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Partial best approximations and the absolute
Cesaro summability of multiple Fourier series

The article is devoted to the problem of absolute Cesaro summability of multiple trigonometric Fourier
series. Taking a central place in the theory of Fourier series this problem was developed quite widely in the
one-dimensional case and the fundamental results of this theory are set forth in the famous monographs by
N.K. Bari, A. Zigmund, R. Edwards, B.S. Kashin and A.A. Saakyan [1-4]. In the case of multiple series, the
corresponding theory is not well developed. The multidimensional case has own specifics and the analogy
with the one-dimensional case does not always be unambiguous and obvious. In this article, we obtain
sufficient conditions for the absolute summability of multiple Fourier series of the function f € Lq(Is) in
terms of partial best approximations of this function. Four theorems are proved and four different sufficient
conditions for the |C;S|x-summability of the Fourier series of the function f are obtained. In the first
theorem, a sufficient condition for the absolute |C; 3|- summability of the Fourier series of the function f
is obtained in terms of the partial best approximation of this function which consists of s conditions, in the
case when 81 = ... = 85 = L. Other sufficient conditions are obtained for double Fourier series. Sufficient
conditions for the |C; f1; BQTA—summability of the Fourier series of the function f € L,(I2) are obtained in
the cases 31 = %, 1< f2< % (in the second theorem), % < B < +o0, B2 = % (in the third theorem),
-1<pi < %, % < B2 < 400 (in the fourth theorem).

Keywords: trigonometric series, Fourier series, Lebesgue space, partial best approximation of a function,
absolute summability of the series.

Introduction

Let R® be a s-dimensional Euclidean space of points I = (x1,x2,...,zs) with real coordinates;
I;={ze€R°:0<z; <2m, j=1,2,..,s}is a s-dimensional cube.
cosnr, =1
We put v;(nx) =< T "
sinnx, =2
We will consider the following multiple series

> Ba(@) =Y ...> B, . (x1,...7,), (1)
n>1 ni=1 ng=1

where n > & = (aq, ..., a5) means n; > «a; for all j =1,2,...,s;

AP = EHOE2).

Assume that ),ﬂ € R, where n is natural number.

The sum
_ S -1
_ —1 . _
@)= 3 TTA05) (4%)) B
1<k<nj=1

is called (C; ) = (C; B4, ..., Bs) average of the series (1).

*Corresponding author.
E-mail: bitimsamat10@gmail.com
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Partial best approximations ...

For a given number b5 we define the mixed difference as follows:
S— i €4
Aby = Z (1) = bp1ge
0<e<1

Here € = (g1, ...,€5). The series (1) is called ’C; B|)\ - summable (or absolutely Cesaro summable), A > 1, at the
point Z € I, if [5]:

‘AU(B) )‘ -Hn)-‘fl < 4o0.

Further, we put p; =

By L4(Is) we denote the ;pzlce of all Lebesgue measurable, 2m-periodic in each variable functions f(z), for
which )
q

1lla = /If(fc)\qdi“ <400, 1<q< oo

Let
Eni o, (flg = inf ||f() Ty Ol

Tny,

be the full best approximation [6] of the function f by trigonometric polynomials of order not exceeding n;
in variables x;(j = 1,..,s). Let us also consider the partial best approximation of the function f which is
determined by the formula [6]:

B (f)g = f [ £(21, s 0) = Talan, oo i1, (25), g1, s 28)

where T, (21, ..., 2j—1, (%), Zj4+1, ..., Ts) is a trigonometric polynomial in the variable x; of order not exceeding
n with coefficients from the space L, (Is_1).
It is known that [6; 44]:

By (g SC-Y ED (f)g, 1< q< 00,

Conditions for the absolute summability of series (1) in the case A =1, s = 2,0 < ; < %, j =1,2 were
investigated by I.LE. Zhak and M.F. Timan [7], and the questions of |C; 3|» summability of the Fourier series of
the function f € Lo(Is) were studied by Yu.A. Ponomarenko, M.F. Timan [5], and in the one-dimensional case
these questions were studied by I. Szalay [8]. Questions of the absolute summability of multiple trigonometric
series were also investigated in [9-18].

Results

Theorem 1. Let 1 < ¢<2,1<\A<gq, 51 = —65—%, —&-%—1 If feLy(Is) and

1

a
201y )% () . .

Zn (Inn)e (En)oo(f)q) <400, j=1,..,s,

then the Fourier series of the function f € L,(I;) will be |C; 3|, -summable almost everywhere on Is.
Proof. We prove the theorem for s = 2 (the methods are similar for the higher dimensions). In [9] it was
proved that if 1 < ¢<2,1<)A<q, 1 =2 = —,, §+ L =1 and

gni+1 gna+1 q

Z Z Z Z pzle -In kl In kQ < 400,

n1=0ns=0 k1=2"1+41 ko=2"2+41

then a double series of the form (1) will be |C; 81; 2] x-summable almost everywhere on Io.

Mathematics series. Ne 3(103)/2021 5



S. Bitimkhan, D.T. Alibieva

Let’s estimate the last series. For this we use the following inequality

gni+1 gna+l

Z Z Z Z pzlk’Z ~Inky In ko
n1=0

=0no=0 \ k1=2"1+1 ko=2"2+1

Q>

IA

n1 gn1+1 gna+1

o
< Z Z Z Ph,  Ikilnky |+
n1=0

no=0 \ ky1=2"1+41ko=2m2+41

Q>

A
00 na on1+1 ona+l q
q
+ E E E E Pryk, - mk1Inks | . (2)
ne=0n1=0 \ k1=2"1+1 ko=272+1

1

To estimate the first term, we apply Holder’s inequalities to the sum over ny for § = £, % + 7 = 1. We get

gn1+1 gna+1 a

Z Z Z Z pzl’% “Inky Inky <

n1=0n2=0 \ k;=2"1+1 ko=2"2 41

o n oni+1 gna+1 %
<C- Z 2n1(2—q)%(n1 + 1)§ . Z 2n2(2—q)%(n2 + 1)% Z Z (k1ko)? lekQ <
n1=0 nz=0

k1=2"1+41 ko=2m2+1

1

ni 9/ o7
o E st (5 et )

T’LQZO

n gn1+1 gna+1

X Z Z Z kle q kalkz

no=0k;=2"14+1 ko=2"2+1

A
q

=X
< C - Z 2711(2*!1)%(”1 + 1)% . (Z 2112(2*‘1),;7%(”2 + 1)q>\)\> X

n1=0 no=0

gni+l  gni+l
-2
X Z Z (k1k2)q pzlkZ : (3)
k1=2"1+41 ko=2
Now let’s estimate the following sum:

Q>

1

ni
>0 2T (ny + )T < (g + )T Y7 2mET0T < Oy 4 DTS,
n270

na =0

Using this inequality from (3), we obtain

oni+1 gna+l

oo ni
501 Y Y d, Wkilk| <

n1=0n2=0 \ k1=271+41ky=272+1

Q>

0o 2n1+1 2n1+1
—q)2 A —
<O YO )% | YT (ka)T 2,

n1=0 k1=271+1 ko=2

Q[

It is similarly proved

oni+1 gna+l

oo no
S0 Y Y d, kilk | <

na=0n1=0 \ k1=271+1ky=272+1

Q>

Bulletin of the Karaganda University



Partial best approximations ...

o) 2n2+1 2n2+1 %
_g)2 2 _
SO PRI P | Y Y (kak) T,
no=0 k1=2"2+41 ko=2
Taking into account the last two inequalities from (2), we obtain
A
00 0o 2n1+1 2n2+1 q
SY (XY s mkk) <
n1=0n2=0 k1=2"1+41 ko=2"2+1
0 on+l  gn+l %
2n(2—q) 2 22 -2
<O )P [ >0 N (kiko) 0, | (4)
n=0 k1=1ko=2"+1

Further, applying the Hardy-Littlewood theorem [19] and using the monotonicity of the logarithmic function
and the best approximation from (4), we have

2
on1+1 gna2+1 q

Z Z Z Z pzlkz -In k’l In kg <

n1=0n2=0 \ k1=2"1+1ky=2"2+41

< C - Z 22n(2—q)%(n + 1)2%

n=0

: Eé\z (flg<C- El)\,l(f)q +C- EQ)\,Q(]C)(I+
e 2 2 2"

+C- @M i~ 1) B pn(f)g Y
n=2

m:27z—1+1

[ee] NN n
<CEN(£)g+CEYy(f)g+C D om0 Inm)

m=3

1<

: E?i\l,m(f)q
The theorem is proved.
Theorem 2. Let1<q§2,1§)\§q,ﬁ1:$

, 1< By < &y o+ =1 If f € Ly(I2) and

n,00

(o)

_ A
2 :n%(qu(lJr,é’z))fl(lnn)% (E(J) (f)q) < +oo, j=1,2,
n=3

then the Fourier series of function f € Ly(I2) will be |C; B1; f2]x -summable almost everywhere on Is.
Proof. Since 1 < ¢ <2,1<A<q, A

&y —1 < Ba < g, + 4 & =1, then for |C; B1; fo[s- summability
almost everywhere on I, of a double series of the form (1) is sufficient that [12]

00 0o oni+1 ona+1 q

Z Z Z Z lekz -Ink; - ]4‘21(1—32)—1

< +00.
n1=0n2=0 \ k1=2"1+1ko=2"2+1

It is known that

[ V)
3
S
+
-
[ V)
3
©
T
AN
Q>

gni+1 gna+1

< i i Z Z lelm “In kl ’ kg(liﬁﬂil +

n1=0n2=0 \ k1=271+1 ko=272-+1

Q>

A
o o on1+1 gna+1 n
q(1—B2)—1
ST Y e o
np=0n1=0 \ ky=271+1ky=272+1

Mathematics series. Ne 3(103)/2021



S. Bitimkhan, D.T. Alibieva

Let us estimate the first term. To do this, we apply Holder’s inequalities to the sum over ny for 6 = ¥,

% Gi—l We get

Q>

gn1+1 gna+1

i i Z Z lekz nky - kg(l_ﬁ2)_1 <

n1=0n2=0 \ k;1=2"1+1 ko=2m2+41

Q>

o ny 2n1tl gnatl
) —q)2 A , — A
<C- Z g (2—q)% (nl + 1) <. Z 2rL2(1 aB2)% Z Z k1k2 /’Zlkz <
n1=0 no=0 k1=2"1+41 ko=2m2+41

Q>

gni+l  gni+l

= — A A
<(C- Z 2n1(3 q(1+52))q(n1+1)q Z Z k1k2 q— 2pk1k2

n1=0 =2"141 ko=2

For the second term (5), we similarly obtain

Q>

no gn1+1 gna+1

SY(T O g <

na=0n1=0 \k1=2"1+41 ko=2"2+1

50 gna+l  gna+l q
3—q(1 2 2 -2
<O Y 2O S )T (ST Y (k) 2,
no=0 ko=2"1+41 k;=2
Therefore N
gn1+l ona+1 a

n1=0mn2=0 \ k;=271+1ky=272-+1

gn+1l  gn+l q

<O )T | ST S (k) ey, | (6)

n=0 ko=2"41k1=2

Now, applying the Hardy-Littlewood theorem [19] and using the monotonicity of the logarithmic function
and the best approximation from (6), we obtain

gn1+1 gna+1 q

n1=0n2=0 \ k1 =2"1+41ko=2"2+1

A A
< C'EI\,1(f)q+C'E22 «+C Z m/s (3-al+52))= 1(lnm)q 'Efq\z,m(f)q-

The theorem is proved.
Theorem 3. Let 1 < ¢ < 2, 1<)\<q,—<ﬁl<+oo Ba = %,% %*1Iff€L( 2) and

St (B (1) < a3 12

then the Fourier series of function f € Lq(I2) will be |C; B1; Bg| A -summable almost everywhere on I5.
Proof. Tt was proved in [12] that, 1f1<q<2 1<A<gq, —<61<—|—oo By = i,, %—i—%:land

gn1+1 gna+1 q

X2l X X Ak <4

n1=0mn2=0 \ k;=2"1+1 ko=2"2 41

then a double series of the form (1) is |C; B1; B2|x- summable almost everywhere on Is.

8 Bulletin of the Karaganda University



Partial best approximations ...

Similarly to the previous theorem, we obtain

Q>

gni+1 gna+1

Z Z Z Z pzlk2 “Inky <

n1=0n2=0 \ k;=2"1+41 ko=2"241

o on+1 on+1 q
<O YD nT | 3 Y (kak) 0,
n=0 ko=2741 k1=2

Hence, applying the Hardy-Littlewood theorem [19] and using the monotonicity of the logarithmic function
and the best approximation, we have:

gn1+1 gna+1 q

Z Z Z Z pzlk2 “In ks <

n1=0n2=0 \ k;=2"1+41ko=2"2+1

N 2a(gg) 2
<C- EI\,l(f)q +C- E2)\,2(f)q +C Z me 79 1(lnm) 4 E;?\z,m,(f)‘I'
m=3
The theorem is proved.

Theorem 4. Let 1 < q<2,1<A<q, =1 <1 < 7, 5 < o < +00, ¢ + & = 1. If f € Ly(I) and

> . , A
> ontCma It (BO) (£),)" < 40, G =12,
n=2

then the Fourier series of function f € Lq(I2) will be |C; 81; f2]x -summable almost everywhere on Is.

Proof.Itwasprovedin[H]that,if1<q§2,1§)\§q,—1<ﬁ1<$,$<ﬁ2<+oo,$+$zland

A
gn1+1 gna+1 q

Z Z Z Z lekg ,k1Q(1*ﬂ1)*1 < 400,

n1=0n2=0 \ k;=2"1+41 ko=2m2+41

then a double series of the form (1) is |C; 81; f2|x-summable almost everywhere on Is.
For the last converging series, similarly to Theorem 2, we obtain

o) o) on1+1 gna2+1 q

Z Z Z Z pZﬂcz ’ qu(l_ﬁl)_l <

n1=0ny=0 \ k3=271+41ky=272+1

2n+1 2n+1 q

(3 2 _
<C- ZQ (B=q(1+p1)) 7 . Z Z(klkz)q QpZZﬂCz
n=0

ko=2"+1k,=2

Hence, applying the Hardy-Littlewood theorem [19] and the monotonicity of the best approximation, we
have:

2n1+1 2712+1 q

Z Z Z Z lekz ,qu(l—ﬁl)—l <

n1=0n2=0 \k1=2"1+1ko=2"2+1

<O BN (f)g+C Y maGab-1. g (f),.
m=2

The theorem is proved.

Mathematics series. Ne 3(103)/2021 9
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Axademur E.A. Boxemos amuwvindazv. Kapazandv yrusepcumemi, Kapazanow, Kaszaxcman

Jlepbec eH »KaKChI >KYyBIKTayJ1ap >koHe ecelli Pypbe KaTapbIHbIH,
abCOJIIOTTI Ye3apOoJIbIK, KOCHIH/IbLJIAHY bl

Maxkasa ecesni Tpuronomerpusiibik @ypbe KaTapbiHbIH e3apo GoiibiHITA aOCOMIOTTI KOCBHIHABLIAHY CYypa-
reiHa apHasraH. Pypbe Karapapbl TEOPHSCHIHIA epeKille OpHbl bap Oysi cypak Oip esmemai karmaiiia

JKETKITIKTI KeH 3epTTeJireH xKoHe 6yJ1 TeopusiabiH, ipresi mormkenepi H.K. Bapu, A. 3urmyna, P. 9asapc,
B.C. Kamun xone A.A. Caaksuuby [1-4] Gesnrini monorpadwmsmapega kenaripiaren. Ecemi karapsap
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Partial best approximations ...

JKaFafiblHa COMKeC TeopHhsi COHINAJBIKTHI KYIIITI KacajMaraH. Fceml Kapmali/iblH €3 epekiensikTepi 6ap
JKoHe Oip eJimem i »KargaiiMeH YKCACTBIK, OpKalllaH OIpMoHJII eMec »KoHe alKbIH Oosa Gepmeiimi. Maka-
aana f € Lg(Is) dysxuusacoby ecesni Pypbe KaTapbHBIH abCOMIOTTI KOCHIHBLIAHYBIHBIH, *KEeTKITIKTI
MAapTTapbl OChl (PYHKIMSHBIH, Aepbec eH 2KaKChl KYBIKTayIapbl TiTiHIe aJbiHFaH. TepT Teopema JoJiesiie-
win, f € Lq(Is) dbyuxnuscomby ®ypbe katapsmbid, |C; B|n KOCBIHABLIAHYBIHBIH 9PTYPJI TOPT JKeTKimTKTi
mapTsl HakThIanraH. Bipinmi Teopemana f € Lq(ls) dyukuusceinbiy Pypbe Karapbiubiy |C B |» KOCBIH-
JBLIAHYBI OChI (DYHKITUSHBIH 1epOec €H YKAKChI KYBIKTAyIapbl TUTIHAEr § MAapTTaH TYPATHIH KETKITIKTI
maprel f1 = ... = B = % KargailblHga ajblHFaH. Backa »KeTKigiKTi maprrap eki ecesii @ypbe KaTapaapbl
yiuin ansiEabl. f € Lq(I2) dyukuusceinbiy @ypoe Karapbably |C B1; 82|y KOCBIHIBIIAHY MAPTTAPHI MBIHA
Kargaiiapaa agbiaael: f1 = %, -1 < B < % (exinmmii Teopemana), % < B1 < 4o0, B2 = % (yrmiammi
Teopemana), —1 < f1 < %, % < f2 < +00 (Teprinmi TeopeMasa).

Kiam cesdep: Tpuronomerpusiiibik, Karap, @ypbe Karapsol, Jleber kenicriri, GyHKIUIHBIH, AepOec eH *KaKChI
JKYBIKTaybl, KATAP/IBIH a0COJIOTTI KOCHIHIBIIAHYBI.

C. burumxan, JI.T. Anubuesa

Kapazandunckutl ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kasaxcman

YacTHble HaMJIydnIme OpubanKeHnsd u adCoTIOTHAs
9e3apOBCKas CyMMUPYEMOCTh KPaTHBIX psaaoB Pypbe

CraThs TIOCBAIIEHA BOIPOCY abCOMIOTHON CyMMUPYeMOCTH Mo Je3apo KpaTHBIX TPUTOHOMETPUIECKUX Psi-
jioB @yphe. DTOT BONPOC, 3aHUMAasl IIEHTPAIBLHOE MECTO B TeopuH psijioB Pypbe, B OJHOMEPHOM CJIydae
paspaboTaH JOCTATOYHO MHMPOKO M (DyHIAMEHTAIbHBIE PE3YIbTATHI ITOH TEOPUH M3JIOKEHBI B U3BECTHDBIX
monorpaduax H.K. Bapu, A. Burmynna, P. Dasapaca, B.C. Kamuna n A.A. Caaksana [1-4]. B caygae kpa-
THBIX PsiJIOB COOTBETCTBYIOIAsi TeOpUsl pazpaboTaHa He CTOJb CUIBLHO. MHOrOMepHBIii ciiydail umeer CBOIO
cnenuduKy, 1 aHAJOTHS C OJTHOMEPHBIM CJIy9aeM JAJeKO HEe BCETJa OJHO3HAYHA M OYEBUIHA. B cTaThe mo-
JIy9EeHBI JIOCTATOYHBIE YCJIOBUS aGCOTIOTHON CyMMUPYEMOCTH KPaTHBIX psanoB Pypoe dynkuun [ € Lg(1s)
B TepMUHAX YACTHBIX HAWJIYJIIAX NPUOIMKEHUH JaHHON (dyHKiuu. JloKa3aHbl YeThIpe TEOPEMBI U TIOJY-
YEeHbI YeTBIPE PA3HBIX JOCTATOYHLIX yeosuii |C; B|y cymmupyemoctu paja ®@ypoe bynxmuu f € Ly(Is). B
IepBOil TeopeMe MOJTyHYeHo JOCTAaToYHOe ycaosue abcomornoit |C; B|x cymmupyemoctu psaga Pypbe dbyn-
kiuu f € Lq(Is) B TepMUHAX YACTHOIO HAMJIYUINEro NPUO/INKEHHs 9TON (DYHKIWH, KOTOPOEe COCTOUT U3 §
YCJIOBHIA, B Ciiydae Korma 31 = ... = Bs = %. Jlpyrue 10CTaTOMHbIE YCIOBHS MOy I€HbBI JJIsl JBOMHBIX PSIIOB
Dypoe. Jocrarounsie ycnosus |C; B1; B2|n cymmupyemocru psiga @ypoe bdyuxuun f € Lg(l2) mosydenst
B ciaydasx (31 = %7 -1 < pa2< % (Bo BTOpOIT TEOopeme), % < B < Hoo, B2 = % (B Tperbeil Teopeme),
-1<p < %, % < B2 < 400 (B 4eTBepTOil TEOPEME).

