructed a topological space, using the
fuzzy b-q neighbourhood of one fuzzy topology and fuzzy b-closure of another fuzzy topology.

The concepts of simply-open and its irresoluteness were studied by Dontchev et al. [27]. Continuous
functions, separation axioms of the e-Z set and many other concepts like a-local function are studied
in ideal topological spaces by Al-Omeri et al. [28-31]. El Sayed et al. [32] extended simply-open to soft
set theory. In addition, El Safty et al. [33| defined the concept of Simply™* alpha open sets in rough set
theory which is a union of an alpha open set and nowhere dense set. This set is useful in the field of

*Corresponding author.
E-mail: sofiaarjunanl1@gmail.com
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decision making as it contributes to attribute reduction. Though it is studied in the rough set, since the
soft set contains a parametrization tool, it is appropriate to study simply* alpha open set over soft set.
The choice of soft sets in decision making problems varies among different researchers. It is also seen
from the literature that every soft set may not include all elements of the universal set. In such cases,
information regarding the left-out elements of the universal sets is not emphasized. A decision-making
process is highly reliable only by considering every option (element) related to the problem. For this,
new classes of soft sets will have to be defined.

In this paper, BR soft simply* alpha open set and BR-soft simply open set are defined in BR-soft
topological rough approximation space. The complement of soft sets is taken as in [34]. Apart from this,
other classes of BR-soft near sets, namely BR-soft delta, BR-soft nowhere dense, BR-soft alpha open,
BR-soft beta open, etc., are also defined over different universes to obtain their relationship between
the defined sets. The topological properties of defined sets are studied. In addition, the accuracy of the
proposed method is demonstrated using example problems and compared with the methods of Feng
[12] and Yao [35].

In the following section (section 2) of the paper, the required preliminary definitions are given.
In section 3, the sets are defined and their properties are studied. Example problems illustrating
the application of the sets and their accuracy measures are given in section 4. This is followed by a
conclusion and scope for future work.

1 Preliminaries

Definition 1.1. A soft set my, is a mapping from a subset of a parameter set (A C E) to the power
set of a universal set U. The collection of soft sets my, over U forms soft topology T, if the following
conditions are satisfied.

i0,Ue€r.

ii The arbitrary union of soft sets in 7 is in 7.

iii The finite intersection of soft sets in 7 is in 7.
Then, (U, E, ) is said to be a soft topological space.

Proposition 1.2. The following conditions hold in the soft topological space (U, E, ).

i 0,U are soft closed sets over U.

ii The arbitrary intersection of a soft closed set is soft closed.

iii A finite union of soft closed set is soft closed.

Proposition 1.3. |34] The following conditions hold in the soft topological space (U, E, T).

i 0°, mkc are soft closed sets over U.

ii The arbitrary intersection of soft closed set is soft closed.

iii A finite union of soft closed set is soft closed.

Definition 1.4. (U, R) denotes Pawlak’s approximation space, R is an equivalence relation and

X C §. Using R following operators were defined.
R(X)={xe€S:[z]R C X},

R(X)={zeS:[z]RNX #0}.

If R(X) # R(X), X is a rough set. Otherwise, X is definable.

2 Soft set over “n” different nonempty finite sets

Definition 2.1. S1, S5, ...S, be nonempty finite sets. K be the subset of a parameter set E. A pair
(m, K) or mg is called a soft binary relation over S, ...Sy, if (m, K) is a soft set (BR-soft set) over
S1 xSy x...x S,
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Throughout this paper, we consider n=2, i.e., two non-empty finite sets say, S and 7.

Definition 2.2. Let (S,T, Ry,(sy)) be a rough approximation space and 7pg be a soft topology
obtained from a soft binary relation over S,7T. Thus, (S,T, Rys,):TB r) is said to be BR-topological
rough approximation space where the elements of Tpr are BR-soft open and its complements are closed.

Example 2.3. Let S = {2,3,5},T = {4,6},E = {e1,ea} = K.Let SxT = {(2,4), (2,6), (3,4), (3,6),
(5,4), (5,6)}. Thus, the soft binary relation over SxT is my = {(e1,{(3,4), (5,4)}), (e2,{(2,4),(3,6)})}.
The soft relations induced from soft binary relation are as follows:

R(374) - {(61’ {(574)})}7
R(574) = {(61, {(3>4)})}7
R(2,4) = {(e2,{(3,6) 1)},
R(3,6) = {(e2,{(2,H)})}-
Subbasis Sp = {{(e1,{(5,4)})}, {(e1, {(3,4)})}, {(e2, {(3,6)})}, {(e2, {(2,4)})}}-

The topology obtained by taking the finite intersection of an arbitrary union of elements of a subbasis
is as follows:

R ={0, mx, {(e1, {(5, 4D} {(e1, {5, D)} {(er, {(5, ) 1)}, {(ex, {(5,4)}
{(e1,{(5,4)}), (e2,{(3,6)}}, {(ex, {(5,4)}), (e2, {(2,4)} }, {(er, {(3,
{3, 4)}), (e2,{(2,4)}}, {(e2,{(2,4),
{(e1,{(5,4), (3,4)}), (e2,{(3,6) ) },

{(2,4),(3,6)})}}-

Then, (S, T, Ry, (s,t), TBR) 18 BR-topological rough approximation space.

e {
s (e2, {
(3,6)1)}, {(e1, {(5,4), (3,4)}), (e2, {(2,4) 1)},
{(e1,{(5,4)}), (e2,{(2,4), (3,6)})}, {(e1, {(3,4)}), (e2,

4), (3,4)}},

) (5
4) (3,6)}}: {(ex,
}

)}

Definition 2.4. Let (S, T, Ry,(s4), TBr) be a BR-topological rough approximation space. For each
my; C my, the BR-topological approximation operators are defined as follows:

Tpr(mri) = U{my; € TBr; mr; C mai),

Ter(ME;) = N{my; € 5% mp; C Mij }.

In other words, Tgp, TR is considered as interior and closure of the BR-topological approximation
space respectively.

3  BR-Soft simply open, BR-Soft simply® alpha open sets

Definition 3.1. In a BR-topological rough approximation space, a BR-soft subset is called BR-soft
nowhere dense if Tgp(Tpr(mg;)) = 0.

Definition 3.2. In a BR-topological rough approximation space a BR~soft subset is called a BR-soft
simply* alpha open set if my; € {0, mg, (my; Umi) : my; is BR-soft o open, myy; is BR-soft nowhere
dense and my, is BR-soft set}.

The collection of BR-soft simply* alpha open set is denoted by BRgS*aO(my;), the complement
is BR-soft simply* alpha closed.

Definition 3.5. In a BR-topological rough approximation space, a BR-soft subset is called

i BR-soft simply open set if my, = (mg;) U (my;), where (my;) is BR-soft open and (my;) is BR-soft

nowhere dense.
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ii BR-soft delta set if IBR(FBR(mki)) - FBR(IBR(mki))'
iii BR-soft semi locally closed set if m; equals the intersection of BR-soft semi open set and BR-soft
semi closed set.
iv. BR-soft b open set if my; C (Tgr(Ter(mki)) UTBR(TER(MEI)))-
v BR-soft alpha open if my; C 75r(Tr(T5R(MK))).
vi BR-soft beta open if my; C Tpr(zgr(Tr(mK))).
BR-soft simply open set, BR-soft delta set, BR-soft nowhere dense, and BR-soft b open are denoted
as BRsSO(my;), BRs6O(my;), BRsNO(my;), and BRs;bO(my;) respectively.

Proposition 3.4. Every BR-soft open set is BR-soft alpha open.

Example 3.5. Considering the topology taken in Example 2.3, where
myg = {(617 {(37 4)7 (57 4)})7 (627 {(27 4)7 <3a 6)})} Here, BRSNO(mk) = {@, {(617 {(57 6>}7 (627 {(27 6)})}}
It is clear that the BR-soft set my, = {(e1,{(3,4),(5,6)}), (e2,{(2,4),(2,6)})} is BR-soft simply open,
my, = {(e1,{(3,4),(5,6)}), (e2,{(2,4),(2,6),(3,6)})} is a BR-soft 0 set.

Theorem 3.6. Every BR-soft simply open is BR-soft simply* alpha open.

Proof. Let my, be a BR-soft simply open set. That is, my is a union of BR~soft open set and BR-soft
nowhere dense set. Since every BR-soft open set is BR-soft alpha open, we denote my as a union of
BR-soft alpha open set and BR-soft nowhere dense set. This proves the theorem.

The converse of Theorem 3.6 need not be true and is explained in the following example.

Example 3.7. Consider the topology taken in Example 2.3. Let the BR-soft subset be
my = {(e1,{(3,4)}), (e2,{(2,4)})} which is a BR-soft alpha set.

Thus, {(617 {(37 4)7 (5’ 6)})a (627 {(2) 4)7 (27 6)’ (37 6)})}> mEg, = {(61) {(37 4)’ (5’ 6)})a (627 {(2’ 4)7 (2’ 6)})}
are both BR-soft simply™* alpha open and BR-soft simply open. The BR-soft nowhere dense set my, =
{(e1,{(5,6)}), (e2,{(2,6)})} is BR-soft simply open but not BR-soft simply* alpha open.

Theorem 3.8. Every BR-soft open set is BR-soft simply open and BR-soft simply* alpha open set.

Proof. The proof is obvious for BR-soft simply open and by Theorem 3.6, the BR-soft open set is
BR-soft simply* alpha open.

Remark 3.9. Though the union of the BR-soft alpha open set and the BR-soft nowhere dense set
is BR-soft simply* alpha open, a BR-soft simply* alpha open set need not be BR-soft alpha open.

The following example explains Remark 3.9.

Ezxample 3.10. The BR-soft set my, = {(e1,{(3,4),(5,6)}), (e2,{(2,4),(2,6)})} taken in example
3.7 is BR-soft simply* alpha open but not BR-soft alpha open. Since 7gg is obtained by considering
Mk, TSp is also taken with respect to my. Let us consider my = {(e1, {(5,6)}), (e2,{(2,6)})}.

Then, we have BRg(BRg(my2)) = (), and BRs(BRg(BRs(my2))) = 0 which implies
BRg(BRg(my2)) C mia, BRs(BRg(BRs(my2))) C mya.

Theorem 3.11. For a BR-soft subset myg; in a BR-topological rough approximation space, the
following conditions are equivalent:

i my, is BR-soft simply open.

ii my, is BR-soft semi locally closed.

iii my, is BR-soft delta.
iv. my, is BR-soft nowhere dense.

Proof. (1) <= (ii) is obvious.

(ii) <= (iil) Let my; be BR-soft semi locally closed.
Then,

Tr(TBR(MK:)) C (TR(TBR(MK)) NTBR(TER(MK:)))

and

Tr(TBR(MK:)) € TBR(TBR(MA:)).
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Thus, my; is a BR-soft delta set.
(iii) <= (iv) Let my; be a BR-soft delta set. Then,

Tar(TBR(MKi)) = Tpr(TBR(MK)) N TER(TBR(S X T\ mk;))
= 1pr(TBR(ME)) N (S X T\ TrR(TgR(MK)))
= 7pr(TBR(MK:)) \ TBR(TpR(MEK:))

= 0.

Theorem 8.12. Consider the BR-topological rough approximation space, then
i The arbitrary union of a BR-soft simply open set is BR-soft simply open.
ii The finite intersection of BR-soft simply open set is BR-soft simply open.
Proof.

i Let mpy, mio be two BR-soft simply open sets. Then

Tpr(TBrR(MK1)) C TBR(TBR(MK1))
and

Tpr(TBR(MK2)) € TBR(TpR(MEK2))-
By taking union we get,

TBR(Tpr(Mmk1)) UTBR(TER(MK2))

TBR(Tpr(ME1 Umiz)).

Ter(TBR(MK1)) U TpR(TER(MA2))

= Tpr(TBR(MK1 Umi2))

Let my1 Umyga be mys. Then, 75(Ter(mis)) C Ter(Tpr(mks))-
ii my, be the collection of BR-soft simply open sets where i = 1,2, ...
Then,

Ter(TBR(Ni=1(Mk,))) C TBR(TpR(Ni=1 (MkK,))).

Hence, N}*_; (my,) is BR-soft simply open.
Remark 3.13. In the BR-topological rough approximation space,
i BR-soft simply open, BR-soft simply* alpha open and BR-soft beta open are not comparable.
ii BR-soft simply open, BR-soft simply* alpha open and BR-soft b open are not comparable.
iii BR~soft simply open, BR-soft simply* alpha open and BR-soft preopen are not comparable.
Proposition 3.14. In the BR-topological rough approximation space,
i The union of the BR-soft simply* alpha open set is BR-soft simply* alpha open.
ii The finite intersection of the BR-soft simply* alpha open set is BR-soft simply* alpha open.
Remark 3.15. Every BR-soft delta set is BR-soft nowhere dense.
Theorem 3.16. In a BR-topological rough approximation space, every BR-soft simply* alpha open
set is BR-soft alpha closed.
Proof. The proof is obvious from Definition 3.2.
Theorem 3.17. In a BR-topological rough approximation space, every BR-soft simply* alpha open
set is BR-soft pre closed (resp. BR-soft beta closed).
Proof. Let my; be BR-soft simply* alpha open. From Theorem 3.16,

Tr(TBR(TpR(Mki)) C M-
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Since,

Tr(TBR(MKi)) C TrR(TBR(TER(MK)) C M.

Thus,

Tar(TBR(MEK)) C My

The proof is similar for BR-soft beta closed.
Theorem 3.18. For a BR-topological rough approximation space, the following conditions are
equivalent:
i Every BR-soft simply* alpha open set is a BR-soft 0 set.
ii Every BR-soft simply* alpha open set is BR-soft beta closed.
iii Every BR-soft simply* alpha open set is BR-soft pre closed.
iv. Every BR-soft simply™ alpha open set is BR-soft b closed.
Proof. (i) <= (ii) my; be BR-soft simply* alpha open, BR-soft delta set.
Thus, we have

Tar(TBR(MK)) C TBR(TBR(ME))-
Tar(TBR(MKi)) C TBR(TBR(TBR(MEKI)))
C 7pr(Tpr(Mmki))
C myy

Therefore, Tpr(Tpr(Tar(ME))) C ME;.
(ii) <= (iii) It is obvious from the above proof that 7zr(Tpr(mi)) C mg;.
(iii) <= (iv) Since my; is preclosed and T5r(Ter(MKi)) € TBR(TER(MKI))-

We have,

Ter(TBR(ME)) NTBR(TBR(MEi)) = TRR(TBR(MEK))
C M.

A diagrammatic representation of the above-mentioned concepts is given below (Fig)

BR soft B closed

&

BR soft & set «—— BR, S aO(m;;) =S BR soft b closed

i

BR soft pre-closed

Figure. Diagrammatic representation

Proposition 3.19. Every BR-soft simply* alpha open is BR-soft semi open (resp. BR-soft beta open)
based on Proposition 1.35.
Proof. For every BR-soft simply* alpha open my;,
BRg(mpi) € my; € BRg(my)
—> BRs(BRg(mki)) € BRs(mp)
— my; € BRs(BRg(my)).
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Hence, BR-soft simply™ alpha open is BR-soft semi open.

The proof is similar for BR-soft beta open.

Example 3.20. Consider the topology taken in Example 2.3.
Let my = {(e1,{(3,4),(5,4)}), (e2,{(2,4),(3,6)})} be the BR-soft simply* alpha open set. Then, by
taking interior and closure with respect to Proposition 1.3, we have
BRgs(BRg(my)) = mpg, BRs(BRg(BRgs(my))) = mg. That is, my, is BR-soft semi open, BR-soft beta
open.

Definition 3.21. Let (S, T, Rys0), B r) be a BR-topological rough approximation space. For each
BR-soft simply* alpha open sets my; C my, the BR-topological approximation operators are defined
as follows:

BRg(my;) = U{my; € TBrimi; C my},

BRg(my;) = N{my; € TSR Mk C Mpj}

where my,; is the BR-soft set, BRg(my;), BRs(my;) are the interior and closure of BR soft simply*
alpha open sets in BR-topological rough approximation space respectively.

Theorem 3.22. The collection of all BR soft simply* alpha open sets obtained from BR-topological
rough approximation space forms a BR-soft topology 75p.

Proof. 1t is obvious from Definition 3.2 and Proposition 3.12.

Definition 3.23. Let 75 be the BR-soft topology obtained from the collection of BR soft simply*
alpha open sets. For each BR-soft simply™* alpha open sets my; C my and my;, the approximation
operators are defined as follows:

BRg(my;) = U{my; € Tppimi; © M},

BiRs(m]m) = ﬂ{mkj S T]ERC§ my; C mk:j}-

Here, BRg(my;) and BRg(my;) are lower approximation (interior) and upper approximation (closure)
of BR soft simply* alpha open sets in the BR-soft topology obtained from the collection of BR soft
simply™ alpha open sets.

The boundary region is the difference between the upper and lower approximation operators.

Concerning the quality of the approximation, accuracy is defined as the ratio of cardinality of the
lower approximation (interior) and cardinality of the upper approximation (closure).

Proposition 3.24. Let 75, be a BR-soft topology and my,;, my; be two BR-soft simply™ alpha open
subsets of a BR-soft simply™ alpha open set my, then the BR-topological operators satisfy the following
properties:

i BRg(0) = BRs(0) = 0,

ii BRg(my;) = BRs(my;) = my,

iii If my; C my;, then BRg(my;) € BRg(mu;),
iv If my; C my;, then BRg(my;) € BRs(my;),

v BRg(mpi Nmy;) = BRg(my;) N BRg(my;),

vi BRg(mg;) U BRg(my;) C BRg(mg;) U (my;)),
vii BRg(mp; Umy;) = BRs(my;) U BRs(my;),
viii BRg(my; N'my;) € BRg(my;) N BRg(my;).

Ezample 3.25. Let S = {2,3,5},T = {4,6},and F = {e1,ex} = K. Let SXT = {(2,4),(2,6), (3,4), (3,6),

(5,4), (5,6)}. Thus, the soft binary relation over SxT is my = {(e1,{(3,4), (5,4)}), (e2,{(2,4),(3,6)})}.
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The soft relations induced from soft binary relation are as follows:

R(3,4) = {(e1,{(5,9)})},
R(5,4) = {(e1, {3, 9)})},
R(2,4) = {(e2,{(3,6)})},
R(3,6) = {(e2,{(2,4) 1)}
Subbasis Sp = {{(e1,{(5,4) 1)}, {(e1,{(3;4) )}, {(e2, {3, 6)})}, {(e2, {(2,4) 1)} }-

The topology obtained by taking the finite intersection of an arbitrary union of elements of subbasis
is as follows:

R = {0, mx, {(e1, {(5,4) D}, {(e1, {(5, ) D}, {(er, { (5, ) 1)} {(en, {5, 1)}, {en, {(5,4), (3,4) }},
{(e1,{(5:4)}), (e2,{(3,6)}}, {(e1, {(5:4)}), (€2, {(2,4)}}, {(e1, {(3:4)}), (2, {(3,6) } }, { (e,
{3,4)}), (e2,{(2,4)}}, {(e2, {(2,4), (3,6) D)}, {(e1, {(5,4), (3, 4)}), (e2, {(2,4)})},
{(e1,{(5,4),(3,4)}); (e2, {(3,6) )}, {(e1, {(5,4)}), (€2, {(2,4), (3,6)}) }, {(e1, {(3,4)}), (e2,

{(2,4),(3,6)}1)}}-

Let {(e1,{(5,6)}), (e2,{(2,6)})} be BR-soft nowhere dense set. Then, 75 is the BR-soft topology
obtained by taking the union of BR-soft alpha open sets and BR-soft nowhere dense set. Consider
BR-soft simply* alpha open sets my; = {(e1,{(5,6)})} and myo = {(e1,{(5,6)}), (e2,{(2,6)})} where
my1 C mys. Therefore, we have,

BRg(my1) = my1, BRg(mg1) = my
BRs(my2) = my2, BRg(mi2) = mia

= BRg(my1) C BRs(my2) and
BRg(mg1) C BRg(my2)

Now, let my1 = {(e1,{(5,6)})} and mya = {(e2,{(2,6)})}. Then,

?Rs(mkl) = mkl;ﬂs(mm) = Mg1.-
?Rs(ka) = mk2a@s(mk2) = Mg2.

Thus,
mi1 N My = 0, (1)
BRg(my1 Nmy2) =0, (2)
BRg(my1) N BRg(myg) = 0. (3)

From (1), (2) and (3) we have, BRg(my1 Nmg2) = BRg(my1) N BRg(my2).
Similarly, BRg(mg1 N mk2) = BRs(my1) N BRs(mys).

Theorem 5.26. Let my; and my; be two BR-soft subsets of BR-topological rough approximation
space. If my; is BR-soft simply* alpha closed, then BRg(my; Nmg;) C my; N BRg(myg;).

Proof. Let my; be BR-soft simply* alpha closed, such that ?Rs(mkz) = my;. From Proposition
3.24 we have,

BiRs(mki N mkj) - BiRs(mkl) M BiRS(mkj)
C mi; N BRg(muy;).
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Example 3.27. Consider the topology taken in Example 2.3. Let my; = {(e1,{(3,4),(5,4)})} be a
BR-soft simply* alpha closed and mys = {(e1,{(3,4)})} be BR-soft subset. Then,

m1 N Mga = Mgy, (4)
BRgs(mg1 Nmi) = mya, (5)
?Rs(ka) = {(617 {<37 4), (57 6)}, (627 {(2, 6>})} (6)

From (4),(5),(6) we have, BRg(my1 Nmg2) = my1 N BRg(mys).

Theorem 3.28. Let my; be a BR-soft subset of BR-topological rough approximation space, then
BRgS*ad(myg;) = 0.

Proof. Let (s,t) € (S,T, Ry (s4), TBr) and BR-topological rough approximation space be discrete,
then every BR-soft subset is BR-soft open and BR-soft simply* alpha open. Thus, every (s;,t;) is
BR-soft simply™* alpha open. Let my; = (s,t). Then, my; Nmy; = mp; N (s,t) C (s,1).

Hence, (s,t) is not a BR-soft simply* alpha limit point of my; which implies BRgS*ad(my;) = 0.

Theorem 38.29. For any BR-soft simply* alpha subsets my; of (S, T, Ry,(s), TBR), BR(mp;) = my; U
BRgS*ad(myg;).

Proof. Let (s,t) € BR(my;). Assume (s,t) ¢ my; and my; € 75 with (s, 1) € my;. Then, (mg; N
my;) — (s,t) # 0 implies (s,t) € BRsS*ad(my;). Hence, BR(my;) C my; U BRgS*ad(my;).

Let (s,t) € my; U BRgS*ad(my;) implies my; € BR(my;). Since, all BR-soft simply* alpha limit
points of my; are soft preclosure of my;. my; U BRgS*ad(myg;) € BR(my;).

Hence, BR(my;) = my; U BRgS*ad(my;).

4 Application

To observe the accuracy of the proposed method, two examples have been demonstrated in this
section.

Example 4.1. Decision making on the infections of COVID-19 in humans is taken as an application
of our approach. Since we use soft binary relation, this method helps to find people affected by COVID
and the reasons for getting affected at the same time.

Let S = {S1,52,853,S54} be four people considered and T' = {717,T»,73,T4} be the reasons for
getting affected where,

T, = stay at home.

T» = go out and contact infected people.

T3 = low immunity; rarely go out.

Ty = Stay at home but any one in family go out.

Let E = {e; (fever),es (fatigue),es (loss of smell/taste),eq (Cough)} be the parameter set and
A = {e1, e3} subset of E.

S x T = {(S1,T1),(S1,T2),(S1,T3), (S1,T4), (S2,T1), (S2,T2), (S2,T3), (S2, Ta), (S3,T1), (S3, T), (S3, T3),
(837 T4)> (S4, Tl)? (‘947 T2)7 (547 T3)7 (‘947 T4)}

The following table (Table 1) represents the BR-soft set over S x T' with respect to E.
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Table 1

Soft matrix

SxT e1 | e2 | es | es | Yes/No
(Si,Tn) | 1 | 0| O 1 0
S,T2) | 1] 110 1
(S,T5) [0 [ 101 0
(Su,Ta) [ 1011 1
(S2,T1) | O 1 0|0 0
(So.T2) | 0 | 1] 1|1 1
(S5, T5) [ 1 [ 100 0
(S5,T2) [0 [ 101 0
(S, T1) | 1|0 ]0]o0 0
(S5,T2) [0 [0 [ 10 1
(S5,T5) [0 000 0
(S, Ty) | 1|0 ] 1]0 1
SuT1) [0 001 0
SoT2) [ 1 [ 111 1
(SeT5) |0 0] 0] 0 0
(Se,Ty) | 1 | O | O] O 0

(Slv Tl)’ (Sb TZ)v (Sla T4)7 (327 T3)7 (53’ Tl)v (53’ T4)a (347 T2)v (547 T4)}a
(Slv TQ)’ (Sl’ T4)7 (52’ TQ)? (337 T2)7 (53’ T4)7 (84’ TQ)}

in which the BR-soft set represents the people infected with COVID and their reason.
Let the BR-soft subset be

myi = {(e1, {(S1,T1), (S1,T2), (S2,T3), (S1, T2)}), (es, {(S1, T2), (S5, T2), (S1, T2) }) }-

According to Feng’s method,

{(s,t) € ST : for every k € K, (s,t) € m(k) C S xT},
{(s,t) € SXxT: forevery ke K, (s,t) e m(k)NS xT # 0},

apr (mkl) =

apr (mkz)

Wl [

where S.,,.(m, ki), Sapr(m, ki) are lower and upper approximation operators. Thus we have,
Eapr (mkl) = @,
gapr(mki) — {(517 Tl)) (Sla TQ)a (Sl7 T4)7 (525 T2)7 (527 T3)a (S?n T1)7
(837 TQ)a (537 T4)7 (545 TQ)’ (547 T4)}

Sopr(m, k;)/ cardinality of Sep,(m,k;) = 0/10 = 0 which implies that no
patient is infected with COVID which contradicts the data given in Table 1.

To find the approximation operators of the proposed method, the subbase are obtained from Soft

Accuracy = cardinality of S
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relations as follows:

R(S1,T3) = R(S2,T1) = R(S2,Ty) = R(S3,T3) = R(Sy,Th) = R(S4,T3) =0,
R(Sy,T1) = {(e1,{(51,T2), (51, Tu), (S2, T3), (S3, T1), (S3, T4), (S4, T2), (S4, Tu) }) },
R(S1,T2) = {(e1,{(51,T1), (51, Tu), (52, T3), (S3, T1), (S5, T1), (S4,13), (S4, Ta) },

(e3,{(51,Tu), (S2, T2), (S5, T2), (S3, T4), (S4,T2)}) }
R(517T4) = {(617 {(517T1)> (Sla TQ)? (S2>T3)7 (537T1)7 (S3vT4)a (S4>T2)7 (547T4)}a
(e3,{(51,12), (S2, T2), (53, T2), (S3,T4), (S1, T2) }) },

R(S2,T3) = {(e3,{(51,T2), (51, Tu), (53, T2), (S5, T4), (S1, T2)}) },

R(S2,T3) = {(e1,{(51,T1), (51, T2), (51, Tu), (S3, T1), (S3, T1), (S4,T3), (Sa, Tu) }) },

R(S3,T1) = {(e1,{(51,T1), (51, T2), (51, Tu), (S2, T3), (S3, T1), (S4,T3), (Sa, Tu) }) },

R(S3,T5) = {(e3,{(51,T2), (S1,Tu), (52, T2), (S5, T4), (S, T2)}) },

R(S3,Ty) = {(e1,{(51,T1), (51, T2), (51, Tu), (S2, T3), (53, T1), (S4,T3), (Sa, Ta) },
(e, {(S1,T2), (52, 12), (53, T2), (S1, T2) }) },

R(S4,T») = {(e1,{(51,T1), (51, T2), (S1,T4), (S2, T3), (S3, T1), (S3, Tu), (S, Tu) },

(e3,{(51, T2), (S1,T4), (S2, T2), (53, 12), (S3,T4) }) },
R(S4,Ty) = {(e1,{(51,T1), (51, T2), (51, T4), (S2, T3), (S5, T1), (S3, 1), (Sa, T2) }) }-

Thus, topological rough approximation space Tgr with soft binary relation over S, T as subbase is
obtained by taking an arbitrary union of finite intersection of elements of a subbasis.
According to proposed method,

IBR(mki) = {(617 ®)7 (637 {(SlvTZ)v (83’ TQ)’ (547 TQ)})}’
TBR(MEi) = M.

Accuracy = cardinality of Tgp(my;)/ cardinality of Tpr(mg;) = 3/5=0.6.
If the people infected with COVID and their reasons be

my; = {(e1,{(S1,T1), (51, T2), (S1,T4), (S2, T3), (S3,T1), (53, 1), (S4, T2), (Sa, Tu) }),
(e3, {(51, T2), (S1,T4), (S2, T2), (53, T2), (S3,T4), (Sa, T2) }) }-

Then, according to Feng’s method,

<

apr(mkj) =9 x T,
apr(mkj) =S xT.

2]

Accuracy is one.
Similarly, according to the proposed method,

Tpr(mij) = my;,
TBR(MEj) = My;j.

Accuracy is one.
From the above two cases, it is obvious that, in the case of soft topological approximation space,
accuracy of the proposed method is higher than Feng’s method.
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Ezxample 4.2. Consider Exzample 2.3 where S is the set of all prime numbers less than or equal to
6, T is the set of all composite numbers less than or equal to 6. The soft relation induced from soft
binary relation are as follows:

R(3,4) = {(e1, {(5,4)})},
R(5,4) = {(e1, {3, 4D},
R(2,4) = {(e2,{(3,6)})},
R(3,6) = {(e2, {(2,4)})}-

Subbasis Sp = {{(e1,{(5,4) )}, {(e1, {(3;4) )}, {(e2,{(3,6)})}, {(e2, {(2,4)})} }.

The topology obtained by taking the finite intersection of an arbitrary union of elements of subbasis
is as follows:

R = {0, mr, {(e1, {(5, DN}, {(er, {3, )P} {(e2,{(3,6) 1)}, {(e2, {(2,)})}, {e1,{(5,4), (3, 4) }},
{(e1, {(5,4)}); (€2, {(3,6)}}, {(e1,{(5,4)}), (e2, {(2,4)}}, {(e1,{(3,4)}), (e2, {(3,6) } },
{(e1, {3, 4)}), (€2, {(2,4)}}, {(e2,{(2,4), (3,6) N}, {(e1,{(5,4), (3;4)}), (2, {(2,4)})},
{(e1,{(5,4), (3,4)}), (e2,{(3,6)})}, {(e1, {(5,4)}), (e2,{(2,4), (3,6)})},
{(e1,{(3,4)}), (e2,{(2,4), (3,6)N}},

where

mg = {(617 {(374)7 (574)})7 (627 {(2,4), (37 6)}}7
mg = {(617 {(374)7 (574)? (57 6)})7 (627 {(274)7 (2a 6)7 (376>}}'

Then, (S, T, Ris), B r) is BR-topological rough approximation space.

Thr = {me, {(e1, {(5,6)}). (e2, {(2,6)}, {(e1,{(3,4), (5,6)}), (e2, {(2,4), (2,6), (3,6) 1)},
{(e1,{(5,4), (5,6)}), (e2,{(2,4), (2,6), (3,6)})}, {(e1, {(3,4), (5,4), (5,6)}), (e2
(2,4),(2,6) 1)}, {(e1,{(3,4), (5,4), (5,6)}), (€2, {(2,6), (3,6) 1)}, {(en, { (5, 6)})
(e2,{(2,4),(2,6), (3,6) 1)}, {(e1,{(3,4), (5,6)}), (€2, {(2,4), (2,6)})}, {(e1, {(5,4),

(3,4)}); (e2,{((2,6), (3,6) D}, {(e1,{(5,4), (5,6)}), (€2, {(2,4), (2,6)})}, {(e1, {(5,4);
(5,6)}), (e2,{(2,6), (3,6) D}, {(e1,{(3,4), (5:4), (5,6)}), (2, {(2,6)})}, {(e1, {(5,6)}),
(e2,{(2,4), (2,6)}1)}, {(e1, {(5,6)}), (€2, {(2,6), (3,6)})}, {(e1,{(3,4), (5,6)}), (62,{(2 6)})},
{(e1,{(5:4),(5,6)}), (2, {(2,6)})}}-

The BR-soft nowhere dense sets are 0, {(e1,{(5,6)}), (e2,{(2,6)})}, {(e1,{(5,6)})} and {(e2,{(2,6)})}.
Then, the collection of BR-soft simply™ alpha open sets are as follows:

T/B r = TBR, when 0 is the BR-soft nowhere dense set (Since all BR-soft open sets are BR-soft alpha
open sets).