Karoueswie crosa: TpuronoMmerpudeckuil psan, psag @ypee, npocrpancTtso Jlebera, YacTHOEe HAMIyUIIee IPH-
okeHne (pyHKIMHA, aDCOJIIOTHAA CYMMUPYEMOCTD PsiJia.
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Solving fully fuzzy linear programming problems
by controlling the variation range of variables

This paper deals with a fully fuzzy linear programming problem (FFLP) in which the coefficients of deci-
sion variables, the right-hand coefficients and variables are characterized by fuzzy numbers. A method of
obtaining optimal fuzzy solutions is proposed by controlling the left and right sides of the fuzzy variables
according to the fuzzy parameters. By using fuzzy controlled solutions, we avoid unexpected answers. Fi-
nally, two numerical examples are solved to demonstrate how the proposed model can provide a better
optimal solution than that of other methods using several ranking functions.

Keywords: fully fuzzy linear programming, fuzzy linear programming, fuzzy number, ranking function.

Introduction

The general idea about fuzzy set theory was introduced by Zadeh [1]. Bellman and Zadeh [2] postulated the
very idea of decision making in fuzzy environment. The aforementioned concept has been utilized by Tanaka et
al. [3] as a solution for mathematical programming problems. Fuzzy linear programming was first generated and
suggested by Zimmerman [4] . Using the parametric programming method, Chanas [5] suggested the contingency
of the identification of a complete fuzzy decision in fuzzy linear programming. Programming models with crisp or
fuzzy constraints as well as crisp or fuzzy goals can be solved using interactive system proposed by Werners [6].

Using a technique introduced by Fang et al. [7], linear programming problems with fuzzy coefficients in
constraints could be solved. In an attempt to find solution for fully fuzzified linear programming problems
with fuzzy numbers in place of all the parameters and variables, Buckley and Feuring [8] proposed substitution
of the objective function for multiobjective fuzzy linear programming problem. Maleki et al. [9] solved linear
programming problems by comparing fuzzy numbers as decision parameters.

The ranking function used and suggested by Maleki [10] is a technique in solving linear programming
that has vague and uncertain constraints. By transforming fuzzy linear programming problems into multi-
objective linear programming problems, Nehi et al. [11] proposed and defined the concept of optimality for linear
programming problems. Ganesan and Veeramani [12] proposed and advocated an approach in which fuzzy linear
programming cannot be converted into crisp linear programming in solving a fuzzy linear programming problem
using symmetric trapezoidal fuzzy numbers. Hashemi et al. [13] suggested a two-phase method in which fuzzy
numbers replace decision parameters and the variables determine the optimal solutions of FFLP problems.
Rommelfanger [14] also introduced a new approach in solving stochastic linear programming problems with
fuzzy parameters.

Allahviranloo [15] suggested a new method in solving FFLP problems using ranking function. Nasseri [16]
proposed a method for solving fuzzy linear programming problems using a classical linear programming model.
Lotfi et al. [17] discussed FFLP problems by identifying all parameters and variables as triangular fuzzy numbers.
Ebrahimnejad and Nasseri [18] attempted to solve fuzzy linear programming problem with fuzzy parameters
by applying the complementary slackness theorem without necessitating the use of the simplex tableau. Kumar
et al. [19] proposed a new method in finding the fuzzy optimal solution of FFLP problems with inequality
constraints.

In this paper a new method is proposed to find the fuzzy optimal solutions of an FFLP problem with
equality and inequality constraints, as well as with triangular and trapezoidal fuzzy numbers, by solving one
linear programming problem only. Moreover, by controlling the left and the right sides of the fuzzy variables,
this model prevents the generation of broad fuzzy solutions that do not conform to other fuzzy parameters.

*Corresponding author.
E-mail: smd1376@gmail.comr
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One of the problems exhibited by a number of models for FFLP problems is their incapability to si-
multaneously solve equality and inequality constraints. Buckley and Feuring [8], Hosseinzadeh et al. [17], and
Kumar et al. [19] proposed three different models in solving FFLP problems. The model, proposed by Buckley
and Feuring, can only be used to solve FFLP problems with inequality constraints, whereas the models proposed
by Hosseinzadeh et al. and Kumar et al. can only be used to solve FFLP problems with equality constraints.
Another problem is the inability of some models to control the left and the right sides of fuzzy numbers, thus
generating broad answers and causing difficulties in the decision-making process. Therefore, this paper attempts
to overcome the shortcomings of previous approaches and to provide further insight.

In general, the narrow fuzzy parameters in an FFLP application indicate that these parameters have a
low range of variation. Thus, the fuzzy parameters of FFLP in this case have slight flexibility. Based on this
approach, a new model is proposed in solving FFLP problems, with equality and inequality constraints being
handled simultaneously by identifying the maximum and the minimum. Fuzzy solutions can also be determined
by this model, specifically when a number or all parameters and variables are triangular and trapezoidal fuzzy
numbers.

Preliminary Concepts

In this section we begin by recalling some basic definitions from fuzzy set theory and introduce the main
concepts needed in this paper. N

Definition 1. Let X be a collection of objects denoted generically by z. The fuzzy set A in the set of real
numbers is called a fuzzy set in X if A is a set of ordered pairs:

A= {(z,p5(2)) |z € X}

where f 7(x) is membership function of z in 7 such that pz(z) : X —[0,1].
Definition 2. A fuzzy set A is called normal if there is a real number z such that g () =1
Definition 3. Let A= (ml, m*, «, 6) g denote the LR-fuzzy number if its membership function is defined

as
l
m —z
L ( ) , x < ml,
Q@
1, m! <z <md,
pi(x) = ,
r—m
R ( ) , r >mY,
B
0, otherwise,

where L and R are reference functions, i.e., L, R : [0,400) — [0, 1] are non-increasing that L(0) = R(0) = 1
and L(1) = R(1) = 0 and «,8 > 0. The membership function of a LR-type triangular fuzzy number,
A= (m,a, B) LR, can be also defined as

pi(r) = R(ﬂﬁ-ﬂ”‘)’ e,

0, otherwise.

Definition 4. A fuzzy number A= (ml, m*, a, 6) is a trapezoidal fuzzy number if (see Figure 1(a))

l

eom—a) < <md
o
1, ml <z < m.
pi(x) =
(m +ﬂﬁ)—x’ m* <x <m"*+ g.
0, otherwise.
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Solving fully fuzzy ...

Definition 5. A fuzzy number A = (m,a, ) is a triangular fuzzy number if (see Figure 1(b))

e=(m=-0) a<e<m

o}
=~ = m — X
n@) (_’_5), m<xz<m+p.
0, otherwise.
a a B ' a d a* B
(a) Triangular fuzzy number (b) Trapezoidal fuzzy number

Figure 1. The LR-fuzzy numbers.

Definition 6. Let A= (ml7 m*, a, B) be trapezoidal fuzzy number, then

A-0 if mt—a>0
A<0 if m*+p5<0.

Definition 7. Let ﬁl = (mll, my, al,ﬁl) and 112 = (mé,m"g, a2752) be trapezoidal fuzzy numbers, then we
define arithmetic on fuzzy numbers:

A+ Ay = (my +my,mi +my, a1 + az, B1 + B)

Ay — Ay = (m —m¥,m¥ —mb, a1 + B, B1 + a2)

[ l l A Y
(m1m27m%m5,m102 + myar, mi B2 + mgﬂl) ) Ay -0, Ag > 0.
A1 Ay = (mymb, mimy, mbag + mhBy, mi By + miay) , A =0, Az < 0.
Lol l 1 T 1
(m%mg,mlmg, —mY By — my P, —miae — m2a1) , Ay <0, Ay < 0.

Remark 1. We denote the set of all LR-fuzzy numbers by F(R).
Definition 8. [20] A linear ranking function is a function R : F(R) — R, which maps each fuzzy number
into a real line, where there is a natural order

()= ;/Ol(La(x) + Ro(2))de

such that
R(kA+B)=kn(A)+n(B).
Let A = (m!,m*, a, ) be a trapezoidal fuzzy number, then

%(Z) = % (m! +m") +i(ﬁ—a).
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If A= (a, o, B) is a triangular fuzzy number, then
~ 1
%(A) :a—l—i(ﬂ—a).
Definition 9. [21] Let m,n € F(R) be fuzzy numbers then
e A= Bifandonly if R ( A
° A<Blfandonly1f9ﬁi

° A:Bifandonlyif%
Definition 10. A fully fuzzy linear programming (FFLP) is defined as follows:

/—\/—\/-\
b}
\_/\_/v
/—\
v

Z* = Min ¢ X,
s.t. Axtg (1)
x =0,

where ¢ = (El, . ,En) s /A[ = (alj)(an) s E = (31,, . .,bm>t7 X = (%17‘ .. ,En)t and Eijagiagjagj € .F(R) for
1=1,....m,7=1,...,n

The decision variables are fuzzy numbers while the coefficients of decision variables and the right hand
coefficients are characterized by uncertainties.

Definition 11. The fuzzy vector x € (F(R))" is a fuzzy feasible solution to (1) if

Ax=b and X = 0;
as a result X is a fuzzy feasible solution to (1) if
m(ﬁi)zm(%) and N(X) > 0.
Hence, S be a set of fuzzy numbers which satisfies the set of constraints are defined as follows:
- {i‘m(ﬁi) zm(@) and M (X)> o}.

Definition 12. A fuzzy feasible solution x* € S is a fuzzy optimal solution for (1) if for all fuzzy feasible
solution X € S we have

Xt <7
as a result X* is a optimal fuzzy optimal feasible solution to (1) if
R(cx*)<NR(cx).

Solving Fully Fuzzy Linear Programming

In this section a new method in finding the fuzzy optimal solution of the FFLP model (1) is proposed.
This method can be used to solve FFLP problems with equality and inequality constraints by identifying the
maximum and the minimum. This method can also be used in solving FFLP problems with triangular and
trapezoidal fuzzy parameters. Furthermore, by controlling the left and the right side values of fuzzy parameters
to make them proportional with other fuzzy parameters, the generation of broad fuzzy variables is prevented.

For this purpose we obtained an upper bound for the left () and the right (j3,,) sides of the fuzzy values.
The upper bound is prevented from exceeding «,; and ;. Consequently, the obtained fuzzy solutions are not
considerably broad but are controlled and thinner fuzzy solutions. In this paper, the upper bounds for a,; and
B:, are proportional to the ratio of the left and the right side values to the central value of fuzzy parameters.
Thus, we calculated the values of o, , B, and my;, such that the maximum value of the ratio of a,; and 3,
to my, is equal to M. By adding the following constraints to the problem fuzzy variables can be prevented from
becoming exceedingly broad:

Ay
T <M,

’m%“ B

<M, =12 n (2)

’m% ‘
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Solving fully fuzzy ...

Two solutions for the calculation of M are proposed. Firstly, M is calculated by acquiring the maximum amount
of the ratio of o and 8 to m for all fuzzy parameters of FFLP. Secondly, M is calculated by their mean.
The fully fuzzy linear programming (1) can be rewritten as follows:

Min Cixy,

s.t. ZEUEEJEE s i:1,2,~~-,m,
x]to ) j:1727"'7n7

where ¢; = (mcj,acj,ﬁ&.) , Gij = (maij,aaij,ﬁaij), by = (M, an,, By,), Tj = (mwj,amj,ﬁxj) are triangular
fuzzy numbers and @;;,b;,¢;,%; € F(R) for i =1,2,...,m, j=1,2,...,n.

We use the ranking function that was defined in Definition 8 for the defuzzification of the fully fuzzy linear
programming (3) and by adding constraints (2) then we have

j=1

A= ()
z] S M ) .] - 1727 )n7
|mm.7|
51:‘7 S M b j = 1727 )n7
|mx1|
m(gj)zo ) j:1727"'5n7
where
o y @ .
M= max { Ot Peu 0w Bu 0o B g 20 me, 0 (5)
3::11’22’ | mag | mag, | med " Ime | [me, | [me, |
or
o y o, .
M = mean ty Pay  On B O e May, 0, my, 0, me, 20 5. (6)
3::112272 ‘mau ‘ma” [, | M, | |mcj mcj’

Then
Mmg, —a,, >0 and Mmy, — B, >0, j=1,2,---,n.

Thus, we can write model (4) as follows:
n
j=1

s.t. zn:m(?i”i])zm(a) , 1=1,2,--- . m,

=1

mej_awjzo ) j:1727”'7na
Mg, — s, >0 T
mrj*aﬂﬂj’azwﬂﬂ%zo v J=12--n
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A standard form on a fully fuzzy linear programming (FFLP) is also defined as follows:

Z* = Min ¢x;

st. AX=1;
x = 0;
then we have
n
Min Z%(EJ@)
=1
n (~
s.t. Z%(Zi”%]):%(bl) s i:1,2,--~,m,
2 (%)
mej_awjzo ) j:1727”'7na
Mmmj_ﬂzjzo ) j:1727"'vn7
My, — Qs Oy, B, 20, j=1,2,---.n

Numerical Examples

In this section, two numerical examples are presented to describe the proposed method. The first application
is the standard diet problem formulated by Buckley and Feuring [8]. The first example presents FFLP with
triangular fuzzy numbers and inequality constraints, while in the second example FFLP with triangular fuzzy
numbers is also considered, but with equality constraints. We compared the proposed fuzzy objective optimal
solution with that from other models by Fortemps and Roubens [22], Chang [23] and Liou and Wang [24] that
use ranking function.

FEzxzample 1. Let us start by considering the following fully fuzzy linear program problem.

A farmer has three products P1, P2 and P3 to mix together to feed his pigs. He knows that the pigs need
a certain amount of foods F'1 and F'2 per day. Table 1 illustrates the units of F'1 and F2 that are available per
gram of P1, P2 and P3. Also, each pig should have at least (54, 4, 4) units of F'1 and at least (60, 4, 4) units
of F2 per day. The costs of P1, P2 and P3 vary slightly from day to day but the average costs are (8,1,1) ¢
per gram of P1, P2is (9,1,1) ¢ per gram, and (10,1, 1) ¢ gram for P3. The farmer therefore wants to know how
many grams of P1, P2 and P3 he should mix together each day, so that his pigs could get the approximate
minimum requirement and his costs reduce.

Table 1

Approximate units of food F; and product P; Example 1

Foods
Products F1 F2 Average costs
P1 (2.5, 0.5, 0.5) ( 5, 0.5, 0.5) ( 81,1)
P2 (4.5, 0.5, 0.5) ( 3, 0.5, 0.5) (91,1
P3 (5 , 0.5, 0.5) (10, 1.0, 1.0) (10,1,1)

Buckley and Feuring [8] have formulated a standard diet problem as follows:

Min (8,1,1)%; + (9,1,1)72 + (10, 1,1)75
st (2.5,0.5,0.5)%1 + (4.5,0.5,0.5)%5 + ( 5,0.5,0.5)%3 = (54,4, 4)
(5 ,0.5,05)F; + (3 ,0.5,0.5)%5 + (10,1 ,1 )T3 = (60,4,4)

L1,T2,T3 = 07
where Z; is triangular fuzzy numbers as follows:

%] = (mxj7a3€j7/8-7)j) 9 .] = 17273'
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In this example, we used formula (6) to calculate M for control the left and the right side of fuzzy variables
proportional to other fuzzy parameters.

M = mean { QYayy Bau Qp; B, e, 50]‘

) ) ) )
|mbi| |mbb| |mcj’ ’ch’

maq‘,j#o) mp, #07 mcj#o}

—mean{ 05 05 05 05 050505050505 1 1
12507 [2.5]" [4.5]" [4.5]" |5] " [5] " [5] " 5] " 3] [3] " [10]” [10]"

By using the model (7) we convert the FFLP (9) to following model:

Min  8myg, + 9Img, + 10my, — 20, — 2.2503, — 2.5, + 2084, + 2.2585, + 2.554,
s.t. 2.5mg, +4.5my, + 5mg, — 0.625a,, — 1.1250;, — 1.2500,, + 0.62583,, + 1.1250,, + 1.258,, > 54
SMy, + 3My, + 10my, — 1.25¢,, — 0.75¢,, — 2.5, + 1.258,, + 0.753,, + 2.58,, > 60

0.11m,, — ag,; >0, 7=12,3
0.11m,, — B, >0, i=1,2,3
My, — g, >0, g, >0, By >0, 7=1,23.

As a result, the fuzzy optimal solutions obtained are as follows:
# =(0,0,0), 5 =(0,0,0), Zj=(10.5,0,1.2), Z*=(105,10.5,22.5).
The following is the fuzzy optimal solution obtained from Buckley and Feuring [8]:
TP =(6.4,6.4,0), P*=(115,11.5,0), Z5*=(2,2,0), ZP*=(173,173,20).

The solutions of the method by Buckley were considerably broad, whereas all fuzzy parameters in this
example are narrow. In addition, the range of variation in these parameters is low, implying that the solutions
obtained by the method by Buckley are not homogeneous with the fuzzy parameters. Comparison between
the obtained optimal fuzzy variable solutions by the proposed method and those by the method of Buckley
revealed that the optimal fuzzy variable solutions () by the former are narrower than those (ijB*) by the
latter (Figures 2(d), 2(e) and 2(f)). Specifically, 72* and #£* were wider than Z; and Z. Thus, the fuzzy
solutions acquired by the proposed method are homogeneous with the fuzzy parameters of the fuzzy problem.
We subsequently compared the fuzzy objective optimal solutions obtained by both methods by performing
several methods of comparison of fuzzy numbers, and the results are shown in Table 2. All ranking functions
indicated that the fuzzy objective optimal solution by the proposed method is better than that by the method
of Buckley, except for the Liou and Wang ranking function with A = 0 that exhibits the fuzzy objective optimal
solution by the method of Buckley as much broader than that by the proposed method. Therefore, a farmer can
produce food for his pigs at a reduced price, given that all conditions are satisfied. With regards to decisions
related to the narrow fuzzy variable, the farmer must best speculate the amounts of P1, P2, and P3 products
to be mixed together.

Table 2

Comparison of our optimal solution with optimal solution
of Buckley on the FFLP in Example 1

Ranking Functions zZ* Z B Ranking results
Fortemps and Roubens 108 134.8 Z* = 7B
Chang 1797 11773 Z* = 7B
Liou and Wang A = 0 99.7 86.5 Z* = 7B~
Liou and Wang A = 0.5 108 134.8 A A
Liou and Wang A = 1 116.2 183 A A
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Figure 2. The graphical comparison of the results obtained from this study
with the results represented by Buckley and Feuring [8] in Example 1

Ezample 2. Consider the following fuzzy linear program [17].

(15,5,2)z1 + (16,6,4)x2 + (14,4,3)Z3 + (12,2,2)Z4

(10,2,3)z1 + (11,1,2)x2 + (12,3, 1)z3 + (15,4,2)z4 = (411.75, 140, 162)
(14,2,2)x1 + (18,4, 1)x2 + (17,3,3)x3 + (14,1,4)74 = (539.5, 154, 220)

Max
s.t.
5’:1752,%3)%4 = 0;
where Z; is triangular fuzzy numbers as follows:
‘%j = (majj’awj)ﬁl‘j)7 J - 1, 2,3 and 4.