Tpr = 78R U{(e1,{(5,6)}), (e2, {(2,6)})}.
Tpr = 78R U {(e1, {(5,6)})}.
Tpr = 78R U {(e2, {(2,6)})}.

* _ 3 s 1 1ononn
Thr = U{75r} where ¢ =" "

The accuracy of BR-soft subsets of S x T is obtained by the Pawlak accuracy measure as follows:
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Table 2 describes the accuracy of BR-soft subsets in 7pr containing BR-soft open sets based on Yao’s
method where accuracy = cardinality of int(my)/ cardinality of cl(my,).

Table 3 describes the accuracy of BR-soft subsets in 7} containing BR-soft simply* alpha open sets.
Accuracy = cardinality of BRg/ cardinality of BRg, BRg and BRg are lower and upper approximation
operators.

Table 2
Accuracy of BR-soft subsets
BR-soft subsets Yao’s method Accuracy
int cl
A={(e1,{(56)})} 0 {(e1,{(5,6)}), (e2,{(2,6)})} 0
B = {(627{(276)})} 0 {(617{(576)})7(627{(276)})} 0
C={(er, {(2,49})} c {(e1,{(5,6)}), (e2,{(2,4),(2,6)})} 0.3
D= {(617{(374)})7(62’{(274)})} D {(61,{(3,4),(5,6)}),(62,{(2,4),(2,6)})} 0.5
E= {(617{(374)})7(627{(2a6)})} {(61’{(374)})} {(617{(3a4)7(516 })7(627{(276)})} 0.3
F= {(617{(374)5(574)})’(627{(2v4)})} F {(617{(374)v(574)’(576)})5(62’{(276)})} 0.75
(= { 617{(374)7(574)})7(627{(274)7(376)}) G meg 0.7
H= {(617{(374)})7(627{ 2a4)7(3’6)})} H (617{(374)7(5a6)})’(62’{(274)7(376)7(276)}) 0.6
I= {(617{(574)7(576)})’(627{(356)})} (617{(574)})’(627{(356)}) {(617{(574)v(576)})7(627{(3’6)7(276)})} 0.5
J ={(e1,{(3,4),(5,6)}), (e2,{(2,6)})} {ler, {3, 49D} J 0.3
K = meg mi meg 0.7
Table 3
Accuracy of BR-soft subsets
BR-soft subsets Proposed method | Accuracy
@s BfRS

A= {(c, 15,01} 4 a T

B={(e2,{2,0)1)} B B i

C= {10} C C T

D = {(e1, {3, D)), (o2, (B DD} D D ]

E:{(617{(374)})1(627{(276)})} E E 1

F= {(617{(374)7(554)})7(62’{(254)})} F F 1

G = { 617{(374)7(574)})7(627{(274)7(276)})} G G 1

H:{(617{(374)})1(627{(274)7(376)})} H H 1

I= {(61’{(574)7(556)})7(627{(376)})} I I 1

J:{(elv{(374)7( 76)})7(627{(276)})} J J 1

K = meg meg meg 1

From the above tables (Table 2 and 3), it is obvious that the accuracy of the proposed method is higher
than that of Yao’s model.

Conclusion

In the current research, new classes of BR-soft open sets are introduced in BR-topological rough
approximation space and their properties are studied. The accuracy measure of BR-soft subsets in
BR-soft topology obtained from the collection of BR-soft simply* alpha open sets is evaluated. It is
shown that the accuracy of the proposed method is high in comparison with the methods proposed by
Feng and Yao. From Example 4.2, it is observed that, by using the proposed method, properties of the
missing elements can also be studied. This gives a new view on solving decision making problems for
a reliable solution.

Further to this work, efforts are being taken to study other topological properties like continuity,
compactness, filters etc. Statistical properties of the defined set are being studied and attempts are made
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to develop new methods for attribute reduction. In addition, the proposed method can be extended to
other areas like fuzzy, intuitionistic fuzzy, hesitant fuzzy etc., and their properties can be studied in
advanced topological areas. The proposed method can also be implemented for problems with missing
information.
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Y.P. ITapsaru, A. Codus
PSGR Kpuwnamman Kwzdap xoaredorci, Tamus Hady, Undusn
ArnmpokcuMalisicbl MiaMaMeH aJIBIHFAH TOIIOJIOTUSLJIBIK KEeHiCTiriH e
OMHAPJIbI XKYMCaK, XKUBIHJIAPABIH, »KaHa KJacCTapblH 3€PTTEY

ZKymcax 6uHApJIBI KATBIHAC KYMCAK >KUBIHIAP/IbIH YKaHa KJIaCTapblH aHBIKTay YIIH KOJIJIAHbLIA b, aTall
afTKaHa, €Ki TYpJli YHUBEPCYMHBIH AIIPOKCAMAIMSCHI ITaMaMeH aJIbIHFaH TOIOJIOTUSIIBIK, KeHICTIriH e
BR-xkyMcak KapamailbiM aImbiK, XKUBIHILI koHe BR-2KyMcak KapamaifibiM aibda alblK KUBIHBIH aHBIKTAY
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VIIiH KOJIJAaHbLIAAbI. AHBIKTaJFaH »KUblH BR Garmap/iaMaibiK Kypasl XKUHAFBIHBIH, YKETICIEATIH 3JIeMEHT-
Tepi TypaJjbl akmapaTThl OGepejli XKoHe IMenriM KabbLIIay/Ibl *KEHLIIeTyre KoMeKTecei. AmmpoKcuMaIust
orepaTopJiapbl aHBIKTAJIBIN, YCHIHBLIFAH YKUBIHAAP/IbIH CATIATTAMAJIAPbl MbICAJIIAD ApPKbLIbI 3€PTTE/TEH.
AHBIKTAJIATHIH XKUBIHIAP MEH 6acKa *KyMCcak, *KUBbIHIAD apachlHIa OaiIaHbIC TaObLIAbI. ¥ CHIHBIIFAH 9IiCTI
6acka 9/IiCTEPMEH CAJIBICTBIPY VIIMIH JOJIIIK CHIHAFBI XKYPri3ijimi. ¥ ChIHBLIFAH 9ICTIH J9JIIpEK €KEHi aHbIK-
TaJIJIBI.

Kiam cesdep: xKyMcak, »KUbIH, IIaMaMeH aJIbIHFaH »KUbIH, KapalaibIM allblK, »KYBIKTay KEHICTIri, TOIoJI0-
I'UAJIBIK KEHICTIK.

Y.P. Ilapsaru, A. Codus

Kenexuti koanedore PSGR Kpuwnamman, Tamun Hady, Undus

NccnenoBanme HOBBIX KJ1aCCOB OMHAPHBIX MSATKUX MHOXKECTB B
TOMOJIOTUYECKOM ITPOCTPAHCTBE Ipy0oii anmmpoKCuMAaIun

Msirkoe 6uHapHOE OTHOIIIEHUE UCIIOJIB3YETCs JIJIsI OIIPEIeIeHNsT HOBBIX KJIACCOB MSTKAX MHOYXKECTB, & UMEH-
HO BR-MATrKOTr0 IpOCTO OTKPBLITOIO MHOXKeCTBa 1 BR-MArkoro mpocto® anbda OTKPLITOrO MHOXKECTBA, B
TOIOJIOTMYECKOM IIPOCTPAHCTBE IPy0Oii AIIPOKCUMAIMU JABYX PasHbIX YHHBEPCYMOB. OupeneneHHblii Ha-
6op mpejocTaBiisieT NHMOPMAIINIO O HEJOCTAIONIUX dJIEMEeHTaxX mporpaMMmHoro Habopa BR u Moxer momoun
YIPOCTUTH MpuHsATHE pertennit. OmpeeeHbl OmepaTopbl alllPOKCUMAIINYA U Ha MTPUMEPAX U3YUeHbI XapaK-
TEPUCTUKH TTPEJIJIOKEHHBIX MHOXKECTB. BBIsIB/IEHA CBA3b MEXKJLy OIPEIEUMbIMU MHOXKECTBAMU U JIPYTUMU
MSATKAMU MHO>KecTBamu. [IpoBejieHa mpoBepKa TOYHOCTH JIjIsi CPABHEHHUS IIPEJJIOXKEHHOTO METO/1a, C JIPYTH-
MU METOJIAMH. YCTaHOBJIEHO, YTO IPE/IJIOKEHHBIA METOI SIBJISIETCS 0OJIee TOYHBIM.

Kmouesvie cr06a: MITKOE MHOXKECTBO, TPy00O€ MHOXKECTBO, MMPOCTO OTKPBITOE, AMMPOKCHUMAIIMOHHOE MPO-
CTPAHCTBO, TOIIOJIOTUYECKOE IIPOCTPAHCTBO.
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Implementation of summation theorems of Andrews and
Gessel-Stanton

Generalized hypergeometric functions and their natural generalizations in one and several variables appear
in many mathematical problems and their applications. Solving partial differential equations encountered
in many applied problems of mathematics physics is expressed in terms of such generalized hypergeometric
functions. In particular, the Srivastava-Daoust double hypergeometric function (S-D function) has proved
its practical utility in representing solutions to a wide range of problems in pure and applied mathematics.
In this paper, we introduce two general double-series identities involving bounded sequences of arbitrary
complex numbers employing the finite summation theorems of Gessel-Stanton and Andrews for terminating
3F> hypergeometric series with arguments 3/4 and 4/3, respectively. Using these double-series identities,
we establish two reduction formulas for the (S-D function) with arguments z,3z/4 and z, —4z/3 expressed
in terms of two generalized hypergeometric function of arguments proportional to 2> and —z> respectively.
All the results mentioned in the paper are verified numerically using Mathematica Program.

Keywords: Generalized hypergeometric function; Srivastava-Daoust double hypergeometric function; Reduction
formulas; Mathematica Program.

1 Introduction and preliminaries

The ,F,; (p, ¢ € Np) is the generalized hypergeometric series defined by (see, e.g., [1; Section 1.5]):

oo

a1, ..., Qp; (al)n"'<ap)n
F — Pn """ \Fp)n
P Bl»--wﬁq;z 7;) (/Bl)n(ﬁq)n

=, Fy(ar, ..., ap; B, ..., By 2),

pe
n!

(1)

being a natural generalization of the Gaussian hypergeometric series 9Fj, where (\), denotes the
Pochhammer symbol (for A, v € C) defined by

F'(A+v) _
Ay = ——= A Ae C\Z

( )V F()\) ( y V + € \ O)

1 (r=0; e C\Z,),

AA+1)---A+n—-1) (v=neN; XeC).
Here T is the familiar Gamma function (see, e.g., [1; Section 1.1]) and it is assumed that (0)o := 1, an
empty product as 1, and that the variable z, the numerator parameters o, ..., a; and the denominator
parameters 31, ..., B, take on complex values, provided that no zero appear in the denominator of

(1), that is, that

*Corresponding author.
E-mail: tafazuldiv@gmail.com
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Here and elsewhere, let Z, R and C be respectively the sets of integers, real numbers, and complex
numbers, and let

N:={1,2,3...}; No:=NU{0};Zy :=Z~ U{0} = {0,-1,-2,-3,---}.

For more details of ,F, including its convergence, its various special and limiting cases, and its
further diverse generalizations, one may referred, for example |2, 3].

Whenever the generalized hypergeometric function , /3, including 9 /7, can be expressed in terms of
Gamma functions through summation of its specified argument, which may include unit or % argument,
the outcome holds significant value from both theoretical and practical perspectives.

The generalized hypergeometric series has classical summation theorems, including those of Gauss,
Gauss second, Kummer, and Bailey for the 9F} series, as well as Watson’s, Dixon’s, Whipple’s,
and Saalschiitz’s summation theorems for the 3F5 series and others. These theorems have significant
importance in both theory and application.

From 1992 to 1996, Lavoie et al. [4-6] published a series of works that generalized the aforementioned
classical summation theorems for the 3F» series of Watson, Dixon, and Whipple. They also presented
many special and limiting cases of their results, which have been further extended and generalized by
Rakha-Rathie 7], Kim et al. [8], and more recently by Qureshi et al. [9]. These results have also been
verified, using computer programs such as Mathematica.

Srivastava and Daoust [10; 199] introduced a generalization of the Kampé de Fériet function [11;
150] by means of the double hypergeometric series (see also [12,13]):

A B B [ [(aa) 29, @] [(bB) :¢]; [(Vg): ) .
Ee: bl < [(cc) =0, €] = [(dp) : nl; [(di,) 'l y>
B B’

(aj)mﬂj—i-mpj H (bj)mwj H (b;)mﬁ;

o0 o0
=207
- D D m! n!’

m=0n=0 T1(¢5)me;4ne; [T (di)mn; TT(d)nny
7j=1 7=1 7j=1

Q| L=

where the coeflicients
/ /
1917"'71914; Py PA; 1/}1’"°5¢B; wlv"'7¢B’; 517"')50;
/ /
€1, .-, EC, 771)""77D; 7717"'377D’
are real and positive. Let

C D A B

Ayi=1+ Z‘SJJ“Z”J — Zﬂj—f'zwj
j=1 j=1 j=1 j=1
and
C D’ A B’
Ay:=1+ Zsj+2n§ - Z@jﬁLZQZ)s’
j=1 j=1 j=1 j=1

Then

(i) The double power series in (2) converges for all complex values of z and y when A; > 0 and
Ay > 0.

(ii) The double power series in (2) is convergent for suitably constrained values of |z| and |y| when
A1 =0and Ay = 0.
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(iii) The double power series in (2) would diverge except when, trivially, x = y = 0 when A; < 0
and Ay < 0.

Qureshi et al. [14] provided insightful remarks on previous studies, specifically [15-17]. They
employed a double-series manipulation technique, utilizing Whipple’s transformation (see [18; 266,

Eq.(6.6)]):

. —y—@ﬁEJ—m—B—Q1—m—D;]
554 1+E—D-m 2+E—D-m .
l-m—-B,1-m-C, & 5, + 55
(-D)m —m, Ba Ca Ea

= ————"——4F;3 1
(D—-E)p, l1-m—-B,1-m—C, D;

(m e No; B, CD, 1+E—2D—m’ 2+E—2D—m eC\ Za>,
and (see [19; p. 537, Eq.(10.11)]; see also [17; Eq. (2.5)])

-m, X, Y, Z;
U,W,X+Y+Z—|—1—U—W—m;1
U=X)m(Y +Z+1-U—-W —m)n,
U X+Y+Z4+1-U-W —m),
—m,W—Y,W—Z,X;1]
l-m+X—-UU+W-Y—Z W;

4F3

X 4 F3

meNy U W, X+Y+Z24+1-U—-W —m,
(1—m+X—U, U+W-Y - Z, We(C\Zg)'

Through this approach, they introduced three double-series identities, which incorporated a bounded
sequence of complex numbers. In addition, they [14| demonstrated that the application of double-series
identities enables the provision of numerous reduction formulas, whether they are already known or
newly discovered. Subsequently and concurrently, a number of papers have utilized series manipulation
techniques along with, among several others, transformation formulas for oF; in Chan et al. [20],
the reduction and transformation formulas of Kampé de Fériet and Srivastava-Daoust functions [21],
implications of Bailey transformations in double-series and their consequences [22], the reduction
formula for oy in Karlsson [23], terminating 5 (3) [24; Eq.(1.3)] (see also Gessel-Stanton summation
theorem [25; Eq.(5.21)] and terminating 3F% (2) [24; Eq.(1.4)] (see also [26; Eq.(1.12)]) in Qureshi et
al. [24]. These papers have presented multiple or double series identities, which have been employed to
derive a range of reduction formulas for the Kampé de Fériet, Srivastava-Daoust function and other
intriguing identities for the ,F, functions.

Inspired by the aforementioned papers, especially [14,21], and utilizing the reversing order of the
finite summation theorem of Gessel-Stanton [25; 305, Eq.(5.21)])

—n, —2b— 2, —6b — n; , 0 ‘n=3m+1 and 3m+2,
3F2 1= B, e (3)
—3b —n, % —3b —n; (142) 1 (3b+1)3m (3b+ 1 )am (4)°™ ;no=3m,

where m =0,1,2,3, ...
(also, reversing order of the terms in finite summation theorem of George Andrews [26; 4, Eq.(1.12);
see also p.16, Eq.(4.8)])
_p. 1=8b=2n 2-3b—2n.
) 2 0 2 _{0 imn=3m+1 and 3m+ 2,

(3m)!(—1)(m(b n = 3m, (4)

3bn

oI~

1—-b—n,1—3b—2n;
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where m =0,1,2,3, ...

Our objective is to introduce two double-series identities. These identities incorporating bounded
sequences of complex numbers are derived using series rearrangement techniques and Pochhammer
symbol identities. These issues are further discussed in Section 2. In Section 3, we employ these general
double-series identities to establish two reduction formulas for Srivastava-Daoust double hypergeometric
function in terms of generalized hypergeometric functions with arrangements proportional to z® and
—23. We achieve this by using Cauchy’s double series identity (see, e.g., [27; 56])

YD Omr)=3 > Om-rr) (5)
n=0 r=0 n=0 r=0

provided that the associated double series are absolutely convergent. We also have the following
identities involving the Pochhammer symbol:

oo fi() 0 fE),

i=1 i=1

() =57 ] (3). f[l(lgej)n f{(“g) (®)

Remark 1.1 Wolfram’s MATHEMATICA has implemented the ,F, function as Hypergeometric
PFQ, which is appropriate for performing both symbolic and numerical computations.

Throughout this article, we assume that any values of parameters and arguments, which would
render the results in Sections 2 to 3 invalid or undefined, are tacitly excluded.

2 Two general double-series identities

This section demonstrates two double-series identities that involve bounded sequences by primarily
utilizing Gessel-Stanton and George Andrews (3) and (4). The first identity takes the following form:

Theorem 1. Let {¥(u) =1 be a bounded sequence of essentially arbitrary complex numbers or real
numbers such that ¥(0) # 0. Then, the following general double-series identity holds true:

(=2b) 20y 5 (1 + 6b)ny r (5 43b) (14 3b),(3)" 2"
ZZ\I’”” (=20) 202 (5+30), (14 80 (1 + 6b)u(4) rlnd

W\?

(Sbil) (8b£2)  3n
n

) #
= Z\I/(Zin) (3b§L1)n (3b;_2:;n (6bg—1§n (6bg—5)n (432)" n! 9)

provided ( 20, 1 5 +3b,1+3b,1 + 60, 3b+1 3b+2 6b+1 6b+5 e C\zZ, ), and the infinite series occurring
on both sides of equation (9), are absolutely convergent
Proof.

( 2b)72£+§(1 + 6b)n+r (% + 3b) (1 + 3b) ( )7" n+r

Let U(n+ - .
¢ ZZ () o) o 2 (3430) (14 3b)nsr(L+ 6b)n(4)" rind

[I]

(10)

n=0 r=0 ~—73 3 2 n—+r
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Replacing n by (n — r) in equation (10) and using Cauchy’s double-series identity (5), we have

_ —2b— %) (—6b—n).(—3)"2"
=t ZZ 3b ), (3 = 3b— ), ()7 (n — r)lrl’ (1)

n=0 r=0

Multiplying numerator and denominator by n! and using Pochhammer symbol identity (6) to the right
hand side of equation (11), we obtain

_ zn n (—2b— &) (—6b—n),.(3)"
=1 Z‘I’ EZ 3b ), (L — 36— ), (4) 1!

r=

e8] 2b_7 —6b — n;

Z 13F2

= %—3b—n,—3b—n;

=~

—~
—_
[\

~—

We now apply the decomposition identity

i ®(n) = i ®(3n) + i d(3n+1) + i O(3n +2),
n=0 n=0 n=0 n=0

provided that each of the sums is absolutely convergent, to the right-hand side of (12). This produces

0 L —(3n), —2b — 2n, —6b — 3n; 0 ant1
Ei1(2) = ) U(Bn) o 35 S4TGB+ 1)
= (3n)! ~3b— 3n, L — 3b— 3n; = (3n +1)!
—(3n+1),-2b—2n—2,—6b—3n — 1; ) i 3n42
><3F2 1 + v 3n+2)
—3b—3n—1,-3b—3n — &; =0 (3n +2)
—(3n+2),—6b—2n — 3, —6b— 3n — 2;
><3F2 % . (13)

—3b—3n—2,-3b—3n—3;
Finally, using the summation theorem (3) to the right hand side of equation (13), we get

(%)n (3),, (6D + 1)3,(2b + 1)24(3)*"
Z\I’ (2b+ 1), (3b + 1)z, (85), (4)3n

[I]

3n

After further simplification, we get the required result (9).

The second identity is given by the following theorem:

Theorem 2. Let {¥(u)}72, be a bounded sequence of essentially arbitrary complex numbers or real
numbers such that W(0) # 0. Then, the following general double-series identity holds true:

3b>2W (52) (3, B)n(—4)Tz "
HZOTZO 3b)2n+2r(b)n+r (1+3b)n (%b)n (3)7' 7"! 7’L'
N (b)n(—2%)"
=2 ), ), Gy a4

provided (36 1+3b , 0, 321’, 35 ngl, b2 ¢ C\Z, ) and the infinite series occurring on both sides of equation
(14) are absolutely convergent.
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Proof.
s (52),p (B),, Oy
Let ZZ\P 1+3b 3b 1 nl <15)
n—=01—0 (30)2n42r (D) ntr ( ) ( )n "rinl
Replacing n by (n — r) in equation (15) and using Cauchy’s double-series identity (5), we have
1-3b—2n 2— 3b 2n T
4
ZZ‘IJ (=52),.( ), (= (16)
== (1-b—n)(1—-3b— 2n)()r7"(n—7')

Multiplying numerator and denominator by n! and using Pochhammer symbol identity (6) to right
hand side of equation (16), we obtain

iq, ﬁzn: (1 3b— 2n)r (2—3&;%)10(4)7’
n' 1—b

— r:O (1 —=3b—2n),(3)" r!

1-3b—2n 2—3b—2n.
-n, 2 ) 2 )

_Z\Ij |3F2

We now apply the decomposition identity

i d(n) = i ®(3n) + i ®(3n+1) + i ®(3n+ 2),
n=0 n=0 n=0 n=0

provided that each of the sums is absolutely convergent, to the right-hand side of (17). This produces

SIS

—~
—_
-

~—

1—-b—n,1—3b—2n;

o —3n 1-3b—6n 2—3b—6n. 0o
_ Z\I](?) ) 3n P ) 2 ) 2 ) 4 +Z\I](3 +1) 3n+1 y
:.2(2) = n 1 319 3 n 7‘
n=0 (3n)! 1—b—3n,1—3b—6n; n=0 (3n +1)!
_(3n + 1)7 —3b—26n—1’ —3b2—6n; \ io: 342
—b—3n,—3b—6n—1: =0 (3n +2)!

—3b—6n—3 —3b—6n—2.
—(3n+2), 5, St

X3F2

ol
—~
[
co
~—

—b—3n—1,-3b—6n—3;

Finally, using the summation theorem (4) to the right hand side of equation (18), we get

&y 2 (B0,
e )<3n>1{ o

3)n

—Z\I/?m b

After simplification, we get the result (14).

)3 n!’
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3 Certain consequences of general double-series identities (9) and (14)

In this section, we establish a result for reducibility of Srivastava-Daoust double hypergeometric
function as in the following theorem.
Theorem 3. The following results hold true:

[(dp):1,1],[-2b: =2, 4], [1+6b:1,1) : 3 +3b:1],[1+3b: 1] ;—;
FD+2:2;0 5 3z
E+3:1;0 - » 4
[(ep) : 1,1],[=2b: —5,—3],[5+3b: 1,1, [1+3b:1,1] : [1 +6b: 1] ;—;

AJ3; (dp)), S, 2, 3
= 213pFui3E 16x(2N)U+E=D) | (19)
A[S; (eE)], 3b;—1, 3b§}—2, Gbéf—l, 6b(—5|—5;
and
[(dp): 1,1],[3b: 2,1, [F52 - 1,1, [£: 1,1] - [b: 1] —
FD+3:1;0 4z
E+2:2,0 3b 1+3b S
[(eE) : 1, 1]a [36 : 232]7 [b 1 1] : [7 : 1]7 [T : 1];* ;
A[(3; (dp)], b; .
= 113pF343E (27)&% , (20)
Al3; (ep)], 5, 51, M2,

3b 143b 146b b b+l b+2 3b+1 3b+2 6b+l 6b+5 —
where (e1, e, ...,ep, b, —2b,3b,1 + 6b, 3, 1452 150 & oxl o2 S0l od2 okl G0 ¢ C\Zj). When
D < FE then above transformations are always convergent for |z| < co. When D = 1 + E then above
transformations are convergent for suitably constrained values of |z|.

Proof.

Put T(p) = (dl)u(d2)u---(dD)u _ H%1(di)u : p=0,1,2,3, ..,

(e1)ule2)pu--(ep)pu [LiZi(ein

on the both sides of general double-series identity (9), we obtain

S5 [12. (i) r(=26) 2n (1 6B)gr (5 +3D),, (14 3b)u(3)7 2"
E

0720 Thizi (e)nan(—26) 202 (5 +3b),,,, (1 +30)ngr (1 + 6b)n (4)7 rin!

8 [T (di)an (%5, (%52),, 2™

i T (M), (52, (%), (42, (432)mnt

Now applying the definition of double hypergeometric function (2) of Srivastava-Daoust to the left
hand side of equation (21) and definition of the generalized hypergeometric function (1), together with
the Pochhammer symbol identities (7) and (8) to the right hand side of equation (21), we get the
desired result (19).

The proof of (20) follows exactly the same procedure and will be omitted. This completes the proof
of Theorem 3.

(21)
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4 Conclusions and Remarks

In our present investigation, we have obtained two general double-series identities by using the finite
summation theorems of Gessel-Stanton and George Andrews for the terminating hypergeometric series
3Fy with arguments 3/4 and 4/3 respectively. These results have been used to derive two reduction
formulas for the (S-D function) with arguments (z,3z/4) and (z, —4z/3) in terms of two generalized

. . . 43 .
hypergeometric functions s13pFyrsp and 1413pF313gp with arguments 6w (FB=D7 and @ E=D)

respectively. We believe that the results established in this paper have not appeared in the literature and
represent a contribution to the theory of generalized hypergeometric functions of one and two variables.
The various results, which we have presented in this article, are potentially useful in mathematical
analysis and applied mathematics.
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M.U. Kypermm!, T.P. [Tax!?

1 .
Iorcamusa—Muanus—Heaamusn (Opmanvik; yrusepcumem,), Horo-Zleau, Yndicman;
2 Mnorcenepaix orcone mexnoaozus yrusepcumemingy, uncmumymaes; Typy Hanax ynusepcumemi, Hopazum ITammanm,
Teranzana, Ynoicman

Duaproc neH I'eccenb-CT3HTOHHBIH, KOCBIHABLIIAY TeOopeMaJiapbIiH
JKy3ere acbIpy

?Kanmbumanrad TUIEPreoOMeTpUsIBIK, (DYHKITUSIIAp MEH OJIapAbiH 6ip KoHe OipHere aiHbIMAJIBLIAPIAFHI
3aH/IbI 2KAJIBLUIAHYbI KOIITEreH MAaTEMATUKAJIBIK, €CelITep MEH OJIApIbIH KOChIMITIATapbIHIa Ke3meceai. Ma-
TEeMaTUKAJIBIK, (PU3UKAHBIH KOIITEreH KOJIIaHOaJIbI ecenrTepi bap gepbec TybIHABLIBI AuddepeHInaIbIK, TEH-
JeyJIEPIiH, MIeiMi OChIHIAN XKAJBLIAHFAH TUIEPTeOMETPHUSIBIK, (DYHKIUIAD aPKbLIBI OPHEKTe e Ii. ATar
afitkanna, [[pusacrasa-laycTTein Koc runepreomerpusiiblk dynkmuscol (S-D dyuknuscer) ipresi xkome
KOJIJTaHOAJIBI MATEeMAaTUKAIAFbl KEeH, ayKbIMJbl €CelTep/IiH IIeNIiMIEPiH YChIHY YIIiH ©3iHiH NpaKTUKAJIbIK
naimaIbUIBIFbH Jomenneai. Maxkanama colikeciame 3/4 xome 4/3 aprymentrepi 6ap 3F> askramaTeia ru-
[IePreoMeTPUsIIbIK, Karapra apHaiaran [eccesib-CTO9HTOH »KoHe DHJIPIOCTIH, AKBIPJIbI KOCBIHIBLIAD TEOPeMa-
JIapBIH Taiia/laHa OTHIPHII, ePKiH KeIleH/ Il CaHIap/IblH, IIEKTEIreH Ti30eriHeH TYPAThIH KOC KaTapJjap YIIiH
€Kl 2KaJIbl colikecTeHmipy enrizinren. OCbl KOC KaTap COWKECTIKTEpIiH maiiflamana OTBIPBIN, Zz,3z/4 xkomHe
2, —42/3 aprymentrepi Gap (S-D dynkuusch) exi KeaTipy bopMyIachl o eI IenTeH, onap 2> xaHe —z°
apryMeHTiHe MPOTOPIMOHAJ €Ki YKAJIbLIAHFAH T'UIEPreOMETPUSIIBIK, (DYHKIIUSIAP apKbLIbI OPHEKTEIE]].
CoHbIMEH KaTap MakaJjajga alTblIFaH OapJblk HoTHKeaep «Mathematicay GarmapiaamMachl apKbLIbI CAHIBIK,
TYp/ie TeKCEPLII.

Kiam cesdep: xanublnanran rutiepreomerpusiiblk dynkiws, [[Ipusacrasa-/laycTTbiy KOC rumepreoMerpusi-
JIBIK, QYHKITUSICBI, KeaTipy dopmynaiapsl, «Mathematicay Garmapmamacsr.

M.I. Kypemmu!, T.P. [Tlax!?

L orcamua Muanua Heaamus (Lernmpanvroil ynusepcumem,), Horo-eaw, Hnous;
2 .
Hnemumym Ynusepcumema unotcenepuu u mexnoso2uli; Ynusepcumem I'ypy Hawnaxa, Ubpazum [lammanm,
Teaanzana, Unous

Peanmmzanus Teopem cymmMmupoBaHus dHaApioca u l'ecceng—CraHToHA

O6Gobuiennble runepreomerpudeckre (ByHKIUN U UX €CTECTBEHHbIE 0DODIIEHUS OT OJHON U HECKOJIbLKUX
[IEPEMEHHBIX BCTPEYAIOTCs] BO MHOIMX MaTeMaTHYECKHUX 3aj@adax M MX NPUJIOKeHMsX. PerreHue ypasHe-
HUIl B YACTHBIX MPOU3BOHBIX, BO3HUKAIOMINX BO MHOTHX MPUKJIAIHBIX 3a/1a9aX MATEMATUIECKON (DU3UKH,
BBIPAXKAETCs Uepe3 Takue 0O600IIeHHbIe THIIepreoMeTprdeckre GyHKIuU. B gacTHOCTH, IBOHAS THUIIEPreo-
Mmerpudeckas dyuxnus [IIpusacrasei—laycra (S—D-dyukius) Jokasana CBO NIPAKTUYIECKYIO IOJIE3HOCTD
JIJIsl TIPEJICTABJIEHUST PEIeHul MUPOKOro KpyTra 3aJad (PYyHIAMEHTAJIbHON U MPUKJIAIHON MaTeMaTuku. B
HACTOAINEH CTAThbe Mbl BBOIMM JBa OOIIUX TOXKJIECTBA JIBOWHBIX PSJOB, BKJIIOYAIONINE OMPAHUYCHHBIE I10-
CJIEZI0BATEILHOCTH IIPOU3BOJIBHBIX KOMILIEKCHBIX YHCeJI, WCIIOJIb3ysl TeOPEMbl KOHEYHOI'O CYMMHPOBAHUS
Teccens—CranTona 1 DHAPIOCA JJIs 3aBEPIIAIONINX TUIIEPreOMETPUYECKUX PsifioB 3 F» ¢ aprymentavu 3/4
u 4/3 coorBercTBenHO. UCcmonb3ys JaHHBIE TOXKIECTBA JTBORHOTO PAJA, YCTAHABIUBAEM J1B€ (POPMYJIBI IIPHU-
Begenus s (S-D-dyukuuu) ¢ aprymedTamu z,3z/4 u z, —4z/3, BbIpaskeHHBIME 4Yepe3 JBe 0000IIeHHbIe
rumepreoMeTpudeckne (DyHKIMH ¢ ApTyMeHTAMHE, TIPOMOPIMOHAIBHEIMI 2° 1 —z° cooTBeTcTBeHHO. Bee pe-
3yJIbTATBI, yIOMSHYTBhIE B CTATHE, IPOBEPEHBI YUCJIEHHO C UCHOJb30BaHueM mporpaMMbl «Mathematicas.

Kmouesvie caosa: 0boOIIEHHAsT TUIIEpreoMeTpudecKas (pyHKINs, TBOWHAS TUIIEpreoMeTpruYecKast OyHKIIHS
IIIpuBacrasei—/laycra, dopmymnsl npuBeaenus, nporpamma «Mathematicas.
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Roughness in Fuzzy Cayley Graphs

Rough set theory is a worth noticing approach for inexact and uncertain system modelling. When rough set
theory accompanies with fuzzy set theory, which both are a complementary generalization of set theory, they
will be attended by potency in theoretical discussions. In this paper a definition for fuzzy Cayley subsets is
put forward as well as fuzzy Cayley graphs of fuzzy subsets on groups inspired from the definition of Cayley
graphs. We introduce rough approximation of a Cayley graph with respect to a fuzzy normal subgroup.
We introduce the approximation rough fuzzy Cayley graphs and fuzzy rough fuzzy Cayley graphs. The last
approximation is the mixture of the other approximations. Some theorems and properties are investigated
and proved.

Keywords: fuzzy subset, rough set, Cayley graph, fuzzy Cayley graph, lower and upper approximations.

1 Introduction and preliminaries

Rough sets have been investigated in many papers. For details we refer to [1-7]. In particular, in [8],
rough approximations of Cayley graphs are studied. It has intended to build up a rational connection
between rough set theory [7], fuzzy set theory [9] and Cayley graphs. Cayley fuzzy graphs are studied
in [10-12|. We present a new definition of fuzzy Cayley sets and so, fuzzy Cayley graphs of generators
of the Cayley graph of a group. For a finite group G and a fuzzy subset p on G, the fuzzy subset y is
called fuzzy Cayley subset, if the subset

Su={acG | ula) <1}

is a Cayley subset of G. It means that 1¢ ¢ S, (where 1¢ represents the identity element of G) and if
s € Sy, then s7le S,.. We define the triple (G; Sy; 1) as a fuzzy Cayley graph. In fact, the fuzzy Cayley
graph (G;Sy,; i) is a Cayley graph where the fuzzy Cayley subset p constructs the Cayley subset of it.

The outline on the paper is as follows. First, we recall some notation and definitions about the simple
graph. We also recall the definitions and concepts of the fuzzy subset, fuzzy subgroup, t-level relation
and lower approximation operator and upper approximation operator for a fuzzy approximation space
that we need for the paper in this section. In Section 2, we present the definitions of fuzzy Cayley subset
and fuzzy Cayley graph for fuzzy subsets of groups and some few results for them. In Sections 3 and 4,
we deal the concept of fuzzy lower and upper approximations of a Cayley graph and lower and upper
approximations of a fuzzy Cayley graph with respect to a fuzzy normal subgroup. Finally, in Section
5, we combine the concept of the lower and upper approximations of a Cayley graph and lower and
upper approximations of a fuzzy Cayley graph and present the fuzzy lower and upper approximations
of a fuzzy Cayley graph with respect to a fuzzy normal subgroup on a finite group.

For the benefit of the reader, we collect in this section some of the basic concepts and facts that
we need in this paper.

Let us introduce some basic notation and definitions about the simple graph. We consider simple
graphs, which are undirected, with no loops or multiple edges.

*Corresponding author.
E-mail: davvaz@yazd.ac.ir
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Now, we recall the definition’s fuzzy subset, fuzzy subgroup, fuzzy normal subgroup and some
proportion of them [9,13]. Suppose that X is a universe set. A fuzzy subset p on X is a function
p: X — [0, 1] mapping all elements x of X into a real number p(z) in the closed interval [0, 1]. Taking
fuzzy subsets p and X on X. p C X if and only if all z € X satisfying u(z) < A(z). Fuzzy subset v is
called the union of fuzzy subsets p and A, if and only if y(z) = max{u(z), \(x)} for all x € X, and ~
is denoted by p U A. Fuzzy subset ¢ is called the intersection of fuzzy subsets p and A, if and only if
o(z) = min{pu(z), A(z)} for all z € X, and ¢ is denoted by pN A.

A fuzzy subsets p on a group G is called a fuzzy subgroup of G [13], if the following conditions hold:

1 Va,b € G, p(ab) > min{pu(a), u(b)};

2 Vae G, pla™) > p(a);

3 u(le) =1.

For every a in G, p(a~1) = p(a). This follows at once from part 2. A fuzzy subgroup p of G, is called
a fuzzy normal subgroup of G if for any arbitrary elements a and b of G, have to u(ab) = p(ba).

We recall the t-level relation for fuzzy normal subgroups and some properties and theorems 1 and
2, that we need in the work from [4]. Let p be a fuzzy normal subgroup of G. For each ¢ € [0, 1], the
set

p={(a,b) € Gx G | p(ab™") >t}

is called a t-level relation of p. For each t, p; is a congruence relation on G. We denote by [z], the
congruence class of p; containing the element = of G. Let A be a non-empty subset of G. Then the sets

pi-(A) ={z € G | [z, C A},
pr(A) ={z € G | [z], N AF 0}

are called, respectively, the lower and upper approzimations of the set A with respect to u:. The pair
pu(A) = (pue—(A), uen (A)) is called a rough set of A in G. A non-empty subset A of a group G is called
a pun-fuzzy rough (normal) subgroup of G if the upper approximation of A is a (normal) subgroup of
G. Similarly, a non-empty subset A of G is called a py—(A)-fuzzy rough (normal) subgroup of G if lower
approximation is a (normal) subgroup of G. Note that, if ;4 and A are fuzzy normal subgroups of a
group G, then p N A is also a fuzzy subgroup G.

Theorem 1. Suppose that g and A are fuzzy normal subgroups of a group G and ¢ € [0,1]. Let A
and B be any non-empty subsets of G. Then
(1) pe—(A) € A C pun(A),
(2) pe—(ANB) = pu—(A) N u—(B),
(3) pern (AU B) = pupn (A) U pun (B),
(4) A C B implies p;—(A) € pu—(B),
(5) A C B implies pn(A) C uen (B),
(6) pe—(AUB) 2 pu—(A) U u—(B),
(7)
(8)
(9)
10)
)
12)

=% EE

7 AN B) C pur(A) N pn (B),
A, implies A~ (A) C —(4),

A, implies g (A) C M (A),

PN = pre N A,

10 A (4) D (A) N A (4),

(,U, NA)r(A) C pn (A) N Agn (A)

-
>
—~

8
9
(10
(11

7:1:1:“;
N 1N

~~

Theorem 2. Let p be a fuzzy normal subgroup of a group G and ¢t € [0,1]. If A is a (normal)
subgroup of G, then p(A) is a (normal) subgroup of G. Moreover, if the lower approximation of A is
non-empty, then it is a (normal) subgroup of G.
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Given a continuous triangular norm 7" on the unit interval I = [0, 1]. A fuzzy binary relation R on

X is called a T-similarity relation if for all x,y, z € X, R satisfies the following conditions:

(1) Riz,a) = 1;

(2) R(z,y) = R(y,z);

(3) R(z,2)TR(z,y) < R(z,v).
The pair (X, R) is called a fuzzy approximation space (see, for example [14| and [6]). Morsi and
Yakout in [6] define the lower approximation operator and upper approximation operator for a fuzzy
approximation space (X, R), respectively, for p € [0,1]%, as follows:

App(z) = in§( U1 (R(u, x), u(u)) for every z € X,
ue

Agpu(z) = sup(R(u, z)Tu(u)) for every x € X,
ueX

when J7(a,b) = sup{f € [0,1] | aT0 < b}, for every a,b € [0,1]. Let G be a group and C € Ig. If C
satisfies the following conditions:

(1) C(zy) > C(x)TC(y);

(2) C(z™!) = C(2);

(3) Cle) =1,
then C is called a T-fuzzy subgroup of G. If C(zy) = C(yzx) for every z,y € G, then C is called a
T-fuzzy normal subgroup of G. It easily can be verified that the binary relation,

B:GxG—10,1],

B(z,y) = C(xy™'), for every z,y € G

is T-similarity relation. Jiashang, Congxin and Degang in [14] define the upper approximation operator
Ap and the lower approximation operator Ap with respect to B on G. In this paper, we limited the
triangular norm 7', the simplest triangular norm, Min. Let p be a fuzzy subset and § be a fuzzy normal
subgroup on G. We call the fuzzy subsets Agu, A as respectively, the lower and upper approzimations
of the fuzzy subset i on G with respect to the fuzzy normal subgroup B.

AB/’L(x) = lng 0min(B(u7$)nu’(u))7 for every x € G7
ue

App(z) = sup{min{B(u, x), p(u)}}, for every = € G.
ueG

The pair(Agu, App) is called a rough fuzzy set of u. The fuzzy subset p on a group G is called a Ag
rough fuzzy (normal) subgroup, if the upper approximation of y is a fuzzy (normal) subgroup on G.
Similarity, the fuzzy subset p on a group G is called a Ag rough fuzzy (normal) subgroup, if the lower
approximation of p is a fuzzy (normal) subgroup on G.

Note that Ymin(a,b) = 1, if and only if a < b, if not it is equal to b.

The next proposition follows at once from [14; Proposition 2.4].

Theorem 3. Let G be a finite group, p and A be fuzzy subsets. Let B and C' be fuzzy normal
subgroups on G. Then

(1) App C pu C App,

BApn = ApApp = Ag%

pit = pif and only if Agp = p,
B(LUA) = AppU Ap,
s(pNX) C Agun A,
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) Ap(pUX) 2 App U ApA,
) Ap(pnA) =Agun AgA,
) B C C then Agu C Acp,
)

7
8
9
0) B C C then A-p C App.

(
(
(
(1

The next corollary easily can be verified based upon the parts (6) and (7) of Theorem 3.

Corollary 1. Let G be a finite group, pu and A be fuzzy subsets. Let B be a fuzzy normal subgroup
on G. If 4 C A, then
(1) App C ApA,
(2) App C ApA.

The fuzzy subset BMinC'is defined based on fuzzy subsets B and C' as BMinC'(z) = min{B(z), C(z)},
Va € G. The next theorem follows from [14; Lemma 3.4, Propositions 3.5, 3.6, 4.1 and 4.2].

Theorem 4. Let G be a finite group. Suppose that B and C are fuzzy normal subgroups of G. The
following properties hold.
(1) The fuzzy set BMinC is a fuzzy normal subgroup.
(2) ABMMlnAC,u C ApMinch-
(3) AgMinct € ApuMinAcp.
(4) If u is a fuzzy (normal) subgroup of G, then Agp is a fuzzy (normal) subgroup of G.
(5) If p is a fuzzy (normal) subgroup of G and B C pu, then Apu is a fuzzy (normal) subgroup of G.

Throughout the paper, we will make frequently use of the above mentioned results.

2 Fuzzy Cayley subsets and graphs

In this section, we present the definitions of fuzzy Cayley subset and fuzzy Cayley graph for fuzzy
subsets on groups.

Let G be a finite group and p be a fuzzy subset on G. The fuzzy subset p is called fuzzy Cayley
subset, if the subset

Su=facG | ua)<1)

is a Cayley subset of G. It follows that p(1,) = 1 and if u(a) < 1, then u(a™!) < 1. Obviously, every
fuzzy group is a fuzzy Cayley subset. Since S, is a Cayley set, (G;S,) is a Cayley graph. When ug
is a fuzzy Cayley subset, we define the triple (G;Sy; 1) and called it fuzzy Cayley graph. In fact, the
fuzzy Cayley graph (G;Sy; i) is a Cayley graph where the fuzzy Cayley subset p constructs the Cayley
subset of it.

The next lemma yields that if u(a) # p(b), then p(ab) = min{u(a), u(b)}, for some a,b € G, when
p is a fuzzy subgroup on G.

Lemma 1. Suppose that p is a fuzzy subgroup on G. If u(a) # u(b) then p(ab) = min{u(a), u(b)},
for every a,b € G.

Proof. Without less of generahty, suppose that p(b) > p(a). Since p is a fuzzy subgroup, we get
p(a) = p(abb=t) > min{u(ab), u(b=1)}. Since u(b=1) = u(b) and u(b) > u(a), the last argument yields
that p(a) > w(adb). On the other hand, u(ab) > min{u(a), u(b)} = p(a). Therefore, u(ab) = p(a) =
min{u(a), u(b)}. Similarity, if 4(b) < p(a), then p(ab) = p(b). Thus, we have pu(ab) = min{u(a), u(b)}.

Lemma 2. Suppose that u; and po are fuzzy Cayley subsets on a group G. The following properties
hold.
(1) If i1 C po, then Sy, €Sy,
(2) The fuzzy subset p1 U pg is a fuzzy Cayley subset and Sy uu, = Suy N Sy,
(3) The fuzzy subset p1 N po is a fuzzy Cayley subset and Sy, = Su U Sp,.
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Proof. (1) If © € Sy, then py(x) = 1. Since p1 < po, we have po(x) = 1, and, thus, x € S,,.
Therefore, S, € Sy,.

(2) It easily can be verified that S,,uu, = Su N Su,. Now, suppose that z € S,,uu,. Then
z € S, NSy, Since pp and pg are fuzzy Cayley subsets, we have 271 € S,, NS, and, thus,
z71 € Su,up,. Similarly, if 1 € S, Uy, then 1 € Sy, NS,,, a contradiction. Therefore, py U pg is

a fuzzy Cayley subset.

(3) In a similar way as last part.

Lemma 3. Let X1 = (G;S1) and Xy = (G; S3) be Cayley graphs. The following properties hold.
(1) X1UXy = (G, S U SQ)
(2) Xi1NXe = (G, S1N 82)
(3) X1 g X2 if and only if Sl g SQ.

Proof. (1) Let e be an edge of (G;S; U S2). Then there exist ¢ € G and s € S U Sy such that
e is an edge between two vertices ¢ and gs. Since s € S1 U .Se, we have s € S; or s € Sy and, thus,
e € E(X1) or e € E(X2). Therefore, e € E(X; U X2). Similarly, any edge of E(X; U X3) is an edge of
(G; 51U S2). The result follows.

(2) In a similar way as last part.

(3) Suppose that S; C Ssy. If e € E(X7), then there exist elements g € G and s; € S; such that
e = (g,9s1). Since s; € S; and S; C Sy, we obtain e € E(X3). Therefore, X; C X5. Now, suppose
that E(X;) C E(X3). Let g € G. If 51 € Sy, then (g, gs1) € E(X1). Therefore, (g,gs1) € E(X3). Then
(g9,981) = (¢',¢'s}) for some ¢’ € G and s} € Sy. Since g = ¢/, we obtain s; = §| and, thus, s; € Ss.
The result follows.

Notice that, if V/(X;) = V(X3) then X;UX5 and X;N X9 are obviously Cayley graphs. The Lemma
2 follows us to define subgraph, union and intersection of fuzzy Cayley graphs.
Definition 1. Suppose that X = (G;Sy; 1) and Y = (G; Sy; A) are fuzzy Cayley graphs. Then
(1) X CY if and only if A C pu;
(2) XUY = (G;5,USx;nNA);
(3) XNY =(G;S8, NSx;nUN).
Lemma 4. Suppose that G is a finite group and p is a fuzzy Cayley subset on G. If p is a fuzzy
subgroup and S, # () then S, generates G.

Proof. Suppose that g € G. If g € S, then pu(g) = 1. Now, if a € S, then p(a) < 1. By Lemma 1,
p(ga™t) = p(a). It follows that ga~! € S, and, thus, g = ga—'a € (S,,). Therefore, G = (S,,).

The following theorem is easily verified by Lemma 4.

Theorem 5. Suppose that X = (G;Sy; ) is a fuzzy Cayley graph. If p is a fuzzy subgroup, then
the Cayley graph (G;S,) is connected.

8 Fuzzy rough Cayley graphs

Suppose that G is a finite group with identity 1¢, u is a fuzzy normal subgroup, 0 <t < 1, and
X = (G;S) is a Cayley graph. Then the following graphs (we will prove these graphs are Cayley
graphs)
X = (G pn(S)) (e (5)" = per () \{lg}) and X, = (G5 - (5))
are called, respectively, fuzzy upper and lower approximations of the Cayley graph X with respect to
the fuzzy normal subgroup p and integer ¢.
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Theorem 6. X, and Ym are Cayley graphs.

Proof. By Theorem 1(1), we have pu;—(S) C S, and, thus, 1¢ & p—(S). Suppose that s € py—(95).
Then [s], C S. If z € [s7!], then (z,s™!) € u and, thus, (z71,s) € u, because u is a fuzzy normal
subgroup. Thus 7! € [s], C S. Since S is a Cayley set, we obtain z € S and, thus, [s7!], C S. Hence,
s7v € g (S). Therefore, y;(S) is a Cayley set, and X, is a Cayley graph.

Now, suppose that s € p2(S)*. Then [s], NS # @ which implies that there exists a € [s], N S.
Since a € [s], NS, we obtain (a,s) € u. As p is a fuzzy normal subgroup, (a=1,s7!) € p. Then
a~t € [s71,. Since S is a Cayley set, we have [s7!], NS # 0 and, thus, s™* € p(S). Therefore,
pen (S)* is a Cayley set, and X, is a Cayley graph.

Let G be a group congruence modulo 16 integral number Z. Let B be a fuzzy normal subgroup
of G presented in Table, and ¢ be 0.3. Let X = (G S) be a Cayley graph such that S equals to

Table

B(1)=01 | B(2)=02 | B3)=01 | B(4)=04
B()=0.1 | B(6)=02 | B(7)=0.1 | B(8) =038
B(9)=0.1 | B(10)=02 | B(11)=0.1 | B(12) =0.4
B(13)=0.1 | B(14) =02 | B(15)=0.1 | B(0) =1

Theorem 7. Suppose that p and A\ are fuzzy normal subgroups of a group G and t € [0, 1]. Let
= (G;95), X1 = (G;S1) and Xy = (G; S2) be Cayley graphs. The following properties hold.

1) X, CXCX

( ) e

(2) X1UX2m _Xl,U«tUX2,U«t’
(3) leXQ —X1 ﬂ&ut
(4) X1 CX2:>X1 CXQ
(5) X1 CX2:>X1,ut CXQuta
(6) X1UX2 DXl UX2
(7) leXQ#t CleﬂXQuf,
(8) Htc)\thuthAta
(9) ,U/tc)\t:X)\tCX

10)

11) X

(
(

Proof. (1) By Theorem 1(1), p—(S) € S C un(S). Then py—(S) € S C pugn (S)*. It follows that
X,U«t cXc Yﬂt

(2) Based on Lemma 3, X7 U X5 = (G; pn (S1)* U pga (S2)*). By Theorem 1(5), we have jugn (Sp)*
and g (S2)* C pgn (S1US2)*. Now, by Lemma 3(3), we have le UXQW CXiUXy Xa,,,. Conversely, by
Theorem 1(3), puer (S1)* U pen (S2)* = pun (S1 U S2)*. Suppose that (g, gs) is an edge of E(X; U X3,,).
It follows that s € g (S1US2)*. Then s € pgn (S1)* U pga (S2)* and, thus, s € g (S1)* or s € puyn (S2)*.
Therefore, (g, gs) is an edge of le or sz Finally, we have X; U Xo Xoy, = XlMt U qut
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(3) By Theorem 1(2), the proof is similar to part (2).
(4) Assume that X1 C X5. Then S; C Sy and, thus, p;—(S1) C pe—(S2). Hence, &M C &m
(5) By Theorem 1(5), the proof is similar to part (4).
(6) By Theorem 1(6), we have p;—(S1) U py—(S2) € py—(S1US2). Then py—(S1) C pyp—(S1US2) and
t—(S2) C pe—(S1 U S2). Therefore, we obtain X; U Xgut D &Mt and X; U Xgut D &ut' And finally,
XiUXy 2% UXy

(7) By Theorem 1(7), the proof is similar to part (6).

(8) Assume that g C Ap. Theorem 1(9) yields pn (S) € M\a(S). Then pya (S)* € Aa(S)* and, thus,
Yﬂt - Y)\t'

(9) By Theorem 1(8), the proof is similar to part (8).
(10) By Theorem 1(12), we have

(G; (0 M) ()

(G5 pen (5) N A (5))
(G5 er (5)) N (G5 A ()
X ﬂX)\t

X (urn

N

(11) By Theorem 1(12), the proof is similar to part (11).

Remark 1. A subset S of G is a minimal Cayley set if it generates G and if S\ {s, s !} generates
a proper subgroup of G for all s € S.

The pair (X, , X ,i;) is called a fuzzy rough set of the Cayley graph X. A Cayley graph X = (G; S)
is called a pa fuzzy rough generating, if the subset us (S)* is a generating set for G. Similarly, a Cayley
graph X = (G} S) is called an p;—-fuzzy rough generating, if the subset p;—(S) is a generating set for
G. A Cayley graph X = (G;S) is called a pun-fuzzy rough optimal connected, if the subset p(S)* is
a minimal Cayley set for G. Similarly, a Cayley graph X = (G;S) is called a u;—-fuzzy rough optimal
connected, if the subset p;—(S) is a minimal Cayley set for G.

Theorem 8. Suppose that X = (G;.5) is a Cayley graph.
(1) If X is a uyr-fuzzy rough generating, then X, is connected.
(2) If X is a p—-fuzzy rough generating, then X, is connected.
(3) If X is a pyr-fuzzy rough optimal connected, then X, is optimal connected.
(4) If X is a p—-fuzzy rough optimal connected, then X, is optimal connected.

Proof. 1t is straightforward.

4 Rough fuzzy Cayley graphs

Let G be a finite group with identity 1g, B a fuzzy normal subgroup on G and X = (G;S,; 1) be a
fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these are fuzzy Cayley graphs)

Xp = (G; Sayu-; App*) and X = (G;57,,; App)
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are called, respectively, lower and upper approximations of the fuzzy Cayley graph X with respect to B.
In the above definition, Agp*(z) is similar to Agpu(z) in all elements, except for 1, where Agp*(1g)
is 1.

Theorem 9. The triples X 5 and X g are fuzzy Cayley graphs.

Proof. Suppose that Agp(z) =1 for some z € [0,1]. Thus
infyeq Omin(B(u, x), pu(u)) = 1.

Therefore, for all elements u € G, Umin(B(u, ), p(u)) = 1 and, thus, B(ur~!) < p(u) for every u € G.
On the other hand, y is a fuzzy subgroup, and we have p(u=!) = p(u). Then B(uxr=!) < p(u~1). Since
B is a fuzzy normal subgroup, we obtain B(uz~!) = B(z~'u) and consequently, are equal to B(u~'z).
So B(u~tx) < p(u~1). Hence for all u of G, Ypin(B(u™t, 271), u(u=1)) = 1 and, thus,

inquG ﬁmin(B(u_la x_l)v :u(u_l)) =1
Then
inquG ﬂmin(B(ua x_l)a /,L(U)) =L

So Agu(x~!) = 1. Therefore, Agu* is a fuzzy Cayley subset and X g is a fuzzy Cayley graph.
Theorem 3(1) leads p C Apgpu. Since u(lg) = 1, we obtain Agu(lg) = 1. Now suppose that
App(z) = 1. Then

supyeq{min{B(uz~), p(u)}} = 1.

Since G is finite, there exists an element u of G such that min{B(ux~!), u(u)} = 1. Then B(uz~!) =
p(u) = 1. Since p is a fuzzy subgroup, we obtain u(u™!) = p(u). Now as B is a fuzzy normal
subgroup, B(uz~!) = B(x~!u) and since B is a fuzzy subgroup, we obtain B(uz~!) = B(u~'x). Thus
min{B(u~'z), u(u1)} =1, and Agu(x~!) = 1. Consequently, App is a fuzzy Cayley subset and, thus,
X p is a fuzzy Cayley graph.

Lemma 5. Suppose that G is a finite group and B is a fuzzy normal subgroup of G. If X = (G;S,,; i)
and Y = (G; Sy; \) are fuzzy Cayley graphs, then:

Proof. (1) Suppose that € Sy, (uuny+- Then Ag(pUA)*(z) < 1 and x # 1g. By Theorem 3(7),
App(z), AgpA(z) < 1. Hence, © € Sa;x N Sa

According to Theorem 3, items (2), (3) and (4) are straightforward.

Theorem 10. Suppose that G is a finite group and B and C' are fuzzy normal subgroups of GG. Let
X = (G;Su; 1) and Y = (G; Sy; A) be fuzzy Cayley graphs. Then
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Proof. (1) By Theorem 3(1), we have Agu C p C Agu. Hence Agpu* C u C App. Lemma 2(1)
implies that X5 C X C X5

(2) By Definition 1(2), X UY = (G; Synx; £ N A). Then we have
XUYp = (G;Sa, s Appn ).
By Theorem 3(8), Ag(nNA) = Agun Ag) and, thus,
XUYp=(G; Sapurnagh; App N Ag\™).
Now by 1(2), X UY g = X UY g. The result follows.
(3) By Theorem 3(7), the proof is similar to part (2).
(4) By Theorem 3(6), the proof is similar to part (2).
(5) By Theorem 3(5), the proof is similar to part (2).
(6) If w C A, then by Corollary 1(1), Agu € Ag). Now, by Definition 1(1), Y5 C X .
(7) By Corollary 1(2), the proof is similar to part (6).
(8) Assume that B C C. By Theorem 3(9), Agu C Acp. Therefore, we have X C X .

(9) According to Theorem 3(10), the proof is similar to part (8).

Theorem 11. Suppose that G is a finite group. If B and C' are fuzzy normal subgroups and p is a
fuzzy subset on G, then the following statement hold.
(1) (Ga SABMmcﬂ;ABMinCH) < (Gv SABHMinAcH;ABMMinACM)a
(2) (G587, umtindgs ABpMinAcu) € (G; 53 s ABMinc i)

ABMinctt’

Proof. According to Theorem 4, the proof of both parts are clear.

The pair (X 5, Xp) is called a rough set of a fuzzy Cayley graph X = (G;S,;p). A fuzzy Cayley
graph X = (G;Sy;p) is called an Ap rough generating, if the subset SZB ., generates G. Likewise a
fuzzy Cayley graph X = (G;S,; p) is called an Ap rough generating, if the subset S, generates G.
A fuzzy Cayley graph X = (G;Sy; ) is called an Ap rough optimal connected, if the subset SZBM is a
minimal Cayley set of G. Similarly a fuzzy Cayley graph X = (G;Sy,; i) is called an Ag rough optimal
connected, if the subset S4,,, is a minimal Cayley set of G.

Theorem 12. Suppose that G is a finite group, and B is a fuzzy normal subgroup of G. Let X =
(G; Su; 1) be a fuzzy Cayley graph. The following properties hold.

(1) If u is a fuzzy subgroup of G, then X is a Ap rough generating.
(2) If B C p and p is a fuzzy subgroup of G, then X is a Ay rough generating.

Proof. According to Theorems 4 and 4, the proof is straightforward.
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5 Fuzzy rough fuzzy Cayley graphs
In this section, we get the t-level relation puy, for each t € [0,1), as follows:
pe = {(a,b) € Gx G | plab=t) >t}

Similarly, all results related to the t-level relation u; are same. Let B be a fuzzy normal subgroup on G
and X = (G;Sy; ) be a fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these
are fuzzy Cayley graphs)

s = (G; By, _(Su): Appf) and X = (Gy B)\(S,)* App)

are called, respectively, fuzzy lower and upper approximations of the fuzzy Cayley graph X with respect
to B. The definitions of t,, A ppf and Agpf are as follows:

t, = max{u(z) |z € S,},
if v € B{L(Su)* then Appf(z) = Apu*, otherwise Appf(z) =1 and
if z € By, (S,) then Appt(x) = App(z), otherwise Aput(x) = 1.
Theorem 13. The triples X5 and ng are fuzzy Cayley graphs.

Proof. In the proof Theorem 6, it proved that the subsets By, (S,) and B{L (Su)* are Cayley sets.

To prove that the X5 and ng are fuzzy Cayley graphs, it is sufficient to show that By, (S,) = S5
and By (Su)* = Sa .-
Suppose that =z € By, (S,). Then Appt(z) = Agp(x). If Agu(x) =1, then

BK

supyee{min{Bluz"), u(u)}} = 1.

Since G is finite, there exists an element u in G where min{B(uz~1'), u(u)} = 1 and, thus, B(uz™!) =
p(u) = 1. As B(uz™!) = 1, we h obtain u € [z]p and, thus, u € S,. Therefore, u(u) < 1, a
contradiction. Then Apu(x) # 1 and, as a result, Aguf(z) # 1. Now, suppose that = & By, (Su).
Based on the definition, Agu®(x) = 1. Therefore, By, (Su) = Sa,,.:-

Let « be in B} (S,,)*. Then Agp?(z) = App*. Since € BY) (S,)*, there exists an element y € S,
such that y € [z]p. If we have Appu(z) = 1, then

inf Ymin(B(uz™b), p(u)) = 1.

ueqG
Therefore, we have B(uz™!) < p(u) for every u € G. Then B(yz™') < u(y). Since u(y) < t,, we
obtain B(yz™') <t,. As y € [z]g, B(yz~!) > t,, a contradiction. Now, suppose that = ¢ B,{;(S“)*.
(z

Based on the definition, Apuf(x) = 1. Hence, by above B L (Su)* = Saut(a)-

Lemma 6. Let G be a group and t1, t2 and t3 be integers in the closed interval [0, 1]. Suppose that

i is fuzzy normal subgroups of G. Let A and B be two non-empty sets. Then

(1) if t3 < 1,12, then pyp (AU B) 2 pyp (A) U pyy (B),
2) if t3 > t1,ta, then pyp (AU B) C ,utA( )U,utA( ),
3) if t3 > t1,ta, then pyp (AN B) C ’Ut/\(A) N /.LtA( )

)

)

)

(
(
(4
(
(

if t3 < t1,to, then Mts—(A N B) - Mty — (A) N Hity— (B)
5) if t3 Z tl,tQ, then Mt3_(A N B) :_) Mt — (A) N Mty — (B)
6) if t3 > tl,tg, then Mt3—(A U B) :_) Mt — (A) U Mty — (B)
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Proof. (1) Let « € pyn(A) U pyy (B). Then z € pyn(A) or x € pyp(B). Suppose that x € pyn(A).
Thus, [z],,, N A # () and consequently, there exists a € A such that p(xa™t) > t1. Since t; > t3, we
have p(za™') > t3 and, thus, [x],,, N A # 0. The result gives us that z € pep (AU B). Similarity, if
T € fizp (B), the same result can be gained.

(2) Let z € pyy (AU B). Thus, [z],, N (AU B) # 0. Then [z],,, N A # 0 or [z],, N B # 0.
Suppose that [2],,, N A # 0. Hence, there exists a € A such that pu(za™") > t3. Since t3 > t, we have
p(ra~t) > t; and, thus, (], N A # 0. The result gives us that = € ;2 (A). The result follows.

(3) Let @ € p;p (AN B). Then, [z],,, N (AN B) # 0 and, thus, [z],,, N A # 0 and [z],,, N B # 0.
Hence, there exist elements a € A and b € B such that u(xa™1) > t3 and p(xb~1) > t3. Since t3 > t1, to,
we have p(za™t) >t and p(xb~') >ty and, thus, [z],, N A # 0 and [2],, N B # 0. The result gives
us that s (A) N pgy (B). The result follows.

(4) Let © € py;— (AN B). Then [z],, € ANB. If y € [z],, , then u(yz™') > t; and, thus,
p(yz~t) > t3. Then y € A. It follows that = € uy, —(A). Similarly, we have = € uy,(B).

(5) Let « € gy~ (A) N gy (B). Then [2],, C A and [z],,, € B. If y € [z],,,, then p(yz™") > 3
and, thus, u(yx=1) > t; and u(yz~!) > to. Then y € AN B. It follows that = € py, (AN B).

(6) Let = € py;—(A) U pugy—(B). Hence, z € py,—(A) or x € py,—(B). Suppose that x € s, —(A).
Hence, [z]y, C A.Ify € [z],,, then pu(yx=1) > t3 and, thus, u(yx=1) > t;. Then y € A. It follows
that = € py,— (AU B). The result follows.