In this example, we used Formula (5) in order to calculate M and control the left and the right side of fuzzy

variable proportional to other fuzzy parameters.

:max{llOl’|10|’|11|’|11|’H?I’H?I’HH’HH’M’M’H&’H&’H?I’H?I’M’M’
140 162 154 220 5 2 6 4 4 3 2 2\ .
|411.75]" [411.75| [539.5] " |539.5]" [15] [15]" [16]" |16] [14] |14] (12 [12]f —

By using Model (8) for maximization form of fully fuzzy linear programming, we convert the FFLP (10) to the

following model:
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1
Maz  15my, + 16my, + 14mg,, + 12m,, + 1 (—3my, — 2myg, — My,
—150, — 160, — 14as, — 1204, + 1585, + 1684, + 148, + 125s,)
1
s.it. 10my, + 11lmy, + 12m,, + 15m,, + 1 (Mgy + Mgy — 2My, — 2my,
100y, — 11ag, — 1204, — 150y, + 108, + 118, + 128, + 158,,) = 417.25

1
14my, + 18my, + 17my, + 14my, + — (—3my, + 3my,

4
—1doy, — 18y, — 170y, — 14y, + 1484, + 1854, + 1784, + 145;,) = 556
0.408m,; — a,, > 0, j=1,2,3,4
0.408my; — By; > 0, j=1,2,3,4
My, —z; >0, g, >0, By >0, 71 =1,2,3,4.

As a result, the fuzzy optimal solutions are as follows:

7 =(33.23,0,13.57), % =(0,0,0), Z&=(0,0,0), Z; = (2.63,0,1.07)

Z* = (531,172,228)

This example has been solved by Lotfi et al. [17]. They have solved this example by solving two linear
programming problem. The fuzzy solutions of first and second linear programming problem are in I and
:EJH2* (j = 1,2,3,4), respectively (Figure 3). Then, fuzzy objective solution has been obtained by using the

fuzzy solutions of these linear programming problem. The following results have been obtained:

F1* = (38.14,10.25,0), 3" =(0,0,3.31), F'* =(0,0,0), F"* = (2.65,0,0)
T = (37.47,8.33,0), ' =(0,0,3.82), 3" =(0,0,0), [ =(2.97,1.18,0)

Z M = (560, 226.3, 226.3)

In this example, we show that the proposed method can also solve FFLP problems with equality constraints
by focusing on one linear programming problem only. Comparison of the optimal fuzzy variable solutions of
the proposed method and those of the method by Lofti et al. revealed that #471* and Z472* are wider than Z3.
(Figure 3(i)) Moreover, 4/1* = 7/12* = 7% and the widths of Z{I'* (or Z{#2* ) and 7 {I?* are almost identical to
that of 2% and 7 , respectively (Figures 3(h) and 3(j)). Furthermore, Lotfi et al. obtained two fuzzy solutions
corresponding to each fuzzy variable. However, the fuzzy solutions were difficult to determine. Table 3 displays
the comparison between the obtained fuzzy objective optimal solutions of the proposed method and those of
Lotfi et al. who employed various methods in comparing fuzzy numbers. The obtained solutions by the proposed
methods are narrower and more controlled than those of Lotfi et al. All ranking functions indicated that the
obtained fuzzy objective optimal solution of the proposed method is better than that of Lotfi et al.

Table 3

Comparison of our optimal solution with optimal solution
of F. H. Lotfi [17] on the FFLP in Example 2

Ranking Functions Z* Z = Ranking results
Fortemps and Roubens 560 560 AR A
Chang 130997 126728 Z* = ZHx
Liou and Wang \ = 0 444.95 444.85 Z* = ZHx
Liou and Wang A = 0.5 560 560 AR Ak
Liou and Wang A = 1 674.9 673.1 AR A
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Figure 3. The graphical comparison of the results obtained from this
study with the results represented by Lotfi et al. [17| in Example 2

Conclusion

In this paper a new method of solving fuzzy linear programming problems is proposed. The suggested
method can solve fuzzy linear programming models with equality and inequality constraints by maximiza-
tion and minimization, and by solving one linear programming problem only. By considering the constraints

Mm,,

—ag; > 0 and Mmg,; — B, > 0, the proposed model was able to control the left and the right sides

of fuzzy variables with respect to other fuzzy parameters of the problem. Therefore, the homogeneity among
fuzzy solutions and other fuzzy parameters of the problem can be achieved. In addition, this model prevents the
generation of broad fuzzy solutions, therefore, making the appropriate decision-making process easier and more
convenient. Moreover, the fuzzy objective optimal solutions obtained by the proposed method are better than
those by other methods, whereas the fuzzy solutions obtained by the proposed method are also more limited

and narrower.
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C.M. Hasymu, H.A. A6ayn Paxman

Mamemamuxa eviavimdapo. mexmebi, Manatizus evirvimu yrusepcumems, Ilenwane, Manatizus

AliHBIMAJIBLIAPBIH, ©3Tepy ANaIla30HbIH DacKapy
ApPKbLJIbl CHIBBIKTHIK OaFaapJiaMaJiayablH TOJBIK
aHBIK eMeC MoceJieJIepiH Ienry

Maxkasiaa menriy affHBIMATBLIAPBIHBIHE KO(DMUIUEHTTEP], OH KOIMDDUITNEHTTED KOHE alfHBIMAJIbLIA-
PBI AHBIK, eMEC CAHJIAPMEH CUIIATTAJIATHIH TOJIBIK, AHBIK €MEC ChI3BIKTHIK Garmapinamanay (FFLP) moce-
Jieci KapacThIpbLIFaH. AHBIK eMec apaMeTpJepre ColKec aHbIK, eMeC alfHbIMAJIBLIAPIbIH, COJI KOHE OH,
GeJtikTepiH 6acKapy apKbLIbl OHTAMIBI AHBIK €MeC IIeNNMIAEPAl aJly 9/Iici YChIHBLIFaH. AHBIK eMec
GacKapbLIATBIH MIEMIIMIEP/Il KOJIaHCa, aBTOpJIap KYTIereH Kayanrapjaal ayiak 6osaabl. COHBIHIA,
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YCBIHBLIFAH MOJIEJIb OipHele capaJjay (pyHKIUsIapbiH KOJIJAHATHIH 6acKa dicTepre KaparaH a KaKChI
OHTAMJIBI IIEINM 6epe aJlaThbIHIBIFBIH KOPCETETIH €Ki CAaHJIbIK, MbICAJ KeJITipijiii.

Kiam ceadep: TOJBIK, aHBIK €MeC ChI3BIKTBIK OarIapjamMaliay, aHbIK eMEeC ChI3BIKTBIK, OargapJaMaliay,
aHBIK eMeC CaH, capaJiay (PYHKIIUSICHI.

C.M. JlaByu, H.A. A6y Paxman

LIxona mamemamuveckux nayk; Hayunund ynusepcumem Manatisuu, [lenarne, Manratizua

Penitenne mo/iHOCThIO HEYETKUX 33129 JIMHEIHOTO
IMpOrpaMMUPOBaHNUS IIyTEM YIIPABJIEHUS
ANAIIAa30HOM U3MEHEHUs NepeMeHHbIX

B craThe paccMOTpeHa 3a/1a9a IIOJHOCTBIO HEYETKOro nHeitnoro nporpammuposanus (FFLP), B koro-
Ppoit K03 DUIMEHTHI IEPEMEHHBIX PEIIeHNs], IIpaBble KOI(MMUIMEHTHI U IIepEMEHHbIE XapaKTePU3YIOTCs
HedeTKUMHU ducjaaMu. [IpeiokeH MeTO I Oy YeHns ONTUMAJBHBIX HEYETKUX PENIeHUi ITyTeM YIIPaB-
JIEHUsI JIEBOI M [PABOW YACTSIMU HEUYETKUX HNEPEMEHHBIX B COOTBETCTBUU C HEYETKUMU MAapaMETPAMU.
Wcnonb3yst HeYeTKHE KOHTPOJUPYEMBIE PEIEHUsI, aBTOPHI N30€KAIM HEOXKUJAHHBIX OTBETOB. TakuM
06pa30M, TIPUBEIEHBI PEINIeHNs IBYX UHUCIEHHBIX ITPUMEPOB, JEMOHCTPUPYIONINX KAaK IpeJjlaraeMast
MOJIEJIb MOXKET 0DECHeYUTh JIydlllee ONTUMAJILHOE PEIeHre, YeM JIPYTUe MeTOJIbl, UCIIOJIL3YIOIIe He-
CKOJIbKO (DYHKITUI PaH>KUPOBAHUSI.

Kmouesvie caoea: OTHOCTBIO HEYETKOE JIMHEHHOE IIPOrPAMMUPOBaHUE, HEYETKOe JIMHEITHOe IIporpaM-
MUPOBAHME, HEIETKOE UNCJIO, (DYHKIINS PAHKUPOBAHMUSI.
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Central Limit Theorem in View
of Subspace Convex-Cyclic Operators

In our work, we have defined an operator called subspace convex-cyclic operator. The property of this newly
defined operator relates eigenvalues which have eigenvectors of modulus one with kernels of the operator.
We have also illustrated the effect of the subspace convex-cyclic operator when we let it function in linear
dynamics and joining it with functional analysis. The work is done on infinite dimensional spaces which
may make linear operators have dense orbits. Its property of measure preserving puts together probability
space with measurable dynamics and widens the subject to ergodic theory. We have also applied Birkhoff’s
Ergodic Theorem to give a modified version of subspace convex-cyclic operator. To work on a separable
infinite Hilbert space, it is important to have Gaussian invariant measure from which we use eigenvectors
of modulus one to get what we need to have. One of the important results that we have got from this paper
is the study of Central Limit Theorem. We have shown that providing Gaussian measure, Central Limit
Theorem holds under the certain conditions that are given to the defined operator. In general, our work
is theoretically new and is combining three basic concepts dynamical system, operator theory, and ergodic
theory under the measure and statistics theory.

Keywords: Central limit theory, Subspace convex-cyclic operator, Gaussian measures.

Introduction

Linear dynamics is a branch of functional analysis. It studies the dynamics of linear operators connecting
functional analysis with dynamics. Linear dynamics is mostly dealing with the behaviour of iterates of linear
transformations. Linear transformations designated by their Jordan canonical form makes linear dynamics easier
to understand when on finite-dimensional spaces. However, when infinite-dimensional space taken into account,
linear operators may have dense orbits. One of the focal branches of dynamical system is ergodic theory [1],
which relates analysis with probability theory and deals with measurable dynamics. It exerts measure theory
to the study of the behavior of dynamical systems. Measure-preserving transformations and measure spaces are
the main study subjects in ergodic theory. In probability theory, one of the most substantial results is Central
limit theorem, in which under specific conditions the sum of a large number of random variables approaches the
normal distribution. This distribution is important since it is suitable for a lot of natural phenomena and social
sciences.

In this paper each section demonstrates some of the concepts described above whilst the operator subspace
convex-cyclic operator is working on them and illustrates the connections between those notions as follows. In
section two, subspace convex-cyclic operator is defined with such a property that correlates eigenvalues having
eigenvectors of modulus 1 with kernels of the operators. In section three we have shown that operators with
eigenvectors of modulus 1 are subspace convex-cyclic operators. It is also shown that those operators having
measure 1 Section four is to come up with a connection between linear dynamics and measurable dynamics with
the help of subspace convex-cyclic operators. In this section we have spelled some basic definitions in order to
be able to clarify the ergodicity of a transformation. The modified version of subspace convex-cyclic operator
is given by applying Birkhoff‘s Ergodic Theorem on the given operator. In section five Gaussian measure is
studied. Here eigenvectors of modulus 1 are used to get Gaussian invariant measure which is crucial for working
on a separable infinite Hilbert space. We have given a result that connects the concepts described together. In
the last section we have shown that Central Limit Theorem holds under the certain conditions that are given
to the defined operator after providing Gaussian measure.

*Corresponding author.
E-mail: karwan.jwamer@univsul. edu.iq
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New subspace convez-cyclic operators

We try to define a new result for showing operators are subspace convex-cyclic operators for subspace M.
In this section we try to find subspace convex-cyclic operators in a new point of view, that relates eigenvalues
of modulus 1 and kernels of operators. They play an important role in the following sections.

Theorem 1. Let T € B(H). Suppose |J ker(T — \) and |J ker(T — ) both span a dense subspace M
[A[>1 IAl<1
of H. Then T is subspace convex-cyclic operator for subspace M.
Proof. We show that T satisfies the subspace convex-cyclic criterion by letting

X = Span U ker(T — \) and
IAI<1

Y := Span U ker(T — \)
[AI>1

The sequence of functions x, : Y — H are defined as zx(y) = %y. Also, we define Py(T)y = A\Fy. and we use
technique Theorem 2.8 in [2] for extending xj to Y by linear functional. This makes sense because the subspace
Y is linearly independent. Thus for any y # 0 and y € Y, it may uniquely be written as y = y; + - - - 4+ y, with
yi € ker(T — X;) \ {0} and |A;| > 1. These vectors = and y can be expressed as the following form

k k
T = Zaixi and Y= Zﬁzyl
i=1 i=1

where P(T)x; = Az; and Py(T)y; = py; and the scalars ay, 5;, A, € C such that |A;] < 1 and |u;| > 1 for
i=1,2,--- k. Since

k
Pi(T)(x) = Zai)\mxi —0 and
i=1

k
1
zi(y) = Zﬁzu—myl —0 asm— o0
i=1

and  Py(T)zr(y) =y,

then the first and the second conditions of Theorem 3 in [3] are hold, for showing the third, the space H is an
infinite dimensional (Real or Complex) separable Hilbert space. We observe that

ze () U (@) '(By)

Jj=1PLeP

if and only if for all j € N there exist a convex polynomials Py such that z € Py(T)~!(B;) which implies
Py(T)(z) € B;. But since {B;} is a basis for the relatively topology of M, this occurs if and only if

——

Orb(T,z) N M is dense in M, which means T is subspace convex-cyclic transitive and by definition of M
convex-cyclic transitive, there exist U and V relatively open subsets in M such that

W:=PT)" " (U)NV #¢ [3].

In particular, non-empty subset W relatively in M, and W C P(T)~}(U). Then P(T)(W) C U and U C M,
so we get that
P(TY(W) Cc M.

Let € M, we must show that P(T)(M) C M. Take wy € W, since W is relatively open in M and z € M so
there exist r > 0 such that wg + rx € W. But P(T)(W) C M, that is,

P(T)(wo + r2) = P(T)(wo) + rP(T)z € M,
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then P(T)(wp) € M and M is subspace. So,
r~t (=P(T)(wo) + P(T)(wo) + rP(T)(z)) € M,

that is, P(T)(xz) € M. This is true for any = € M, hence for P(T)(z) € M, that is P(T)(M) C M. All
conditions are satisfied. We get that T is subspace convex-cyclic for M.
Remark 1. The inverse of the above theorem is not true, see Proposition 2.

FEigenvalue measure

We aim to show that operators with sufficiently many eigenvectors of modulus 1 are subspace convex-cyclic
operators. Let us first construct the following definition from Theorems 3.1 and 3.9 in [2] and Theorem 1. Here
we have not mentioned any density or properties related to density for details you can see [4], we just join it with
collection of eigenvalues and associated eigenvectors of the subspace convex-cyclic orbits that we have named
them orbit eigen-spaces. Such operator with unit measure property will help us for proofing the next outcomes.

Definition 1. Let T € B(H) be subspace convex-cyclic operator for a nontrivial subspace M of H. Then for
any scalar A € T. We define 2 as an orbit eigen-spaces if

A := Span [ker()\l - T)Orﬁ/\/l)} .

Definition 2. Let T € B(H) be subspace convex-cyclic operator for a nontrivial subspace M of H. Then
for any scalar A € T. We define unit measure p if for every measurable subset Q@ C T, u(2) = 1. And
u{ker(A\I —=T)} =0.

For imagining the Definition 1 and Definition 2 see the following example. For skipped steps we refer the
reader to review Example 4 in [3].

Ezample 1. Let A € C such that |\ > 1, and consider T := AB where B is the backward shift
on (% Let M be the subspace of ¢? consisting of all sequences with zeros on the even entries as
M= {{an}32y € %t agp = 0 for all k} [3].

Solution. For operators like T' defined above, surely we have an eigenvalue v under the condition |A| > |7/,
so in this situation we have ker(vI — T) = ker(yI — AB) such vector like x) € R will span them as

oSG

1=

where (e;) is a canonical basis for ¢ = 1,--- Let p be the measure on the unit circle that normalized T, and
suppose that a measurable set Q@ C T let h € H be an orthogonal vector such that (h,z,) = 0 for every v € Q
by Hahn-Banach Theorem we have a well known linear functional defined as

() = S (1)
0

1=

¢(y) — 0, since w is any subset of T, so there are two choices, if it is countable then we get contradiction
for been T as a subspace convex-cyclic operators, then it should be uncountable and in that case we have
a limit points around the circle center and that leads to p{ker(A — T)} = 0 and its obvious that taking
w(Q) = max{p(Q,T),1} = 1, where p is the metric that defined on the space depends on ¢? space. Then the
conditions in Definition 2 are satisfied.

Now, depending on Example 1 in [3] we can define M = (2 & {0}. Consequently we get that

Orb(T &I, (m@o))} N[ @ {0}] = 2o {0} =M

finally we can define
A := Span [ker(A\] — T)M].
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Subspace Conv-Cyc and Ergodic Theory

We previously obtained Subspace Convex-Cyclic Operators in Section 1 by another way. The aim of this
section is to provide a bridge between linear dynamics and measurable dynamics. The most important concept to
start with it is invariant measure, because it has the direct connection with Subspace Convex-Cyclic Transitive
Operators (see Definition 2 and Theorem 1 in [3]), bounded T : H — H, where M is subspace of H. If for
all non-empty open sets U C M and V C M, there exist a convex P such that U N P(T)(V) # ¢ or
P(T)"Y(U)NV # ¢ contains a relatively open non-empty subset of M if and only if M is an invariant subspace
for Py (T) for all k > 0 [3].

We first start by recalling some basic definitions of Ergodic theory. For more details see [5] which is very
useful related to that branch. In this section B is Borel o — algebra.

Definition 3. Let (H,B, u) be a probability space. We recall a measurable transformation T : (H, B, u) —
— (H,B, u) is a measure-preserving transformation, or p is T — invariant, if u(f~1(80)) = () for all U € B.

Definition 4. Let (H,B, 1) be a probability space and T' is measure-preserving transformation. For any
non-empty subset G of H, We say u is positive measure if u(G) > 0, as well For any non-empty open subset U
of H, We say p is fully support if u(U) > 0.

Definition 5. Let (H,B, 1) be a probability space. We recall a measurable transformation T : (H,B,u) —
— (H,B, 1) is Ergodic if it is a measure-preserving transformation and satisfies one of the following equivalent
conditions [5]:

1 Given any measurable sets U and V with positive measures, one can find an integer n > 0 such that

™mu)nv # 9,
2 if U € B satisfies T(U) C U then p(U) =0 or u(U) = 1.
The following Theorem is known as Birkhoff’s Ergodic Theorem.

Theorem 2. Let (H,B, 1) be a probability space and T : (H, B, n) — (H,DB, u) is measure-preserving and
Ergodic transformation. For any non-zero function f € L'(H, p),

1 N-1
=" p@ma) — [ fdu

as N — oo, almost everywhere.

In the following proposition, we demonstrate that Birkhoff’s Ergodic Theorem can also be applied to our
operator. So, this version will be our modified version with Subspace Convex-Cyclic Transitive Operators. The
proof will depend on the Mahlar measure as worked in [6] of polynomial measure.

Proposition 1. Let (H,B, 1) be a probability space and T : (H,B,u) — (H,B, 1) is measure-preserving
and Ergodic transformation. Given any measurable sets U and V. Then

1 N-—1
= S0 AP HU) O V) = AV
k=0

as N — oo, almost everywhere.
Proof. Since P(T)x as P(T) = ap + a1T + axT? + - - - + a, T",n € N, so we write it as

n

P(T) = a, [ [(T - a)

i=1

is defined by the formula
w(P) = ay, H max{1,a;}
i=1
and was first considered by Mahler. If P and @Q are non-zero polynomials, note that

n(P.Q) = p(P).u(Q).

n
L and letting A = a,, [] maz{1,a;} for measure intersection
i=1
from de Morgan’s laws, a collection of subsets is o — algebra under the operations of taking complements and
countable intersections.