Theorem 14. Let G be a finite group. Taking any fuzzy normal subgroups B and C on G. If

X = (G;S,; 1) and Y = (G; Sx; A) are fuzzy Cayley graphs. The following properties hold.
(1) X3 C X C X,

(2) XNY CXpNYh,
(3) XUY 2 XpUYp,
(4) XNYs C XpnYy,
(5) nCSA=Yp C X},
(6)
(7)
(8)

6) t C A= 735 C ng,
7) BCC= Xy CXb,
=/ </
8) BCC=XyC X,
Proof. (1) By Theorems 3(1) and 1(1), we have, respectively, Agu C u € Agp, By, (S,) € S, C
B (Su)- If x € By (Su)*, then Aput(z) = Agu(z) and, thus, Agpf(z) < p(z). If = ¢ B} (Su)*, then
z ¢ S, and, thus, u(x) = 1. So we have Appf(z) < pu(z). Now by Definition 1, we have X C X
If # € By, (Su), then App(z) = App(z) and, thus, u(z) < Appb(z). If @ € By, (S,), then
Appf(x) =1 and again pu(z) < Agu®(x). Then, we have X3 C X.
(2) We have

XY = (G umnUN 5 = (G B (S, N Sy); Ap(p U N,

tuU/\

’
/

G S ) N (GiSx Ny
G; B (Su); Ap(1)®) N (G; B (S)); Ag(M)F)
G; B} (S,) N B (S2); Ap(1)f U Ag(W)F).

-/ ~/

~ o~ o~ —~

Since t,, ) > tu, tx, by Theorem 6(3), we have B{LM (SuNSy) < B{:L (5,)NDBY, (Sx). Also, by Theorem 3(7),
we have Ag(pUA) 2 AguU Ap). If € B[ (S,) N B, (Sx) then

ABNﬁ(ﬂf) = ABM(x)véB)‘ﬁ(x) = ApA(z)
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and, thus,
App(z) U ApNi(z) < Ap(pU ) ().
Since Ap(nUN)(z) < Ag(nUN)¥(z), we obtain Aguf(z) UAgN(z) < Ag(uUNi(z). Ifz ¢ B (Su)N
B{\ (5)), then z ¢ B} »ox (SuNS5)) and, thus, Ap(pUNE(x) = 1. Therefore, Ag(pUN)¥(z) > Agut(z)U
Ap)(x) and Definition 1 yields X N Y;; C Y/B N ?33.
(3) We have

G Surmi NN g = (G B (S, US)): Ap(pnn V),
G: 8 1) U (G Sxi N g

G; B (S,): Ap(1)*) U (G: BY\ (S2); Ap(\)F)

G; B, (S,) U BY) (52); Ap(p) N Ap(A)P).

XUYg=

X U?jg

—_~ o~ o~ —~

Since tunx < ty, ta, by Theorem 6(1), we have B! | (S,US)) 2 B} (Su)UBY, (S3). Also, by Theorem 3(8),
we have Ag(uNA) = Agun A If € By (S,) U B, (S)) then a € B{:LM(SM U Sy) and, thus,
Ap(u NN (a) = Ap(pn A)(z) = Agu(z) N Ap)(e) < App(z) N AN ().

Now, suppose that @ ¢ B}, (Sy,) U By} (Sx). Then

ABMﬂ(ﬂf) = AB)‘u(x) =

and, thus,
Ap(un Vi (@) < Appi(a) N Aph(x) =

Therefore, X U Y;g ) Y’B U?’B.
(4) We have
XY= (G Suuai nUN), = (G5 B, (SN S3); Ap(U ),
XpNYs = (G;Sy; ) N (G; SA,)\)
= (G; By, _(8); Ap()") N (G; By, _(S2); Ap(A)F)
= (G; Bi,,_(Su) N Bi,_(S2); Ap(p)f U Ap(M)F).

Since t,uxn > tu,ty, by Theorem 6(5), we have By, (S, NSy) 2 By, (Su) N By,_(Sx). Also, by
Theorem 3(5), we have Ap(nUX) = Ag(p) UAp(N). If 2 € By, (S,) N By,_(S») then

Appf(x) = Agp(z), ApMi(z) = AgA(z)

and, thus,
Apph(x) U ApA(z) = Ap(pUN)(z) < Ap(pUN)i(z).

If o & By, (Su) N Bi,_(Sy), then = & By, (S, N Sy) and, thus, Ap(uU M\¥(z) = 1. Therefore,
Appf(x) U Ap\i(z) < Ap(uUN)¥(2) and, thus, X N Y’ € X5 NY.

(5) If uw € A, then by Corollary 1(1), Agu € AgX. In the other hand, by Lemma 1, we have S\ C S,
and, thus, by Theorem 1(4), By, (S)) C By (Sy). Then Y5 C X'5.

(6) The proof is similar to part (5).

(7) Since B C C, by Theorem 3(9) we have Agpu € Acp. Also, Theorem 1(8) gives Cy,_(S) C
By, (). The result follows.

(8) The proof is similar to part (7).
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Conclusion

This paper has intended to build up a rational connection between rough set theory, fuzzy set
theory and Cayley graphs. First, formal definitions for fuzzy Cayley sets and fuzzy Cayley graphs have
been suggested.

Some illustrative examples have also been presented. Fuzzy Cayley graphs and related approximations
might be received attentions in some distributed and networked systems challenges.
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M.X. Hlax3amanan', B. /laBBa3z®

 Mopmy yrusepcumeminiy, mamemamura opmanavies, TTopmy ynueepcumems,
Pya-dy Kamno-Aneepu, Ilopmy, Ilopmyearus;
2 Hes0i ynusepcumemi, Hesdi, Hpan

o emec Keiiiu rpadTapblHAaFrbl IMaMa/IaH aybITKY

I[ITamaMeH ajbIHFaH >KUBIHJAP TEOPUSICHI OYJI KyHeaepi Jo1 eMec KoHe aHBIKTAJIMAFaH MOJIEbIeY VIIiH
smaitbikThl ofic. 1llamamen asbIHFAH YKUBIHIAD TEOPUSCHI YKUBIHIAP TEOPUSICHIHBIH, OJAH Opi YKaJIbLIAYbI
GOJIBII TAOBLIATHIH JDJ1 €MEC YKUBIH/IAD TEOPUICHIMEH TOJIBIKTHIPBLIFAH/IA, 0JIaD TEOPUSJIBIK, TAJIKbLIAYJIAD-
a kapamabl 6osanbl. Makasama Kaitn rpadTapblHbIH, aHBIKTAMACBIHAH TYBIHIAWTBIH J19J1 eMec Kaiiim
iKi KUBIHIAPBIHBIH, aHBIKTAMACH, JIEMEK TPYIIAJIapIaFbl 9/ eMeC 1Kl *KUBIHIAPIBIH 1971 eMmec Kaitan
rpadrapsl yebiaburad. Apropiap Ksiiyin rpadbsiHbIH 1971 eMec HOpMaJb iIKi TPYIIAChIHA KATHICTDI [IIaMa-
MeH KYBIKTay/Ibl, COHBIMEH KATap allIPOKCUMAIMSIIAHATHIH [IIaMaMeH aJIbIHFaH 1191 emec Keityin rpadrapbl
2KOHE JI9JT eMeC IaMaMeH aJiblHFaH a1 emec Keisin rpadrapbia enrizren. COHFBI XKYBIKTay 0acKa KybIKTa-
yaapaeiy 6ipiryi 6osbin TabbLtaabl. Keitbip Teopemasiap MeH KaCHETTEpPl 3epTTE/ITeH »KoHe J19JIeJIIeHIeH.

Kiam cesdep: aHBIK eMec »KUBIH, [IaMaMeH aJjblHFaH »KublH, Keitnu rpadsbl, anbik emec Keitau rpadewr,
TOMEHTI >KOHE YKOFaPFbI >KYBIKTAYIaP.

M.X. Hlaxzamanan', B. /lassasz?

! Mamemamuseckut yenmp Yrnusepcumema IHopmy, Ynusepcumem ITopmy,
Pya-dy-Kamny-Aaseepu, [lopmy, [lopmyeanus;
2 Viusepcumem Hesda, Hesd, Hpan

I'pyb6octh B HeueTkux rpadax Kaam

T'py6ast Teoprsi MHOKECTB — 3aCJIyKUBAIONIUN BHUMAHUS TIOJIXO/, JIJIsi HETOYHOTO U HEOIIPEJIEJIEHHOTO MOJIe-
JsmpoBanus cucreM. Korma rpybast Teopusi MHOXKECTB JIONIOJIHSIETCS TEOPUEHl HEYeTKUX MHOXKECTB, IIPUYeM
0be SIBJISTFOTCS JTOTIOJTHUTEIBHBIM 0O00IEHNEeM TEOPUU MHOXKECTB, OHU OYIYT MMETH CHJIY B TEOPETUIECKUX
JMCKyccusX. B HacTosIell crarbe MpeJjIoyKEeHO OIpeeieHre HeYeTKuX moaMuoxkects Kau u, cienosa-
TeJIbHO, HeueTKnuxX rpados Kaim HedeTKuX MOJMHOXKECTB Ha IpyIIax, BJOXHOBJIEHHOE OIPe/IeJIEHUEM Ipa-
dos Kamm. ABropamu BBeneHb! rpybast anmpokcumanus rpada Kaanm oTHOCHTETBHO HEYeTKON HOPMAaIBLHOMN
[IO/INPYTIIIBI, & TAKKe allIPOKCUMAIMOHHBbIE ITpyOble HedeTKue rpadbl Konu u Hederkue rpybble HedeTKHe
rpadnt Kanu. Ilocnennee nmpubimzkenune mnpeacTaBisgeT coboit cMech Apyrux npubsmkennii. VccaemoBasbr
¥ JIOKa3aHBI HEKOTOPBIE TEOPEMBI U CBONCTBA.

Kmouesvie cr06a: HEIeTKOE TIOIMHOXKECTBO, Tpyboe MHOXKeCTBO, rpad Kamu, nHeuerkuit rpad Komn, amkusas
U BEPXHsisl alllIPOKCAMAIIIH.
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Representing a second-order Ito equation
as an equation with a given force structure

The problem of constructing equivalent equations with a given structure of forces by the given system of
stochastic equations is considered. The equivalence of equations in the sense of almost surely is investigated.
The paper determines the conditions under which a given system of second-order Ito stochastic differential
equations is represented in the form of stochastic Lagrange equations with non-potential forces of a certain
structure. Necessary and sufficient conditions for the representability of stochastic equations in the form of
stochastic equations with non-potential forces admitting the Rayleigh function are obtained. The obtained
results are illustrated by an example of motion of a symmetric satellite in a circular orbit, assuming a
change in pitch under the action of gravitational and aerodynamic forces.

Keywords: Stochastic differential equation, stochastic Lagrange equation, stochastic equations with non-
potential forces, equivalence almost surely.

Introduction. Problem statement

In [1], Yerugin constructed a set of ordinary differential equations (ODEs) possessing a given integral
curve. This work became seminal in the theory of inverse problems of dynamics. At present, this theory
is quite fully developed in the class of ODEs (see for instance [2-10]). In |2, 3], Galiullin presented a
classification of the main types of inverse problems of dynamics and developed general methods for their
solution in the class of ODEs. Inverse problems of dynamics for Ito stochastic differential equations
were studied in [11-18].

In recent decades, the increased interest in the Helmholtz problem [19] has given a new impetus to
the study of inverse problems for differential systems (for a literature review, see [20]). The solution
of the Helmholtz problem in a wider class of differential equations makes it possible to extend the
well-developed mathematical methods of classical mechanics to this class of equations. A special place,
in terms of the variety of aspects in the study of the Helmholtz problem, is occupied by the works of
Santilli [21, 22], which are devoted to the problem of representing second-order ODEs in the form of the
Lagrange, Hamilton, and Birkhoff equations. In [23-26], methods for solving the Helmholtz problem
are extended to the class of partial differential equations (PDEs). The Helmholtz problem is considered
in [27-29] in a probabilistic formulation. We also note the works [21, 22, 26], which, in addition to the
authors’ own research, mainly in the class of ODEs and PDEs, present a historical review of literature
on the development and generalization of the Helmholtz problem.

Given the second-order stochastic equation

di, = Fy(z,2,t)dt + 0,;(x, ,t)do?, v=T1,n, j=1,m, (1)

*Corresponding author.
E-mail: v_ gulmira@mail.ru
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it is required to construct the equivalent equations of the form

d <§i> - g;;dt = Qi(z, 2, t)dt + U;Cj(.’E,jJ,t)d()f], k=1,n, (2)
with the given structure of the forces Q.

We assume that the functions included in the above equations have the smoothness necessary for
further reasoning and satisfy the existence and uniqueness theorem for solutions of the Cauchy problems
in the class of Ito stochastic differential equations [30]. In particular, we suppose the following holds
for the vector function F(z,t) and the matrix o(z,t) (herez = (27, 27)7):

(i) F(z,t) and o(z,t) are continuous in ¢t and satisfy the Lipschitz condition in z, i.e.

|o(2,t) — a(z”,t)H2 + ||F(z',t) — F(z”,t)H2 <L+ |2 - z"‘z for all 2', 2" € R*™;
(ii) the linear growth condition
2 2
lo(z, )| + 1 F(z, 1)1 < L1+ |2)

is met for all z € R?",

Let (Q,U, P) be a probability space with a flow {U;}. Here {£1(t),£2(¢),...,™(t)} is a system of
Wiener processes with the unit matrix of local variances. The equivalence of solutions of equations (1)
and (2) is understood in the sense of the following definition.

Definition 1. The equations

diy = Y1 (y, 9, t)dt + Ya(y, 7, t)dE (a)

and

di = Zy(z, ,t)dt + Zs(z, 2, t)dE (b)

are said to be equivalent almost surely (a. s.) if y(to) = z(t0), ¥(to) = 2(to) a.s. imply y(¢, to, yo, Yo) =
Z(t,to, 20, Z()), y(t,to,y(),yo) = Z"(t,t(), 20, Z"o) a. S., for all ¢ > to.

The problem of construction of equation (2) by the given equation (1) was considered in [31] in
the case of the absence of random perturbations o,; = a;j = 0. The case of the presence of random
perturbations and @ = 0 was studied in [32] by the method of additional variables.

Hereinafter, summation is assumed for the repeated indices of the factors. The indices i, k, and v
run from 1 to n, and the index j runs from 1 to m.

In other words, the problem is stated as follows: for given F,,o,; it is required to determine the
conditions on the functions L and O',l/j, under which equation (2) is equivalent to equation (1) with the
given structure of forces Q.

Case A. Let Qj be arbitrary non-potential forces.

Theorem 1. Equation (1) is represented in the form of equation (2) with arbitrary non-potential
forces if and only if

0*L
0110y,

l,v=k

=0y, where 5,’;—{01/7&k , (3)

and
0w, 2,t) = oyj(z, 2, 1). (4)

Proof. By the Ito’s rule of stochastic differentiation, we obtain

d<6L) B [ 9L O’L 9*L 1 &L

0L
a. 14 . . FI/ N AN AN .
i 90t | dirorr " T 9ion, " T 2 0000,00,

Lido&l .
ai?kai',,a J o

Uijo'uj:| dt +

120 Bulletin of the Karaganda University



Representing a second-order Ito equation ...

Since F,dt + a,,jdoéj = di,, we have

OL 0’L . 0L 0L 1 9L
d dz, +

- by + oA A CijOvj | dt
0101, 00t * ﬁabk@xl,x + 2 0i‘k8$iaiyajg J:| (5)

Oy,
Hence, in view of (5), equation (2) takes the form

i S dilps YRR ; J =
d( $k> xkdt ka(x,:v,t)dof =

0L 0L 0’L 1 9L oL , ,
= ipdi, " [ag;«kat T Doz, T 2 om0, U7 T By Q’“] dt = o4 (@, & )doe”. (6)

Then, taking into account (6) and the original equation (1), we have

d’L i + d*L N d*L . L OL 0. dt
A a. 9Ty . : v T 58 a- a- 9ij0vj — 73— — -
91,0, diydt = Digdr, " 2040i 0%, 7 dry, "
—0yi(x, &,1)do&’ = diry — Fy(w, @, t)dt — opj(x, ,t)dog’. (7)
The above equation implies the fulfillment of condition (3) of Theorem, which in turn implies
3L
— =0. 8
01,0%;0%, (8)

Equating the coefficients of dt and d¢7 in (7), on the basis of (8) we obtain the fulfillment of condition (4)
of Theorem and the following expression

0%L 0L OL

L row TR o T v

+ Fi(z, 2,t). 9)

Expression (9) determines the non-potential force Q. If instead of (2) we consider the equation

d(gj;) - gx[];dt = Qp(x, &, t)dt + opj(x, &, t)do&’, (2"
we obtain the following corollary of Theorem 1.
Corollary 1. Equation (1) is represented in the form of equation (2') with arbitrary non-potential
forces if and only if condition (3) is met.
In particular, for z € R, ¢ € R!, conditions (3) and (4) for the transition from (1) to (2) take the
form
L L o
@ I g =0,

and an arbitrary non-potential force is determined as

9L N 0*L . 0L

oiot | 0w Oz

Case B. Let Qi admit the generalized Rayleigh function R(zx,%), that is,
OR

Q= 4R

P) = — " 10
Qo) = — 50 (10)
Then equation (2) is represented in the form
oL oL OR / ,
dz—)— =—dt = ——— (x, &, t)do&’ . 11
(85614;) axk axk +O—k’](x7x7 ) 0€ ( )
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Theorem 2. Equation (1) is represented in the form of equation (11) with non-potential forces
admitting the Rayleigh function if and only if conditions (3), (4) and

OR 0L 0L 0L

Dz, Oxp  Oixdt  0ipdw, "

— Fk(x,sb,t) (12)

are met.
This theorem is proved in the same way as Theorem 1.
Theorem 2 implies the following statement for the equation

oL oL OR : /
A2y = g = (@ 1) doE 1
(8$k) 8xkd ka +O'k]($,l', )dof ( )

Corollary 2. Equation (1) is represented in the form of equation (11/) with non-potential forces
admitting the Rayleigh function if and only if conditions (3) and (12) are met.
In particular, for z € R, ¢ € R!, conditions (3), (4) and (12) for the transition from (1) to (11)

take the forms
%L , OR 0L 9°L  O*L .

wzl, g =0, — = = T == —

or ~ or  oiot  oidx
respectively.

We now extend the definition introduced by R.M. Santilli [21| to the class of Ito stochastic
differential equations.

Definition 2. We say that equation
Ayi(z, &, t)di’ + B, (2, &, t)dt = 0,,j(x, &, t)do&’ (1)

admits the analytic representation in the form of the Lagrange stochastic equation with a given
structure of forces, if there exist n? functions h¥(z,,t), det(h%) # 0, such that the following identity

holds:
L L / . .
d(i) — idt — det — O -($, i}, t)dogj = hZ(Amdl‘z + Bl,dt — O',,jdogj). (13)
0Ty, Ozy, J

Let us consider the problem of analytic representation in the sense of Definition 2. In other words,
given the functions A, j, By, 0, ; and the forces )y in equation (2/), it is required to determine the
conditions on the functions A, L, U;j, under which the relation (13) holds.

Teopema 3. For the indirect representation of the equation with arbitrary non-potential forces Qy,
the necessary and sufficient conditions are

0L
o _pra,, 14
Oipdi; " 14
a;j = hjoy;. (15)

Proof. We set F; = —A;Z-lBi, o, = A;ilaij. Then, we have

2

a( OL _[82L oL *L 1 9L .

I .
) Fro-— 92 oot ldts -2 o* doed,
0in) = |0in0t | digdr, T Qipow, v 2 0apoindi, J”U”J] Do, it

Since F}dt + Ul"jjdofj = d&,, we obtain

2 2 2 3
d(aL> 2L 82L 82L 1 &L **}dt (16)

== d',/ .V oy . . . Z“ l/'
9in ) = 0irda, " | 9ior T dipor, "t T 2 0i0a,00, TV
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Hence, in view of (16), relation (13) takes the form

0’°L . 0L 0L . 1 &L . . OL

7d v v N A A o. UYUgg Yy N dt—
05,05, 0 T | a0t T dneon, v T 2050508, 000 T gy @k

—04,;do€" = hY, (Ayi(w, @, t)di; + By (x, @, t)dt — oyj(x, &,t)do) .

Equating the coefficients of di; and dfg, we obtain relations (14) and (15) of Theorem 3. The coefficients
of dt on the right- and left-hand sides of the equation are equal due to an arbitrary non-potential force
Q. of the form

0*L 0*L 1 03L oL

- e B S )
@ = Fiat T oion, T 205,05,05,°9°" T dup

The following statement holds in the case when non-potential forces admit the generalized Rayleigh
function (10).

Theorem 4. Equation (2’) has an indirect representation in the form of the Lagrange equation with
non-potential forces admitting the generalized Rayleigh function (10) if and only if conditions (14),
(15) and

OR 0L  9°L o’L . 1 0L

= J— . y - hV
Oz Oxp, 04,0t Oir0z, 2axkax26xyawayj+

with o}, = A ; 0ij, hold.

Proof. Let us apply Ito’s rule of stochastic differentiation to the expression d(a—L) and plug it into
(13). Then (13) takes the following form:

0’L | 0L ’L . 1 9L . . OL OR
00, — —— + — | dt—

—dz, vt s a a5 0ii0y,
9indi, " Y diar T darom, T 2 00p00,00, 77 T onp | Omy

—0p;do€’ = WY (Avi(w, @, t)di; + By(z, &, t)dt — 0,5(z, &, t)do€?) . (17)

Equating the coefficients on the left- and right-hand sides, we obtain the fulfillment of conditions (14),
(15) and (17) of Theorem 4.
In particular, for z € R!, 0 € R, conditions (14), (15) and (17) take the forms

PL_,, _, OR_OL_PL _PL_ 1L,
gi2 M T TN 5y T 0r T 0idt  0idx. 2088

+ hB.

If the desired Lagrangian is sought, following R.M. Santilli [21], in the form
L=K(z,&,t)+ Dy(x,t)i, + C(x, 1), (18)

then we obtain the following statement in terms of functions K, D* and C.

Theorem 5. Equation (2,) has an indirect representation in the form of the Lagrange equation with
non-potential forces, admitting the generalized Rayleigh function (10), and the Lagrangian of the form
(18) if and only if conditions (15) and

PK AL OR (0K N oC B 8Dk_
010%L; CURTYY 9y k: oxy,  Oxp ot
PK PK P PK
050, + hiB,

T 00t 0ipdr, " 20p0a,00, 140V
are fulfilled.
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Proof follows from Theorem 4 and the relations

0L 0?°K O’L 0K 0Dy

Dindii  Diydi; b0t Oyt T

9°L  O0°K | 0Dy L K
0tp0x, Oidxr, 0Ox,  O0i,0%;0%, 0%p0i;0%,’
oL 8K+8Dug_3 +a£
Bl‘k N 8:% 8$k " 83%

Ezxample

Let us consider the planar motion of a symmetric satellite in a circular orbit, assuming a change
in pitch under the action of gravitational and aerodynamic forces [33]

0=£0,0)+0(0,0)&, (19)
where 6 is the pitch angle and
f = Mlsin20 — Mg(6) + 1], o = M6[g(6) + nd]. (20)

Case A. Let Q be arbitrary non-potential forces.
1.
A(i). Assume that the Lagrange function is of the form L = 592. Then equation (2) takes the form

6 = Q + o &. Hence, by Theorem 1, condition (19) for the representation in the form (2) with the
given L is written as o = o for Q = f.
1. . . ,
A(ii). Let L = 502—#(1(«9)9) +3(6). Then equation (2) takes the form 6 — 8y = Q+ 0 &y. Taking into
1
account the form (20) of the function f, we determine 5y = Mlsin20 — Mg(0), or 5 = —QMZ cos 26 —
MG(0), where G = [ g()df. Let us now assume 0 = o = Md[g(f) + nf]. Then, by Theorem 1, we

1 .
conclude that the Lagrangian L = 592 —M[ﬁl cos 20+G(0)] for Q = —M gb provides the representation

of equation (19) in the form (2).
Case B. Let @ admit the generalized Rayleigh function R (10).

1. 1.
B(i). By Theorem 2, for L = 502 the function R takes the form R = —[N(0)0 + §H02], where
N(#) = Mlsin20 — Mg(#) and H = —Mn. Hence, (24) is represented in the form (11').
1. )
B(ii). For L = 502 + «(0)0) + 5(0), as in the case A(ii), we determine 5 and, by Theorem 2,

1 . 1. 1
conclude that for R = §M7762 and L = 592 — M[§l cos 20 + G(0)] equation (19) can be represented in
the form (11").
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M.BI. Tiney6eprenos'?, I'K. Bacummmal'?, A.A. A6apaxmanosal?

! Mamemamuxa srcone mamemamurassr modesvdey uncmumymaos, Aamamo, Kazakeman;
2 .
Oa-Papadbu amvndaev. Kazax yammok yrusepcumemi, Aamamoi, Kasarxcmar;

3F mapbex oyxees amuvindazo. Aamamol snepzemuxa scone batiranvic yrusepcumemi, Aamamot asaxcmar
) )

Ekinmmi perri Uto Tegaeyin O6epijreH KypbLIbIMbI 0ap KYIITEP/IiH
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TeHJaeyi TypiHnie Kypy

Bepinren croxacTukaJbik TeHIEYIED KYieciHeH OepiireH KypblIbIMbI 6ap KYIITePIiH SKBUBAJIEHTTI TeHJIEY-
JiepJii Kypy ecebi KapacThIpbLIFaH. TeH ieyep/Iis, SKBUBAJEHTTLIIN IIIaMaMeH BIKTUMAJ MaFbIHAJIa 3epTTe-
neni. Exiumi perri Uto croxacTukasbik anddepeHnnaablk TeHIeyaep Kyieci 6enrim 6ip KypbLIBIMHBIH
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IIOTEHIIMAJIIBI eMeC KYIITepi 6ap CTOXaCTUKAJBIK Jlarpank TeHieyiepi peTiHe YChIHBLIIY MAPTTaphl aHbIK-
Ttasrad. CTOXaCTUKAJIBIK, TEHEYIEPIIH Pasteit pyHKIMSICHIH KAOBLIIANTBIH TOTEHITHAIBI eMeC KyITepi 6ap
CTOXACTUKAJIBIK, TEHEYIEP TYPiHeri OeifHeIeHyiHIH, KaXKeTTi »KoHe KeTKIIIKTI mapTTapbl aJibIHIbL. 3€pPT-
Tey HOTHKeJIepi aybIPJIBIK KYIIi MEH adpPOJAMHAMUKAJIBIK, KYIITED/iH 9CepiHeH TaHraKIbIK e3repicrepre
YIIIbIpaFaH JOHIeJIEK OPOUTAIAFBI CUMMETPUSIIBIK, KEPCEPIKTIH, KO3FAIBICHIHBIH, MBICAJIBIHIA KOPCETIITEeH.

Kiam cesdep: croxacTuKaJbIK, 1uddepeHuaiiblK, TeHJIey, CTOXaCTUKAJIBIK, JlarpaHK Tenjieyi, morennuas-
JIBIK, eMeC KyIITepi 6ap CTOXaCTUKAJBIK, TEHIEYJIED, IIaMaMeH BIKTUMAJI SKBUBAJEHTTIIIK.

M.I. Tney6eprenos™?, I' K. Bacumnal?, A.A. A6apaxmanosal?

L Mnemumym mamemamury, U Mamemamudeckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasazcrutl Hayuonaibmod yrusepcumem ument ato-Papabu, Aimamo, Kazaxcman;
3 Anmamuncruts yrnusepcumem suepzemury u ceazu umenu Lymapbexa Jaykeesa, Aamamu, Kaszazeman

IIpencrasiienune ypaBaeHus VITo Broporo nopsiika B BuJjie ypaBHEHUS
C 33JIAaHHOW CTPYKTYPOI CMJI

PaccmoTpena 3amada mocTpoenus 110 33/ IaHHON CUCTEME CTOXaCTUIECKUX YPaBHEHUM, 9KBUBAJEHTHBIX YDaB-
HEHWii C 33J]aHHON CTPYKTYpoil cui. VcenemoBana sSKBUBAJIEHTHOCTh YPABHEHUN B CMBIC/IE TIOYTH HABEPHOE.
Orpe/iesieHbl YCIOBHS, [IPU KOTOPBIX 3a/laHHAsl CUCTEMa CTOXACTHIeCKUX JnddepeHInalbHbIX yPaBHEHUI
Wro BTOpOro nopsigka mnpeiacTaBuMa B BUJIE CTOXaCTUYECKUX ypaBHeHui Jlarpanka ¢ HEIOTEHIIMATIbHBIMU
CHJTAaMU OTIPeIeIeHHON CTPYKTYPHI. [losrydensr HeoOXomuMBbIe 1 IOCTATOYHBIE YCIOBUS IIPEICTABIMOCTH CTO-
XaCTUYEeCKAX YPABHEHUI B BI/I€ CTOXaCTUIECKUX yPaBHEHU ¢ HeIOTeHIIMAJIbHBIMU CUJIaAMHU, JOIIYCKaIOIMI
dyukuo Paesi. Pe3ysnbrars ncciie1oBaHusT TPOUTIOCTPUPOBAHBI HA IPUMEPE JTBUYKEHUsT CAMMETPUIHOTO
CIIyTHHUKA II0 KPYTOBOil OPOUTE B MPE/NOIOKEHNN N3MEHEHUsT TAHTAXKA MO/, JEHCTBUEM adPOIMHAMUIECKUAX
CHUJI U TATOTEHNUd.

Karoueswie crosa: croxacrudeckoe quddepeHIpaibHoe ypaBHeHNe, CTOXaCTHIeCKoe ypaBHenue Jlarpam:xa,
CTOXAaCTUYIECKNE YPABHEHUS C HEMOTEHIINAIbBHBIMI CAJIAMHU, SKBUBAJICHTHOCTD [TOYTHA HABEPHOE.
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Similarities of Jonsson spectra’s classes

The study of syntactic and semantic properties of a first-order language, generally speaking, for incomplete
theories, is one of the urgent problems of mathematical logic. In this article we study Jonsson theories,
which are satisfied by most classical examples from algebra and which, generally speaking, are not complete.
A new and relevant method for studying Jonson theories is to study these theories using the concepts of
syntactic and semantic similarities. The most invariant concept is the concept of syntactic similarity of
theories, because it preserves all the properties of the theories under consideration. The main result of this
article is the fact that any perfect Jonson theory which are complete for existential sentences, is syntactically
similar to some polygon theory (S-polygon, where S is a monoid). This result extends to the corresponding
classes of Jonsson theories from the Jonsson spectrum of an arbitrary model of an arbitrary signature.

Keywords: Jonsson theory, semantic model, perfectness, cosemanticness, S-act, Jonsson spectrum, syntactic
and semantic similarities.

Introduction

In the work [1]|, was proved the fact that any complete theory is similar in some sense to a certain
polygon theory (S-act). Moreover, in that work [1] two types of similarity were precisely defined:
syntactic and semantic similarities. The value of this result speaks about the universality in the sense
of such an algebra as a polygon (S-act). The subject of studying various model-theoretic properties
of polygons (S-act) is sufficiently completely studied in [2,3|. Considering these properties in itself
imagines certain essential task. The considering of these properties in itself imagines certaining essential
task.

In this article, we want to show that the fact proved in [1] is also true in the class of Jonsson
theories, which, generally speaking, are not complete. On the other hand, the class of Jonsson theories
includes in itself such basic classical examples from algebra, such as groups, Abelian groups, modules,
fields of fixed characteristic, linear orders, Boolean algebras, various classes of lattices and polygons
(S-act). Thus, it becomes clear that the class of Jonsson theories is a fairly wide class of theories and
the study of their theoretical-model properties is an interesting and relevant task.

In the well-known monograph by J. Barwise «Handbook of mathematical logic» the specialist in
logic H.J. Keisler in the review article «Fundamentals of model theorys conditionally divided the
content of model theory into two main priorities: «western» and «eastern» model theory [4]. But
at the same time, he emphasizes the unity and integrity of these priorities in the framework of the
development of the general model theory.

These names are not accidental and are associated with the geographical place of residence of
the founders of model theory in North America. Namely, Alfred Tarski and Abraham Robinson lived
respectively on the western and eastern coasts of the United States. The tasks that determined these
directions differed from each other in two fundamental ways. The first point related to the syntax is that
the theories that A. Tarski’s school dealt with were complete theories. The followers of A. Robinson

*Corresponding author.
E-mail: ulbrikht@mail.ru
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were engaged in theories with a prenix length of not more than two and, as a rule, Jonsson theories. The
second point is related to semantics, more exactly that are regards restrictions of morphisms between
models and kinds of models.

In the «western» way actually one has dealt with complete theories, where elementary morphisms
were considered. In the case of Jonsson theories logicians dealt with isomorphic embeddings and
homomorphisms. Also, in connection with the semantic aspect, it should be noted that in the «eastern»
version of model theory, logicians deal mainly with the class of existentially closed models of some fixed
inductive theory. The difference in the development of these two directions at the moment of the state
of model theory is such that the technique for studying complete theories is much more developed and
multilateral. The main stages of development and differences in these directions can be found in the
following works [5-25].

One of the methods for studying Jonsson theories is the method of transfer of first-order properties,
which is semantic. A first-order property is called semantic if it is invariant with respect to the semantic
similarity of Jonsson theories. Thus, when researching two Jonsson theories using the transfer method,
the object under study will be a preimage, and the known object will be the image of some mapping
that will play the role of a syntactic similarity of these two Jonsson theories. The object under study is
unknown and we will be interested in those first-order properties that are formulaic and are preserved
under syntactic similarity.

1 Basic concepts and results concerning Jonsson theories

We give the following necessary definitions concerning Jonsson theories and their semantic models.

Definition 1. [4] A theory T is called Jonsson if:

1) the theory T has an infinite model,

2) the theory T is inductive;

3) the theory T" has the joint embedding property (JEP);
4) the theory T has the amalgamation property (AP).

Definition 2. [26] Let k > w. Model M of theory T is called:

- k-universal for T', if each model of theory T with the power strictly less x isomorphically imbedded
in M;

- k-homogeneous for T, if for any two models A and A; of theory T', which are submodels of M
with the power strictly less then x and for isomorphism f : A — A; for each extension B of model
A, which is a submodel of M and is model of T with the power strictly less then x there exists the
extension B; of model A;, which is a submodel of M and an isomorphism ¢ : B — B; which extends f.

Definition 3. [26] Model C of Jonsson theory T is called semantic model, if it is wT-homogeneous-
universal.

Definition 4. [26] The center of Jonsson theory T is called an elementary theory of its semantic
model C and denoted through 7, i.e. T* = Th(C).

Definition 5. [27] Jonsson theory T is called a perfect theory, if each a semantic model of theory T
is saturated model of T™*.

The criterion for the perfectness of the Jonsson theory was obtained by Yeshkeyev A.R. and it is
as follows:

Theorem 1. |27] For any Jonsson theory T following conditions are equivalent:
1) T is perfect;
2) T* is the model companion.

The following Definitions 6-8 were taken from [28|, where generalized Jonsson theories were defined.
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Definition 6. [28] Let I' C L. Then:

1) notation T' € T'Ca means, that TNT F ¢ for all p € T}

2) if B C | A|, then Thr(A, B) denotes the set of all I'-sentences of the language Lp, true in A;

3) mapping f : A — B is said to be I'-embedding, if for any @ € A and ¢(Z) € T from A = ¢(a)
follows B = ¢(f(a));

4) if A C B, then notation A Cr B signify, that Thr(A, |A]) C Thr(B, |A|);

5) sequence of models A;, i < f called I'-chain, if A; Cr A;, where i < j < .

Definition 7. 28]

1) The theory T is persistent with respect to the union of II,-chains (or is a-inductive) if the union
of any Il,-chains of models of T" is an again model of T'.

2) The theory T has the a-joint embedding property (a-JEP), if for any A, B = T thereis M T
and II,-embeddings f: A — M and g : B — M.

3) The theory T has the a-amalgamation property (a-AP) if for any A, Bi, B2 = T and II,-
embeddings f; : A — By and f2 : A — Bs there is M = T and II,-embeddings ¢; : By — M and
g2 : Bo — M such that g1 o fi = g2 0 fo.

The following definition gives us generalized Jonsson theories or a-Jonsson theories.

Definition 8. [28] A theory T is called a-Jonsson (0 < o < w) if:
1) the theory T" has an infinite model,

2) the theory T is a-inductive;

3) the theory T" has a-JEP;

4) the theory T has a-AP.

If compare Definitions 1 and 8, then can notice, that they differ with precision to «. At that in
Definition 8 for o = 0 we have Jonsson theories, and for &« = w we have complete Jonsson theories.
Further, when we work with 0-Jonsson theories, we will omit 0. Note that from Definition 1 it follows
that Jonsson theories, generally speaking, are not complete.

Mustafin T.G. the following useful suggestions were proved in [28]: Proposition 1 and Proposition 2
actually give for us syntactic equivalents of a-JEP and a-AP notions.

Proposition 1. |28] The following conditions are equivalent:

1) T has a-JEP;

2) T has a-JEP for countable models;

3)if TNy = @, p(T) and ¢(7) are arbitrary sets of ¥, 1-formulas, such that T'U p(Z) and T'U ¢(7)
are consistent, then 7"U p(T) U ¢(y) is consistent.

Proposition 2. |28] The following conditions are equivalent:

1) T has a-AP;

2) T has a-AP for countable models;

3) if p(Z) and ¢(Z) are such sets of ¥,11-formulas, that T U p(z), T U q(T), T U {-p(T) : ¢(T) €
Yat1,9(T) ¢ p(T) N q(T)} are consistent sets, then the set T'U p(T) U ¢(T) is consistent.

4) for any A =T and @ € A set Thy,_ (A, @) it is contained in a unique maximal consistent with
T the set ¥, 41-sentences of the language L(a).

2  The concepts of syntactic and semantic similarities of complete theories

The notion of similarity between two complete theories was introduced in [1]. For Jonsson theories
the similarity between two Jonsson theories was introduced in [27]. In both works were obtained some
results which described syntactic and semantic similarity in both cases. We give a list of the necessary
definitions of concepts and their necessary model-theoretical properties.

The following definition belongs to T.G. Mustafin [1].
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Let F,(T'), n < w be the Boolean algebra of formulas of 7" with exactly n free variables v1,..., v,
and F(T) =J,, Fu(T).

Definition 9. |1] Complete theories T7 and T are syntactically similar if and only if there exists a
bijection f : F(Ty) — F(T%) such that

1) f I F,(T1) is an isomorphism of the Boolean algebras F,,(71) and F,,(T3), n < w;

2) f(Funt19) = o1 f(9), ¢ € Fna(T), n < w;

3) flvr =v2) = (v1 = va).

The following example of syntactic similarity of complete theories was given in [1].

Ezample 1. The following theories T7 and Ty of the signature o = (p, 1) are syntactically similar,
where ¢, are binary functions:

Ty = Th({Z;+,-)), To=Th((Z;-,+)).

Definition 10. [1]

1) (A,T', M) is called the pure triple, where A is not empty, I" is the permutation group of A and
M is the family of subsets of A such that from M € M follows that g(M) € M for every g € T

2) If (A1,T'1, M) and (Ag, Ty, M3) are pure triples and ¢ : A} — Az is a bijection then 9 is an
isomorphism if:

() T2 = {pgy~' 1 g € T1 };
(ii) Mg = {¢(E) : E € My}

Definition 11. [1] The pure triple (C, Aut(C), Sub(C)) is called the semantic triple of complete
theory T', where C' is carrier of Monster model C of theory T', Aut(C) is the automorphism group of
C, Sub(C) is a class of all subsets of C' each of which is a carrier of the corresponding elementary
submodel of C.

Definition 12. [1] Complete theories T} and T3 are semantically similar if and only if their semantic
triples are isomorphic.

The following example of the semantic similarity of complete theories was given in [1].
Example 2. The following theories T} and 75 are semantically similar, where

T1 = Th({M1; Ppyn < w; apm, n,m < w)),
My = {apm :n,m < w},
P,(My) ={anm : m < w},

and

T2 = Th(<M27 Qna n < w; Qnma n,m < w; bnmk7 n,m, k< CU)),
Mo = {bpmi : nym, k < w},
Qn(MQ) = {bnmk : m,k < W}a
Qnm(MQ) = {bnmk k< w}-
It turned out that the above types of similarity are not equivalent to each other.

Proposition 3. |1] If T} and Ty are syntactically similar, then 77 and T, semantically similar. The
converse implication fails.

Let us recall the definition of semantic property.

Definition 13. [1] A property (or a notion) of theories (or models, or elements of models) is called
semantic if and only if it is invariant relative to semantic similarity.

For example from [1] it is known that:
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Proposition 4. The following properties and notions are semantic:
(1) type;

(2) forking;

(3) A-stability;
(4) Lascar rank;

(5) Strong type;

(6) Morley sequence;

(7) Orthogonality, regularity of types;
(8) I(Ny, T') — the spectrum function.

In English literature the term polygon over a monoid S usually uses the term S-acts [2, 3,29, 30].
In this article we follow the terminology of Professor T.G. Mustafin, who first defined and formulated
model-theoretical concepts and issues related to polygons topics [26,31,32].

Definition 14. [1] By a polygon over a monoid S (or we called as S-acts) we mean a structure with
only unary functions (A4; f, : @ € S) such that:
1) fe(a) Va € A, where e is the unit of S;

2) fap(a) = falf5(a) Yo, 5 € S, Ya € A.

The following results (Theorems 2, 3) show that any complete theory has some syntactic similar
theory.

Theorem 2. |1] For every theory T in a finite signature there is a theory T3 of polygons such that
some inessential extension of T is an almost envelope of T5.

Theorem 3. [1| For every theory T5 in an infinite signature there is a theory T} of polygons such
that some inessential extension of 717 is an envelope of T5.

3 The concepts of syntactic and semantic similarities of Jonsson theories. Main results

The following definition was introduced in the frame of Jonsson theories study by first author of
this current article.

Let T be an arbitrary Jonsson theory, then E(T) = {U,,.,, En(T), where E, (T) is a lattice of 3-
formulas with n free variables, T is a center of Jonsson theory T', i.e. T* = Th(C), where C is semantic

model of Jonsson theory T in the sense of |26].

Definition 15. |27] Let Ty and Ty are arbitrary Jonsson theories. We say that T} and T, are Jonsson
syntactically similar if exists a bijection f : E(T7) — E(T3) such that:

1) restriction f to E,(T1) is isomorphism of lattices E,,(T1) and E,(T2), n < w;

2) f(zlvn-i—l@) = E]Un-i-lf(‘p)v wE En+1(T)7 n < wj;

3) f(’Ul == ’()2) = (’Ul = ’Ug).

We would like to give some examples of syntactic similarity of certain algebraic examples. For this,
we recall the basic definitions associated with these examples following denotions from B. Poizat [33].

A Boolean ring is an associative ring with identity, in which 22 = z for any « is called a Boolean
ring; we then have (z +y)? = 22 4xy 4+ ya + ¥2 = = + 2y + yx + y, but (z +y)? = z + y; from which
it follows that zy + yz = 0 for any = and y. Then 22 + 22 = 0, and hence = + 2 = 0, for every z, so
x = —x; a Boolean ring therefore has characteristic 2, and since zy = —yx = yx, it is commutative.

To axiomatize this concept, we introduce the language consisting of two constant symbols 0 and 1
and two binary operations + and.

We write down some universal axioms, expressing, that A is the Boolean ring, without forgetting
thus 0 # 1. In a Boolean ring we define two binary operations A and V, and one unary operation —, in
the following way: t Ay=x-y; xVy=z+y+xy; "z =1+ x.
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The reader can check that the following properties are true for all x,y, z:

— (de Morgan’s laws or duality laws): =(—x) =z, = (x Ay) =~z V -y, ~ (x Vy) = ~x A —y;
associativity of A): (z Ay)Az=z A (yA 2);

associativity of V): (xVy)Vz=xzV (yV 2);

distributivity of A over V): z A (yV z) = (z Ay) V (x A 2);

distributivity of V over A): zV (yAz) = (zVy) A(xV 2);

— (commutativity of A and V): z Ay =y Az, xVy=yVz;

—z AN z=0, zV-x=1;

-zN0=0, 2vV0=z, zANl=2, xV1=1;

-0#1,-0=1,-1=0.

A structure in the language (0,1, —, A, V) that satisfies these universal axioms is called a Boolean
algebra.

Boolean algebras and Boolean rings defined in this way are examples of Jonsson theories that are
syntactically similar in the sense of definition [29], as a consequence of the following fact:

Fact 1. [33] In each Boolean ring one can interpret a certain Boolean algebra.

It is easy to see that interpretation is a special case of syntactic similarity.

Proof. With the Boolean ring A we have connected some Boolean algebra b (A); the converse is also
true: -y =z Ay, z+y=(xVy)A(-zV-y), then we receive the Boolean ring a (B); and besides
a(b(A)) = A, b(a(B)) = B. Thus we see, that up to a language, the Boolean ring and Boolean
algebras have the same structures, the Boolean ring canonically is transformed into a Boolean algebra
and vice versa, transformations in both directions are carried out using quantifier free formulas.

As in the case of complete theories (Definition 12), we can define a semantic similarity between
two Jonsson theories.

Definition 16. |27] The pure triple (C, Aut(C), Sub(C)) is called the Jonsson semantic triple, where
C' is carrier of semantic model C of theory T, Aut(C) is the automorphism group of C, Sub(C) is a
class of all subsets of C' which are carriers of the corresponding existentially closed submodels of C.

o~~~ S~

Definition 17. [27] Two Jonsson theories T; and T5 are called Jonsson semantically similar if their
Jonsson semantic triples are isomorphic as pure triples.

The correctness of this definition follows from the fact that the perfect Jonsson theory has a unique
semantic model up to isomorphism. Otherwise, all semantic models are only elementary equivalent to
each other.

For the convenience of further exposition we introduce the following notation. The syntactic and

S
semantic similarities of the complete theories 77 and 15 will be denoted 17 > T» and T} DS<1 T

S
respectively. In the case when we consider Jonsson theories 77 and Ts, through 77 x T will be denote
the Jonsson syntactic similarity of theories 77 and 75, and through 737 x T5 Jonsson semantic similarity
S

of theories T7 and T5.

Theorem 4. [27] Let Ty and T, are 3-complete perfect Jonsson theories, then following conditions
are equivalent:

S
1) T1 A TQ;
S
2) Tf =< T3
The following lemma is a Jonsson analogue of Proposition 3.

Lemma 1. If two perfect 3-complete Jonsson theories are Jonsson syntactically similar, then they
are Jonsson semantically similar. The converse is, generally speaking, not true.

Proof. Follows from Theorem 4 and Proposition 3.

The following technical lemma is necessary to prove Proposition 5.
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Lemma 2. Let T be J-complete theory and 7" C T”. Then if p(Z) UT consistent, then p(z) UT" is
also consistent (p(Z) is an arbitrary set 3-formulas).

Proof. It is easy to show that T” will also be 3 -complete, since T' C T".

Proposition 5. Let T' be a perfect Jonsson theory, then for every sentence ¢ € T*\T the theory
T' =T U{p} is a Jonsson.

Proof. Let us verify the fulfillment of all the conditions for the definition of the Jonsson theory.
As T is a perfect Jonsson theory, then T* is a Jonsson theory. Since T C T C T*, then T" is V3-
axiomatizable and 7" has an infinite model. From Lemma 2 and the syntactic definition of a-JEP
(Proposition 1 for o = 0) it is easy to see that 7" has JEP.

Let us verify the fulfillment of condition 4) of Definition 1. Let p(z) UT’, ¢(Z) UT', r(z) U T’
are consistent, where p(T), ¢(%), () the same as in Proposition 2 for « = 0. Without loss of
generality, we can consider that £ = x. Then by the previous lemma p(z) U T* and ¢(T) UT™* are
consistent. Let h(xz) = {p(x) : p(z)|p(x) is existential sentence, Vap(z) € T}, p'(z) = p(z) U h(z),
¢'(z) = q(z) U h(z). It’s obvious that p/(x) UT*, ¢'(x) UT* are consistent. Let r'(z) = {-p(x) :
o(x)|e(z) is existential sentence, p(x) € p/(x) N¢'(x)}. We show that r'(z) UT™* is consistent. Suppose
the opposite, let /() UT* be inconsistent, then exists ¢(x) € 7/(x) such that ¢(x) UT™* is inconsistent.
Means, Jzp(x) UT™* is inconsistent, then Yrx—p(z) € T* and —¢(z) € h(z). Consequently —p(z) €
P (z) N ¢ (z). Got a contradiction. Thus 7/(x) UT* is consistent. We have that p/(x) UT*, ¢/(z) UT™,
r'(x) U T* are consistent. By virtue of the fact that theory T is Jonsson theory, we obtain, that
p () U ¢ (x) UT* is consistent, which means that, p(x) U g(x) UT* is also consistent. As 7" C T* then
and p(z) U g(x) UT’ is consistent. So, 7" has AP. Thus 7" is Jonsson theory.

The following definition was introduced by T.G. Mustafin.

Definition 18. We say that the Jonsson theory 77 is cosemantic to the Jonsson theory T5 (77 <1 1)
if Cr, = Cr,, where Cr;, are semantic model of T;, i = 1, 2.

This definition easily implies the following lemma.

Lemma 3. Any two cosemantic Jonsson theories are Jonsson semantically similar.

The proof follows from the definition.

Let A be an arbitrary model of countable language. The set JSp(A) = {T/T is Jonsson theory in
this language and A € Mod(T')} is said to be the Jonsson spectrum of the model A.

The relation of cosemanticness on a set of theories is an equivalence relation. Then JSp(A)/ is
the factor set of the Jonsson spectrum of the model A with respect to <.

The concept of the Jonsson spectrum was introduced by the first author of this article in [7].
It is turned out that this notion useful in the following sense. Using the concept of JSp(A)/w in
[7,8], cosemanticity criteria for Abelian groups and R-modules are obtained that refine the well-known
theorems on elementary equivalence of Abelian groups [34] and R-modules [35].

We have the following result.

Theorem 5. For any Jonsson perfect 3-complete theory 1" there is a Jonsson 3-complete theory of
S
the polygon T7; such that 7' x Tf;.

Proof. Let T be perfect 3-complete Jonsson theory. Since T™ is complete, according to Theorem 2
in the case of a finite signature and Theorem 3 in the case of an infinite signature, there is a complete

S
theory of the polygon 117 such that 7™ > Tf;. But then, according to Proposition 3, it follows that
T* Dsd T11. Since the concept of type is a semantic notion (Proposition 4), the concept of a formula is

also semantic. It follows from Propositions 1 and 2 with o = 0 that the properties of JEP and AP
are equivalent to the consistently of some formulas, i.e. JEP and AP are semantic concepts. It is clear
that V4 -axiomatizability is also a semantic property, since all axioms are true in the semantic model.
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This means that the property “to be a Jonsson theory” is a semantic concept, and therefore Ty is also
a Jonsson theory.

Since T* is a perfect Jonsson theory, then semantic model Cr of theory T is saturated. But T* l>§ T
and, by definition, the semantic triples of these theories are isomorphic to each other, then C7 = Cry,
therefore Czy; is also saturated and therefore 11y is a perfect Jonsson theory.

Consider JSp(Cry). Since the theory Tir is perfect then |JSp(Cry) /| = 1. Let A € JSp(Cry,),
i.e. A is Jonsson theory and A* = T11. We show that A is perfect 3-complete Jonsson theory. By virtue
of T DSQ A* then from the definition of semantic similarity for complete theories it follows that A is

the perfect Jonsson theory. If A is 3-complete, then instead Tj; we take A and then by Theorem 4

it follows that T i A = T{. If A is not 3-complete, then we carry out the following replenishment
procedure for this theory. As A C Ty, then for any existential sentence ¢, of the signature language of
A such that A ¥ ¢ and A ¥ =g, but ¢ € Ty, consider the theory A’ = AU {p}. Since A € A’ C Ty,
and A, T are Jonsson theories, it follows from Proposition 5 that A’ is also a Jonsson theory. If A’
is not J-complete, then we continue the procedure of adding existential sentences ¢ € Ty until A’ it
becomes J-complete.

Let A = AU {¢|p € X1, € Ty} is the result of replenishment procedure of the theory A, i.e.
A is J-complete and at the same time A is a Jonsson theory. We show that A € J Sp(Cry, ), hence
the perfection of the theory of A will follow from here. Suppose the contrary, let A ¢ JSp(Cry,),
then Cr; ¢ Mod(A), but this is not true since Cr; = A and for any sentence ¢ € A\A, ¢ € Ti.
Consequently, Cry, = ¢ and Cr; € Mod(A). We obtain a contradiction, i.e. A € JSp(Cr,). But Cry,

— S — S
is saturated, therefore, A is a perfect Jonsson theory. Then by Theorem 4 we have T* i A™ < T X A,
where A = TY,.
We extend the concepts of syntactic and semantic similarity to the spectra of models of arbitrary
signature.

Definition 19. Let A € Modoy, B € Modos, [T]1 € JSp(A)/w, [T]2 € JSp(B)/s. We say that the
S
class [T]; is J-syntactically similar to class [T]2 and denote [T]; x [T]9 if for any theory A € [Ty there
S
is theory A’ € [T such that A x A’

Definition 20. The pure triple (C, Aut(C), Eiq)) is called the J-semantic triple for class [T
JSp(A) /s, where C' is the semantic model of [T], AutC' is the group of all automorphisms of C, E[T]
is the class of isomorphically images of all existentially closed models of [T.

Definition 21. Let A € Modoy, B € Modog, [T € JSp(A)/wx, [T]2 € JSp(B) /. We say that the
class [Ty is J-semantically similar to class [T]2 and denote [T >Sd [T if their semantically triples are

isomorphic as pure triples.

Lemma 3. From syntactic similarity of two classes of Jonsson spectrum follows their semantic
similarity. Converse statement does not true.

The proof follows from Lemma 1 and Definition 21.

Lemma 4. Let A € Modoy, B € Modog, [T € JSp(A)/wx, [T]2 € JSp(B)/w are perfect 3-complete
classes, then

S * S *
[Tl % [T]y & [T]} o2 [T]5.
S — S __
Proof. Let [T]; x [Tz, then for every theory A € [T]; there is A € [Ty such that A x A, where
A and A are perfect 3-complete Jonsson theories. Then according to Theorem 4 A* I>S<1 A”. But
A* = Th(Cpy,) = [T}; and A" = Th(Cyyy,) = [T]3, therefore [T]; & [T];.
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S
Conversely, let [T} &<t [T']5 then by Theorem 4 for any theory A € [T]; there is theory A’ € T2

S __ S
such that A x A, ie. [T]; x [T]s.
The following theorem is a generalization of Theorem 5 to the case of the class of the Jonsson
spectrum of an arbitrary model of signature.

Theorem 6. Let [T] € JSp(A)/w, then for every perfect 3-complete class [T'] € JSp(A)/w there
is a class [Tr1] € JSp(B)/w, where Ty is I-complete Jonsson theory of some model B of a polygon

S
signature such that [T] x [T1].
Proof. Let [T] € JSp(A)/w be a perfect 3-complete class, then by Theorem 5 for each theory

S
A € [T] there is a Jonsson 3-complete polygon theory T}3 such that A x 7. Then by Theorem 4

A* (TD)*, but since A € [T], then A* = [T]*. T is the Jonsson theory of some model of B
signature, then T4 € JSp(B) and T3 € [Ti] € JSp(B)/s. But then (T3)* = [Ti1]*. Hence, we have

S
[T)* 54 [Tir]*. By Lemma 5, it follows that [T % [Zf].
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A.P. Emkees, O.U. Ysb6puxt, I.A. Ypken

Axademur E.A. Boxemos amuwindazv, Kapazandv, yHusepcumemi,
Kondanbanrve mamemamura uncmumymal, Kapazanow, Kazaxcman

MoHCOHABIK CIIEKTPJIEPAiH, KJIACTAPBIHBbIH YKCACTBIKTaPhI

Bipiumii perTi TijaiH CHHTAKCUCTIK K9HE CEMAHTUKAJIBIK, KACHETTEPIH, YKAJIITLI alTKAHIA, TOJIBIK €MEC TeO-
pUsLIapAbl 3epTTEY MaTeMaTUKAJIBIK, JIOTUKAHBIH ©3€KTi Macesesepiniy 0ipi. MakaJa a 6i3 HOHCOH/IBIK, T€O-
pUsIapAbl 3epTTeiMi3, oJap anrebpagarbl KJIACCUKAJIBIK, MbICAIAP/IbIH, KO OOJIYbIMEH KAHAFATTAHIBIPhI-
JIAJTBI YKOHE YKAJITBI ARTKAHIA, TOJBIK, eMeC. VIOHCOHIBIK TeOpHUsIAP/ LI 3ePTTEYIIH, JKAHA YKoHe O3eKTi oici
— TeOpHSIAPAbl CHHTAKCUCTIK »KOHE CEMaHTHKAJIBIK YKCACTBIK YFPBIMIapbl apKbLIbl 3eprTey. EH nHBapu-
AHTTBI YFBIM — TEOPUIAP/IbIH, CUHTAKCUCTIK YKCACTBIFbI YFBIMBI, OUTKEHI OJ KAPaCTBIPBLIBII OTHIPFAH
TeOPUsLIaAPIbIH, OapJIbIK KacueTTepin cakTaiabl. OChbl MaKaJaHbIH HEri3ri HoTuzKeci kKejeci (pakT GOJIBII Ta-
OBLITAJIbI: KE€3 KeJI'€H TOJIBIK, SK3UCTEHITUAJIbI COMIeMIep YIIH KeMesl HOHCOHBIK T€OPUSIChIHBIH, ITOJIUTOH
TEOPUSICHIHA CUHTAKCUCTIK TYPFBIJIAH YKCAC eKeH N H KopceTy (S-1moamuron, MyHAarsl S MoHoux). Byt Hotw-
JKe Ke3 KeJI'eH CUTHATYPAHBIH THICTI MOJEJiHIH, HOHCOH/BIK, CIIEKTPIHEH aJIbIHFAH HOHCOHJIBIK, TEOPHUSIHBIH,
coliKec KjlacTapblHa KeHeNTiemi.

Kiam cesdep: HOHCOHJIBIK TEOPHUsI, CEMAHTUKAJIBIK MOJIEJb, KeMeJ HOHCOHJBIK Teopus, KOCeMaHTHKa, S-
IIOJINTOH, MOHCOH/IBIK, CHEKTP, CUHTAKCUCTIK >KOHE CEMAaHTUKAJIBIK, YKCACTDIK.
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Kapazandunckut ynusepcumem umeny axademura E.A. Bykemosa,
Hnemumym npuraadnoti mamemamuxu, Kapaeanda, Kasaxcman

ITomobus kj1accoB HOHCOHOBCKMX CHEKTPOB

VccnenoBanne cHHTAKCUYECKUX U CEMAHTUYIECKUX CBOMCTB sI3bIKA IIEPBOIO MTOPSI/IKA, BOODIIIE TOBOPS, HEIOJI-
HBIX TEOPUil, SIBJSIETCS OJHOM M3 aKTYyaJbHBIX 3aJad MaTeMaTUIeCKOW JIOTUKHU. B HacrosiIeil crarbe Mbl
n3yvuaeM HOHCOHOBCKUE TEOPUH, KOTOPBIM YIOBIETBOPSIET OOIBIMTUHCTBO KJIACCHIECKUX TPUMEPOB U3 ared-
PBI, ¥ KOTOpbIE, BOOOIIE roBOPs, He MOJIHBI. HOBBIM U aKTyaJbHBIM METOIOM HCCIEIOBAHUSA HOHCOHOBCKUX
Teopuil ABJIAETCS U3yUeHUe ITUX TeOPHUH C IIOMOIIBIO IIOHSATUIN CHHTAKCUYECKOI'O U CeMaHTHYECKOI'o II0JI0-
6uit. CaMbIM MHBAPUAHTHBIM TTOHSITHEM PEJCTABIISIETCS MOHSITHE CUHTAKCHIECKOTO MOJO0Us TEOpHil, Tak
KaK OHO COXPAHsET BCE CBOWCTBA paccMarpuBaeMbix Teopuil. OCHOBHOI pe3yJbTaT JAHHOW CTATbU €CTh
TOT PaKT, UTO JiFoHasi COBEPIIIEHHAs] HOHCOHOBCKAsI TEOPUsI, ITOJTHAST JIJIsI 9K3UCTEHIIMAIBHBIX TPEII0KEHNI,
CHHTAKCUIECKH MOJ0OHA HEKOTOPOI TEOPUH TIOJIUTOHOB (S-TIOJIUTOHA, T1e S — MOHOHT). DTOT PE3YJILTAT e~
PEHOCUTCH Ha COOTBETCTBYIOIIYE KJIACCHI MOHCOHOBCKUX TEOPUHN U3 MOHCOHOBCKOI'O CIIEKTPa IIPOU3BOJILHON
MOJIeJIX IIPOU3BOJIBHOM CUTHATYPHL.

Kmouesvie caosa: HOHCOHOBCKAsT TEOPHSI, CEMAHTHIECKAs MOJIE/Ib, COBEPIIIEHHOCTh, KOCEMAHTHYIHOCTD,
S-TIOJTUTOH, TOHCOHOBCKUI CIIEKTD, CHHTAKCUIECKOE U CEMAHTUYIECKOEe TOIO0MUSI.
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Mixed inverse problem for a Benney—Luke type
integro-differential equation with two
redefinition functions and parameters

In this paper, we consider a linear Benney—Luke type partial integro-differential equation of higher order
with degenerate kernel and two redefinition functions given at the endpoint of the segment and two
parameters. To find these redefinition functions we use two intermediate data. Dirichlet boundary value
conditions are used with respect to spatial variable. The Fourier series method of variables separation is
applied. The countable system of functional-integral equations is obtained. Theorem on a unique solvability
of countable system for functional-integral equations is proved. The method of successive approximations is
used in combination with the method of contraction mapping. The triple of solutions of the inverse problem
is obtained in the form of Fourier series. Absolutely and uniformly convergences of Fourier series are proved.

Keywords: Inverse problem, two redefinition functions, final conditions, intermediate functions, Fourier
method, unique value solvability.

Introduction

Historically, differential equations arose in solving applied problems. Therefore, the development of
differential equations at the initial stage was carried out by applied scientists. Gradually, this direction
grew into an independent theory — the theory of differential equations. Therefore, it can be said many
times that differential and integro-differential equations are great interest from the point of theoretical
research and applications in the mathematical physics, engineering, chemistry and in other different
fields [1-8]. Recent years, a number of new problems for ordinary and partial differential and integro-
differential equations are studied and a large number of research papers are published. Problems with
nonlocal conditions for differential and integro-differential equations were considered in [9-29]. In [30-
38|, integro-differential equations with a degenerate kernel were considered.

In this paper, we study the solvability of the mixed inverse problem for a Benney—Luke type partial
integro-differential equation with a degenerate kernel, two parameters, and final conditions at the
endpoint of the interval. This paper differs from existing papers in that it requires to find redefinition
functions considering at the endpoint of the interval. This inverse problem has features in relation to
the direct problem.

In the rectangular domain €2 = {O <t<T, 0<z< l} we consider the following partial integro-
differential equation of a higher order

82U ka2k+2U

a2kU a4kU
k
ot? (1) 0t20x2

T
+w? |(-1) + =a(t)U(t,x) —I-V/Kts (s,x)ds, (1)
0

O x2k 3$4k

where k is a natural number, 0 < «(t) € C[0,T], T,l are given positive numbers, w is a positive

parameter, v is a nonzero real parameter, K (¢,s) = > a;(t) bi(s), a;(t), bi(s) € C[0,T]. It is assumed
=1

.

that the systems of functions {a;(t)} and {b;(s)}, , m are linear independent.
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It is known that when applying the method of separation of variables, the Dirichlet condition allows
us to reduce partial differential equations to a countable system of ordinary differential equations.
So, in solving partial integro-differential equation (1), we use the following Dirichlet boundary value
conditions with respect to spatial variable x

0? 0?
a4k—2 4k—2
= -:7ax4k_2U(t,0):78x4k_2U(t,l):0. (2)

We use two conditions at the endpoint of the given segment with respect to time variable ¢:
U(T,z) =pi(x), UlT,x)=¢a(x), 0<z<lI, (3)

where ¢1(x) and pa(z) are redefinition functions and we assume that they are enough smooth on the
segment [0, []. For these functions the following conditions will be fulfilled

0i(0) = i) = @(0) = (1) = --- = ™2 (0) = YD) =0, i=1,2.

i
In determining the redefinition functions, we use the following two intermediate conditions:
U(tl,ﬂl’) :¢1($)7 Ut(tlax) :7/)2(56‘)7 0<z< la (4)

where 1 (x) and 13(z) are known functions enough smooth on the segment [0,1], 0 < t; < T. For the
functions ¥ (x) and ¥a(z) the following conditions will be fulfilled

$i(0) = (1) = ¥7(0) = (1) = - = B (0) = Py =0, i=1,2.