The result directly comes after evaluating P(T)
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Now one of our results can be stated. We add fully support measure because here we depend on open sets
for taking any measure. The proof will depend the previous proposition.
Theorem 3. Let (H,B, 1) be a probability space with fully support measure and T : (H,B, u) — (H, B, u)
is measure-preserving and Ergodic transformation. Then T is Subspace Convex-Cyclic Operator.
Proof. Let (V;) for j € N be a countable basis of open sets for 7. Applying Proposition 1 to the collection
n
of constant function that are convex, a; where Y a; = 1 for any V;, we get a sequence of sets {U,} for all j,
i=0
such that

N—-1
% S o (P(T) "M (U;) N V;) = Ma(V;)
k=0

as N — oo, almost everywhere.
Now, we have two cases depends on the measure of V; and Ergodic definition. p(V;) =1, j € N, then we
set U := () Uj, let Uy and U; be open sets. Since by given
JEN

N—

>_A

1
U1 ﬂUQ) =

k:O

[3] which leads to P(T)~}(U) NV # ¢ is Subspace Convex-Cyclic Transitive Operator and we can deduce that
T is Subspace Convex-Cyclic Operator. The same thing is true for u(V;) = 0.

Gaussian measure

We claimed that there is a special measure under an invariant bounded transformation preserving with its
measure being ergodic 7' on H. We are interested to add an additional tool that supports measure space H.
Gaussian measure is an atmosphere space that should be studied. As we know, working on an infinite Hilbert
space without using Gaussian measure is not an easy way. To work with such a situation, we need Subspace
convex-cyclic on Borel o — algebra that has sufficiently many eigenvectors of modulus 1.

For that purpose we need this section. Eigenvectors of modulus 1 are the fundamental tools we use to get
Gaussian invariant measures. We need other definitions here. You can find more details in [7].

Definition 6. Let (H,B, 1) be a probability space and f : (H,B,u) — C is a complex valued measurable
function. Then f is said to have complex symmetric Gaussian distribution if the real and imaginary parts PRef
and Jmf of f have independent centered Gaussian distribution with the same variance.

This is equivalent to saying that PRef and Jmf are jointly normal and that f and Af have the same
distribution for any A of modulus 1 [8].

Definition 7. Let (H,B, u) be a probability space a Gaussian measure on H is a probability measure p on
‘H such that for every = € H, the function f, : y — (z,y) has symmetric complex Gaussian distribution.

In particular with this terminology, such a measure is centered:

[int) /fm Ydu(y /yd(fm( D) [9]-

H

Remark 2. A Gaussian measure is determined exactly by the operator S defined on H by the relation

(Si,y) = / (. 2) (g, 2y (=)

H

The operator S in probability books are called as covariance.

Proposition 2. Let T be a subspace convex-cyclic operator on a separable Hilbert space, and (M, B, 1) be
a probability space with Gaussian measure on M for any M C H. Then T'(n) also is a Gaussian measure on
M. Such that ker(T — M) span (fix(N\)), k> 1 for all A € T.

Proof. Since T is a subspace convex-cyclic operator, then each iteration of T" will be a new element in M, so
directly by definition of subspace convex-cyclic operator we get dense set that itself is Gaussian measure. Now
define a sequence of Borel o — algebra that sufficiently many eigenvectors points with certain eigenvectors of
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modulus 1 and polynomial operators as fi : T — B by fi(\) = 7a(x) such that for every A € T, where 7)(xx)
be orthogonal onto ker(T — AI). Then each element of the sequence fj is a Borel measure, so

(zp) =2 & T(x) = Ma),

which means 7 roll as a projection invariant and will span vectors (fx(A)) k > 1 is dense in ker(T — AI).

Quasi-factor is one of the most important concepts that has great application in dynamical system and
operator theory you can find details and application in both [9] and [10].

Definition 8. Let Ty : Xg — Xpand T : X — X be two continuous maps acting on topological spaces Xy and
X. The map T is said to be a quasi-factor of Tj if there exists a continuous map with dense range J : Xg — X
such that the diagram commutes, such that T'J = JT. When this can be achieved with a homeomorphism
J: Xy — X, sothat T = JTyJ ! we say that Ty and T are topologically conjugate. Finally, when Ty and T
are linear operators and the factoring map (resp. the homeomorphism) J can be taken as linear, we say that T'
is a linear quasi-factor of Ty (resp. that T and T are linearly conjugate) [10].

T,
Xy —— . Xa

I

N iy

We have similar results for the following theorem but with more conditions because they are defined with
other operators. Our operator makes this easier. Now, it remains to state the theorem that connect all concepts
to gather. Subspace convex-cyclic on Borel o — algebra that sufficiently many eigenvectors points with certain
eigenvectors of modulus 1, and invariant Gaussian measure.

Theorem 4. If T is a subspace convex-cyclic operator on a separable Hilbert space X, then T admits a
symmetry Gaussian invariant measure which is quasi-factor.

Proof. Let (fx()\)), k> 1 with the property that we deal with it in Proposition 2 for all A € T as defined in
Definition 2, Let ¢ be defined on ¢?(T, o) of sequences (gi) k > 1 of functions converges of ¢*(T, o)

0> gV =D Agr(N).
k=1 k=1

You can note that ¢ behaves as an operator of multiplication by A on each component, now it is time to define

kask: Y. (?(T,0) — H by Definition 7 we have,
k=1

oo oo

1

KY gr=_ ok /gk()\)fk()\)da(/\)-
k=1 k=1" 3

Then £ is a well defined operator on Hilbert space; each ry, : £2(T, o) — H, which maps gx, onto [ gr(N) fr,(\)do(X)

H
is a kernel operator. So, for any element in this sequence to be 0 without one which is arbitrary, this implies
that for every x € H

(x, / gk (V) f(N)dor (X)) = 0.

H

This implies that (x, fr(A)) = 0 in the sense o — algebra which means that x is orthogonal to ker(T — AI). This
implies that T" has a o — algebra set of eigenvectors that spanned. Which leads to « having dense range.

Now, if we want to show that T is quasi-factor, we make a choice of the operators pair as k, ¢, use the fact
that fr(\) € ker(T — \I), we get that for every gr(\) € > ¢*(T, o),
i=1
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o0 o0

Tﬁzgk ZZ

Ge(N)T fr(A)dao(X)

@

Il

I
2]~

Ge(MAfre(N)do(A)

@
Il
-

e gr(A do ()

i=1

I
M8
82| —

I
M8
02| —
.:1\ A

@
Il
-

= Kp Z 9r(A)
i=1

Central Limit Theorem

There are many important applications of central limit theorem, which are related to many branch of
mathematics such as probability, dynamical system, operator system and many others. Our focus is on dynamical
system that deals with Gaussian measure. How far a dynamical system is form an independed under conditions
that added to such operator T. We prove that the central limit theorem also holds after providing Gaussian
measure. The concepts of central limit theorem can be defined as follows without losing generality and modifying
the definition in [11].

Definition 9. Let A be a 0 — algebra with a Subspace Convex-Cyclic operator T and some operator f where
f € L*(H, ). Then by assumption of Theorem 2 we say that

° n—1
fi+ \/gf T %/fdﬂ

converges in distribution to a o — algebra random variable.
Theorem 5. Let T € B(H). Suppose that T satisfies the following assertion:
1 Theorem 3 in [3], and then T be Subspace Convex-Cyclic operator.
2 Definition 2
3 Suppose that there exists P collection of polynomials, also o € (1, 00) such that for any f,g € P

1
<fOTn,g> <Cia .
n

1

Then T" and the sequence of function T(f +f+---+ foT™ 1) converges in distribution to a Gaussian measure
n

spaces.

Proof. Let w be any non-decreasing function. Let (z)ren be a dense sequence in D and T*z < w(k). By
the first assumption we have that any k£ € N,

| wik)
oo < T e

alS( C) ec ¢ i . it] ’ i iti O Ila’l I)I OpeI ties tllat l he Sequellc
(pl) Satisﬁ S €
k >— 17 l >— q7 W (l)q < p /

vk 2 17 Z(Nl-i-l - Nl)plzi(Ia
>1

where the nature of [ can be review in Lemma 2 [3] for choosing N; and N;;1, to prove that P C (2(H,B, u),
it enough to show that, for any k > 1, (z, )" € (2(H,B, p)

Nj+1 q
[ <Z ) Ty> du((n1))
H M V21 k|=N
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Ni+1
< Z /< Z Tk:rnk,y>dﬂ((”k))-

boonlg>15 \|[k|=N,

We then apply Hdélder’s inequality to get

N,+1
[ < (M/ ST xy> dp((n1))
lyeylg>1 k|=N,,

H

1
q

We fix [ > 1 and we want to calculate

N;+1

/ < ST xy> du((me).
M

[k|=N,

Let (ng) C M and let us write

N;+1 Ni+1 q
< Z T xm,y> < 21 < Z (ng < l))Tkxnk,y>

[k|=N, [k|=N,

Ni+1 4
+ < Z ((nk > l))Tk.Z‘nk,y>

‘k\*NI
< 5 . Y(Nig — NIt
N;+1

Z <Tkmnk , y>q .

[k[=N;

We take integral to this inequality over M for getting

N;+1 99
M

[k|=N;
N;+1
2207 (Nipr = N D0 po (TH i, )"
|k|=N; m>1
24
< 5 +2%(Nijr = N)T Y ppow(m)?
m>1
24
< g +2 21(Nip1 — Ny)Tpymax(w(l), w(q))
7+ 20Ny — N)p} ()
—2ld I+1 — IV1)" Py q)”-

Since we assumed w({)9p; < pll/ , we take the exponent 1/q and we collect the inequalities to get
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Thus, (z, y}k € (?(H,B, 1) by constant Cyq which can be much bigger.
Because our operator is subspace convex-cyclic operator so such a polynomial, we choose a derivative
function, as f € w(k) and we observe that

(D* f(ar),y) < (D¥, f) - (i ye)*
so that, from the proof of the first point, we deduce

(D¥, f) < CPuw(k)*D¥(f).
k
Since D* f is convergent, then the series > & %(,x") is convergent in £2(#,B, ) converges in distribution
to a Gaussian measure spaces.
The following example will help us to understand the above theorem more. We apply Theorem 5, because
B,, satisfied all conditions that we had in the statement. It remains to show that how the inequality in the 3rd

condition will happen.
o0

Example 2. Let B, be a bounded backward weighted shift on ¢?(N). Suppose moreover that > W
n:1 n
converge. Then B,, converges in distribution to a Gaussian measure spaces.

Proof. Let w be any non-decreasing function. Let (a;,), € N be a dense sequence in N with |o2| < w(n).
We set D := (x,) n > 1, with z,, = a,,e;, where (e;) [ > 1 is the standard basis of £2(N). We define S,, on D by
Snle) = —L—zen.

n (wy..wy)2 En

Since (a, )y is dense in N then span(S,x, n > 1) is dense in H.

o0 (o]
As we get > BEap = aner, also Y Spai = aner, now

B>1 k<1
oo o0
E Sk, er ) = g Qp €, ek
k<1 k<1

[N

(S o )
(1; (wy...wp)?

Since %:1) > —— this yields to

1

w1
ZSkxk,ek < Cyleq Z ﬁ .
k<1 wW1... Wy

So, B,, satisfied all conditions. We get the result.
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X.M. Xacan, I.®. Axmen, M.®. Xama, K.X.®. JIxxBamep

Cyaetimanus yrnusepcumemi, Kypdicman atimaev, Cyaetimanus, Upak

Imki KeHICTIKTIKTI JeHeCc-INKJIAIK ollepaTopPJIapabl
ecKepe OTBIPbIN, OPTAJIBIK, IIIEKTI TeopeMa

MakaJstaza 1eHeC-IMKIIAIK 1IIKI KEHICTIKTI omepaTop el aTaJaThbiH OllepaTop aHbIKTAJFaH. Byl KaHaIaH
aHBIKTAJIFaH OIIEPATOP/IbIH, KACHETi 031HiH BEKTOPJIAPhI 0ap MEHIIKTI MOHAEP/, 6ip MOILYJIb/Ii OIIEPATOP/IbIH
SIIIPOJIAPBIMEH GalJIAHBICTHIPAIBI. ABTOPJIAP CHI3BIKTHIK JUHAMUKAIA KYMBIC YKACAFAH, OHbI (DYHKI[UOHAJI-
OBl TAJIAayMeH OipiKTipren Ke3/e AOHeC-IUKJIIIK 11MKi KeHICTiK OIepaTOpbIHbIH 9cepin cyperTereH. 2K ymbic
IIeKCi3 esmeM/i KeHICTIKTepIe OPBIHAAJIbI, OYJI ChI3BIKTHIK, OII€PATOPJIAP/IBbIH THIFBI3 opbuTasapra ue 00-
JIyblHA 9Kestyl MyMKiH. OHBIH ©JIIeM/Ii CAKTay KACHETI BIKTUMAJIIBIK KEHICTITH OJIMNEHEeTIH TUHAMUKAMEH
GipikTipeni »KoHe 3PrOATHIK, TEOPUSHBIH, TAKbIPLIObIH KeHelTeni. Conmaii-ak, JOHEC-IMKIIMIK iKi KeHicTik
OIIEPATOPBIHBIH, MONUMDUKAIMATIAHFAH HYCKACBHIH 0epy YIIiH BupKrod sproarsiK TeopeMachl KOJIIaHBIIFaH.
Cemnapabesii mekciz I'minbepT kenicririmen »xymbic icrey ymin ['ayccTbiy mHBApHaHTTHL JtreMi 60Ty bl Ke-
PEK, OHBIH, KOMEriMeH KaXKeT HOPCEeH] ajly YIIH MOJYJIbIIH 2KeKe BeKTopJapsl naiganburan. Ockl MakaIaia
aJIBIHFAH MaHbBI3IbI HOTHXKEJIEP/IiH Oipi - OpTAJIBIK, IIEKTI TeopeMaHbl 3epTTey. ['aycc eeMin KaMTaMachl3
eTe OTBIPHIN, Gesriii 6ip omeparopra Gepinren Genriii Gip Karmaiiaap/a OPTAJBIK IIEKTI TEOpeMa JTypPbIC
ekeHi KkepceTiyired. 2KaJibl, }KyMbIC TEOPUSJIBIK, TYPFBIJIAH *KaHa YKOHEe YIII Heri3ri yrbIMIbI OipikTipeti: 1m-
HAMUKAJIBIK XKYiie, OllepaTopJiap TEOPHUSICHI K9HE OJIIIeY TEOPHUSIChI MEH CTATUCTHUKA IITEHOEPIHIET SPro/IThIK,
Teopusi.

Kiam cosdep: opTaJibIK IIEKTI TeopeMa, IIMKi KEeHICTIKTI JOHeC-IIUKJIIIK orneparop, l'aycc esmemepi.

X.M. Xacan, 1.®. Axmen, M.®. Xama, K.X.®. JIxxBamep

Vuusepcumem Cyaetimanu, Kypducman, Cyaetimanus, Upax

ILlenTpaabHasa nmpeaesibHass TeOpeMa C yIeTOM
MOITPOCTPAHCTBEHHBIX BBIMYKJIO-IINKJINYECKNX OIepaTOpPOB

B craTbe onpesnenen omepaTop, HA3BIBAEMBIN BBINYKJIO-ITUKJINIECKAM OIIEPATOPOM moanpocTpancTsa. CBoii-
CTBO 3TOr'0 BHOBB OIIPEJIEJIEHHOT'O OIIEPATOPA CBSI3bIBAET COOCTBEHHBIE 3HAYEHUS, MMEIOINE COOCTBEHHbIE
BEKTOPBI, MOJLYJIsl OJIMH C si[PaMU OlepaTopa. ABTopamu IPOHJIIOCTPUPOBaH 3D (MEKT BBITYKJIO-IUKIIAIEC-
KOT'O OIIepaTopa MOAIPOCTPAHCTBA, B CAydae KOrJa MOKA3aHbl (DYHKIMN B JIMHEWHON TUHAMUKE U 00beIn-
HeHbI ¢ MYHKIMOHAJIBHBIM aHaan3oM. Pabora BrInoHeHAa B O€CKOHEYHOMEPHBIX IIPOCTPAHCTBAX, KOTOPbIE
MOTYT MPUBECTH K TOMY, UTO JIMHEHHBIE ONEPATOPHI Oy/IyT MMETH ILJIOTHBIE OpOUTHI. EEro cBOMCTBO coxpa-
HEHUsI MePBbI O0bEIUHSIET BEPOATHOCTHOE MPOCTPAHCTBO C M3MEPUMOM JUHAMUKON U PACIIUPSET MIPEIMET
SProfuYecKoil Teopuu. ABTOpaMy CTaTbU UCIOJIb30BaHA dproauydeckass Teopema Bupkroda, maromiass Mo-
IUUIIPOBAHHYIO BEPCUIO BBIILYKJIO-IUKJIMIECKOrO OIlepaTopa HOJIPOCTPAHCTBA. UTOOBI paboTaTs ¢ cemna-
pabesbHBIM OECKOHEYHBIM TMJIBOEPTOBBIM IIPOCTPAHCTBOM, BayKHO UMETh I'ayCCOBY WHBAPUAHTHYIO MEDPY, U3
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KOTOPOU MIPUMEHSIOTCsT COOCTBEHHBIE BEKTOPBI MOLYJIsT OJIMH, YTOOBI MOy IUTH TO, 9TO Heobxoaumo. OmHum
W3 BayKHBIX PE3YJIBTATOB, IOJYYEHHBIX B 9TOM CTaThe, SABJISAETCH U3ydUeHUe IEHTPAJIbHON IIPEeJIeIbHON Teo-
pemsbl. Ilokazano, 4To, obecnieduBasi rayccoBy Mepy, IleHTpaJbHAas IIPee/IbHAs TeOpeMa BEepHA IIPU OIIpe-
JIeJIEHHBIX YCJIOBUSIX, KOTOPBIE 3aIal0TCsT OMPEIEIEHHOMY OIepaTopy. B meoM, manHasi paboTa siBISETCs
TEOPETHYECKH HOBOH 1 OObEIMHSIET TPU OCHOBHBIX IMOHATUS: JUHAMUYIECKYIO CUCTEMY, TEOPUIO OIIEPATOPOB
U 9PrOJNYECKYyIO0 TEOPUIO B paMKaxX T€OPUM MEPBI U CTATUCTUKU.

Karouesvie crosa: IOEeHTpaJIbHad IIpelejibHasd TeopeMa, BI)IHyKJIO-LH/IKJII/I‘{eCKI/Iﬁ orepaTop InoAnpocrpaHCcTBa,
TayCCOBBI MEPbI.
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Cohomology of simple modules for sl3(k) in characteristic 3

In this paper we calculate cohomology of a classical Lie algebra of type Az over an algebraically field k of
characteristic p = 3 with coefficients in simple modules. To describe their structure, we will consider them
as modules over an algebraic group SLs(k). In the case of characteristic p = 3, there are only two peculiar
simple modules: a simple that module isomorphic to the quotient module of the adjoint module by the
center, and a one-dimensional trivial module. The results on the cohomology of simple nontrivial module
are used for calculating the cohomology of the adjoint module. We also calculate cohomology of the simple
quotient algebra Lie of A by the center.

Keywords: Lie algebra, simple module, restricted module cohomology, exact sequence.
Introduction

The cohomology theory of modular Lie algebras is one of the interesting questions in the theory of Lie
algebras. Many significant results are devoted to the study of the cohomology of classical modular Lie algebras.
Their restricted cohomology with coeflicients in the dual Weyl modules was studied in [1-3]. Central extensions
are described in [4, 5]. In [6, 7] the outer derivations are calculated. As the second cohomology, local deformations
are calculated in [8-10].