The choice of conditions (3) and (4) with the final and intermediate data are important in applications.
Indeed, in real practice it is not always possible to determine the initial data for unknown functions.
When studying the technological process of aluminum production, before the start of the production
cycle, the raw material passes through firing and the state of the raw material by the beginning of
the production cycle is not known. And the final expected state of the output will be unknown in
reality. We find it from known intermediate conditions. Because after each technological cycle we can
determine the quality of the product. So, we have an inverse problem to solve equation (1).

Problem statement. To find triple of functions

{U(t, z) € C(Q) N C2(Q) N C2H(Q), i(x) € C[0,1], i =1, 2} ,
the first of which satisfies partial integro-differential equation (1) and specified conditions (2)—(4),
Whereﬁz{Ogth, 0§$§l}.
Note that problem (1)-(4) is formulated such that direct problem (1)-(3) has a unique solution for

all values of the parameter w, and inverse problem (1)—(4) has a unique solution only for certain values
of this parameter w.

1 Construction of formal solution of the direct problem (1)—(3)

Note that the functions ¢, (x) = \/%sin AnZ, where A, € =%, n € N, form a complete system of

orthonormal eigenfunctions in the space L3|0,!]. Linear equation (1) always has the trivial solution.
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Therefore, by virtue of the Dirichlet condition (2), we seek nontrivial solutions to the linear partial
integro-differential equation (1) of the higher order in the form of a Fourier series in sines

Ult,z) = \/?Zlun(t) sin Az, (5)

l
2
= \/;/U(t,w) sin \pzdr, A\, = ? (6)
0

Substituting the Fourier series (5) into the given integro-differential equation (1), we obtain a linear
second order countable system of ordinary differential equations

where

) + PN D) = T S0+ ) ), (7
i=1

T
= /bi(S)un(s) ds. (8)
0

Solving the countable system of differential equations (7) by the variation method of arbitrary constants,
we obtain the representation for its solution

where

Un(t) = A1p cos M wt + Ao, sin \Ewit

t

+>\ )\Zk ZTm/sm)\ w(t—s)a;(s)ds+

0
t

k J—
—i—)\ 1+)\2k w/sm)\ (t—s)a(s)un(s)ds, 9)
0

where Aj, and As, are arbitrary coefficients, which will be determined by the final conditions (3). By
differentiating (9) one times on ¢, we obtain

u (1) = =M WA, sin \Ewt + M WA, cos A wit

t
1+)\2kZTm/cos)\ w(t—s)a;(s)ds+
0

t

/cos MWt —s)a(s)un(s)ds. (10)

0

1

+1+A%

Now, supposing that the redefinition functions ¢1(x) and y2(x) were expanded into a Fourier series,
and using Fourier coefficients (6), from conditions (3) we obtain

l l
2 2
= \/;/U(T,w) sin \p,zdz = \/;/gol(x) sin A\pxdr = o1q, (11)
0 0
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! !
2 2
= \/;/Ut(T, x) sin A prder = \/Z/ng(aj) sin A px dx = @ap. (12)
0 0

To find the unknown coefficients A1, and Ag, in presentations (9) and (10), we use final conditions
(11) and (12). Then we arrive at a system of algebraic equations (SAE)

Ay cos NwT + Ay sin Now T = 1y, 13)
—Aqp sinMwT + Agyy cos Nw T = 7ap,
where
v Uk T
_ k
’Yln—iﬂln—wu;ﬂn/sm)\ w(T — s)a;(s)ds—
= 0

m T
Yon = P2n — ﬁ Znn/cos)\’fw (T — s)a;(s) ds—
no=1 0
T
T /cos MW (T — 5) as) un(s)ds.
0

For uniquely solvability of SAE (13), the following condition

5o — | cos MwT  sin\FwT 20

=1 —sinMwT cosMwT
must be fulfilled. Since dg,, = 1, this condition are fulfilled for all values of the parameter w. Consequently,
SAE (13) has a unique pair of solutions

in \¥w T
Aln:(sln:’ Tin S ARW

k ok
Y2n  COS )\’%w T ' Pin COS Apw Yan sin A\ w T+

T T
. k k
+)\ )\% ZTm/sm)\nwsai(s) d8+ 1+)\2k o /sm)\ wsa(s)up(s)ds, (14)
0 0
cos \FwT 7 )
Agy = 0oy, = ’ ~sin ;ﬁwT ’yzz = 1, Sin )\lfle ~+ wap COS /\’;w T+
T T
1
+1+/\2k ZT”L/COS)\ wsai(s)ds+ 4_/\%k/Cos.)\l;(,usoz(s)un(s) ds. (15)
= 0 0

Substituting these values of (14) and (15) into presentation (9), we obtain

un(t,u,w) = 901nX1n(t,W) + pon X2n(t7w) ZTzn X?nn t w +

Mo (14 22F)w A%
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T
—I—)\ 1+)\2k o /Hn (t,s,w) a(s) un(s,v,w)ds, (16)
0

where
X 1n(t,w) = cos \NEw (T —t) — sin \¥ w (T — 1),

Xan(t,w) = cos \ew (T +t) — sin \Ew (T — 1),
T
X3zntw=/Hntsw i(s)ds,
0

sinz(t+s), z=MNw t<s<T,
sinz(t—s)+cosztsinzs+zsinztsinzs, 0<s<t.

Ho(t, s,w) = {

Although functions (16) are Fourier coefficients of the solution to direct problem (1)—(3), it contains
extra quantities 7;,, that are still unknown. To find these quantities, we substitute representation (16)
into designation (8) and arrive at a new SAE:

ZT]TL Udz]n = @i1n0lin + P2n T 2in +U4zn(un) (17)

where

T T
O 1in :/bi(s)xln(s,w S, Ooim = /bZ $) X 2n(s,w) ds, \ = )\k (1—1—)\%)
0 0

T T
O 3ijn /bZ /Hn s5,0,w)a;(0)dlds,
0 0
1 T T
0 4in(Up) = )\/bz /Hn $,0,w)a(0)un,(0)dods.
0 0

To establish the unique solvability of SAE (17), we introduce the following matrix

l1—%0311n 508120 ... X 03lmn
20321, 1 —%0322, ... £032mn
Oon (v, w) = A A A
%O—Bmln %J3m2n B %U3mmn

and consider the values of the parameter v, for which the Fredholm determinant is not zero:
Agp(v,w) = det Ogp (v, w) # 0. (18)

Determinant Ag, (v,w) in (18) is a polynomial with respect to ¥ of the degree not higher than
m. The countable system of algebraic equations Ag,(r,w) = 0 has no more than m different real
roots for every value of n. We denote them by p;(I =1, p, 1 < p < m). Then v,, = vy, = Ap; =
L (1 + )\,21’“) wpy are called the characteristic (irregular) values of the kernel for integro-differential
equation (1). So, we introduce the following two designations

A= {(Vn, w): v, =N (1 + /\%k) W, WE (0,00)},
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AQ:{(yn, W) | Agn(r,w) | >0, v, #ANE <1+/\%k)wul, we(O,oo)}.

On the number set A9 we consider a matrix

| 4 v |14 |14
I —3o031m X031G-)n  Ojln X O31(i+1)n 5 O 31mn
v v v v
3 0321n Y O0320i—-1)n  Oj52n Y O032(i+1)n 3 9 32mn
Oijn(v,w) = X X ¥ 32(i-1) X 7 32(i+1) X ’
v v v v
3 0 3mln oo X O03m@i-)n Ojmn X O3m(i+1)n - -- 1- X 9 3mmn

j = 1,2,4. Taking into account the known properties of the matrix 0;;, (v, w), we modified the Cramer
method on the set Ao and obtain solutions of SAE (17) in the form

A (v, w) Agin(v,w)  Auin(v,w,un) .
n — n — 17 , , A , 1
e Aon(y7w) e AOn(Vuw) * AOn(VNJ) ! mn (V w) € A2 ( 9)

where A jn (v, w) = det Oy, (v, w), j=1,2,4.
Substituting solutions (19) into function (16), we obtain

A gin (v, w,u
'LLn(t7 V7CU) == Solnhln(t7 V7w) + ©on h2n(t7 1/7(")) + )\k 1 ¥ )\Qk Z Anon V w n) X3zn(t)+

T
+>\ 1+)\2k w/Hn (t,s,w) up(s,v,w)ds, (v,w) € Ag, (20)
0
where
v A (v,w) ,
hin(t = Yin(t, Jn\Ys m(tw), 7=1,2,
in(tv,w) = Xjn( w)+)\’%(1+)\%"3)w;Agn(u,w)X3 (t,w), j

Xin(t,w) = cos \Ew (T — ) —sin \NFw (T — 1), xa2n(t,w) = cos ¥ w (T +t) —sin \bw (T —t),
T
X 3in (t,w) = /Hn(t,s,w) a;(s)ds,
0
sinz(t+s), z=Mw, t<s<T,

H,(t =49 . . . .
n(t5w) {smz(t—s)—i—coszt sinzs+ zsinztsinzs, 0<s<t.

Representation (20) is a countable system of functional-integral equations. Substituting representation
(20) into the Fourier series (5), we obtain a formal solution of direct problem (1)—(3) on the domain

2 D
= \/;Z sin A\ & X
n=1

A gin (v, w, ug)
n nta 3 nhnta 3 int
X[sﬁl hoan(t,v,w) + @2n hoan( yw)—i—)\ 1+)\2k Z Aon(v,0) X 3in(t)+

T
+>\ 1+)\2kw/Hntswun(suw)ds], (v,w) € As. (21)
0
But, there are two unknown quantities ¢1,, and @9, in (21).
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2 Formal solution of the inverse problem (1)-(4)

We will now formally define the redefinition functions ¢1(z) and p2(z). We subordinate function
(20) to intermediate conditions (4). For this purpose, we differentiate (21) one times on the time-
variable t:

2 oo
U(t,z) = \/;Z SinAn@ [@1n B'1 (E, v, w) + on Ry, (E, v, w)+
n=1

A yin (v, w un) , .
+)\ 1+)\2k Z Aon (v, ) Xsm(t)‘Fw/H (t,s,w)up(s,v,w)ds|,  (22)
where
/ _ v (r,w) .
h‘jn(t7 ’/7"‘)) - Xjn(tuw) + Ak (1 + )\Zk’ Z A ( ) XSin(tvw)7 J = 1727

Xin(t,w) = MNow (sin Mow (T — ) + cos \ow (T — 1)),
Xon(t,w) = =AF w (sin N (T +t) 4 cos \¥w (T — 1)),
T
Xsin(t,w) = / (t,s,w)ai(s) ds,
0

zcosz(t+s), z=Mw t<s<T,
zcosz(t—s)—zsinztsinzs+z2cosztsinzs, 0<s<t.

t.5.) = {

Then, applying intermediate conditions (4) to functions (21) and (22), we arrive at the solution of the
following SAE:

{ Pin [X 1n<tlaw> + 51171] + ©Yon [X??’L(t17w) + 512n] = @lna (23)
©1n [X1n(t1,w) + €210] + ©2n [Xon(t1,w) + €20n] = V2n,
where
m
v Ajn(v,w)
in = thw), Eom ==Y T TLN (t j=1,2
Eljn Z AOn X3’Ln( 1, W ) €2jn \ — Aon(U,Q)) X3zn( 1,0)), 7 ,
T

. A gin (v, w,u 1
Fin = in — 2 Z Sl ) s nltr ) +

Aow (v.0) Hy(t1, s,w) up (s, v,w) ds, (24)

R A m n ]'
Yon = an — Z tin(t0, ) X'3i(t1,w) + H; (t1,5,w) un(s, v,w) ds, (25)

Agy, (v, w)

The fulfillment of the following condition ensures the unique solvability of SAE (23):

Vb (w) — Xln(tlaw)+511n X2n(t17w)+512n
" Xlln(tlv OJ) + €21n X/Qn(tla w) + €29n,

= —2zsin2zT — z cos 22T + 2z sinz(T — t1) cosz(T — t1) — z cos 2z(T — t1)—
—zep[sinz(T + t1) + cos 2(T — t1)] — ze1on[sin 2(T — t1) + cos z(T — t1)]—

150 Bulletin of the Karaganda University



Mixed inverse problem ...

—eginfcos 2(T + t1) — z sinz(T — t1)] — eaop[sin z2(T — t1) — z cos 2(T — t1)]+
+E11n€22n — €21n€12n # 0. (26)

Before proceeding to find the solution of SAE (23), we consider nonzero condition (26). To do this, we
suppose the opposite:

—z8in22T — z cos 22T + 2z sinz(T — t1) cos z(T — t1) — z cos 2z(T — t1)—

—zep[sinz(T + t1) + cos 2(T — t1)] — ze1on[sin z(T — t1) + cos 2(T — t1)]—
—eqplcos z(T + t1) — z sin2(T — t1)] — 99 [sin z2(T — t1) — z cos z(T — t1)]+
Fe11nEa2n — E21n€120 = 0, 2= AFw. (27)

Condition (27) is a transcendental equation, and the set of its solutions with respect to w is denoted
by . So, on the set

As = {(Vn,w) S Aon(v,w) | >0, vy # N (1 + )\721’“) W, weE %}
SAE (23) is not uniquely solvable. But, on the other set
A= {ns @)+ [Bon(r,w) | > 0, [Vou(@) | > 0, vy # N (1422 ) wpu, w e (0,00)\ S}

SAE (23) is uniquely solvable. So, taking into account notations (24) and (25), we obtain

A gin (v, w, uy,)
Pjn = wlnwjln(w) + ¢2nwj2n(w) + 1 n /\2k Z A”E)n I/ w n wj3m(w)—|—
T
+ 1+)\2kw/W]nswunsyw)d5 i=12 (v,w) € Ay, (28)
0

where
wiin(w) = Vo' (Xon(t1,w) + €220 (W), wizn(w) = Vo' (—Xan(t1,w) + 120 (w))
wan (W) = Vo' (Xin (1, w) + €210 (), wazn(w) = Vg,! (X1n(t1,w) + e11n(w))
w13 (W) = = [X3in(t1, W) wiin (W) + X (f1, W) wi2n (W)]
Wasn (W) = — [X3in(t1, W) Wain (W) + X34 (f1, w) wozn(w)]
Win(s,w) = Hp(t1,s) wiin(w) + H),(t1, 8) wizn (w),
Won(s,w) = Hy(t1,s) worn(w) + H(t1, s) waon (w).

Since 1, and 9, are Fourier coefficients, from presentations (28) we obtain the following Fourier
series

2SN A gin (v, w, up)
pj(x) = \/;Z;sm/\nx [wmwjln + Yapwjon + 1+ )\% Z A”Z)n o) n W j3in+
n=

T
+ 1+A2k w /W]n un S, U, w) d8:|, (y,w) € Ay (29)
0
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The functions u,(¢,v,w) in series (29) are Fourier coefficients of the unknown function U (¢, z,v,w).
Therefore, we need to define the Fourier coefficients uy, (¢, v,w) uniquely. Substituting representation
(28) into equations (20), we obtain the following countable system of functional-integral equations in
the final form

un(t,v,w) = S(t, v, w; uy) = Y1n g1n(t, v, w) + on gon(t, v, w)+

A gin (v, w un)
+)\ )\2k Z Agp (v, w) gaim(t,w)+
—i—l/G (t,s,v,w)up(s,v,w)ds, (v,w)e€ A (30)
)\]% (1+/\%’“)w n\by o, Y, n\o, Y, ) ) 4y
0

where
gin(t,v,w) = wiip(w)h1n(t, v, w) + woip(W)h o, (t, v,w),
9on(t, v, w) = wign (W) hip(t, v,w) + waop(w) hoy(t, v, w),
93in(t,w) = g1n(t, v, w) X3in(t1,w) + g2n(t, v, W) X4 (t1, w) + X3in(t, w),
Gn(t,s,v,w) = gin(t,v,w) Hy(t1, s,w) + gon(t, v,w) H' (t1,s8,w) + Hy(t, s,w).
Note that this functional-integral equation (30) makes sense only for values of parameters v, w from

the set A4. In addition, in the countable system of functional-integral equations (30), the unknown
function w, (¢, v,w) is under the sign of the determinant and under the sign of the integral.

3 Solvable of the countable system of functional-integral equations (30)

Let us investigate the system of equations (30) in the sense of the unique solvability. To this, we
consider the following well-known Banach spaces, in which we need in our further actions [26,32,33,36].
We consider the space By of function sequences { un(t) },,2; on the segment [0, 7] with the norm

oo 2
1005, = | 3 (g 1un01) - <o

n=1

the space £2 of number sequences {¢y, },~, with the norm

o0
> lenl? < oo
n=1

the space L2[0,[] of square-integrable functions on an interval [0, ] with norm

lelle, =

l

19(@) | 1 pj0) = / 19(2) [2 d < oo.

0

Smoothness conditions. Let on the segments [0, (] there exist peace-wise continuous derivatives with
respect to z up (4k+2)-th order for the functions v;(x) € C*+1[0,1], i = 1,2. Then, after integration

!
the integrand functions ;,, = \/?fwz(a:) sin A\pzdr, i =1,2 by part (4k + 2) times on the variable
0

x, we obtain the following relation

(4k+2) ‘

l 4k+2 ’1/)
| Yim | = <W> e =12 (31)
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where
!

4k+2 ), .
wl = [ O g @) de, =12

0

Here we note that the Bessel inequality is true

l
> 2 2\ o2y ()]0
S < (7)) wimre 32
0

Theorem 1. Let the smoothness conditions and the following conditions be fulfilled:

max [|g1n(t,y,w)|; |92n(t77/’w) H = 5111 < 51 < 00, (33)
te[0,T]
i A4m(y,w)
=|v|éd —— 2 b +d3 < 1, 34
L PO b woml o oy

where 83, 63 and &p; will be defined from (38) and (39), while A 4, (v,w) is defined from (41). Then

the countable systems of functional-integral equations (30) is uniquely solvable in the space By. The

desired solution can be founded from the following iterative process:
U(T]L(t,lj,w) :¢1n91n<t7’/7w)+¢2n92n(ta%w)7 (35)
u' i (t, v,w) = S(t,v,w;ut), r=0,1,2,..

Proof. We use the method of contraction maps in combination with the method of successive
approximations in the space Bg. Then, by virtue of smoothness condition (31) and estimate (33),
applying the Cauchy—Schwartz inequality and Bessel inequality (32), from approximations (35) we
obtain that the following estimate is valid:

(e}
mae [un(t) [ <37 max (101 | [g1n(t ) |+ [V - gan(t ) || <

t€[0,T] —_
p k2 [ o ’wﬁ’f“)’ 00 Wéﬁf”)‘
< <7T> 2_:1 n Ak+2 +z_:1 n 4k+2 <

84k+2 ¢2 (1:)
ax4k¢+2

> 1 o 4k+2 ¢1 (1:)
Zl n, 8k+4 O x 4k+2

n—

4

] = Jy < o0. (36)

L»[0,]] L»[0,]]

Taking into account estimate (36), applying the Cauchy—Schwartz inequality, for the first difference of
approximations (35) we obtain:

o0 m

o0
1
1 0
max |u,(t)—u, ()| <|v
nzlte[Ole‘ " ) <| ’;Agm;

A4in (V7w7 u(r)L)
Aon(y,w)

ma; in(t,w)|+
t€[07¥] ’g3zn( )’

T
oo
! 0
+;A%’mt1§f&¥] /G"(t’s’y’w)un<3,1/,w)ds <
N 0
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22
= | Agin v,w,ud
< |wldag [ Do 1D M‘%z’ + 0360 < 00, (37)
n=1 Li=1 nAT J
where
=1
d0i > boin = tlelf(f)i’PTi] |g3in(t,w)|, 02 = nz:: k2 (38)
2
> 1
03 = trerfoz—; N |Gn(t,s,v,w)]| ds| . (39)
0

Continuing this process, similarly to estimate (37) we obtain

o0

max u”lt —ul(t)| <
e [0 w3 0] <

00 m 1 2
A4in (Vaw>uT) - Aélin (V w, uz )
< ’V ’ d2 = doi| +
2|5 Al z
> 2
r—1
+3 Ztgfgm}jgw (t,v,w) —un (t,l/,w)’ <
<Ivloy 3 Z el 50%] lw k) =t ) |, +
n=1 Li=1
+0d3 H u"(t,v,w) — urfl(t, v,w) H B, S P H u'(t,v,w) — urfl(t, v,w) H By (40)
where
Ui A4m (l/ w)
=1 0o
1 , x03lin .- 1%031(1'—1)” ?417% 5031(1'4-1)71 ggsmn
A4in (V, w) _ 30 321n cee XO032(i-1)n 042n YO 32(i+1)n 30 32mn 7 (41)
jg3m1n e %0-3771(@'—1)71 5'4mn %0’3m(2‘+1)n e 1— %O’gmmn
T T
_ 1
s =5 [166)] [ 1H(s.0.0)a(0)] do s,
0 0

According to the last condition (34) of the theorem, we have p < 1. Consequently, it follows from
estimate (40) that the operator on the right-hand sides of the countable system of functional-integral
equations (30) is contracting. It follows from estimates (36), (37) and (40) that there is a unique fixed

point, which is a solution to the countable system of functional-integral equations (30) in the space
Bo. Theorem 1 is proved.
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4 Uniformly convergence of Fourier series

Theorem 2. Let the conditions of Theorem 1 are fulfilled. Then the series in (29) are convergence
in the segment [0, ].

Proof. Let uy(t,v,w) € B be a solution of system (30). As in the case of estimates (36) and (40),
we obtain

4k+2
9 \/ﬂ 84k+2 T 84k+2 T
@i 2 () e || L] W)
l ™ a.’]}' LQ(QL) ax LQ(Q[)
5, | S |3 | Ain w0y w) | 2 5 i =1,2 42
Hvl oy S| S S| Fhslut ) g, <co j=12. ()
n=1 Li=1
Absolutely and uniformly convergence of the series (29) implies from estimate (42).
Substituting system (30) into Fourier series (5), we obtain
2 o
Ult,z,v,w) = \/;Z sin A [Y1n g1n(t, v, w) + Yo, gon(t, v, w)+
n=1
A gin (v, w un)
in (T
T +)\2k Z Aon(rw)  Jmlbw)t
1
—I—W/Gn(t,s,u,w) un(s,v,w)ds|, (r,w) € Ay. (43)
0

Theorem 3. Let the conditions of Theorem 1 are fulfilled. Then the main unknown function
U(t,z,v,w) of inverse problem (1)—(4) is defined by Fourier series (43) and this series (43) converges
absolutely and uniformly in the domain Q for all (v,w) € A4. Moreover, function (43) belongs to the
class C' () N C’ffk(Q) N CEI%(Q)

The proof of Theorem 3 is similar to the proof of Theorem 2.

Conclusion

In the rectangular domain €2 = {O <t<T 0<ax<l } we consider a linear Benney—-Luke type
partial integro-differential equation (1) of a higher order with degenerate kernel and two redefinition
functions (3) given at the endpoint of the segment [0,T]. With respect to spatial variable x Dirichlet
boundary value conditions (2) is used. To find these redefinition functions intermediate data (4) are
used. The Fourier series method of variables separation is applied. The countable system of functional-
integral equations (30) is obtained. Theorem 1 on a unique solvability of countable system of functional-
integral equations (30) is proved. The method of successive approximations is used in combination with
the method of contraction mappings. The triple of solutions for the inverse problem is obtained in the
form of Fourier series (29) and (43). The absolutely and uniformly convergence of Fourier series is
proved (Theorem 2 and 3).
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Eki kaiiTa aHbIKTay PYHKIMsICHI MeH nmapamMerpJjiepi 6ap Benan-JIiok
TUNTI MHTErpaJIAbIK-TuddepeHInaJIIbIK TeHAey YIIiH apaJjiac Kepi
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Maxkasazma cermeHTTiH meTTEpiHAEe OepiireH eki KaiiTa aHBIKTAY (DYHKIUSCHI MEH ©3TEIIEIEHETIH SIPOCHI
bap Bennun-JI1ok THUIITI >KOFapbl PETTi CHI3BIKTHIK, HHTErPAJIBIK- UM dEpEeHIHAIIbI 1ePOEC TYBIHbLIbI JTUd-
depeHImaIIbIK, TeH eyl KapacThipbliFaH. Kaiita aHbIkTay DYHKIUSIIAPBIH Taby VIIiH apaJiblK, GepiareHiep
naiigaianburad. KeHicTiKTiK aflHbIMAJIbIFa KATHICTEI Jlupuxiie TUIIHIH MIeKapaJblK IapTTapbl KOJIIaHbLI-
raH. AWHBIMAJIBIHBL OestikTey yirH Pypbe omici naiiganadbliabl. OyHKINOHAIBIK, HHTEIPAJILIK, TEHIEY-
JIEPJIiH ecenTeJieTiH Kyieci aabrHbl. PyHKIMOHAIBIK HHTETPAJJBIK TEHJCYJIEP/IiH, CaHAY/bl *KYHeciHi
GipMoHi TernTieTiHairi Typaabl TeopeMa mastenaeH . by xarmaitna 6ipTiHaen KybIKTAY 9/iCi CHIFBLIFAH
GeitHeney smiciMen Gipre KosnanbLIaasl. Kepi ecentin, mermniMi @ypbe KaTapbl TYpiHe KypbLIaabl. AJbIHFaH
Dypbe KaTapbIHBIH aOCOJTIOTTI KoHE GIPKAJIBINTHI YKUHAKTHLIBIFBI HAKTHLIAHIBI.

Kiam cosdep: kepi ecer, eki KaiiTa aHBIKTay (DYHKIIMUSICHI, KEHiHT1 maprTap, apajblk GyHKIusiap, Pypbe
oJ1ici, 6GIpMOH/II TIerTiM.
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Tawrenmceruti 2ocydapcmeennvili IKoHoMuveckul yrusepcumem, Tawrenm, Yabexucmar

CMmentanHas obpaTHas 33aja4a JIJist MHTerpo-anddepeHImaabHOro
ypaBHeHusi Tuna benau—JIioka ¢ aBymst pyHKOUSIMM
rnepeoripeesieHrusI U mapaMeTpamMu

B craTbe paccmorpeno nuHeitHOe nHTErpo-auddepeHnaIbHOe YpaBHEHHE B YaCTHBIX ITPOM3BOIHBIX THUIIA
Bennn-Jloka BBICOKOrO MOPSIAKA C BBIPOXKIEHHBIM SITPOM U IBYMsI (DYHKITUSIMU [T€PEOTIPEIeICHIs, 3aaH-
HBIMHU B KOHIE oTpe3Ka. JIjIsi HaXOKJAeHusl 9TUX (DYHKIMIA [I€peopeiesIeHUsT UCII0JIb30BaHbl IPOMEXKYTO-
Hble maHHbE. [[0 OTHOIEHNIO K TPOCTPAHCTBEHHON MEpeMEHHON TPUMEHEHBI KpaeBble ycaous tuna Jlupu-
xJjie. Ilpumensiercst mero, pasienenns nepeMeHHbIXx Pypbe. [lomydena cyernas cucrema PyHKIIMOHAIBHO-
WHTErpaJIbHBIX ypaBHeHwuii. /lokazana Teopema 06 OJHO3ZHAYHON PA3PEIINMOCTH CYETHON CUCTEMBI (DYHKIINO-
HaJIbHO-MHTErPAJIbHBIX ypaBHEHUU. [Ipn 3TOM HCIONB3yeTcsi METOJ MOCIe0BATEIbHBIX MPUOJINKEHNN B
COYETAaHWHU C METOJIOM CXKATbIX oToOpaskeHwmii. Perenne obpaTHOi 3aja4u cTpouTcs B Bujie psaga Pypbe.
Jlokazana abcoslOTHAsI 1 PaBHOMEPHAsI CXOJUMOCTD IIOJIyIeHHbIX psioB DPypbe.

Kmouesvie caosa: obpatHas 3a7a4a, nBe QYHKIIUN IePEONpe/Ie/eHns, PUHAIbHBIE YCIOBUS, TPOMEKYTOU-
uole dyukiun, Meros, Oypbe, OqHO3HAYHAS PA3PEITUMOCTD.
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Iterated discrete Hardy-type inequalities with three weights
for a class of matrix operators

Iterated Hardy-type inequalities are one of the main objects of current research on the theory of Hardy
inequalities. These inequalities have become well-known after study boundedness properties of the multi-
dimensional Hardy operator acting from the weighted Lebesgue space to the local Morrie-type space. In
addition, the results of quasilinear inequalities can be applied to study bilinear Hardy inequalities. In
the paper, we discussed weighted discrete Hardy-type inequalities containing some quasilinear operators
with a matrix kernel where matrix entries satisfy discrete Oinarov condition. The research of weighted
Hardy-type inequalities depends on the relations between parameters p, ¢ and 6, so we considered the cases
l<p<g<f<owandp < g <0 <o0,0 < p <1, criteria for the fulfillment of iterated discrete
Hardy-type inequalities are obtained. Moreover, an alternative method of proof was shown in the work.

Keywords: Inequality, discrete Lebesgue space, Hardy-type operator, weight, quasilinear operator, matrix
operator.

Introduction

The iterated integral Hardy-type inequality has the following form

70100( j /tf Yds| dt Ed:r 0<c /|u (x)|Pdx | , Vf € Lyu(0,00), (1)
0 0

where 0 < ¢q,p, 0 < 00, u(-), ¢(-) and w(-) are positive functions and locally integrable on the interval
(0;00), Lpu(0,00) is a weighted Lebesgue space of functions for which the right side of the inequality
(1) is finite.

At the beginning the inequality (1) has been studied with various quasilinear operators in the
works [1,2]. The equivalence of inequality (1) to the inequality, which defines the boundedness of
the multidimensional Hardy operator from the Lebesgue space to the local Morrey-type space has
been shown by V. Burenkov and R. Oinarov [3|. After this work researchers have become interested
in an iterated integral Hardy-type inequality, then they began to use it intensively [4,5]. In the last
decade, researchers have studied weighted Hardy-type inequalities for the class of quasilinear operators
including the kernel |6, 7].

Characterizations of inequality (1) was studied more deeply than discrete analogue. A discrete
version of inequality (1) will be as follows

SN

k q g e’} >
Z“’ Z kY i <O ) luifil? P’ Vf € lpu, (2)
k=1 =1 i=1
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where the positive constant C' is independent from f, 0 < ¢,p,8 < oo, and ¢ = {¢;}°; is a non-
negative sequence, u = {u;}5°,, w = {w;}$2, are positive sequences of real numbers. [, , is the space
of sequences f = {f;}5°, of real numbers such that

o0 7
1S llpu = <Z |szz|p> <00, 1<p<oo.
i=1

Nowadays, inequality (2) is being considered in many works. In the papers [8-10], necessity and
sufficient conditions for the fulfillment of iterated discrete Hardy-type inequalities were obtained for
the different relations of parameters g, p and 8, namely, for the case p < 6 < oo, in the sense that ¢ can
be any positive number. The most difficult cases 0 < 8 < min{p,q} < oo and 0 < ¢ < 0 < p < oo for
these inequalities was studied in the papers [11,12|. Moreover, the paper [13] includes characterization
of the following discrete iterated Hardy-type inequality

1
o\ o

an Sl>1P<Pszk <C(Zf£un>p

nezZ = k<i nez

It is obvious to us that by using previously obtained results of iterated Hardy inequalities we can find
characteristics of bilinear Hardy inequalities [14-16].

The aim of this paper is to characterize the iterated discrete Hardy-type inequality with matrix
kernel defined as follows

o 1
00 k AN 0 r
> wn ( ok Y arifi ) < (Z |uz-fz-|p> . Vf €l (3)
n=1 k =1 =1

and the dual discrete Hardy-type inequality has the following form

n

=1

S o] o) q g 9 00 1
St (Slasons]) ) <o (Smar) vrenn
n=1 k=n i=k i=1

where (ay;), kK > i > 1, is a matrix non-negative entries of which satisfy the discrete Oinarov condition:
there exists constant d > 1, entries ay; are non-decreasing in k£ and non-increasing in 7, such that the
inequalities

1
&(am +aji) < ap; < d(agj+ aj;) (5)

hold for all k > j > i > 1.

The recent papers [17] and [18], where inequalities (3) and (4) are firstly studied for the matrix
(ag;i), i > k > 1, entries of which satisfy condition (5). The paper [17| contains results for only
inequality (3) for the case 0 < ¢ < p < 6 < co. In work [18], authors have used the localization method
and considered the case 0 < p < 0 < 00, 0 < g < c0. As we know, we can divide this case into the
following three conditions

1N)0<p<O<q<oo;

2)0<p<g<b<oc;

3)0<qg<p<l<oo.

In the paper, we obtained necessity and sufficient conditions for the fulfillment of the inequalities
(3) and (4) in the case 0 < p < ¢ < § < oo by using an alternative method which is different from the
method in [18]. This method requires ¢ < 6 condition since we will use the dual principle in the space
l,. It is important to note that in this paper we present the results for the case 0 < p < 1 which is
interting because integral Hardy-type inequalities hold in trivial cases only [19].
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1 Preliminaries

We need following known statements to obtain the main results. Let’s start with reverse Holder
inequalities for weighted sequence [, spaces and 1 < p < oo:

1

(o) l o0 7
P

P, | _ p' 1-p'
(Ze) =g (Son) (o)

L

P, | _ 12 7
(; d; zz> it;% <Zd hi zz> (; h; zl> .

We also apply theorems regarding discrete Hardy-type inequality for one class of matrix operators:

< Uk)zaszl ) <C(Z|uzf1|p) > vfelpﬂ“ (6)

where the entries of the matrix (aj ;) satisfy discrete Oinarov condition. The boundedness of Hardy-
type operators with matrix kernel was considered in the manuscripts [20-22].

Theorem 1. [21] Let p < g < oo and 0 < p < 1. Let the entries of the matrix (ay;) such that ay;
non-increasing in second index. Then inequality (6) holds if and only if Ay < oo, where

Q=

A1 = sup Zakdvk u; - < 00.
7>1
Moreover, C' =~ Ag, where C is the best constant in (6).

Theorem 2. [22] Let 1 < p < ¢ < oo and the entries of the matrix (aj ;) satisfy condition (5). Then
the inequality (6) holds if and only if A = max{As, A4} < oo, where

Q=

b
w
Il
n
o
o]
N
M-
)
S
%)
’.d\
N——
.E\
[]e
>
Bl
B

Moreover, C' =~ A, where C' is the best constant in (6).

2 The main results

Theorem 3. Let 0 < p < ¢ < 6 < oo. Let the entries of the matrix (ay ;) satisfy condition (5). Then
inequality (3) holds if and only if
(i) If 0 < p <1, By < 00, where

QD
SN

q 4 -1
By =sup g wn a; ;P u;
7>1 P
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Moreover, Cy ~ Bj, where C] is the best constant in (3).
(i) If p > 1, B = max{Bs, B3} < oo, where

QD
B
=

0o n J p’
_ 0 q q —p’
By=sup | > wy Y af ;¢ > )
n=j i=j

j=>1

QD
D=

0o n J i
0 ’
memsp (St (S]] (L)
2t \n=i \i=
Moreover, C; ~ B, where (] is the best constant in (3).
Proof. We assume that 0 < p < ¢ <6 <ooand 0 < f €l,,. Then from inequality (3) we get that

1

n k q g o
=g | Yt (S| ) | Wit < G
20\ =1 k=11 i=1
k q
By raising both sides of (7) to power ¢ and denoting Sy = (Z ak,ifz) , we obtain that
=1
q
4

o= sup (3w <Zsk>q 1115 (®)

>0 n—1

As g > 1, we can use of reverse Holder inequality to (8). Then we find

_0—gq
q0

]
CQ—sup Hprqsup (Zh Z&) (Zhe w>
n=1
[e’e] _9% [e'e} n
_6
=sup | > (hnw, )7 sup [[ £l 2 { D Y Sk |-
f=0 n=1 k=1

h=0 n=1
By replacing Sy we obtain
6—q 149

00 0 - n k aN ¢
CY = sup (Z (hnw;q) "‘q> Sup ||f P (Z I, Z ©f (Z ak,ifi) )
n=1 k=1

h>0 \ 5 _

m‘
s

By changing the orders of sums we get that
0—q 1449

szsup@(hnw;q%)e cap 11 (Zsok (Zawz) §h> )

h=0 n=1

Q|

o0
Let us define Hy, := cp% > hyp. We will investigate separately the supremum which relates to f.

n==k
1
00 k 9\ q
(Z Hy, (Z ak,ifi) )
k=1 i=1
I :=sup .

= (§ |uz'fi\p>

i=1

(10)

hSA
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As you have noticed, we have obtained a discrete Hardy-type inequality for a class of matrix
operators. Therefore, we consider two conditions regarding p. At first, if 0 < p < 1, we use Theorem 1,
then we have

Q=

00 k a\ a
> Hy (Z ak,ifz’) -
k=1 =1
sup ' T A sup Za%ij uj_l. (11)
£0 s 5 R Pt
<Z ’uifi|p>
i=1

By inserting (11) into (9), we get that

Jun

6—q

0o s \ 0 ) oo
Ci] /2 sup (Z (hnw;q) 9—(1) ?1>111) u;q Z @Za%j Z h; =
> k=g i—k

h20 n=1

0

[e'e) _% [e'e) [e'e)
= supu; *sup (Z (hnw:’W) > hat, > b (12
k=j i=k

j>1 h>0 n—1
We denote zx,; = pjaj ;, vy = wy? and p1 = 5=. Then we rewrite (12) as follows
0 0 0 %
> 2k 2 hi Z hi Z Zh,j 2 Xihi 3 2k
k=j

_ k=j i=k — i=j  k=j _ i=1
C} ~ supu; ?sup — = supu,; sup — = supu,; *sup -

21 7 h>0 (i (hnvn)m)pl 21 7 h>0 (ij( o) >pl i>1 7 h>0 (gﬁl(hnvn)pl)m
(13)

where X, = 0 for 1 < k < j and &, = 1 for k£ > j. Since p; = ﬁ > 1 by applying reverse Holder
inequalities to (13) we get that

e
e

24 Ph
/

_ _ /
Cl~ sup u;; g g Zij vy P = supu E E Zij v Tt
J>

i>1
J= n=j \ i=j

Then we rewrite previously applied designations and obtain

hQ

o
q

o n
q —q a 4 0
Ci ~ sup u; g a; iP; w,|
7>1 . _—
n=j i=j
so that
Ci ~ B;.

Therefore, we find that C; =~ Bj in the case 0 < p < 1 and the constant C; depends only on the
parameters p, q and 6.

Let us start estimating (10) for the case p > 1. Actually, by using Theorem 2 we obtain I =~
max{Bj, B;}, where

S

J p’ 0o
_ -p' q
Bg—sup E u; g ap i He |
i=1 k=j

Qe

j=1

Mathematics series. No.4(112)/2023 167



N.S. Zhangabergenova, A.M. Temirhanova

1
/ i > E
o (S ) (S
k=j

j>1 1

First we estimate (9) with B; and Bj. By applying previously used designations and by changing the
supremums’ order of execution we get that

1 ﬁ o) *% o) 0
qumax §l>111) (Zu ) sup (Z hpvp) ) sz,jghia

i=1 h>0 n=1

ﬁ [ee] _ﬁ [e'e) [e'e]
sup (Z a]Z ; ) sup (Z (hnvn)m) Z(pzzm
izl \i=31 h20 \;, =1 k=j  i=k

We can estimate the value of the best constant C{ in the same way as we calculated before. By
changing the order of sums, applying the reverse Holder inequality for these results and substituting
the designations, we have

b
QD
!

i 'Y 00 n
/
q -p q 4 0
C] ~ max { sup E U, g g a; ;i | wn |
1=

n=j \ i=J

R

then

C} ~ max{Bj, Bi}.

So we find that C1 ~ max {Ba, B3}. We obtain C} ~ Bj in the condition 0 <p < 1,p < ¢ <6 < o0
and C] ~ max {Bg, B3} in the condition 1 < p < ¢ < 6 < oo . Moreover, the equivalence constants
depend only on p, g and 6. The proof is complete.

Theorem 4. Let 0 < p < g < 6 < oo. Let the entries of the matrix (ay ;) satisfy condition (5). Then
inequality (4) holds if and only if
(i) If 0 < p <1, Dy < oo, where

|
S

Moreover, Cy = Dy, where C5 is the best constant in (4).
(ii) If p > 1, D = max{Ds, D3} < 0o, where

S

J 00
Dy = sup Z w,, <Z ag-,igog) Z u,;p/ ,
i=n k=j

ji>1
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1
I

Jj=1

1
. . o\ @
J J a 0 , ,
— 0 q p =P
D3 = sup E w,, g ©; g g, U
n=1 i=n k=j

Moreover, Cy ~ D, where C5 is the best constant in (4).

Theorem 4 is devoted for inequality (4) and it can be proved similarly as Theorem 3.
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JI.H. lymunes amundazo. Eypasus yammow yrusepcumemsi, Acmana, Kasaxcman

MaTtpunaJblK onepaTopJjiap KJachl VIIiH YIII CAJIMaKThI
nTepanusaJaHFaH JUCKpeTTi Xapau TUIITI TeHCi3aiKTep

Hrepamusitanran Xapau Topizaec TeHCi3gikTep Xap U TEHCI3MIKTEepl TeOPUsICHIHBIH, Ka3ipri TaHIarbl 3epT-
TeyJiepiHiH Heri3ri oobekTisiepiniy Oipi. By TeHcizaikTep Kom eJeM i Xap/iu OlepaTopbIHbIH, CAJIMAKThI
Jleber keHicririnen Jiokababl Moppu Topis/iec KeHICTINHIH IeHeTIMILIK KACHeTTEePIH 3ePTTEereHHEeH Keii-
in Genrimi Gosabl. COHBIMEH KaTap, KBA3UCHIZBIKTBI TEHCI3AIKTEPIiH HOTUKEJIEPIH KOCCBHI3BIKTHI XapIu
TEHCI3/IIKTEePiH 3epTTey Ke3iHje KojjgaHyra OoJsabl. Makasaja MaTPUIAIBIK SIpOChl 6ap Keitbip KBa3u-
CBI3BIKTHI OIIEPATOPJIAp KATBICKAH CAJIMAKTBI JMCKPETTIK Xapaud TOpi3aec TEHCI3IIKTep KapacThIPBLIIbI,
MYHJa MaTpuIa 3jaeMeHTTepi auckperti ONHAPOB MAapThIH KaHaraTTaHabIpaabl. CaaMakThl Xapay Toapis-
JleC TEHCI3MIKTEPIl 3epTTey P, ¢ XKoHe § mapaMeTpJiepi apachbIHIaFrbl KAThIHACTAPFa 6aIaHBICThI, COHIBIKTAH
izl <p<qg<Bh<ooxkone p<qg<<oo 0<p<1xkKarnaitiapblH KapacThIPALIK, UTEPAIUSIIAHFAH
JMCKPETTIK Xapau Topi3fec TeHCI3MIKTepIiH OpbIHAaly Kpurepuiiiepi anbiaapl. CoHbIMEH KaTap OyJ1 »Ky-
MBICTa, JRJIEJIIEY/IiH DatamMa 9JIici KepceTijireH.

Kiam cesdep: Tencizaik, nuckperti Jleber kenicriri, Xapau Topisiec oneparop, CAIMaKTap, KBA3UCHI3bIKThI
OIIepaTop, MAaTPHUIIAJIBIK, OIIEPATOP.
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Iterated discrete Hardy-type inequalities

H.C. 2Kanabeprenosa, A.M. Temupxanoa

Espasutickuti nayuorasvhoui yrusepcumem umenu JI.H. lymusesa, Acmana, Kasaxcman

N repanmonnbie AUCKpPeTHbBIE HEPABEHCTBA TUMA XapJud C TPeMs
BecaMm JiJisd KJIacCa MaTPUYHBIX OIepaTOpOB

WrepupoBanubie HepaBeHCTBA TUTA XaP/IN SIBJISIOTCS OJHAM U3 OCHOBHBIX OOBEKTOB COBPEMEHHBIX HCCJIE-
JIOBaHMIT TEOPUM HEPABEHCTB Xap/u. DTU HEPABEHCTBA CTAJM IIUPOKO U3BECTHBI II0CJIE U3YYEHUs CBONCTB
OTPaHMYEHHOCTH MHOTOMEDHOI'O oIleparopa Xapau U3 BecoBOro mpocrpancra Jlebera B JIOKaJIbHOE IIPO-
crparctBo Tuna Moppu. Kpome Toro, pe3ysibrarsl KBa3MJIMHEHHBIX HEPABEHCTB MOTYT OBITH IMPUMEHEHBI
1T 3y deHus: ONINHENHBIX HeEPpaBEHCTB Xapau. B crarbe paccMOTpeHbI BECOBBIE TUCKPETHBIE HEPABEHCTBA
THuIa Xapau, coJepKaliue HeKOTOPbIe KBa3UJIMHEHHbIE OTIEPATOPHI C MATPUIHBIM SIJIPOM, TJIe SJIEMEHThI MaT-
PUIIBI YIOBJIETBOPAIOT AUCKpeTHOMY ycaoBuio Oitaapoa. VccmemoBanme BeCOBBIX HEPABEHCTB TUMA, XapIN
3aBUCUT OT COOTHOIIEHUsS NAapaMeTpPoB P, ¢ U 6, mosToMy MbI paccMmorpenn ciaydan 1 < p < g < 0 < oo
nup<g<0<oo 0<p<1; DOAYINSTIN KPUTEPUHU BBIMOJHEHUSI UTEPAIMOHHBIX JUCKPETHBIX HEPABEHCTB
Turna Xapau B ciaydaax 1 < p < g < <oo,p<qg<<oon0<p< 1. Bonee Toro, B pabore mokaszan
AJIbTEPHATUBHBIA METOJI, JOKa3aTeIbCTBAa.

Kmouesvie caosa: HEpaBEeHCTBO, JUCKPETHOE IMpPocTpaHcTBO Jlebera, omeparop Tuna Xapiu, BeC, KBa3UJIN-
HEHHBII oIlepaTop, MaTPAYHBI OIIepaTop.
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Automorphisms of the universal enveloping algebra of a
finite-dimensional Zinbiel algebra with zero multiplication

In recent years there has been a great interest in the study of Zinbiel (dual Leibniz) algebras. Let A
be Zinbiel algebra over an arbitrary field K and let ej,es,...,€m,... be a linear basis of A. In 2010
A. Naurazbekova, using the methods of Grobner-Shirshov bases, constructed the basis of the universal
(multiplicative) enveloping algebra U(A) of A. Using this result, the automorphisms of the universal
enveloping algebra of a finite-dimensional Zinbiel algebra with zero multiplication are described.

Keywords: Zinbiel (dual Leibniz) algebra, universal (multiplicative) enveloping algebra, basis, automorphism,
affine automorphism.

Introduction

An algebra A over a field K is called (left) dual Leibniz or Zinbiel (Leibniz is written in reverse
order) if it satisfies the identity

(29)2 = w(y2) + x(=p).

The Leibniz algebras form a Koszul operad in the sense of V. Ginzburg and M. Kapranov [1]. Under
the Koszul duality, the operad of Lie algebras is dual to the operad of associative and commutative
algebras. The notion of Zinbiel (dual Leibniz) algebra defined by J.-L. Loday [2] is precisely the dual
operad of Leibniz algebras in their sense. Moreover, any dual Leibniz algebra A with respect to the
symmetrization a o b = ab + ba is an associative and commutative algebra [2].

Zinbiel algebras are also known as pre-commutative algebras [3] and chronological algebras [4]. A
Zinbiel algebra is equivalent to the commutative dendriform algebra [5]. It plays an important role in
the definition of pre-Gerstenhaber algebras [6]. The variety of Zinbiel algebras is a proper subvariety
in the variety of right commutative algebras. Each Zinbiel algebra with the commutator multiplication
gives a Tortkara algebra |7], which appeared in unexpected areas of mathematics [8,9]. Recently, the
notion of matching Zinbiel algebras was introduced in [10]. Zinbiel algebras also appeared in the study
of rack cohomology [11], number theory [12| and in a construction of a Cartesian differential category
[13]. In recent years there has been a great interest in the study of Zinbiel algebras.

J.-L. Loday (J.-L. Loday) [2] proved that the set of all non-associative words with right arranged
parenthesis (right-normed words) form the basis of free Zinbiel algebra. It was shown that free Zinbiel
algebras are precisely the shuffle product algebra [14]. A. Naurazbekova [15] proved that free Zinbiel
algebras over a field of characteristic zero are the free associative-commutative algebras (without
unity) with respect to the symmetrization multiplication and their free generators are found; also
she constructed examples of subalgebras of the two-generated free Zinbiel algebra that are free Zinbiel
algebras of countable rank. A. Dzhumadildaev and K. Tulenbaev [16] proved the analogue of Nagata-
Higman’s theorem [17] for the Zinbiel algebras (any Zinbiel nil-algebra is nilpotent). They also proved
that every finite-dimensional Zinbiel algebra over an algebraically closed field is solvable and nilpotent

*Corresponding author.
E-mail: dinara_ pav@mail.ru
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over the complex number field. A. Naurabekova and U. Umirbaev [18] proved that in characteristic 0
any proper subvariety of variety of Zinbiel algebras is nilpotent and, as a consequence, the variety of
Zinbiel algebras is Spechtian and has base rank 1. D.A. Towers [19] showed that every finite-dimensional
Zinbiel algebra over an arbitrary field is nilpotent, extending a previous result by other authors that
they are solvable. Filiform Zinbiel algebras were described and classified in [20-22]. The classification
of complex Zinbiel algebras up to dimension 4 was obtained in [16] and [23]. A partial classification
of the 5-dimensional case was done in [24]. M.A. Alvarez, R.F. Junior, I. Kaygorodov [25| proved that
the variety of complex 5-dimensional Zinbiel algebras has dimension 24, it is defined by 16 irreducible
components and it has 11 rigid algebras.

This paper is devoted to the description of automorphisms of the universal (multiplicative) enveloping
algebra of a finite-dimensional Zinbiel algebra with zero multiplication.

The paper is organized as follows. In section 1, for convenience, we rewrite A. Naurazbekova’s result
[26] on the basis of the universal enveloping algebra of a Zinbiel algebra in new notation. In section 2,
we describe automorphisms of the universal enveloping algebra of a finite-dimensional Zinbiel algebra
with zero multiplication.

1 The basis of the universal enveloping algebra

Let K be an arbitrary field. An algebra A over a field K is called dual Leibniz or Zinbiel if it satisfies

the identity
(zy)z = z(y2) + z(2y).

In [2] J.-L. Loday proved that any Zinbiel algebra with respect to multiplication x oy = xy + yx
is an associative commutative algebra. A linear basis of free Zinbiel algebras is also given in [2].

Let A be an arbitrary Zinbiel algebra over K. Let Ly = {L,|x € A} and Ry = {R,|z € A}
be two isomorphic copies of the vector space A with the fixed isomorphisms A — L4(x — L,) and
A — Ra(zr — Ry), respectively. The universal (multiplicative) enveloping algebra U(A) [27] is an
associative algebra with the identity 1 generated by the two vector spaces L4 and R4 satisfying the

defining relations
Ry Ry = Ryyyya,

R.L, = LyR, + L,L,,
Lay = LoLy + Ly R,

for all z,y € A. Recall that every dual Leibniz A-bimodule M can be regarded as a left U(A)-module
with respect to the action
Loym =am,R;m =ma, a € A,m € M.

Conversely, every left U(A)-module can be considered as a Zinbiel A-bimodule [27].
This definition of the universal enveloping algebra is suitable for algebras without identity element.
If the identity element 1 is fixed in the signature, then we have to add the relations L1 = Ry =1d =1
and consider only unital modules. It is easy to see that a Zinbiel algebra is an algebra without an
identity element. Below we rewrite A. Naurazbekova’s [26] result on the basis of U(A) in new notation.
Theorem 1. Let A be a Zinbiel algebra over a field K and let

€1,€2,...,Em, ...
be a linear basis of A. Then the set of all associative words of the form
17L€i7R6]'7L61'R6]‘7 (1)

where i, > 1, is a linear basis for U(A).
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Proof. We define a linear order < on the set of associative words in the alphabet R.,, L¢,,7 > 1.
Set R, < R, and L., < L, it < jand R, < L, for all 4,7 > 1. If w and v are two words in the
variables Re;, Lc;, then set u < v if one of the following conditions hold:

(i) deg(u) < deg(v), where deg is the degree function with respect to the variables Re,, Le;;

(77) deg(u) = deg(v), deg(u) < deg(v), where deg; is the degree function with respect to the
variables L,;

(7i7) deg(u) = deg(v), deg;(u) = degy(v), and u precedes v with respect to the lexicographical
order.

The defining relations of the algebra U(A) are

ReiREj - ReiOEj = 07 (2)
ReiLej - Lejei = 07 (3)
Le;Le; 4+ Le;Re; — Leye; =0 (4)

for all 4,5 > 1.

The leading terms of these relations are Re,Re;, Re;Le; and Le, Le; for all 4,5 > 1. Consequently,
the relations (2), (3) and (4) form three types of compositions.

Case 1. Set w = (R, Re;) Re,, = Re,(Re; Re,). Then the relations (2) form a composition

f = (ReiR(ij - Reioej)Rek - Rei (REjRek - Rejoek) = _Reioe]-Rek + ReiRejoek

with base w. Denote by = the comparison in the free associative algebra in the variables R.,, L,,,7 > 1,
modulo linear combinations of elements of the form ugv, where g is one of the left hand side of the
relations (2), (3) and (4), u and v are associative words, and the leading monomial of ugv is less than
w. We have

f = _Reioejoek + Reioe‘joek =0.

Case 2. Set w = (Re, Re; ) Le,, = Re;(Re; Le, ). The relations (2) and (3) form a composition
9= (ReiRej - Reioej)Lek - Rei (RejLek - Lekej) = _Reioe‘jLek + ReiLeke‘j

with base w. We have
9= —Ley(esoe;) T Lieyej)es = ~Ley(esoe;) T Ley(ejoes) = 0-
Case 8. Set w = (Le;Le;) Le;, = Le;(Le; Le,, ). The relations (4) form a composition

h = (LeiLej + LeiRej - Leiej)L - Lei (LejLek + LejRek - Lejek) =

€L
= LeiRej Lek - Leiej Lek - LeiLEj Rek + LeiLejek
with base w. We have
h = LeiLekej + Leie]- Rek - L(eiej)ek + LeiRe]- Rek - Leiej Rek + LeiLejek

= _LeiRekej + Lei(ekej) - Lei(ejek) - Lei(ekej) + LeiRe]’ek + LeiReke]' - LeiRejek + Lei(ejek) =0.

Consequently, the relations (2), (3) and (4) are closed with respect to composition [28,29|. This
implies [28,29] that the set of all words that are not divisible by the leading terms is a linear basis of
the algebra U(A). Therefore, the set of words of the form (1) is a linear basis for U(A). Theorem 1 is
proved.
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2 Automorphisms

Let A be a finite-dimensional Zinbiel algebra with zero multiplication over an arbitrary field K.
Let e, e9,...,e, be a linear basis of A. Then the universal enveloping algebra U(A) of A is generated
by the operators Re,,..., Re,, Le,,-.., Le, and (2)—(4) imply the defining relations of U(A)

ReiRej = ReiLej =0, (5)

Le;Le; = —LeRe, (6)

for all 7, j. By these relations and Theorem 1, the set of all associative words of the form
1a Lei 9 Re]‘ 9 Lei Re]‘ 9

where i,7 € {1,...,n}, is a linear basis of U(A) and U(A) is a nilpotent algebra over field K with
nilpotency index 3.

Theorem 2. Let A be the finite-dimensional Zinbiel algebra with zero multiplication over an arbitrary
field K and let eq,...,e, be a linear basis of A. Then the affine automorphism group of the universal
enveloping algebra U(A) of A consists of endomorphisms of the form

¢(Le;) = ZaijLej + Zﬁinej’
Jj=1 . Jj=1 (7)
o(Re) = as; — i) Re,

j=1

1 <i<n, A= (wj),D = (i), where §;; = a;; — (3;;, are square matrices of order n over a field K,
det A # 0 and det D # 0.
Proof. Let ¢ be an affine automorphism of the algebra U(A) and let

n n
o(Le;) = Z QijLe; + Z BijRe; + i,
p j=1

n n
(p(Rek) = Z 'thLet + Z 5ktRet + ka
t=1 t=1

i,k € {1,....,n}, aij, Bij, tis Yt Ot, v, € K for all 4,7, k,t. Since ¢ is an automorphism of U(A), we
have

aip .. a1n B Pin

Qpl ... Qpp /Bnl Bnn
det 0 8
¢ Y11 Yin 511 5171 7& ( )

Tnl -~ Tnn Ol o Onm

and (5), (6) imply

SO(REi)SD(Rek) = (p(Rei)SO(Lek) =0, (9)
(p(Lei>90(L€k) = _W(Lei)‘*p(Rek) (10)

for all 4, j.

176 Bulletin of the Karaganda University



Automorphisms of the universal enveloping ...

It is easy to see that if i = j, (9) and (10) give

v; = p; = 0 for all 4.
Using (5) and (6), it follows from (9) and (10) that

@(Rei)go(Rek) = Z Z’}’ij (_PYk’t + 5kt) LejRef, =0,
j=1t=1

n n

P(Re))e(Le,) =Y Y vij (ks + Bt) Le; Re, =0,

j=1t=1

o(Le. ) (Ley) + 9(Le)p(Rey) = Y Y~ cvij (—ane + Bt — Yht + Okt) Le; Re, = 0
j=1 t=1

for all i,k € {1,...,n}. Hence
Yij (=Yt + Oke) = Vij (=0t + Bre) = ij (—amy + Bre — Vit + 0ke) = 0 (11)

for all 7,7, k,t € {1,...,n}.
Suppose that 7;; # 0 for some 4, j. It follows from (11) that

Vet = Okt, gt = Bre for all k¢
This contradicts (8). Consequently, v;; = 0 for all 4, j. Using this and (8), we obtain
det A # 0,det D # 0,

where A = (w;), D = (0;;) are square matrices of order n over a field K. It is clear that there exists
i, j such that a;; # 0. It follows from (11) that

5kt = Ot — /Bkt for all ]{Z,t

Consequently, if ¢ is an affine automorphism of U(A), then ¢ has the form (7).
It is obvious that any endomorphism of the form (7) is an automorphism of the algebra U(A).
Theorem 2 is proved.

Lemma 1. Let A = (a;;) and B = (bys) be non-zero square matrices of orders n and m, respectively.
Then

auB a12B alnB
det | 2B 2B wamB g gym (et B
a1 B apaB ... apnB

Proof. Prove the statement of the lemma by induction on n+m. Without loss of generality, assume
a11 # 0. By the induction proposition, we get

a1B apB ... a1pB a1 B a2B a1, B
aziary _ azial, _
det | @218 @228 ... amB et 0 (au a22)B (au a2n)B )
il el 0 (mo ) B . () B
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(a21a12 _ a22> B .. (a21a1n _ a2n> B

ail ail

= det(a11B) - det =
(anlaIQ _ an2) B (anlaln _ ann> B

ail all

m
(a2a1161112 _ a22> <a2;1€bl1n _ a2n>
=ajjdet B - | det (det B)"! =
(analﬁm o an2) <ana11011n o a””)
m
all a2 A1n
1 0 ((121@12 _ (I22> <a21a1n _ CLQ )
—amdetB - | — det o o " (det B)" ! =
ail
0 (o2 —ap) .o (wmoe - a,,)
1
= a7t det B - a—m(det A)™(det B)" 1 = (det A)™(det B)".
11

Lemma 1 is proved.

Theorem 3. Let A be the finite-dimensional Zinbiel algebra with zero multiplication over an arbitrary
field K and let e1,eq,...,e, be a linear basis of A. Then the automorphism group of the universal
enveloping algebra U(A) of A consists of endomorphism of the form

o(Le,) = fi+ Y _ ijLe; + Y _ BijRe;,
=1 = 12)
SO(RQ) - g’L + Z TinejJ
j=1

1 <4 < n, f;,g; are any homogeneous elements of degree 2 of U(A), A = (a;),T = (7i5), where
Tij = o;j — Bij, are square matrices of order n over a fielf K, det A # 0 and detT" # 0.

Proof. Let ¢ be any automorphism of the algebra U(A). By Theorem 2, the affine part of ¢ has
the form (7). Since ¢ is an automorphism of U(A), ¢ satisfies the equalities (9) and (10). Using (5)
and (6), it is easy to see that ¢ has the form (12).

Let ¢ be an endomorphism of U(A) of the form (12) and let

fi = Z Z’Y}E;?LekReta

k=1 t=1
n n .
g = Z Z 5](41)Lek Rew
k=1 t=1

1 <i < n. Prove that ¢ is an automorphism of U(A), i.e., prove that ¢ has an inverse endomorphism
¢'. To find the endomorphism ¢’ in the following form

n n n n
P (Le) =SS Ly Rey + > L, + Y Bl R,
j=1 j=1

k=1t=1

P(Re) =33 6 Le,Re, + Y TRe;.
j=1

k=1 t=1
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Since the affine part of ¢’ is inverse to the affine part of ¢, it is easy to find all coefficients a”, B!

Let h € U(A). Denote by h the homogeneous part of degree 2 of the element h.
Using (5) and (6), we get

’Lj’ ’L]

n

0= op(L Z’m ¢'(Le, )@ (Re)) + Y aig@!(Ley) + > By (Re,) =
j=1 j=1

=1t=1

n

n n n
S0 (e e (zn;Res) +
s=1

k=1 t=1 p=1
n n n
+2_ oy ( Yot LeaReb> + Zﬂm (z PREAR L%Reb>
7=1 a=1 b=1 a=1 b=1
and
0= 80/ o (P(Rel) = 26’(%‘,)80 ( ek €t + ZTU(,O
k=1 t=1
n n n
5 Zakp €p (Z Tt,s 85) + 27_1] <225ab LeaReb> .
k=1 t=1 =1 —1 - ot

Since all the coefficients o/, are known, it follows from these equalities

’Lj’ ’L]

n
Z (O‘Zﬂab + Bijdg 52 ) Le,Re, = Nglb) Ley Rey,
j=1

n
S LRy = L e
j=1
for all 7,a,b € {1,...,n}, where u((fb), I/((ZZ) are some elements of K. For each a,b we obtain the following
(1) /(n) /(1) 5.

ab 7 fab 2 ¥ab 0t Yab

{2?21 (azﬂab + BijOap o ) = ﬂgb)
/(9

Z? 1 leéa(b) = Vc(i)’

1 <7 < n. Since det A # 0,det T # 0, this system has the solution for each a,b . Consequently, there

exists a left inverse of .
Using (5) and (6), we also get

0=gpoy( Z Z’th Lo )o(Re,) + Y alio(Le) + Y Blo(Re,) =
=1 =1

k=1t=1

system of 2n linear equations with unknowns ~y

=3NS el (Z nsRes> +
p=1 s=1

k=1t=1
DP9 TNNES oA Do o TN
J=1 a=1b=1 j=1 a=1b=1
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and

n n

0=¢po¢(Re,) Y0 (Lo )e(Re) + > Tip(Re,) =
j=1

k=1 t=1
= Z Z 62:(13) Z akaep (Z Tts eg> + Z ] (Z Z (san)LeaReb> .
k=1 t=1 p=1 a=1 b=1

Since all the coefficients ozzj, Bt are known, it follows from these equalities

i z]

Z Z 'Y];(Z) akatsLeP Res = A;E?ZS) Lep Res )

k=1 t=1
n n
/(% ;
>0 awptisLe, Re, = 050 Le, R,
k=1 t=1

(i)

foralli,p,s € {1,...,n}, )\ps ,0ps are some elements of K. For each 7 we obtain the following two systems
of n? linear equations with unknowns 'yl(l),...,’yl(n),. ,’yn(i),. . n(ﬁ) and 51(f),...,51(7?,...,(5;51),...,5;(%),

respectively:

{71(1@)041}77_13 + ...+ 71(71)061;)7—115 + ...+ ’Y:L(i)anp’rls ot "Y;L(??ainns - /\;E)?

and

{51(1i)a1p7'13 + ...+ 6’1(7,1;)0z1p7'ns + ..+ 5;(?(1@7'15 + ...+ 545,?anp7'n5 = 01(,? ,

p,s € {1,...,n}. The coefficient matrices of these systems have the form

0411T ang Oéan
- aT  aT ... apaT
arnd aspyT ... appT

By Lemma 1, det C' = (det A)"(det T")". Since det A # 0, det T" # 0, we have det C' # 0. It follows that
this systems has the solutions for each 1 < ¢ < n. Consequently, there exists a right inverse of ¢. Since
in groups the left and right inverses coincide, there exists an inverse of . Hence ¢ is an automorphism
of the algebra U(A). Theorem 3 is proved.
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Hennik kebeliTiHaici 6ap akbIpJIbIeJIneMal 3UHONJI aJaredpachblHbIH

182

YHUBEPCAJAbl OpayIlbl aJaredpacblHbIH aBTOMOpPQMU3MIaEpi

Conrbl kblapbl 3uHOUI anrebpanapbis (gyanast JlefiGHu anrebpaiapbia) 3epTTeyre YIKEeH KbI3BIFYIIIbl-
JIbIK Gap. Afitanbik A ke3 kejren K epicinieri KypacThIpblirad SUHOU aJireOpAChl JKOHE €1, €2, . . ., Em,y - - -«
A anrebpachInbIH ChI3BIKTHI 6asuci. 2010 xkbuibl A. Haypas6ekosa ['pébuep-11Iupios 6asucrepinin ogaicrepin
konmanbin, A anrebpaceiabiy, U(A) yrusepcaianpl My IbTUILIMKATUBTI) Opayllbl aJreGpachlHblH, 6a3ucin
KypacTeipabl. OChbl HOTUKEH] MaiiJaJIaHbll, HOJOIK KeOedTiHmici 6ap aKbIpIbIeImeMal SUHOUI aarebpachl-
HBIH YHUBEPCAJIJIBI OPayIIbl ajredpachlHbIH aBTOMOPMU3MIEP] CUIIATTAIFAH.