Among the classical modular Lie algebras, the cohomology of simple modules is completely described only
for a three-dimensional Lie algebra of type A; [11]. It is known that for other classical modular Lie algebras
a complete description of the cohomology of simple modules has not yet been obtained. In this paper we give
a complete description of such cohomology for the Lie algebra of type As over an algebraically closed field of
characteristic p = 3. The first cohomology groups of simple modules for Ay was computed in [12]. A similar result
for the second cohomology groups was obtained in [13]. In all other cases, the computation of the cohomology
structure of simple modules for A is close to completion. The results will be published in the next works of the
second author.

Let us introduce the basic definitions and notation. Let g be a Lie algebra over a field k characteristics of p
and M be a g-module. We denote the n-th exterior power of the space g by A™(g) and let

C™"(g,M)=Hom(A", M)=(¢ : gx---xXg— M), n>0

is a space of multilinear skew-symmetric mappings in n arguments with coefficients in M. We put

+oo
C"(g, M) =0, n<0, C%g,M)=M, C*(g,M)= P C"(g. M).

n=-—oo

Define the coboundary operator

as follows:
d(ly,lg, - lngr) =

Z(_l)’b-‘r]w([l“l]]’ 7lAi7' o alja"' aln-i-l) +Z(_1)Z+1[lzaw(lla alAiv"' 7ln+1)]7

i<j
where 1) € C"(g, M). Then d? = 0, therefore B*(g, M) C Z*(g, M), where

Z*(gvM) = <¢€C*(97M) : d’l/)20>k,

*Corresponding author.
E-mail: ibrayevsh@mail.ru
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So, we can introduce the factor-space
H*(g,M) = Z"(g,M)/B" (g, M).

The spaces C*(g, M), Z*(g, M), B*(g, M), H*(g, M) are called space of cochains, space of cocycles, spaces of
coboundaries, and space of cohomologies of the Lie algebra g with coefficients in the g-module M respectively.
Similarly, the spaces
C™ (g, M), Z"(g, M) = Z*(g, M) N C" (g, M),

Bn(g7M) = B*(gvM)an(g7M) I/IH”(Q,M) = H*(ng) ﬂcn(g,M)

are called space of n-cochains, space of n-cocycles, spaces of n-coboundaries, and space of n-cohomologies of the
Lie algebra g with coefficients in the g-module M respectively.

We say that the g-module M is peculiar if H*(g, M) # 0. We say that the M is n-peculiar module over g if
H (g, M) # 0.

Now let g be a classical Lie algebra of type A, over algebraically closed field & of positive characteristic
p >0 and M is a g-module. We decompose C*(g, M) into a direct sum of weight subspaces with respect to the
maximal torus T of the group G = SL3(k):

C*(g7M): @ C;(gvM)7

neX(T)

where X (7T) is the additive character group of T. Then

H"(g,M)= & H;(gM).
HEX(T)

Identify the space C™(g, M) with the space A" g* @ M and denote by [[(V) the set of weights of the
G-module subspace V of H*(g, M).

Since [T(H™(g,M)) C pX(T)NII(A" g* @ M), then we can consider only the elements of the subspace
C" (g, M) of C"(g, M) with weights contained in the set pX (T) TT(A" ¢* ® M). The corresponding subspaces
of cocycles and cohomologies are denoted by Zn(g, M) and Fn(g, M). Note that

H"(g,M)=H"(g,M).
We will use the following well known formulas:
dim H"(g, M) = dim Z" (g, M) +dim Z"~ (g, M) — dim C" ' (g, M), (1)
dim H"(g, M) = dim HY™ 87" (g, M*). (2)

The weight subspaces are invariant under the action of the coboundary operator, therefore the formula (1) is
also holds for weight subspaces:

dim H7(g, M) = dim Z,.(g, M) + dim Z,, (g, M) —dim C,, (g, M). (3)

Let L(r, s) be a simple g-module with the highest weight rw; + sws, where wy, wy are fundamental weights.

It is known that the composition of a representation of SLs(k) on a vector space L with a d-th power
of the Frobenius map defines a new representation, on which the Lie algebra g acts trivially. We denote the
resulting module by L(?. To each weight u of the space L there corresponds a weight p?u of the space L4,
The cohomology group H™(g, M), as a SLs(k)-module, consists of either a twisted module L% for some d,
or a one-dimensional trivial module k. For the multiplicity of a SLs(k)-module L(® in H"(g, M), we use the
notation [H™(g, M) : L¥]. Further, for convenience we use the following abbreviations: H"(g,k) := H"(g),
@B,V :=mV, where V is a SLs(k)-module.

Let’s formulate the main result of this paper:

Theorem 1. Let g be a classical Lie algebra of type As over an algebraically closed field k of characteristic
p =3 and M ba a simple g-module. Then there are the following isomorphisms of SLs(k)-modules:

(a) H'(g) = H%(g) = k, H?(g) = H®(g) = L(1,00V @ L(0, 1)V, H*(g) = H®(g) = L(1,0)V & L(0, 1)V k;

(b) H'(g, L(1,1)) =2 H" (g, L(1,1)) = L(1,0)V & L(0, 1)V ek, H3(g, L(1,1)) & H>(g, L(1,1)) = HO(1,1)1),
H*(g, L(1,1)) = 2H°(1,1)®),

In other cases H™(g, M) = 0.
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Proof of the Theorem 1
As the basis vectors for g we choose the special derivations of the algebra of divided powers O3(1) :
hy = 210y — 2202, ho = 220 — 1303, €1 = 1102, €2 = 1203, €3 = 1103, f1 = 201, fo = 1302, f3 = 130.

Over a field of characteristic p = 3, the Lie algebra g is not simple, it has a one-dimensional center (hy — ho)g.
The quotient algebra by the center is a simple Lie algebra; we denote it by g or As.

It is known that the peculiar modules of the Lie algebra g are restricted [11]. According to Lemma 3.1 in
[13], only the following two simple restricted modules are peculiar: L(0,0) = k and L(1,1) = §. For L(1,1) we
get the following description:

L(1,1) = (hy, ha,e1, e, €3, f1, f2, f3 : h1 — hg = 0);.

Consider each of these modules separately.
Let M = L(0,0) = k.
Lemma 1. There are the following isomorphisms of SLs(k)-modules:
(a) H°(g) = k;

(b) H?(g) = L(1,0)™ & L(0,1)®);
(c) H*(g) = L(1,00M @ L(0, 1)V & k;
(d) H°(g) = L(1,0)M & L(0,1)™) & k;
(e) HS(g) = L(1,00M & L(0,1)™;

(f) H8(g) = k.

In other cases H"(g) = 0.

Proof. The statements (a) and (f) are obvious. The triviality of H'(g) in characteristic p = 3 was proved
in [12].

(b) The set 1_[(62 (g)) only consists of the following weights: 0 + 3wy, £3(w1 — w2), £3ws. Therefore, only
the trivial one-dimensional module and the twisted simple modules L(l,O)(l), L(0, 1)(1), can be as nonzero
composition factors of H?(g). They are generated by the classes of cocycles with dominant weights 0, 3wy, and
3ws respectively.

The subspace ég(g) is 4-dimensional and spans by the cochains hi A h3, el A ff, e5 A f5, e5 A fa. If arh] A
hs 4 azel A fi + ases A f5 + aqel A fy € 72(9) then, by cocycle condition, a; = 0, ay = as + az. Therefore
dim Z,(g) = 2. Since dim Cy(g) = 2 and dim Zg(g) = 0, by (2), dim Ho(g) =2 +0— 2 = 0.

The subspace 612@1 (g) is one-dimensional and spans by the cochain f; A f5. Notice that af; A f € 72(g) for
alla € k. Therefore dim Zy, (g) = 1. Since dim Ty, (g) = 0, by (3), dim Ha,, (g) = 1. So[H?(g) : L(1,0)V]=1.

Arguing as in the previous case, we obtain [H?(g) : L(0,1))] = 1. Thus H?(g) = L(1,0)™ @& L(0,1)™M).

(¢) The sets of weights H(C3 (g)) and H(é2 (g)) coincide. Therefore, we consider only the weight subspaces
of 3-cochains corresponding to the dominant weights 0, 3wy, and 3ws.

=3 . . . .
The subspace C(g) is 8-dimensional and spans by the cochains
RINE A ST RS AL f1 B N A S5, B A€l A f5,
hiNesAfs, hy Nes N fs, es AT A S, ex Nes A fs.

Suppose that a linear combination of these vectors with coefficients b;, i = 1,--- , 8 respectively, is a 3-cocycle.
Then the cocycle condition implies that

b1 +bo+bs+br—bg =0, by+bs—br+bg =0, b3+bs+bs+br—bg = 0, 2by+2b7 —2bg = 0, 2b5+2bg+2b7 —2bg = 0.
Whence it follows that dim Z3(g) = 3. By (3),

dim H3(g) = dim Zg(g) + dim Z-(g) — dim Ca(g) =3 +2—4 = 1.
Therefore [H3(g) : k] = 1.

The weight subspaces 62)\ (9), 62 A, (@) are two-dimensional and span respectively with 3-cochains:
AN fENFE WS A A f5 and B A f5 A f5, RS A f3 A f5. Using the cocycle condition, we get dim 7;\1(9) =
= dim Zs,(g) = 1. So, H3(g) = L(1,0)M & L(0, )™ & k.
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Now we prove that H*(g) = 0. It’s obvious that H(64(g)) = H(é?’(g)). Therefore we consider only the

weight subspaces
—A —A —A
Co(9), Cs,, (), Cs,y(9)-
The subspace 63 (g) is 10-dimensional and spans by the cochains
Ry AR ANel A ff, hY ARy ANes A fa, hi ANhS ANes A fy, hi Ael Aes A f3,
hy Nep Ney N fz, hi Aes N ST A fy, hy Nes A A f3,
exNeNFINfy, e1Nes AN fI N f3,ea Nes A fy Afs.
Suppose that the linear combination of these vectors coefficients b;, i« = 1,---,10 respectively is a 4-cocycle.

Then by = by = by = 0, by = bg, bs = by. Whence it follows that dim z3(g) = 5. By (3), dim Hg(g) = 5+3—8 = 0.
Therefore, [H*(g) : k] = 0.

It’s obvious that Zs, (g, M)) = Zs,, (g, M)) = 1. Then by (3), Ha,, (g, M)) = Ha, (g, M)) =1+1-2 =0.
So, H*(g) = 0.

Using (2) and the statements (b), (c), we get the statements (e), (f) respectively. The proof of Lemma 1 is
complete.

Now let M = L(1,1).

Lemma 2. There are the following isomorphisms of SL3z(k)-modules:

(a) H'(g, L(1,1)) = L(1,0)V & L(0, 1)V & k;
(b) H3(g, L(1,1)) = HO(1,1)");
(c) H*(g, L(1,1)) = 2H°(1,1)V);
(d) H>(g, L(1,1)) = HO(1, 1)),
()H7(g, (1,1)) = L(1,00M ¢ L(0,1)® @ k.

In other cases H"(g, L(1,1)) = 0.
Proof. The calculations smnlar to the previous Lemma 1 yield:

1) [1(C"(g, L(1,1))) = [I(C" (s, L(1, 1)) = {0},
[1(C' (g, L(1,1))) = {0, £:3wy, £3(w1 — wa), £3ws} for i = 1,2,6,7,
T1(C7 (9. L(1,1))) = [I(C" (8, L(1, 1))) U {3 (w1 + wa), £3(2w1 — wz), £3(—wy + 2wz)} for j = 3, 4;
9) dim C(g, L(1,1)) = dim Cj(g, L(1,1)) = 1, dim Cy(g, L(1,1)) = dim Cu(g, L(1,1)) = 8,
dim Ca(g, L(1,1)) = dim Cy(g, L(1,1)) = 22, dim Co(g, L(1,1)) = dim Cy(g, L(1,1)) = 38,
dim Cly(g, L(1,1)) = 44;
3) dim Cj,, (g, L(1,1)) = dim Cy,, (g, L(1,1)) = 0, dim Cs,, (g, L(1, 1)) = dim Cs,, (g, L(1,1)) = 2,
dim Cy,, (g, L(1,1)) = dim Cy,, (g, L(1,1)) = 7, dim Cj,, (g, L(1,1)) = dim Ty, (g, L(1,1)) = 14,
dim Tl (g, L(1,1)) = 18 for i = 1,2;

. —0
4) dim C3(w1+w2)(g7 L( )) dim C3(w1+w2)(g7 L( ) )) 07

. —1
dim C3(W1+W2)(97L(1’ 1)) dim CS(wl-&-wQ)(gv ( )) =0,

. —2
dim CB(w1+w2)( ( )) dim 03(w1+w2)(gv ( ) )) = 0

. —=3
dlm 03((4)1“”&)2)(97 (17 1)) - dlm 03(w1+w2 (g7 ( ) )) = 1

. —4
dim CS w1+w2)(g7 (17 ))
dim Zo<g, (11) = dim 7500, 201, >> - 6, dim Z(g, L(1,1)) = dim Zg(g, L(1,1)) = 18,

. —4
dim Zy(a, L(1,1)) = 8 1 7

) dim Z3 (g ( )) dlm Z?)UJ (g7L(1a 1)) = 07 dim 730.)1 (ga L(L 1)) = dim 73(.% (ng(la 1)) = 17

L
dim Zs,, (g, L(1,1)) = dim Zs,, (g, L(1,1)) = 1, dim Ca,, (g, L(1,1)) = dim Ch,, (g, L(1,1)) = 6,
dim 6;% (g, L(1,1)) =8 fori=1,2;

7) dim Zs (e, 4o (8, L(1,1)) = dim Z3(,, 40, (0. L(1,1)) = 0,
. —1 . =7
it Zye s (9 L1 1) = ditn Zy, (0 L(L, 1) =

. -2
dim Z3(w1+w2)(ga L( )) = dim Z3(w1+w2)(ga ( ))
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(9, L(1,1)) =
!
dim Z3(w1+w2)(ga (17 )) -
Then, by (3), dim H., ( ( )) = 0 except in the following cases:
i) dim Ho(g, L(1,1)) = dim Ho(g, L(1,1)) = 1, dim Ho(g, L(1,1)) = dim Ho(g, L(1,1)) = 2,
dim Hy(g, L(1,1)) = 4;
ii) dim Hy,, (g, L(1,1)) = dim Hy, (g, L(1,1)) = 1 for i = 1,2;
) . =5 !
iii) dim Hg(wl+w2)(g,L(l, 1)) = dim H3(wl+w2)(g,L(1, 1)) =1, dim H3(wl+w2)(g,L(1, 1)) =2.
Analyzing the dimensions of the weight subspaces of the corresponding cohomology groups, we obtain the

required statements of Lemma 2. The proof of Lemma 2 is complete.
Combining the results of Lemmas | and 2, we obtain all the statements of Theorem 1.

. -3
dlm Z3(w1+w2) dlm Z3(w1+w2)(g, (1, 1)) = 1,

Cohomlogy of the adjoint module

Using Theorem 1, we can easily compute the cohomology of the adjoint module for g. There is the following
short exact sequence of g-modules:
0—-k—g— L(1,1) — 0.

Consider the corresponding long exact cohomological sequence of SLs(k)-modules
— H"" (g, L(1,1)) = H"(g) — H"(g.9) — H"(9,L(1, 1)) — H""(g) — - -

It is known that H?(g, g) = 0 [14]. Then, according to Theorem 1, the last long exact cohomological sequence
splits into the following five exact sequences:

0— H%g) — H"(g,9) = 0,

0— H'(g,0) = H' (g, L(1,1)) = H*(g) = 0,
0 — H*(g) — H*(g,0) = H"(g,L(1,1)) = 0,
0— H*(g,9) = H"(9,L(1,1)) » H’(g) = H"(g,9) = H"(g, L(1,1)) — H’(g) = H(g,0) = 0,
0— H'(g,9) = H(g,L(1,1)) = H*(g) = H(g,0) = 0.

The first three short exact sequences yield the following isomorphisms of A-modules respectively:
H(g,0) =k, H'(g,0) = k, H(g,9) = L(1,0)V © L(0,)V & H(1,1)V @ k.

Since 3(w1 + wa) ¢ [[(H'(g)) for i = 5,6, then the fourth exact sequence splits and yields the following
isomorphisms:

H*(g,9) = H*(g, L(1,1)) = H°(1,1)M, H°(g,9) = L(1,00V @ L(0,1)™ & H°(1,1)V & k,

Hg,9) = L(1,0)Y @ L(0,1)®,

Similarly to the previous case, from the last exact sequence we obtain
H'(g,9) = L(1,0)" @ L(0,1)") @ k, H(g,8) = k.

Thus, we get the following
Proposition 1. Let g be a classical Lie algebra of type As over an algebraically closed field k& of characteristic
p = 3. Then there are the following isomorphisms of SLs(k)-modules:
(a) H'(g,9) = H'(g,9) = H®(g.9) = k;
(b) H*(g,g) = H®(g,9) = L(1,0)V & L(0, 1)V & H(1, )V & k;
(c) H*(g,9) = 2H(1, 1)1);
(d) H(g.9) = L(1,0)) & L(0,1)(V;
(e) H(g.g) = L(1,0)V & L(0,1)1) & k.
In other cases H"(g,g) = O.
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Cohomlogy for Ay

Recall that A, is the quotient algebra of the classical Lie algebra of type Ay over an algebraically closed
field of characteristic p = 3 by the center. In this section we compute cohomology of the simple Lie algebra Ay
with coefficients in the simple modules.

First, we consider an arbitrary Lie algebra g with the center Cy such that the corresponding quotient algebra
is a simple algebra. The following result immediately leads to our goal.

Lemma 3. Let g be a simple quotient Lie algebra of a Lie algebra g by the center Cj. Then
H™(g,9) = H"(g,9) for all n > 0.

Proof. The space g can be equipped with the structure of a module over each of the Lie algebras
Cqg,gand g:

Cy x g — 8, (¢,a) — p(c)a, where p is a nonzero linear form on Cj;

9xg—0, (a1,a2) = [a1,a9], a1 €9, B2 €7;

§x7 =7, (a1,a2) = [a1,a2], @1, a2 €73

The short exact sequence of cochain complexes

0= (C*(Cy,9).d) = (C*(9,9),d) = (C*(g,9),d) = 0
gives a long exact cohomological sequence
co = H'H(Co,9) — H™(3.9) —» H"(9.9) = H"(Cg,8) — -+

Since H"(Cy,g) = 0 for all n > 0 [15, Lemma 4.2], it follows from the fact that last cohomological sequence is
exact that H™(g,g) = H"(g,g) for all n > 0. The proof of Lemma 3 is complete.

Remark. A special case of Lemma 3 for n = 1 was proved in [7]. Using Lemma 3 to Theorem 1, we obtain
a complete description of the cohomology of a simple Lie algebra A, with coefficients in simple modules.
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A.A. Ubpaesa, [I1.IT1. bl6sipaes, I.'K. Emmypar

Kopxwm Ama amoimdazer Kosviiopda yrusepcumemi, Kwsviiopda, Kasaxcmar

Cunarramacs! 3 sl3(k) yiria »xk9if MOAYJIbAEPAiH, KOTOMOJIOTUSITIAPHI

Makasaga cunarramacsl p = 3 ajredpaJiblK TYHBIK k epicine KaTbicTbl A TypiHeri Kiaccukasibik, Jlu anre-
6pachl KO3 DUIMEHTTEPIHIH, XKl MOIY/IbIEPIAErT KOTOMOJIOTHSLIAPHI ecenTered. KypblIbIMBIH Gepy VIIiH
osmapapl SLs(k) anre6pasblK rpyNIIACBIHBIH, MOYJIbIEP] peTiHAe KapacThlpran. Opic cumarramacer p = 3
OoJIFaH/Ia TEK €Ki apHalbl K9 MOJIy/Ib 6ap: KipiKTipijJreH MOMYyJIb/IiH IIeHTp OOHbIHIIA (haKTOP-MOJIYJIiHe
U30MOP(MTHI MOY/Ib *K9He BIp OJIIeM i TPUBUAIL MOLYJh. 2ol TpUBUAJIL eMeC MOIY/IbIIH KOTOMOJIOTHSI-
JIapbI TYyPAaJIbl AJIBIHFAH HOTHKeJeP KipIKTIpijireH MOJyJ/Ib/IiH KOTOMOJIOTUSIJIAPBIH eCerTeyre KOJITAHBLIIbI.
Coubiven karap, As-HiH 1eHTp GOUbIHIIA XKoii (haKTOp-aJIrebpachIHbIH, Ja KOIOMOJIOTHJIAPBI €CEIITe I

Kiam cesdep: Jlu anrebpachl, Kol MOJLYJIb, IIIEKTEJINeH MOIYJIb, KOTOMOJIOTHsI, JI9J1 Ti30€eK.

A.A. Ubpaesa, I1.I11. Ubpaes, I'.K. Emmypar

Kuwizviropduncrut yrusepcumem umenu Kopxoim Ama, Kvsviiopda, Kasaxcman

Koromostornu nipocterx MojyJteit s sl3(k) B xapakrepucrtuke 3

B craTbe BBIUMCIIEHBI KOTOMOJIOTHM KJIACCUYECKOM anrebpbl JIu Tunma As Haj anrebpanmvecKu 3aMKHYTHIM
mosieM k XapaKTepuCTUKA p = 3 ¢ KOIMDDUIMEHTAMHI B TPOCTBIX MOy IsxX. st onucanus CTpyKTypBI aBTO-
PBI PACCMOTPEJIM UX KaK MOJIY/IM HaJ anrebpamdeckoit rpynmoit SL3(k). B ciayuae xapakrepuctuku p = 3
CYIIECTBYIOT TOJIBKO JBa, MIPOCTBIX OCOOBIX MOJYJIEi: MPOCTON MOIYJIb, M30MOPMHBIN (haKTOP-MOIYJIIO TPU-
COEIMHEHHOTO MOJIYJIsI TI0 IEHTPY, W OJHOMEPHBIN TPUBUAJIBHBIN MOIYJb. Pe3yabTaThl, MOJIyJeHHbIE TSt
KOIOMOJIOTHH IIPOCTOr0 HETPUBUAJIBLHOIO MOJLYJIsl, IIPUMEHEHBI JIJIsi BBIYUCJIEHUsI KOTOMOJIOTUU PHUCOEIH-
HEHHOTO MojyJsisi. KpoMe TOTo, paccyuTaHbl KOTOMOJIOTUU TPOCTOi bakTop-aarebpsr Jlu, anrebpsr Az mo
LEHTDY.

Kmouesvie crosa: anrebpa Jlu, mpocToit MoIy/ib, OTpaHUIEHHBIN MOY/Ib, KOTOMOJIOTHSI, TOTHAST [TOC/IeI0Ba~
TEJIbHOCTD.
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On zeros of an entire function coinciding with exponential
typequasi-polynomials, associated with a regular third-order
differential operator on an interval

In this paper, we consider the question on study of zeros of an entire function of one class, which coi-
ncides with quasi-polynomials of exponential type. Eigenvalue problems for some classes of differential
operators on a segment are reduced to a similar problem. In particular, the studied problem is led by the
eigenvalue problem for a linear differential equation of the third order with regular boundary value condi-
tions in the space W3(0,1). The studied entire function is adequately characteristic determinant of the
spectral problem for a third-order linear differential operator with periodic boundary value conditions. An
algorithm to construct a conjugate indicator diagram of an entire function of one class is indicated, which
coincides with exponential type quasi-polynomials with comparable exponents according to the monograph
by A.F. Leontyev. Existence of a countable number of zeros of the studied entire function in each series is
proved, which are simultaneously eigenvalues of the above-mentioned third-order differential operator with
regular boundary value conditions. We determine distance between adjacent zeros of each series, which lies
on the rays perpendicular to sides of the conjugate indicator diagram, that is a regular hexagon on the
complex plane. In this case, zero is not an eigenvalue of the considered operator, that is, zero is a regular
point of the operator. Fundamental difference of this work is finding the corresponding eigenfunctions of the
operator. System of eigenfunctions of the operator corresponding in each series is found. Adjoint operator
is constructed.

Keywords: entire function, zeros, quasi-polynomials, indicator diagram, series, operator, regular periodic
boundary value conditions, eigenvalues, system of eigenfunctions.

Introduction and Formulation of the problem

We consider the question on distribution of zeros of an entire function of the following form:
A = Nk — k)bt V2 4 (kg — ko)elkathn VAL

-l—(kg _ kl)ekzs’/x + (k3 o kl)e(k3+kl)\3/X + (kl _ kz)eksw + (kg _ kg)e(kﬁk?’)%),

where ky = 1, ky = —1 43 kg = —1 — 3,
Eigenvalue problems for some classes of differential operators on a segment are reduced to a similar problem.
In particular, the following problem on eigenvalues in the space W3(0,1) leads to the studied question:

Lou=1(u) =u" () = —du(z), 0 <z < 1, (1)

Ui (u) = u(0) = 0, Uz(u) = u(1l) =0, Us(u) = u'(0) = u'(1), (2)
where U; (u), Ua(u), Us(u) are linear forms, which are regular, according to J.D. Birkhoff [1, 2]. An important
result established by Birkhoff was to estimate resolvent of a regular differential operator and to establish
asymptotics of the spectrum. In the monograph by M.A. Naimark [3; 67], a subclass of regular boundary
conditions, so-called strongly regular boundary conditions, was singled out, where it was noted that for an odd
order of the equation all regular conditions are strongly regular.

Connection between zeros of quasi-polynomials and spectral problems was reflected in [3—15]. Zeros of entire
functions having an integral representation were studied in [16-23].

*Corresponding author.
E-mail: imanbaevnur@mail.ru
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Main Results

We consider the question on distribution of zeros of the entire function A;(\) = A\g%) on the complex
plane A.

Ay(N) = (kg — kg)em\?ﬁ ¥ (k- kQ)e(k2+kl)%+
+(k3 — k1)6k2% + (k’3 — kl)e(ka-i-kl)% + (kl _ k/,z)eksw + (k2 _ kg)e(k2+k3)% =0. (3)

In [11, 14] the following was proved:

Proposition 1.

1. There are infinitely many zeros of an entire function Aj(A);

2. Distance between two adjacent zeros of the same series (j — const) is exactly %‘;

3. Zeros of each series lie on the rays perpendicular to the segment, that is, perpendicular to sides of the
hexagon containing

(K1, (ks + k1)); (ks, ks + k1); (ko + kss ks); (k2, ko + k3); (Ko, ko + k1); (ko + ki, k).

The rays which are perpendicular to the indicator diagram are called critical. According to the result of the
monograph [6], there are exactly six critical rays on the plane ), that is argv/\ = 5, n=0,1,2,45
In [11, 14| the zeros of the entire function A()):

(In|zj| + i(Arg(z;) + 2mk))?

Ajk = pa , k=0,£1,£2,..; 7=1m (4)
were found, and conjugate indicator diagram—hexagon was constructed on the complex plane .
Taking k1 = 1,ky = f% + ’i§7k3 = 75 - z@, into account, due to the formula (4) and Proposition 1,

we have that along the ray perpendicular to the segment passing through the points 2;1 — iv/3 there are zeros
of the quasi-polynomial (\/3 + 3i) - e(+iV3X _ 9\ /3. e?}, they are majorizing exponents. In this case, other
exponents from (3) do not contribute along this ray. Let’s find zeros of the quasi-polynomial:

(\/?:_’_ 3i) - e(1+i\/§)>\ —9V3. 2 =

(V34 3i) - eIHVIX = 91/3. 2

oikr | 2| 4 darg( 245
—1414V3 —3+iV3
2v3

Which are zeroes of the first series, where In |2 \f Y 3| 4iArg( Tarai ) = const. Similar procedure is performed

Akl = , k=1,2,3,..

on the other sides of the hexagon, and along other perpendicular rays we have the corresponding series of zeros
of the quasi-polynomials from (3):

e segment [—1 —4+/3;1 — i1/3], 2-nd series of zeroes \yy = % + 2&17;%), k=1,2,..,(14+iV/3)

e segment [—1 4 4+v/3; 1 + iv/3], 3-rd series of zeroes A3 = ikm + const, k=1,2, ...,

e segment [—2; —1 — i/3], 4-th series of zeroes \py = 11’5\7} + fizlf/%, k=12
e segment [2; 1 + i/3], 5-th series of zeroes \ys = —i’f\% - fj:?\s/%, k=1,2
e segment [—1 + Z\[ —2], 6-th series of zeroes \yg = 11’5\% + 2(‘131’;5\%), k=1,2,..,

The zeros that were found are adequately eigenvalues of the operator Lo [11].
Fundamental difference of this section from [11, 14, 22, 23] is the determination of eigenfunctions of the
operator Lg. The following theorem takes place.

Theorem. Let the entire function Ay (\) = \%) in (3), according to [11, 14|, be a characteristic polynomial

of the spectral problem (1), (2) and all points of Proposition 1. be satisfied, as well as zeros of the characteristic
polynomial (4) be the corresponding eigenvalues of the operator Lg. Then the system of eigenfunctions of the
operator Lg of each series:
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y/? x k
Ugg (T) = Cye" e 25w {cos2 (; — g) x4+ isin2 (

- cos (IWT*g)SE*CzCh\/g(lmrfg>x-sin(lm—g> x)},

o™y el e hm,
D) 6 T 2 | COS 2

™3 k3 T kr w . ™3
*u)”‘mﬁ(‘*m)“hﬁ<2‘6>m‘5m <z+u>

g>x—i (sin <2+7T1\2[> x~cosx/§<—k\[+

k\f T km
smxf( 5 4\/§>x.5h\/§<2_

] o) P € PR € PR
‘ fmm(’“;—z)w)ﬂe
cos<2+”1{> f( G 4})

+7T> h\f<+771‘2[>:c+z‘<sin(lzr+

{02

x- ch\/§<2—6>x+cos<2+w1\2[>x sin f( k;[ 4;)

12

+ sin (24—7“[) xsmxf( %

(b,
COS B

L3

12

+ COS \[ (
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4\[)x chf( 13 >ICOS<2+ 12
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. shv3 (k;r + ﬂf) x>‘| } efkﬂTﬁz . 67%“";

uge () = 01672’”7“51 .12 [0052 (2 + 12) x +isin2 (; 12) +
k k
+{C'2 cos (Tf) cosxf( < 7”[ Ul 3) T+

2 12 12 12 2

H>x~cos 3(’”) hf(km[ Ng):c

+sin<k7“/§7”/§>x mf<> h[(kﬂ\fm>x+i<sin<kw\/§

2 12 12
kmv/3 w3 . km kmv/3 w3
—cos( 5 —12>xsm 3(2—12> h\[( —12>x>

—7”/§>x.sm 3<’”—> hxf(kmf—wf> +sin<kﬁ2f—w>

+ Cjy 5

(k’]‘(\/g
cos —

12 2 12 12 12
km krv/3 /3 . krv/3 w3 . km
+ COS 3<2—12> h\/7< _12> +Z<Sln< 5 —? ISIH\/§<2—
T krv/3 /3 kﬂ'\/g ™3
B _ Ve _ M0
12>xCﬁ< 2 12) COS( 2 12 ICO\[( 12)
kmv/3 w3 k3
h v xr
for each series, where k =1,2,3,....
Here is the scheme of the proof:
General solution of the equation (1) has the form:
u(z) = C1e** 4 (CycosV/3Ax 4+ Cysiny/3Az)e 2. (5)

Substituting the zeros of each series into (5) in order and satisfying the equation (1), as well as the boundary
value conditions (2), we obtain the corresponding eigenfunctions of the operator Lg.

Remark. Questions of completeness, uniform minimality, and basis property of systems of eigenfunctions
of the operator Ly remain open. Note that questions of the basis property of systems of root vectors of the
multiple differentiation operator with regular, but not strongly regular boundary value conditions were studied
in [24-30].

Conjugate problem

1 1
By using integration by parts, we obtain the Lagrange formula: [I(u)v(z)dx + [u(z)l*(v)dz = u”(1)v(1)—
0 0
—u"(0)v(0) = [v"(0) — v (1)] - w'(0) + u(1)v" (1) — u(0)v"(0).
Here [*(v) is an adjoint differential expression:
Fv)==v"(z), 0<z<l1. (6)

Consequently, an operator Lf, adjoint to the operator Ly is given by the differential expression (6) and
boundary value conditions:

Vi(v) =v(1) = 0, Va(v) = v(0) =0, V3(v) = v'(0) —v'(1) = 0.
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Kecinagizeri ymoriamm peTTi peryssapJbl guddepeHimanabik
onepaTopMeH OaiijIaHbICKAH, SKCIIOHEHIINAJI bl TUIITEr]
KBa3UKOIIMYIIeJIIKTepMeH coiikec KeJieTiH OyTiH (byHKINSTHBIH,
HOJIJIePl >KaliJIbl

Maxkasaia KepceTkinrepi eJmeM/ 1 SKCITOHSHITHAJIBI TUIITETT KBA3UKOIIMYIIIETIKTEPMEH CoifKeC KeJIeTin Oip
KJIACTarbl OYTiH DyHKINATAPABIH HOJIJIEPIH 3ePTTEY MaceJieci KapacThIPhLIAbl. MyHIarbl KapacThIPHIIATHIH
Moceie, KOII »KaFaaiiaap/ia, Keibip Kiaactapaarbl Kecimiaeri auddepeHnnablK onepaTopIap/IblH MEHIITIK-
Ti MOHIEpiH 3epTTeyTe OepinreH ecenTepieH TybIHAaMbI. Jomipek affTKanga, KApacThIPbLIATHIH MOCeJIere
W23(0, 1) kenicriringeri pery/spJbl METTIK mapTTapMeH Gepiiared yImiHm peTTi ChI3BIKTHIK auddepenim-
aJIABIK TEeHJIey/IiH MEHIIIKTI MOHJIEPIH 3epTTeyre apHaJFaH eCellKe aJjbll KeJseli. 3eprresneTid 6yrin dyH-
KIIWsI, TiKesIel eproATHIK METTIK ITapTTapMeH OepiireH ChI3BIKTHIK, AuddePEeHITNAIbIK, YIIIHII PeTTI orme-
paTop VIIiH arajfaH CIeTPaJIbIK eCelITiH XapaKTePUCTUKAJIBIK aHBIKTaybIIIbL 60Jibi Tabblnanbl. A.D. Jle-
OHTBEBTIH, MOHOTDADUSICHIHIAFHl HOTUXKECIHIH, HETI31HIe, KAPACTHIPBIIBII OThIPFaH 6Ip KIACTaFbl ©JIIIEM/T
KOPCeTKImTepi 6ap 9KCIOHEHIWAJIBI TUITEr KBA3WKOIMYIIECJTIKTEPMEH COMKec KeseTiH OyTiH (yHKIms-
HBIH TYHiH/IeC NHINKATOPJIBIK, JUArPAMMAaChIH KYPY/IBIH aJropuTMi KepceTiireH. ByTin GyHKInAHBIH 9p0ip
CepUsiTaFbl CAHAJBIMJIBI HOJIAEPIHIH 6ap GOMyBI J9JIEIEHTeH YKOHE OJIAP/IBIH KECIHIIIEr peryIspIibl mepu-
OATBIK IIETTIK MapTTapMeH OePireH ChI3BIKTHIK, YITIHII PETTI quddDepeHITnaIIbIK, OTePATOPIBIH, MEHITKTI
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MOHEP] eKeHIIri cumarTaarad. ByTiH (QYHKIUSHBIH 9p CEePUSIAFbl KOPIIIeC KATKAH HOJIIEPIHIH apaka-
MIBIKTBIFbI AHBIKTAJFAH YKOHE Op CepHUsl KOMILJIEKCTI »KA3bIKTBIKTArbl TYWIHIEC WHINKATOPJIBIK, JIHArpaM-
MAaHbBIH, FHU JYPbIC aJITBIOYPBINITHIH KaObIpFaJapblHa MEePIEHINKY/IAP, KOOpAUHATaJIap 0ac HYKTeCiHeH
MIBIFATHIH CoyJIesIep 60JIaThIHIBIFB KOPCeTiareH. Ajtaliia, HOJl HYKTeCl »KOFapbla aflThIIFAH KAPaCThIPhLIA-
TBIH OIEPATOP/IbIH, MEHIIIKTI MOHI OOJIMANTBIH/IBIFI, SIFHU HOJI OIIEPATOP/ILIH PEryJsipJibl HYKTeCi eKeH/Iir
cAnaTTaJraH. ByJ >KyMBICTarbl ajIbIHFAH HOTUXKEHIH €PEeKIIeJIiri, onepaTop/IblH, 9P CepUsIarbl MEHIIIKTI
MOHJEpiHEe CoKec MeHIMKTI GyHKnusIap XKyieciniy Tabburybiaga. CoHmail-ak, OCbl )KYMBICTBIH 3€pPTTEY
HBICAHBIHA afHAJIBIIT OTHIPFAH OIEPATOP/ILIH, TYHIHIEC OIepaTOpbl KYPbLIFaH.

Kiam cesdep: 6yTiH DyHKIUSHBIH, HOJIIEPi, KBASUKOIIMYIIETIKTED, HHINKATOPJIBIK IUArPAMMAa, CEpUsI, Ole-
parTop, peryJspbl IEPUOATHIK, IIETTIK MapTTap, MEHINKTI MOH/IEp, MEHIIKTI (DyHKITUIIapIAbIH KYiieci.

H.C. Nman6aes'?, E. Kypmpir!

1 . . .
IOoicno-Kaszaxcmanckutl 2ocydapemeentovili nedazozuneckuti ynusepcumem, Llvmxenm, Kazaxcman;
2HHcmumym MAMEMAMUKY U MAMEMATNUNECKO20 Modesuposarus, Aamamu, Kasaxcman

O nynasax nesoii pyHKIMN, cOBIaaaoIIeil ¢ KBa3uIOJIMHOMAaMU
9KCIIOHEHIINAJbHOIO TUIMA, CBI3aHHON C peryJjasspHbIM
anddepeHInaIbHBIM OIEPATOPOM TPEThEero Mopsa/aKa Ha OTpe3Ke

B crarbe paccMoTpen Bompoc pacmpesiesieHust Hysiei 1esioi (PyHKIINT OJHOTO KJIACCa, KOTOPBIE SIBJISTIOTCS
KBa3UIIOJIMHOMAMU SKCIOHEHIIMAJIBLHOTrO Tuma. K 1momobHoi mpobiiemMe pesynupoBaHbl 3a3/1a4n Ha COOCTBEH-
Hble 3HAYEHUsl JJII HEKOTOPBIX KJIaccoB JuddepeHnmralbHbIX OlepaTopoB Ha OTpe3ke. B dacTHOCTH, K
M3y1IaeMOMY BOIIPOCY TPHUBOIUT 3a/1a9a HAa COOCTBEHHBbIE 3HAUEHUS JTUHEHHOTO MudHEPEHITNATHLHOTO YPaB-
HEHUsI TPEThEro MOPs/IKA C PErYJIAPHBIMA KPAEBBIMU YCJIOBUSAMHU B IIPOCTPAHCTBE WS'(O, 1). Uccnenyemas
nesiast (PYHKIUS aJeKBATHO SIBJISIETCS XapaKTEPUCTUIECKUM OIpPEIeIUTeIeM CIEeKTPAJbHONW 3a1auu JIJIst
JMHEWHOTO MnddEepEeHNNaTIBHOTO OTIEPATOPA TPETHETO MOPSIIKA C MEPUOANITECKUMA KPACBBIMA YCJIOBUSMU.
TlocTpoena conpsizkeHHasi MHAUKATOPHAsS JAMarpamMMa IeJoi (DyHKINNA SKCIOHEHIMAIbHOIO THUIIA COU3Me-
pUMBIMEU TOKa3aTeasiMu. J{0Ka3aHO CyIeCTBOBAHME CUETHOTO UYMCJIa HYJel UCCIeayeMOi 1esioil (hyHKIuN
B KayKJIOM CepHH, KOTOPBIE SBJISIOTCS OJJHOBPEMEHHO COOCTBEHHBIMU 3HAYEHUSIMU PACCMATPUBAEMOIO JTUd-
dEPEHITUATBLHOTO OIEPATOPa TPETHEr0 MOPSIKa C MEPUOJAMIECKUMHU KpaeBbIMHU ycaoBusiMu. OnpeneseHo
paccTosiHre MeXKJIy COCEIHUMHU HYJISIMM KaXXIO# Cepuu, JiexKkalllee Ha Jydax, MepHeHIUKYJISIPHBIX CTOPO-
HaM COIPSI?KEHHOW WHIMKATOPHON AMArpaMMBbl, TO €CThb MPABUJIHLHOTO IMECTHYTOJbHUKA Ha KOMIIJIEKCHOMN
IUIOCKOCTH. [1py 3TOM HyJIb HE SIBJIsIETCST COOCTBEHHBIM 3HAUYEHHEM PACCMaTPUBAEMOro oneparopa. [IpuHnm-
MHUAJBHBIM OTJIMIUEM HACTOSIIEN PAOOTHI SIBJISIETCST HAXO0XK/IEHNE COOTBETCTBYIONINX COOCTBEHHBIX (DYHKITHI
paccMaTpuBaeMoro omeparopa. I1ocTpoeH COnpszKeHHBIH OmepaTop.