Kiam cosdep: 3unbui (myaser Jleitbuuir) aarebpacsl, yHusepcasabl (MyIbTUIUINKATHBTL) OpayIsl aiarebpa,
6azuc, aBromopdusM, adduHal aBTOMOPGU3M.
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JI.M. ?Kanrasunosa, A.C. HaypasbekoBa

Espasutickuti nayuorasvhouli yrusepcumem umenu JI.H. lMymusesa, Acmawna, Kasaxcman

ABTOMOpP(IU3MBI YHUBEPCAJIBHOI 00EpPTHIBAIOIIE aJaredpbl
KOHEYHOMEPHOI ajaredpbl SUHOUIISA C HYJIEBBIM YMHOXKEHUEM

B nocnenaue rogpr Habmomgaercs GOBIIONH HHTEPEC K M3y IeHuIo aarebp Sunbmis (myanbHbix aare6p Jleit6-
nuna). [Tycrs A anrebpa 3unbusis Ha L IPOU3BOJILHBIM 10aeM K ¥ IIYCTb €1, €2, . . ., €m, . . . JUHEHHDIH 6a3uc
anrebpsr A. B 2010 rony A. Haypasbekosa, npumensist metosl 6a3ucos I'pébuepa—Illupimosa, mocrponsia
6a3uc yHUBEPCATIBbHON (MyJIbTHIUIMKATUBHOMN) obeproiBatomeit anre6pot U(A) anrebpsr A. Ucnonssys gas-
HBII Pe3yJIbTaT, OIUCAHbl aBTOMOP(MU3MbI YHUBEPCAJIBHOM 06epTHIBAIOIIEH airedpbl KOHEYHOMEPHO ajIreo-
pbl 3UHOMIIS C HYJIEBBIM YMHOXKEHHEM.

Karouesuie caosa: anrebpa Sunbuis (ayanbHas anrebpa Jleiibuuna), yHusepcasbHast (MyIbTUILINKATHBHAS)
obepThIBalomas ajarebpa, 6asuc, aBroMopdusM, adPUHHBIIN aBTOMOPQPU3M.
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Model-theoretic properties of semantic pairs and e.f.c.p.
in Jonsson spectrum

The article is committed to the study of model-theoretic properties of stable hereditary Jonsson theories,
wherein we consider Jonsson theories that retain jonssonnes for any permissible enrichment. The paper
proves a generalization of stability that relates stability and classical stability for Jonsson spectrum. This
paper introduces new concepts such as “existentially finite cover property” and “semantic pair”. The basic
properties of e.f.c.p. and semantic pairs in the class of stable perfect Jonsson spectrum are studied.

Keywords: Jonsson theory, semantic model, permissible enrichment, central type, hereditary theory, stable
theory, perfect theory, fundamental order, saturated model, e.f.c.p., existentially closed pair, semantic pair.

Introduction

The concept of language enrichment plays a significant role in description the model-theoretic
characteristics of both theories itself and models. Language enrichment options are limited by first-
order language rules. In this article we are dealing with language enrichment using a one-place predicate
symbol and some constant symbol. The next important point of novelty and relevance of this work
is the fact that all new concepts and corresponding statements were concerned within the system of
the study within the framework of the study generally speaking incomplete theories. Namely, in the
class of Jonsson theories. This class is quite broad and its application covers many areas of modern
mathematics. The remark about the incompleteness of the theories under consideration is relevant in
the sense that the modern apparatus of model theories is developing within the system of the study
of complete theories. This article presents results that clarify previously obtained theorems related to
the classical concept of stability within the framework of complete theories and its generalizations.

In this work we are going to highlight the fact that we consider many classical concepts associated
with the concept of stability for Jonsson theories and their types within the framework of such a new
concept as the Jonsson spectrum of cosemanticness a model or class models. This concept allows us to
classify Jonssons theories regarding the relation of cosemantic. Also, to find analogues of basic theorems
from stability theory, such as with theorems associated with the concept f.c.p. [1], in our case, for these
purposes, the idea of using the concept of the central type of Jonsson theories is used.

And here we present results related to the concept of stability of perfect Jonsson theories, and also
obtain results regarding the Jonsson spectrum for semantic pairs. Semantic pairs are a generalization of
beautiful pairs, which started to be explored deliberately in the work [1| of B. Poizat. In this work, B.
Poizat investigated structures of a common form in which elementary substructures are distinguished.
He formed the question of finding for conditions under which the theory of elementary pairs is complete.
Subsequently, the works of [2-8] and others were devoted to the study of this issue. Commonly, reflection
of the work of [2-8] played a significant role in the study of the issue of incomplete theory, that is,
Jonsson theories. In the works of A.R. Yeshkeyev we can find a complete description of Jonsson theories
regarding this issue [9-14].

*Corresponding author.
E-mail: galkatai@mail.ru
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1 Local properties of the Jonsson spectrum in stable theory

The main result in the article is developed within the framework of the Jonsson theory. Since this
work is not the first work in the study of the Jonsson theory, I did not want to rewrite the definition
and related original concepts and theorems. A detailed description of the Jonsson theory and the initial
concepts and theorems related to the theory can be found in work [15-19].

Further we will prove the main results for some fixed Jonsson spectrum. Before that, a number
of results related to Jonsson spectrum were obtained. In particular, the generalization of the classical
theorem on elementary equivalence of abelian groups and modules, which is one of the important
concepts in algebra, is given in works [20-22].

Definition 1. |21] Let o be an arbitrary signature, L be the set of all formulas of signature o. Let
B be an arbitrary model of some fixed signature o, B € Modo. Let us call the Jonsson spectrum of
the model B the set:

JSp(B) ={T/B € ModT,T is Jonsson theory of the signature o}.
Next, we obtain the following factor set by the cosemantic relation
JSp(B) /s = {[T]|T € JSp(B)}-

Let [T] € JSp(B)/s. Since each theory A € [T] has Ca = Cr, then the semantic model of the [T] class
will be called the semantic model of the 7" theory: Cpy = Cr. The center of the Jonsson class [T will
be called the elementary theory [T]*, its semantic model Cizy, i.e. [T]* = Th(Cir)) and [T]* = Th(Ca)
for any A € [T]. Denote by Eir = U aer) Ea the class of all existentially closed models of the class
[T] € JSp(B) /ia. Note that (aeqy # 0, since at least for each A € [T] we have Cizj € Ea.

Definition 2. [21] The class JSp(B)/w is called perfect (further, PJSp(A)/w) if each class [T] €
JSp(B) /i is perfect, [T] is called perfect if Cip) is a saturated model.

PJSp(B) = {T|T is perfect Jonsson theory in language o and B € ModT'}.

It is clear that PJSp(B) C JSp(B).

Theorem 1. |17]. Let T be a perfect Jonsson theory. Then the following conditions are equivalent:

1) T* is a model companion of the T" theory;

2) ModT* = Er;

3) T* = T/, where Er is the class of T-existentially closed models T, T/ = Th(Fr), where Fr is
the class of generic T' models (in the sense of Robinson’s finite forcing).

Let T be a Jonsson theory, S7(X) the set of all existential n-complete types over X consistent with
T for every finite n.

Definition 3. |17] We say that a Jonsson theory T is J-A-stable if for any T-existentially closed
model A, for any subset X of the set A, |X| <\ = |S7/(X)| <\

At one time, the author in 23] proved a theorem that connects the concepts of J-stability and
classical stability for perfect Jonsson theories. And this result generalizes the concepts of stability.
Now we want to define the concepts for the Jonsson spectrum.

Theorem 2. Let [T] be a perfect Jonsson 3-complete class, A > w. Let Cry be its semantic model,
A =3, Cj) and A is the existentially closed model of [T], [T] € JSp(A)/w. The Jonsson class [T7] is
J-A-stable if and only if the center of the Jonsson class [T]* is A-stable (in the classical sense).
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Proof. We will work only with perfect Jonsson theories PJSp(A)/s. Let [T] € PJSp(T)/s and
E,([T]) be the distributive lattice of equivalence classes

oM = {4y € Eo(L) | [T]" = ¢ < 9,0 € En(L)}.

We will call the Jonsson class [T'] stable if every theory A € [T is a stable theory by the Definition 3.

If [T] C [T]*, then E,([T]) C En(Th(Cipy)), where En([T]), En(Th(Cip)) are the corresponding
lattices of existential formulas. The class [T] is complete for existential propositions, which means that if
every theory in [T7] is a complete theory, therefore E,([T]) = E,(Th(Cjp))). [T] € JSp(A)/x is perfect,
then the semantic model Cy) is saturated, every Jonsson theory A € [T] is perfect. Then, by Theorem
1, each A € [T] has a model companion. Since [T] € JSp(A)/w is perfect [T]* is model complete by
Theorem 2.9.15 [17] , [T]* = Th(Cip)) if and only if ¥n < w,Vp € F,(A*) 30 € E,(A") : A" F ¢ < 0.

Let the Jonsson class [T] be J-A-stable, this means that if in the class there is a theory from [T]
that is stable, then by Definition 3 for each model A € EA we have that for each subset X C A, if
|X| < A then [S/(X)| < A

Note that if the class is perfect, then all Ea for A € [T] are equal to each other.

Suppose that [T]* is not A-stable. Then there exists A € Ean = ModA*, by Theorem 1, so there
is X C A such that |[X| < A\, 3n < w = |S7(X)| > \. For each formula ¢ € p, where p € S,,(X), we
replace ¢ with 6 satisfying the properties A* F ¢ <+ 6 and 6 € E,,([T]*). Let p’ be p after replacement.
Then p’ € S7(X) and |S”(X)| > A. This contradicts the J-A-stability of the class [T].

2 The central type of a semantic pair

Since our main goal in this article is to consider the special properties of central types, we will
work with some signature enrichments in which some fixed Jonsson theory is given, other questions
regarding this can be found [18,19,24,25].

In the future, the entire theory under consideration will be hereditary. We gave a detailed description
of the hereditary theory in paper [19]. Now let’s talk about the hereditary class. A class is hereditary
if every theory in that class is hereditary.

Let us consider some extension of signature ¢ and consider the central type of this extension for
all Jonsson theories [T] € PJSp(T) /. And the central types here are taken from enrichment © in the
previous work [19].

Next, we consider the concept of “finite cover property” which arises from the work of Shelah [26]. In
his works Shelag shows the following: an unstable theory has f.c.p., but this is not of great importance
for us, since we will only consider stable theories.

A denotes a set of formulas of the form ¢(Z,y). An m-formula, or p-m-formula is a formula of the
form o(Z,7) or ¢(&,a) where I[(z) = m and we consider § as a sequence of parameters for which we
will usually substitute some a and get ¢(Z,a).

Definition 4. [26; 62| Let o(z,7) € L, @°,...,a" ! € A.

(1) ¢(z,y) has the finite cover property (f.c.p.) if for arbitrarily large natural numbers n there
a’,...,a" ! such that = =(3z) A\, ¢(Z,a") but for every | < n, = (3z) Ni<n et (T, a).

(2) T has the f.c.p. if there exists a formula ¢(z,y) which has the f.c.p.

And so, for a special case, we form matrices where rows consist of ¢ — 1-type. And this matrix will
be the central type, and all partitions of the central type from the enrichment ® will be f.c.p.

(Pf(val) @i(xabQ) (Pf(l’,bqﬁ
©5(z,b1)  ©3(z,b2) ... pi(x,by) ...

p¢ = ...l s={0,1}.
(pfl(x,lh) Soi(xabQ) ‘p%(zvbn)
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For example, n =3, k=1, | = 2, then f.c.p:
Pi(z,a1) pi(2,a2) ¢i(z,a3)
90%(‘757 al) Spg(xv a2) 90%(‘%7 a3)
Qpé(xa al) 50:13($7 (12) Sog(xv (13)

From this it can be seen that f.c.p. can be extended to the central type, while p¢ must preserve the
hereditary property. When central type = f.c.p., then the theory will be unstable.

In this work, B. Poizat’s results on beautiful pairs are generalized on the case of 3-complete J-
A-stable hereditary Jonsson theory. Instead of f.c.p. and a type, we consider existentially finite cover
property (e.f.c.p.) and a central type, correspondingly, in a specific expansion of the signature. Professor
A. Yeshkeyev first made a report on this at the conference Logic Colloquium-2023 [27]:

Definition 5. [27] Let T be the Jonsson L-theory and f(Z,y) be an 3 formula of L language. If
for any arbitrary large n exists @’,...,a" ! in some existentially closed model of 7" and @°,...,a" !
satisfies =(3z) Ay, f(2,a@") and for any I < n —(32) \,_,, f(Z,a"), then f(z,y) is said to have e.f.c.p.
(existentially finite cover property).

In [1], the connection between fundamental order and definability was defined.

The fundamental order is a tool of comparing types over models of a complete theory: it measures
the degree of complexity of a type in the realization. This order is especially effective in the case of
a stable theory. Since the center of the T™ Jonsson theory is a complete theory, and we can consider
the fundamental order for central types. If the Jonsson theory is a perfect theory, then 7™ will be a
Jonsson theory. And also, due to the perfection of the theory of T' | any formula is existential in 7.

Definition 6. [20] Let A C M, 3-formula ¢(Z,7) € L(A) be called representable in p € S7 (M) if
there exists a tuple m € M such that p - ¢(z,m).

Definition 7. [20] M, N are existentially closed submodels of the semantic model Cr of the theory
of T.If p € S{ (M), and q € S{(N), p > q in the sense of fundamental order, if any formula represented
by p is also represented by gq.

Definition 8. [1] If p and ¢ represent the same formulas, we say that they are equivalent, and they
even have a class in fundamental order.

Theorem 3. |1] Let T be a stable theory, M, N are |T|* be saturated models of T, p € S1(M),
q € S1(N). Let A C M be |A| < |T|, such that p is defined for all formulas f(z,7): g(y,a) can be taken
with parameters a in A; then p and ¢ are equivalent in fundamental order T if there is an A’ C N
of the same type as A such that ¢ is the definable type of a formula of the form ¢(y,a’), where a’
corresponds to a.

A theory T is stable if and only if for any model M of T" and all p from S; (M), p is definable.

In the framework of the study of Jonsson theories, which are generally incomplete, and in some
expanded language with new unary predicate and constant symbols, we refine in such generalization
the earlier result obtained on beautiful pairs for complete theories from [1] (Theorem 4).

Definition 9. |27] Let Cr be a semantic model of T" and N, M be existentially closed submodels of
Cr. A pair (N, M) is called existentially closed pair, if M is an existentially closed submodel of N.

Lemma 1. If theory T is a perfect Jonsson theory, then theory Thy3(C, M) is a perfect Jonsson
theory.

Definition 10. [27] An existentially closed pair (C7, M) is a semantic pair, if the following conditions
hold:

1) M is |T|"-3-saturated (it means that it is |T'|T-saturated restricted up to existential types);

2) for any tuple a € C each its 3-type in sense of T over M U {a} is satisfiable in C.
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By definition we see that it generalizes the excellent pair in [1], but weaker, because in the definition
the number of tuples is finite and by Definition 2.4.4 [17] the power of the semantic model is w™ and it
does not reach 2¥: 2¥ > W', wt +w = w™. Using the following Theorem 4 we can show the elementary
equivalence of semantic pairs.

Let class K be {(C, M)|M =3, C,(C, M) is semantic pair}.

Consider the Jonsson spectrum of class K:

JSp(K) ={V|V is Jonsson theory,V = Thy3(C, M), where (C, M) € K}.

It is easy to see that JSp(K)/w is the factor set of the Jonsson spectrum of class K by i,
[V] € JSp(K) /o
Let [V] be J-complete and J-A-stable Jonsson class, Cy) be a semantic model of the theory [V],

[V] = [V] in the enrichment of ®, [V]  is the center of the [V], p,q € S([V] ), V/ = Thya(C, M).
Theorem 4. (Cv), M1) and (Cjy), M2) are two semantic pairs, a and b tuples taken from each of
them, My, My € Ejy). Then (Ciy), M1) =v3 (Cv), M2), if their central types are equivalent by the

fundamental order V.
Proof. Follows from Theorem 6 in [1] and from Theorem 3.

Theorem 5. Let [V] be a hereditary, 3-complete perfect, and J-A-stable Jonsson class. Then the
following conditions are equivalent:

1) ﬁ* does not have e.f.c.p.;

2) Any |T|"-saturated model from V’ is a semantic pair;

3) Two tuples @ and b from the models of m* have the same type if and only if their central types
in sense of m* over M are equivalent by fundamental order m*;

4) Two tuples @ and b from models of V' and that are in Cy] \ M have the same central types in

the sense of [V] if and only if they have the same central types in the sense of [V]>k

Proof. 1) = 2). [V]* the center of [V] theory in the permissible enrichment ®. And by Theorem 2.
it is A-stable theory. In [26], Shelah showed that stable theories do not have f.c.p. If (N, M) is a
|T|*-F-saturated model from V', M is |T|T-3-saturated.

Let us assume that [V]* is not A-stable. Then there exists M € Ex = M Odm*, by Theorem 1,
so there is X C M such that |X| < \,;3n < w = |S/(X)| > \. For each formula ¢ € p, where
p € Sp(X), we replace ¢ with 6 satisfying the properties A* - ¢ <> 6 and 6 € E, ([T]*). Let p’ be p
after replacement. Then p’ € S/(X) and [S7(X)| > A. This contradicts the J-A-stability of the class
[V]*. Hence [V]* is stable and has a saturated model.

2) = 3). By Definition 10, since any sufficiently saturated model is a semantic pair.

3) = 4). Because if @ and b are in Cia] \ M let’s say that their types are over Cja) \ M are
fundamentally equivalent, that is, they implement a type over (.

4) = 1). If A" does not have e.f.c.p., then by Definition 5 there would not exist an arbitrarily large
number n. In the semantic pair (Ca}, M) for arbitrarily large n we find @, in M [1]. Moreover, any b

of a semantic pair, b € M is of the same type as @ over () in the sense of A would satisfy the opposite.
Therefore, @ and b will not implement the same type in the sense of A’, which contradicts (4).

Theorem 6. Let [V] be a hereditary, 3-complete perfect, and J-A-stable Jonsson class. If [7]* does
not have e.f.c.p. and A-stable class, then the class If [V] is J-A-stable and does not have e.f.c.p.

Proof. The proof follows from Theorems 4 and 5.
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[E. ZKywmabekona

Axademur E.A. Boxemos amuwndaev, Kapaeando, yrusepcumemi, Kapazando, Kasaxcman;
Kapazarov, undycmpusaavk yrusepcumemi, Kapazanow, Kasaxcman

loHcoHabIK crieKTpJepaeri MOHCOHABIK, CEMaHTUKAJIBIK KOocap
MEH IIEKTi >Ka0yAbIH 3K3UCTEHIINAJIIbl KACUETIHIH
MO/I€eJIdi-TeOPEeTUKAJIBIK KacueTTepi

Maxkasa Ke3 KeJireH pyKCATTBLIBIFEI 6ap 6aflbITyIa HOHCOHIBUIBIKTHI CAKTANTHIH CTAOMIII Opi MypaJIbl OH-
COH/IBIK, TEOPUSATAP/IBIH MOJIEJII-TEOPETUKAJIBIK, KACHETTEPIH 3epTTeyre apHajaran. 2KyMbIcTa CTaOUIIIIIIK
MeH KJIACCUKAJIBIK, CTAOUJIILIIKTI 6aiflIaHBICTBIPATHIH CTAOWIIIIIKTIH, KaIIbLIAMAChl HOHCOHIBIK, CIIEKTP-
JIep VIIiH I9jiesifieHTeH. ¥ CBIHBLIBIIT OTHIPFAH YKYMBICTa "MIEKTI YKaOyAbIH SK3UCTEHINAJIBI KacueTi" MeH
"ceMaHTUKAJBIK, Kocap" cekinmi »kaHa yrbIMzaap enrizinred. 2KoHe oCBbl CEMaHTHKAJBIK, KOCAp MEH IIIeK-
Ti »KabyIbIH SK3UCTEHIINAIbI KACUETIHIH, CTaOU/III KeMesl HOHCOHIBIK, CIIEKTPJIep YIIiH Herisri kacuerrepi
3epTTEJIreH.

Kiam cesdep: WOHCOHMBIK, TEOPHUsi, CEMAHTUKAJIBIK MOIEJb, PYKCATBLIBIFEI Oap OaflbITy, IEHTPAJIIBl THII,
MYPaJIbl TEOPUs, CTAOMJI/II TEOPHS, KEMEJI TeOPHst, DYHIAMEHTAJIIbI PET, KAHBIKKAH MO/IEJIb, IITEKT1 Ka0y/IbIH
9K3UCTEHINAJIBl KACUEeTi, S9K3UCTEHIINAJIIbI-TYUBIK, KOCap, CEMAHTUKAJIBIK KOCAP.
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[E. 2KymabekoBa

Kapazandunckut ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kasaxcman;
Kapazandunckuti undycmpuanrvroili yrusepcumem, Kapazanda, Kaszaxcman

TeopeTrnko-mMmoe/ibHBbIE CBOMCTBA ceMaTndeckux nap u e.f.c.p.
B HTOHCOHOBCKHX CHEeKTpaxX

CraThbsl MOCBAIIEHA U3YYEHUIO TEOPETUKO-MOJIEIBHBIX CBONCTB CTAOUIBHBIX HACJIEICTBEHHBIX HOHCOHOBCKUX
TEOPUiA, IIPU 3TOM MBI PACCMATPUBAEM MHOHCOHOBCKHUE TEOPHU, KOTOPBIE COXPAHSAIOT HOHCOHOBOCTH IIPHU JIIO-
6oM gomycTuMOM oboramenun. ABTopaMu J0Ka3aHO 00600IeHne CTabM/ILHOCTHU, CBSI3BIBAIOIIEE CTAOUIIb-
HOCTb M KJIACCUYECKYIO CTabMJIbHOCTD JIJIsI HOHCOHOBCKMX CIIEKTPOB. BBeIEeHBI HOBbIE TIOHATHUSI, TAKUE KaK
«IK3UCTEHITNATHLHOE CBONCTBO KOHEUHOTO TIOKPBITUS» U «CEMAaHTUYIECKas mapay. VI3yJeHbl OCHOBHBIE CBO-
crBa e.f.c.p. U CeMaHTUYECKNX Hap B KJIacCe CTAOMIIBHBIX COBEPIIEHHBIX HOHCOHOBCKMX CIEKTPOB.

Karouesvie crosa: HOHCOHOBCKAs TEOPHSI, CEMaHTHYECKasT MOJEb, JOIIYCTUMOEe O0OralleHne, IeHTPAIbHbBIN
THUII, HACJEJICTBEHHAsl TEOpUsi, CTaOUIbHAsI TEOPHUsl, COBEPIIEHHAsI TeOpHsi, (PYHIAMEHTAIbHBIN MOPSIIOK,
HACBIIMEHHAsT MOJIENb, €.f.C.p., 9K3UCTEeHITNATLHO-3aMKHY TasI Tapa, CEMAHTUIECKas mapa.
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ANNIVERSARIES

70th anniversary of Doctor of Physical and Mathematical Sciences,
Professor Baltabek Kanguzhin

Baltabek Esmatovich Kanguzhin was born on August 22, 1953, in
the village of Shukurkol, North Kazakhstan region. He graduated in
1975 from the Faculty of Applied Mathematics of the Kazakh State
University named after S.M. Kirov and has been working at the Mecha-
nics and Mathematics Faculty of the Al-Farabi Kazakh National Univer-
sity since then.

From 1979 to 1982, he was a full-time postgraduate student at the
Department of Mathematics of the Moscow State University named
after M.V. Lomonosov. In 1983, under the supervision of Academician
V.A. Sadovnichy, he defended his PhD thesis on "Inverse Problems
of Spectral Analysis of Differential Operators" at the Dissertation
Council at Moscow State University. In 2005, he defended his Doctoral
thesis in "01.01.02 — Differential Equations and Mathematical Physics"
at the Al-Farabi Kazakh National University.

Professor Kanguzhin’s scientific interests are diverse: transformation formulas and spectral properties
of higher-order differential operators on intervals, stochastic analysis. His primary applied research
is associated with problems of internal boundary tasks using the methods of function theory. The
main courses he teaches include mathematical analysis, geometric methods of mathematical physics,
mathematical models of theoretical physics and their analysis, stochastic analysis. One of his main
talents is the desire to understand the essence of ideas deeply.

Professor B.E. Kanguzhin established a scientific school in Kazakhstan on the spectral theory of
differential operators and its applications. Under his guidance, 13 candidates in physical and mathema-
tical sciences, 3 doctors of physical and mathematical sciences, and 10 PhDs have been defended. He is
the chairman of the Dissertation Council in specialties: 6D060100, 8D05401 — Mathematics, 6D070500,
8D06104 — Mathematical and Computer Modeling at the Al-Farabi KazNU.

Over the last ten years, he has been and continues to be the scientific leader of more than 5
international and national funded projects, including those for the identification of defects in mechanical,
pipeline, and electrical systems.

Professor Kanguzhin’s fundamental research results in spectral theory of differential operators,
theory of inverse problems of spectral analysis, main issues of approximation theory, generated from
internal boundary tasks in multiply connected areas, theory of pseudodifferential operators, and main
methods of complex variable function theory and its applications to solving fundamental mathematical
problems have been published in more than 150 scientific works, most of which are in high-ranking
international journals. He is the author of two monographs and six excellent textbooks, four of which
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are in Russian and two in Kazakh. He is an active member of the editorial board of several scientific
publications, such as: Journal of Mathematics, Mechanics and Computer Science, International Journal
of Mathematics and Physics, Ufa Mathematical Journal, etc.

In 2002, he was awarded the International Soros-Kazakhstan Prize.

Professor B.E. Kanguzhin successfully combines scientific activity with teaching. He has led the
Department of Mathematical Analysis and the Department of Fundamental Mathematics of the Mecha-
nics and Mathematics Faculty of the Al-Farabi KazNU, which was established to strengthen leading
mathematical departments such as mathematical analysis, probability theory and functional analysis,
as well as geometry, algebra, and mathematical logic. He twice received the state grant "Best University
Teacher" of the Republic of Kazakhstan in 2005 and 2012, the chest badge "For Merits in the
Development of Science in the Republic of Kazakhstan" of the Ministry of Education and Science
of the Republic of Kazakhstan in 2009, and the Y. Altynsarin badge in 2013, which also speaks of his
active and fruitful pedagogical activity.

B.E. Kanguzhin has a particular affinity for the academician V.I. Arnold, which is probably why
he adheres to his aphorism in working with his students: "A student is not a sack to be filled but a
torch to be lit". He has "lit" many young students such as D. Suragan, N. Tokmagambetov, etc., who
are now making significant contributions to mathematics.

His numerous friends and colleagues know him as a talented scientist, a respected and responsible
employee, a good, reliable friend, and a wonderful family man.

We congratulate Professor Baltabek Esmatovich Kanguzhin on his 70th birthday and wish him
further creative achievements, the preservation of activity and inspiration in science and education.

Editorial board of the journal
«Bulletin of the Karaganda University. Mathematics seriess
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70th anniversary of Doctor of Technical Sciences, Professor,
President of the National Engineering Academy of the Republic of
Kazakhstan, President of the Turkic World Mathematical Society
(TWMS), Academician of the NAS RK Bakytzhan Zhumagulov

Bakytzhan Tursynovich Zhumagulov (born August 18, 1953) is a
distinguished mathematician, a prominent state, political and public
figure, a major organizer of science and education in Kazakhstan,
president of the National Engineering Academy of the Republic of
Kazakhstan, president of the Mathematical Society of the Turkic World
(TWMS) and the Kazakhstani Mathematical Society. He is a laureate
of the State Prize of the Republic of Kazakhstan in the field of science,
technology, and education, an Honored Worker of Kazakhstan, a Doctor
of Technical Sciences, a professor, and an academician of the National
Academy of Sciences of the Republic of Kazakhstan, and the Interna-
tional Engineering Academy.

Academician B.T. Zhumagulov is a leading scientist in the field of computational mathematics,
development and application of information technologies, mathematical modeling, and mathematical
methods in solving problems of hydrodynamics and practical issues of the oil and gas industry. He is
the author of more than 400 scientific works and 12 monographs, published in Kazakhstan and abroad.

He began his career in scientific and teaching work at the Kazakh State University named after
S.M. Kirov. He progressed from assistant to professor, head of the department, vice-rector (1979
1991). He worked as the First Vice-Minister of Education and Science of the Republic of Kazakhstan,
head of the Internal Policy Department of the Administration of the President of the Republic of
Kazakhstan, head of the Department of Socio-Cultural Development of the Government of the Republic
of Kazakhstan (2001-2005).

In April 2008, by the decree of the President of the Republic of Kazakhstan, he was appointed
rector of the Al-Farabi Kazakh National University.

By the decree of the President of the Republic of Kazakhstan No. 1065 dated September 22, 2010,
he was appointed Minister of Education and Science of the Republic of Kazakhstan.

In 2017, by the decree of the Head of State, Bakytzhan Tursynovich was appointed a deputy of the
Senate of the Parliament of the Republic of Kazakhstan.

B.T. Zhumagulov has supervised more than 20 doctors and candidates of sciences.

He has been awarded the "Parasat" order, the "Eren engbegi ushin" medal, the USSR medal "For
Labor Distinction" and the Honorary Diploma of the Supreme Council of the Kazakh SSR. He has
received commendations from the President of the country N.A. Nazarbayev and has been honored
with the titles "Honored Worker of Science and Technology of the Republic of Kazakhstan" ;, "Honorary
Worker of Education of the Republic of Kazakhstan" , "Honorary Engineer of Kazakhstan".

For his significant contribution to international cooperation, active work in developing integration
processes in science, technology, and education, he has been awarded the Grand Gold Medal of the
International Engineering Academy and UNESCO, a special sign of the Federation of Engineering
Academies of Islamic Countries (FEIIC). For outstanding services in the development of science and
engineering, he has been awarded the high international award — the "Engineering Glory" order.

B.T. Zhumagulov is an active participant in the international scientific community. He is the first
vice-president of the International Engineering Academy (headquartered in Moscow, Russia). Since
1999, he has been the first vice-president of the Federation of Engineering Academies of Islamic
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Countries (headquartered in Kuala Lumpur, Malaysia). In 2009, he was elected president of the
Mathematical Society of the Turkic World.
Bakytzhan Tursynovich Zhumagulov celebrates his anniversary full of energy and creative force.
The editorial board of the scientific journal cordially congratulates Bakytzhan Tursynovich on his
70th birthday and wishes him good health and creative longevity.

Editorial board of the journal
«Bulletin of the Karaganda University. Mathematics series»
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