Karouesvie caosa: nienast (pyHKIUsI, HYJIU, KBA3UIIOJMHOMbBI, WHAUKATOPHAs JUarpaMMa, CEepHsi, OIepaTop,
peryJisipHbIe IEPUOIMIECKIE KPAeBble YCIOBHUsI, COOCTBEHHbIE 3HAYEHNUSI, CUCTEMa, COOCTBEHHBIX (DYHKIIHIA.
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Upper Estimates of the angle best approximations
of generalized Liouville-Weyl derivatives

In this article we consider continuous functions f with period 27 and their approximation by trigonometric
polynomials. This article is devoted to the study of estimates of the best angular approximations of generali-
zed Liouville-Weyl derivatives by angular approximation of functions in the three-dimensional case. We
consider generalized Liouville-Weyl derivatives instead of the classical mixed Weyl derivative. In choosing
the issues to be considered, we followed the general approach that emerged after the work of the second
author of this article. Our main goal is to prove analogs of the results of in the three-dimensional case. The
concept of general monotonic sequences plays a key role in our study. Several well-known inequalities are
indicated for the norms, best approximations of the r-th derivative with respect to the best approximations
of the function f. The issues considered in this paper are related to the range of issues studied in the works of
Bernstein. Later Stechkin and Konyushkov obtained an inequality for the best approximation (™. Also, in
the works of Potapov, using the angle approximation, some classes of functions are considered. In subsection
1 we give the necessary notation and useful lemmas. Estimates for the norms and best approximations of
the generalized Liouville-Weyl derivative in the three-dimensional case are obtained.

Keywords: Lebesgue space, best approximation by three-dimensional angle, trigonometric polynomial,
Liouville-Weyl derivative.

Introduction

Let us mention several well-known inequalities for norms and best approximations of the r-th derivative in
terms of best approximations of the function f.

The following result was proved by Bernstein for p = oo (for 1 < p < o0, see [2]) if f € L), 1 <p < o0, and
5% ok 1) LB () < o0, € N, then [[f0]], < Cr) Y5 ok + 17 Ex(f)y [1)-

Later on, Stechkin [3] for p = oo and Konyushkov [4] for 1 < p < oo obtained the following inequality for
the best approximations of f() :

B (f7), < C(r,p) (nTEn(f)wL > k“lEku)p) rneN.

k=n+1

The last inequality was extended by the formula Timan [5] for the case of 1 < p < oo as follows:

B, (1), <C(r) (ann(f>p+( > k“lEﬁ(f)p)é) , 0 =min(2,p) r,n €N,

k=n-+1

Also, A. Jumabayeva and B. Simonov obtained estimates of norms and the angle best approximations of
the generalized Liouville-Weyl derivatives by the angle approximation of functions in the two-dimensional case
[6, 7].

Let L,(T3), 1 < p < oo be the space of measurable functions of three variables that are 2 periodic in each

variable and such that
27 27 27 1/ p

1l = / / / | F(er, o, s) P dardoaday | < oo.
0O 0 O

*Corresponding author.
E-mail: akniet-1978@mail.ru
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21

LY is the set of functions f € L, such that [ f(z1,22,23)dz; = 0 for almost everyone z,xs,
0

27 27

f f(x1, 22, x3)dxo =0 for almost everyone z1,x3 and f f(x1, 29, 3)dxs = 0 for almost everyone x1, xs.
0 0

Let Yy, mo.ms (f)p be the best approximation by a three-dimensional angle of the function f € L,(T?), i.e.

Ymhmz,ms (f)p = inf ”f - Tml’oo,oo - Too’mz,oo - TOO,OO,ms Hpa
Tiny 00,00, To0,my,00:T0,00,m3
where the function Ty, co.0o(21, T2, 23) € Ly(T?) is a trigonometric polynomial of order at most m; in z1, the
function Teo ms,,c0 (@1, T2, ¥3) € Ly(T?) is a trigonometric polynomial of order at most ms in x5 and the function
Too 00,ms (%1, T2, w3) € Ly(T?) is a trigonometric polynomial of order at most mg in 3. In the work of Potapov
using the angle approximation, some classes of functions are considered [8, 9].
By o(f) we denote the Fourier series of a function f € L,(T?), that is

o0 o0 oo ) o0 o0 oo
0'(f> = Z Z Z Ck17k2,k362(k1x1+k2x2+k3x3) = Z Z Z An1,n27n3 (.1‘1,33275(}3), (1)

k1=—00 kg=—00 kzg=—0o0 n1=0n2=0n3=0

27 27 27
_ 1 —i(k1z1+kowa+hs:
where ¢, ko ks = g5 | [ flz1,22,23)e (k1w thozatksrs) do doodas.
00 0
Fo

The transformed Fourier series of o(f) is given by

a(fa Aaﬁl?ﬁQaﬂi’)) =

o oo oo
= Z Z Z Anying.ma [Cn1n2 ngei(nlzl+ﬁ1 %) g(nazatpB23) pi(nazs+B3 %) | ni |51| ng |ﬁ2‘ ns |ﬁ3],

n]=—00 Na=—00 N3=—00

where f1, 52, 83 € R and A = { Ay, ny.ns franansenN 1S @ sequence of real numbers.

Let p(x120x3) ~ o(f, A, B1, B2, B3) is the (X, 51, B2, B3) is the mixed derivative of the function f (or Liouville-
—Weyl derivative) and denote it by f(>"51’52’53)(x1x2x3). For example, if Ay, pnyny = ni'n5?ng?, i >0, B; =1y
(i=1,2,..) = fOP1P28s) — f(r1r2m3) where f(m17273)_mixed derivative of the function f in the sense of Weyl.

Definition 1.1. [10, 11] A sequence X := {\,,}°° is said to be general monotone, written A € GM?3, if the
relations

2n, 2n2
E | )\kl,ng,ng - )\kl—i-l,ng,ng |S C | A’l’L],TlQ’ng, |7 E | ATL],k)Q,’ILg - ATL]kz-’rl,ng |S C | )\nl,ng,ng )
ki=n1 ka=n2
2n3
§ | /\n1,7l27k3 - /\n1;n27k3+1 |S C I )\n17n2,n3, |’
ks=ns

2n1 2no

E E | Akl»k27n3 - )‘k1+1,k2,n3 - >‘k17k2+1,n3 + >‘k1+1,k2+17n3 |§ C | )‘ﬂl,nz,ns. |a

ki=ni ka=no

2n2 2’)13

E E | /\n1,’€27/€3 - /\TL1,7€2+1,/€3 - )‘n17k2>7€3+1 + )‘n17k2+17k3 |S C | /\n1,n27n3 |7

kz =nN2 k3 =ns

2n1 2n3

E E | )‘kl,nmks - )‘k1+1,n27k3 - >\k1,n2,k3+1 + >‘k1+17n27k3+1 |§ C | )‘nl,nzms |a

ki=n1 kz=ns

2n1 2?7,2 2?7,3

E E : E : | )‘k17k27k3 - )‘k1+1,/€27/€3 - /\kl’k2+1,7€3 - )‘k17k2’k3+1+

k1=n1 ko=ns kz=ngs
+)‘k1,k2+1,k3+1 + )‘k1+17k2,k3+1 + )‘k1+1,k2+17k3 - )‘k1+1,k2+1,k3+1 |S C | )‘nlﬂw,ns ‘

hold for all integers ni,ns and n3, where the constant C' is independent of ny, no and ns.
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Auziliary results

In order to prove the main result, we formulate auxiliary statements. We denote

2™m1 -1 2m2—1 2m3 -1

Aml,mg,mg = E § § Anl,nz,ng(xlam%xii)y mi, Mo, M3 = 172>~-~

np=2m1-1 py=2m2-1 nz=2m3—1

Lemma 2.1. [11] {\,} € GM if and only if there exists C' > 0, such that

N N
. .. A
(@) | M IS C| A | forn <k <2n; (u)ki | AN |< O] /\n+k5+1| ;') for any n < N.

By [11], it follows that if {\,,n,n, } € GM?, then

| Ak17k27k3 |§ C ‘ >\n1,n2,n3 | fOI' ny § kl S 277,1,712 § kg S 2712,713 S kg § 277,3.

This implies that the condition

2nq 2no 2ng
D > D I My kaks — Mt Tikacks — MerskatLks — Mk ka1 + My ka1 ks 411

k:lznl k:2:n2 k:3:n3
F k1 +1k2 ka1 + Mo+ ka+1ks — M+ Lo+ Lkg+1 | < C( Anynang |+ A2ny 200,204 |)
is equivalent to the condition

2'(7.1 2'(7.2 2'(7.3

E E E | )‘kl,kmks - )‘k1+1,7€27k3 - >\k17k2+1;k3 - )‘k1,k2’k3+1+

kl =Nn1 k2:’n2 k3:TL3
+>‘k1’k2+17k3+1 + )‘k1+1,]€2,k3+1 + )‘k1+1,k2+1,’€3 - )‘k1+1’k2+1,k3+1 |S C | )"ﬂhnzﬂls | :
Lemma 2.2. (Minkowskii inequality [12]) Let 1 < p < oo and a,j, > 0, then

1 14

00 k 1 00 00 1 oo o0 1
) (X wn) <3 (X)) o (X awr)” < Z( )
k=1 v=1 v=1 k=v k=1 v=k v=1 =1
Lemma 2.3. [12]| For a function f(u,y) defined on measurable set E = E; X Es C R, where z = (u,y),
U= (21,0, Tm), Y = (Tmt1, .-y Tn), the following inequality holds

(J1 [ sty a)” < [ ([ 1501 du) ay
E, E» E, E,
Lemma 2.4. 8] Let f € L,(T?),1 <p<oo,m; € NUO (i =1,2). Then
Ilf = S0 (f) = Sooma (f) + Smyma (F)llp X Yony jma (F)ps

where S,,, m, are the partial sums of the Fourier series of a function f.
Lemma 2.5. [8] a) Let 1 < p < 0o and (1) be the Fourier series of f € L,o(T?), then

27 27 27 1
DIl < ( / / / S S A dmldmdms) < @)/l

mi1= 1777,2 17713 1

b) Let 1 < p < oo. If (1) satisfies the following inequality

27 27 27 00 00 o
Ip = </// Z Z Z Agﬂlﬂwms)
00 0 1=1my=lmz=1

Then (1) is the Fourier series of a function f = (z1,z2,23) € L,(T?) and || f||, < C(p)I,

(NS
=

dxldxgdxg) < Q.
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Main result

The aim of this paper is to prove the following theorem.

Theorem 3.1. Let 1 < p < 00, 0 < § < min(p,2), A := {Any na.ns tni.na.ms D€ sequences of positive numbers
such that A € GM?, a; e Ry, r; € Ry U{0} and §; € R(i = 1,2). If for f € LI(T?) the series

Z | )‘n1+1,1,1 >‘n1 1,1 | n1, O(f)P+

'I’Ll—

+ Z | AY nat1,1 A?,ng,l | Yoe,nz, p T+ Z | /\ g4l — )\(i,l,ng | Yoa,o,m, (f)pt

na=1 n3=1

0 0
+ Z Z | )‘n1+1 no+1,1 )‘n1+1,n2,1 - )‘nl na+1,1 + >\n1,TL2,1 | nl,nz,O(f)p+

nl_l ng—

0 0 0 0
+ Z Z | >‘n1,1,n3 - /\n1+1,1,n3 - )‘nl,l,n;;—i-l + )‘n1+1,1,n3+1 | Ynl,O,n3(f)P+ (2)

ni=1nz=1

§ E 6 [ 4
+ | )‘1 ,n2,n3 )‘1 ,no+1,ns )‘l,ng,n3+1 + )‘l,n2+1,n3+1 | YO,ng,ng(f)P+

’I’Lg—l n3_

6 6 6
+ Z Z Z | )\nlvnzﬂls - /\n1+17n27n3 - )‘n17n2+17n3 - )‘n1,nz,n3+1+

ni=1ngs=1nz=1

0 0 0 0 0
+)‘n1,n2+1,n3+1 + /\n1+1,n2,n3+1 + /\n1+1,n2+1,n3 - )‘n1+1,n2+1,n3+1 | Ynl,ng,n3 (f)P
converges, then there exists a function ¢ € LS(T?’), with the Fourier series o(f, A, 81, 2, 83) and

wnps( BT D R U P e

nl_

0 0 0 )
+ Z B} 11— Moot | Yo o(f)p + Z | /\1 Lns+1 — M 1 | Y0.0,ns (f)pt

na=1 nz=1

+ Z Z | )\n1,n2, )\’I’LlJrl ng,1 )‘le,n2+1,l + )\fl1+17’ﬂ2+1,1 | Y'rLgl,n27O(f)P+ (3)

’I’Ll—l ’nz—

§ E 0 0 0
+ | )‘nl 1,n3 — )‘n1+1,1,n3 - )‘nl,l,n3+1 + >‘n1+1,1,n3+1 | Ynl,O,ng(f)p+

ni=1ng=1

6 6 4
+ Z Z | /\1 ,n2,n3 /\1 ,no+1,ns )‘l,ng,n3+1 + )‘1,n2+1,n3+1 | YO,ng,ng(f)P—i_

’I’Lz—l 77,3—

(% 6 6
+ Z Z Z | /\”1,n277L3 - )\n1+1,n27n3 - )‘nl,n2+17n3 - )‘nl,n2,n3+1+

ni=1lng=1ng=1
1
2]

6 6 6 6 0
+)‘n1,n2+1,n3+1 + )‘n1+1,n2,71,3+1 + )‘n1+1,n2+1,ng - )‘n1+1,n2+1,713+1 | Ynl,ng,ng (f)p) )

0
Yom _tszma—t ame—1 (9)p (Ammmw P

0 9
+ Z | )‘2"1 ,2m2—1 gmg—1 ™ )‘2V1—1 ,2m2—1 gmg—1 | 2v1—1-1 2m2—1,2ms—1(f)p+

vi=mi
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(o)
0 0
+ Z | A 7n171’21/2’2m,371 A mq—1 2u2—1 2m3—1 | 2m1 1’2v2—171’2w1371(f)p+ (4)

Va2=mz

(o)
§ 0 0
+ | )\ 'mlfl,2m27172u3 )\ mq—1 27!1.271 2u271 | 27n.1_1 ,2mM2 —1,2V3— 1(f)p+

v3=msg
E § 0
+ | )\21/1 2v2 | gmg—1 A21/1—1721/2,27n3—1_
vi=mj Va2=m2
0 0
)\21/1 2u2—1’27n3—1 + )\2111—1721/2—1)277:,3—1 | Y ul—171)21/2—17172m371(f)p+
0
+ E E 27n171 ,2v2 2v3 )\2m17172u27172;/3 -
Vo=mo V3=m3
0 0
)\lefl 21/2 293—1 + >\2m1—172u2—172ys—1 | Y2m1 _172V271_1727/371_1(f)p+
E § 6
+ | A2u1 2771271 21/3 )\ V1—172m271,2u3_
Vi=mj V3=mg3
0 4
)\2u1 21n2—1 21/3—1 + )\21/1717277@—1721/3—1 | Y2V171_1,2’NL2_1721/371_1(f)p+

+ E E E | )‘2”1 ,2v2 2V3 /\21'1*1 ,2v2 ,2V3 >‘2”1 ,2v2—1 ovs )‘2"1 2v2 2"3*1+

V1=mji V2=m3 V3=m3

1
0

0 0
+)\ 2v1 21/271 21/3—1 + >\2V171 ,2v2 2u371 + )\2111—1 21/2—1 ,2v3 )\2V171,2V271,2V371 | }/21/11_1721/21_1721/31_1('](‘)1))

Proof. Let the series (2) be convergent and f € Lg(T3). We use the following inequality

0 0
)‘2"1—1 2n2—1 2ng—1 < )‘111 + E | )‘1 1,2m3—1 >‘1,172ma—2 | +

ma=2
ni
2 : 6 2 0 6
+ 1 2m2—1 1 A1’2’m,2—2’1 | + | A ml*l,l,l - )\27‘@172’1’1 ‘ +
mz— 7R1:2
+ E E ‘ )‘2"11*1 2m2—1 )‘2"11*2 ,2m2—1 )‘2’"1*1 2m2=2 1 + )‘27"1*2 2m2—2 1 | + (5)

mi1=2mo=2

§ § : 0
+ ‘ >\1 27712—1 gmz—1 )\1 omg—2 27713—1 )\1 2m271’27n372 + )\1’2m2—2’27n372 | +

mo= 2m3 2

niy

4 4 (4
+ E : § , 2m1*1 ,1,2m3—1 >‘2m1*2,1,2msfl - )‘27"1*1,1,27”3*2 + )‘2m172,1,2m3*2 | +

mi1=2msz=2
A A
+ 2m171 2771271 2771371 - 2n1171’2m2—272m372 omy—2 2771271 ,2mM3~ 27
m172 m272 m3= 2
A2m1—2 omg—2 2""3*1 )\ omq—1 2m2—1 om3z—2 + A27n1—2 ng—l gmz—1 )\2m1—1 2m2—272m,3—1+
+)\27n1—2 21n27272'm,372 | .

ny_q 2_1 n3 _
Let us denote Anl,nz,ns = 22 =271~ Ziz ong—1 212/3=27}3*1 AV17V27'/3 (f7x17x27$3)(n1a ng,n3 =1, 2)
Using (5) and property of GM (Lemma 2.1), we get

27 27 27 P

Il = {/// |: i i i )\2n1—1 ,2n2—1 27;3—1An1,n2 n3:|2dx1’dx2,dx3} _
0 0 0 =1ng=1

=

ngl
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1
2
o )\2 AZ
- nq—1 2712—1 2n3—1 ni,Mn2,n3

=1ngs=1ng=

p

_ 2 2 2 2
= H {)‘1,1, 1 11+ E Agni—1 9 1A n1 11+ E A7 a1 1 AT o1+ E )‘1 12ms—1 A7 1 st

n1=2 na=2

+ g g )\2n1—1 2712—1 1 n17n271 + E g Ale—l 1 2713—1A/n/1717n3+

ni1=2ng=2 ni1=2nz=2
[eS) 9] ) [e'S) 9] %
§ : E 2 2 2 § : § 2 2
+ )‘1,2”2*172"3*1A1m2,n3 + )‘2"11,2"21,2"31An17n2,n2:| 5
no=2nz=2 ni1=2ns=2n3=2 P
) 00 %) é ni )
5 >‘1~,1,1 |: An17n2,n3:| ‘ Anl,ng,ng | )‘2’/1*1 1,1 )‘2'/1*271,1 ”9)
ni=1lngs=1ng=1 =2ngo=1ng=1 v1=2
2.1
o0 [eS) [eS) . . N\ 3
+ E E E nl,nz,ng E | A 12v2-11 — Al gva—2 | +
ni=1ngy=2 = vo=2 p
) N
+ E E E nl,nz,ng | )‘1 ,1,2v3—1 /\1,1,2"3*2 | +
1 no=1n3=2 v3=2 p
E § § § § 0 6
’ nl,nz,ng | )\21/1—1 ,2v2—11 /\21/1—2721/2—171 - )\21/1—172:/2—271“!‘
n1_2n2_2n3_ I/1—2 VQ—
2\3 0
+)‘2V172 ova—2 1 De> E E E nl,ng,ng E E , | )‘2V171 1,2v3—1 )‘2V1*2,1,2V3*1_
=2ns=1n3=2 v1=2v3=2
0 0 2\ Z Z Z Z Z 0
_)\2u17171’2u372 + )\21/172’1721»3—2 |)6) ni,na2,ns3 | )\ 21»2—1 21/3—1
=1nz=2n3=2 vo=2v3=2
0 0 2\3
)\1 2v2— 2 21/371 - )\1721/271721/3—2 + A172u272,2ug,72 |) 9) +
p

§ § § 0 0
| )\ vy—1 21/271 21/‘3—1 - )\2V1—172V2—172u3—2_

|: ni ng ns
2V2 21/3 2

J(E 3 s

2712—2 na= =2
0 0 0
)\21/]—2’21/2—1)21/3—1 )\21/1—1 21/2 -2 2u3—1 + )\21/1—1’21/2—2’21/3—2 + >\2u1—2)2u2—1)21/3—2+

:ZH1+H2+H3+H4+H5+H6+H7+H8.

p

2 1
9 0\ 2
+>\2u1—z ova—2 ovz—1 )\2,/1—2,2,,2—2’21/3—2 | :| >

Let us estimate H;. Applying Lemma 2.5, we have Hq < CAy 11| f]l, < co. Now we estimate Hp :

21 27 27 2_p

m {1155 5 st 35 0t

0 0 0 711—2 no= 1’!7,3 1/1:2

S
P

d{El, dl‘27 d(E3}

Using Minkowski’s inequality and Lemma 2.2 (a) for % > 1, we derive

(oo} ni
E : E ' § : E : 0 _
ni,n2,ng { ‘ >‘2"1*1 ,1,1 )‘2"1*2,1,1 ‘ } -

ng—l ’I’Lg—l 71,1— V1:2

B Z (< Z Z |: Z | Anl’n27"3 |0‘ >\0"1_1 1,1 >‘2”1—2 1,1 :|
ni=2

1713

o

o
N———
[
N————
SN
IN
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(oo}

& o
> ([ 3 18w F sy M ]

1713 1

IN

ni =2 vi= 2

o) e oo .2 9 2
(( Z{Z [Z Z |A”1,n2’n3| |)‘2V1 11,1 )‘g'ﬁ*?,l,l |3]2}6)2>9 <

ni1=2 v1=2 "ng=1nz=1

<<Z{ZZZ|A7'177L2”3|>\2u1111 )\2u12119})9_

v1=2 *ni=vingo=1nz=1

e} 0 s 8\ ¢
(Z |)\2u1 1117 )‘gn”,l,l | < Z Z Z | Ansinans |2)2>9.

v1=2 ni=vi na=1nz=1

Applying this inequality, we obtain

s
-

Further, using Minkowski’s inequality for & > 1, Lemmas 2.4 and 2.5, we have

27 27 27 o 0o 00 0. p
2 6
2 (3 s s { [ (2 2 3 180 ) ) e e
0 0 O

ni1=vi no=1ng=1
1
0
<
~Y

2_p

T 27 27
//{{ Z D\Qul 11— )\2u1 21,1 \ ( Z Z Z | Any nons |2> }G}Qdml,dx%dxg} =
0 0

=

[ )

=v1 ng=1ng=1

o

1/12

[ V)

T 21 27 00 50 00 % P % 1
// ( Z | /\2u1 191 Agu;le’l_’l | ( Z Z Z | Anl)n%na |2 ) >9dx1,dx2,dx3} )9.
00

ni1=vi ny=1n3=1

o

l/12

LIRS
=

(Z "\2"1 11,1 )‘3”1*2,1,1 ‘ H( Z Z Z |An1 nz,m3 |2>

n1=vi nz=1n3=1

D=

< Z | /\2"1 11,1 /\ng*1,1,1 | }/29“11,0,0(,78)17)

1112
1
6

. From (2) it follows that Hy < oo,

Thus, we obtain Hy < ZZT:2 | )\guhM — )‘gwfl,m | Y26"1—1,0,0(f)p)

Hs, Hy can be estimated similarly to Hy and we have

1

2] o
Hss(ZMmm 11|Y02u210<f>) ,H4s(z N s = A s | Yoy (f)p) .
Vo= 1 V3= 1

To estimate Hs, we apply the method of estimate for Hy as in article [9]. First, we obtain the upper estimate

of the following sum. Applying Lemmas 2.2 and 2.3 twice for % > 1, we get

<

0o 00 0o niy  no 2/60
2 0 0 0 0
YD D A { DD A iy~ M2 g1~ A1 T A2 g2 | ]

v1=2v9=2
2

(5% S )

ni=vi ng=vs ng=1

ny=1ng,=2n;=2

§ § 0 0 0
( ‘ )\2y1 1 2v2— 1 1 )\21/172’21/271,1_)\2u1—172u2—271+)\2u1—272u2—271 |

Vo= 2]/1 2

Hence, Lemma 2.3 with g > 1 implies that

21 27 27

({///[ZZAW D
vo=211=2
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P 2] 1

0 P\ 6
— At gra2 g T Mg g2 1 | ( Z Z Z | Aninaing |2) ] dxl,sz,dxg} ) <

ni1=Vvi nz2=v2 nzg=

§ : E : 0
( | )\2u171 ,2v2—11 >\2u1 2 gva—1 1 )\21/17172,/272714'

Vo= 21/1—
21 27 27

S

1=V

io: i |A7L177L2JL3| :l dl‘l,dZIZQ,d.I‘g} >6~

’I’L3:1

By Lemmas 2.4 and 2.5, we obtain

=

Hs < ( > § B O IR WORNED LA D L O, |}3%112U21£(f)p>

Vg—l l/l—

From (2), it follows that Hs < co. Hg, H7, Hg can be estimated similarly to Hs and we have

=

0 0 0 0
He 5 ( Z Z | )‘2”1 1,208 )‘2"1—1,1,2"3 - /\2V1,1,2va—1 + /\2%—171,2"3—1 | Y2v1—1,0,2v:s—1(f)1>> )

v3=1v1=1

=

0 0
LS ( Z Z | A1 1,2v2,2v3 )‘1 2v2—1,2v3 /\1 2v2 2v3—1 + /\1 ova—1 grz—1 | Y0,2V2—1,2v:s_1(f)1’> )

=1lvy=

E E 6
Hg S ( Z | )‘21'1 ,2v2 2v3 T )‘2V1,2V2,2V3*1 )‘21’1*1 ,2v2 2¥3 >‘2"1 ,2v2—1 v

l/3—1 V2—1 1/1—

=

0 0 6 0
+>\2u1 721/2—1721/3—1 + )\21/1—172112,21/3—1 + A2u1—172u2—172u3 )\21/1—1 21/2—1 21/‘5—1 | }6”1—1,2V2—1,2V3—1(f)p>
Collecting estimates of H; — Hg we get I; < co. Hence, by Lemma 2.5 (b), there exists a function
g(x1,22,23) € Lg, with the Fourier series

(o ol e S Ne o

Z Z Z >\2n1—1,2"2—1,2"3—1An1,n2,n3 (6)

ni=1lngs=1ng=1

and
9l < Cp) 1. (7)

. . . o0 oo (e.¢]
We rewrite series (6) in the form of Y~ > 7" > 7" | Yny npns Ang nang (T1, T, 05), Where
V11,1 = AL 1 Vvaws = Apgna—1 gng—1 for 27271 <pp <272 — 1 2" < py <278 — 1 (ng =2,3..)),

Vor 1,0 = Agmi-1qy for 27N <y <2 — 1 (np =2,3...),
Vordws = Agmi—1 g gna—1 for 271 <y <2M -1, 2T <y <2™ 1, (ng,m3 = 2,3...),
Vor,val = Agni—1 gna—1 7 for aml <y <om 1 2me Tl <y <22 — 1) (ng,mp = 2,3..),
V1w = A1,1,2ns-1 for ome=l <) <2™ 1, (n3=2,3..),
Viwad = Apgna—1y for 27271 <y <2™ — 1 (np =2,3...),
Vorwaws = Agni—1 gna—1 gng—1 for 271 <pyp < 2™ — 1,
oMl <y <22 1, 2T <y < 2™ — 1 (ng,mg,ng = 2,3...).

Now we consider the following series

0 oo oo 00
§ § E >‘n1,n277l3A711»n27"3 (x17x25$3 E E E 7n1,"27n3 ni.,ng,ng A"lﬂlz,”a (£E1,$2,:173) (8)7
ni=1lng=1ng=1 ni=1ngo=1nz=1
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where \ \
1,v2, 1,02, _
Mg =101 ,,, = —22 = L2 for 2M T <pp <272 — 1
’Y1,V2,l/3 )\1,2"2*172"3*1
27t <y < 2™ — 1 (ng,n3 =2,3...),
>\u 1,1 )\
1,4, v1,1,1 ny—1 n
Avl,l,l = Yo 11 = b\ ) for 2™ <y < 2M — 17 (Tlg = 2,3),
v1,1, 2n1-111
)‘V1,V2,1 )‘V17V2’1 ny—1 ny no—1 no
el = = for 2 <y <2M -1, 2 <y <2™ —1, (n,n2 =2,3...),
Yvy,v2,1 )\2"1*1,271'2*1,1
)‘V1»17V3 )\V1>1,V3 ni—1 ni nsg—1 ns
Aviiy = = for 2 <y <2m-—1,2 <wvg<2™ —1, (n1,n2 =2,3...),
’7V1,1,V3 )\2n1—171,2n3—1
A1 AL1
Al lus = IRTLS: R »1,V3 for 277,3—1 S Vs S ons _ 1’
Y1,1,v3 )\171,2"3—1
ALl ALl _
Al ol = o2t V2, for 2m2 < 1/2 on2 1
T,v2,1 A1,2n2*1,1
A . A _ _
Avppswy = T = S for M7 <y <2M -1 2T <p <2 —
’71/1,112,113 on1—1 2"2*1 2"3*1

27t <y < 2™ — 1 (ng,n3 = 2,3...).

As shown in [6], the sequence {Apn,=1,n,=1,n3=1}p, 1 np=1,ns—1 Satisfies the conditions of the Marcinkiewicz
m2=1,

multiplier theorem [12], then the series (8) is the Fourier series of a function ¢(x1,z2,22) € L, and [l¢||, <

Clo, Mlgllp-

Taking into account (7) and the estimates of Hy — Hg we get (3).
Let us estimate Yomi_1,0m2 1 ,2m3 1 (¢)p. Using Lemma 2.4, we get

Yami—1,2m2—1,2m3 -1 (9)p < Cllp = S2m1 —1,00,00(¢) = Soo,2m2—1,00() =

7500700721,”5 —1 ((p) + 2527u1 _1727n2 _1727713 —1 (Sﬁ) ||p,

We consider the series (see (8))

E E: E )‘nl,n2,n3 nl,ng,ng(‘rl’m27x3 E E E 7711,“2,”3 nq,mo, 7L3An1,n2,n3(x17$2’x3)

711—1 ’I’L2—1 nay= 1 nl_l ’ng—l n3_

where A3, . (1,2,,23) =0, if ng <2™ —1 and np <2M2 —1,n3 <2™8 —1 also A . . (21,2,,73) =
= A, nons (xl, x,,3) otherwise. Since the sequence {A,,, =1 n,=1n,=1} satisfies the conditions of the Marcinki-

ewicz multiplier theorem, then

E E § )‘711»77«27"3 ni,na,ns (xlvxzaxii

<C 1—1 9ng—1 gng— 1An1,n27n3

)

ni=1lng=1ng= =1ngo=1nzg=1 P
* . * _ .
where Ay .. =0,ifng <my and ng <mg, n3 <mz A}, = Apin, n, otherwise.
By Lemma 2.5, we have
Yomi—1,2m2—1,2ma—1 (0)p S (9)

21 27 27

[e%s) [e%s} e’} g %
AN S 8 Bt dondende)
0 0 0

ki=mi+1 ka=mo+1ks=mz+1

For the sequence )\le | gka—1 gkg—1, WE USE inequality (5) where the index of the first element starts with
gmi—l gm2—1 9ms—1 and we take the sum from 271~1 2m2=1 9ms—1 o 9k1—1 9ka—1 9ks—1 regpectively. The

resulting inequality is substituted into inequality (9).

}/27”1_1,2'"1,2_1 52m3 1 ((p)p S
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) 2w 2w P27 oo & & » 1
: ()\2m11’2m21’2m31 { /0 /o /0 [ D D DL ARkk)tdundrydas}i
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Similarly, we obtain the estimates for Lj, L,
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Similarly, we obtain the estimates for Lg, L7 :
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Taking into account the estimates for L; — Lg, we obtain (4). The theorem is proved.
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A E. ZKernucbaena, A.A. 2ZKymabaesa

JI.H. lymunés amundazo. Bypasus yammows yrusepcumemsi, Hyp-Cyaman, Kaszaxcman

Kannbutanrad JInyBusii-Beiisl TybIHAbLIAPBIHBIH, OYPBIITITHIK
€H >KaKbIH >KYbIKTAayJIAPbIHbIH, >)KOFapFbl Oarajiayiapbl

Maxkanaga 27 mepuoaTsl [ y3imiccis MyHKIUsIIAP KOHE OJIap/Ibl TPUTOHOMETPUSIIBIK, KOIIMYIIETIKTEPMEH
KYBIKTAyKa KanblIanrad JImyBuib-Beitsn TybIHAbLIaApEl apKBLIBI OepiareH yIin ermeMal Oy HKITUIIAD/IbIH,
OYDBIIITHIK, €H »KAKbIH >KYBIKTaybIH OaCTAlIKbl OepiireH OyHKIUAIAPABIH OYPBINTHIK, €H »KAKbIH KYybIKTa-
VBl APKBLIBI Oaraiaybl KAPaCThIPbLIFaH. ABTOpJ/IAp KJIACCUKAJBLIK Beil apajgac TybIHABLIAPBIHBIH OPHBIHA
Kannbutanrad Jluysuib-Beiin Tybinabutapbia 3eprreret. KapacThIpbLIaThIiH MICETETIEPIl TAHIAFAH A OChI
MAaKaJIaJarbl €KiHII aBTOPJBIH >KYMBICHIHAH KeiliH KaJbIITAacKaH »KaJIbl TOCiAAi ycranraH. BacTel ma-
KCAT >KYMBICTBIH, HOTHUXKEJIEPIH VI OJIIIeMIl Karmaiiga mosenaey. 2Kambl MOHOTOHIBI Ti36eKTep Typa-
JIBL TYCIHIK OCBI 3epTTeyae 6acTbl poJi arkapaabl. QyHKIIUSAHBIH €H YKAKBIH JKYBIKTAyTapbIHA KATBICTHI T'-
TYBIHJIBICBIHBIH €H >KaKbIH >KYBIKTAyIaphbl, HOpMa YIIIiH 6ipHerre 6erijii TeHci3ikTep Kopcerinren. MakaJa-
Jla KapaCThIPBLIFaH Mocesenep BepHITelHHIH 3epTTe/IreH eHOeKTePiHiH Mocesesepine xaTaabl. Keltinipek
Creukun xkone Konromkos f (") en xaKbIH JKYBIKTAy YIIH TeHCi3aik anbiaapl. Conbiven karap I[loramnos-
TBIH eHOeKTepiHe OYPHIITAP/IbI XKAKBIHIATY apPKbLIbI (DYHKIUAIAPIBIH KeHOIp KacTapbl KapaCThIPBIIFaH.
Bipinmii 6estiMe KaxKeTTi TYCIHIKTEPMEH KoHE Maiiaibl ieMMaiap 6epiiren. YIIr eImmeM Il Karaaiaa Kaji-
nputaurad JInyBuiis-Beisn TybIHABICH apKBLIEL OepiireH MYyHKITUIIAPIBIH HOPMACBIHBIH K9HE OYPBIIITHIK,
€H JKaKbIH JKYBIKTaybIHBIH 6arajaybl ajbIH/Ibl.

Kiam cesdep: Jleber keHicTiri, yur esrmemi OyPBITIIIEH €H XKAKbIH YKYBIKTay, TPUTOHOMETPHUSIIIBIK, KOITMYIITe-
ik, Jluysuiaa-Beitsn TybIHIbICHL.

A.E. ZKernucbaesa, A.A. ?ZKymabaepa

FEspasutickuti wayuornarvrut yHusepcumem umenu JI.H. lymunsésa, Hyp-Cyaman, Kazaxcman

BepxHue olieHKN YTIJIOBBIX HAMIYYIINX MPUOINKEHUIA
0000IIEHHBIX NTPON3BOAHBIX JInmyBniis-Beitasa

B crarpe paccmorpensr HempepbiBHBIE DYHKIME f C MEPUOAOM 27 W MX TPUOIHKEHHS TPUTOHOMETPU-
YECKUMU IOJIMHOMAMU. VI3ydYeHbl OLEHKU HAWJIYYIINX YIVIOBBIX HPUOJIMKEHWH OOOOIIEHBI IIPOM3BOIHBIX
JInyBunia-Beitnsa yriosbiM npubmimkenneM OyHKINNE B TDEXMEPHOM ciiydae. ABTopamu 0600IIeHHbIE IPOX-
3Bomubie JImyBunis-Beitnst BMecTo Kitaccmieckoro cmermanaoro mpoussogauoro Beitis. Ilpm Beibope pac-
CMaTPUBAEMbIX BOIIPOCOB OHU CJIEJIOBAJIM ODIIEMY IOIXO/Ly, CCPOPMUPOBABIIEMYCs 110CJEe pabOThl BTOPOrO
aBTOpa HacTosAllel craTbu. [ 1aBHAS 11EIb — J0Ka3aTh aHAJIOTH PE3YJIbTATOB PAOOTHI B TPEXMEPHOM CJLydae.
IlonsiTne 06X MOHOTOHHBIX TIOCJIEIOBATEIHHOCTEN UTPAET KITIOUEBYIO POJIb B HCCJIEIOBAHUN. Y KA3aHBI He-
CKOJIBKO U3BECTHBIX HEPABEHCTB JJIsi HOPM, HAVWJLYYIINX TPUOJINKEHHI T-T'0 IPOM3BOIHOIO 110 HAUJLY YIIAM
npubamkenusim Gyuknun f. Bompocsl, paccMoTpeHHBIE B HACTOsIIEl paboTe, OTHOCATCS K KPYTY IIPO-
6s1eM, n3y4deHnbix B paborax Bepumrreiinom. [lozauee Creuknn u KOHIOMKOB MoIyYniin HepaBeHCTBO J1JIst
namyurero npuGmazkenns ). Takxke B paGorax IloTanoBa npu MOMOIY IPUOINZKCHHS YIVIOM H3yHYCHDI
HEKOTOPBIe Kyacchl pyHkmii. B mogpasmesne 1 aBropamu maHbl HeOOX0aUMble 06003HAYEHUS U IIOJIE3HBIE JIEM-
Mbl. [losryueHbl OIfeHKM HOPM 1 HaWJIydIIne IPUOINKeHUsT 00001IeHHOro Ipon3BoaHoro Jlnysumiis-Beitis
B TPEXMEPHOM CJIydae.

Kmouesvie crosa: mpocTpancTBo Jlebera, Hamrydinee TpubINKeHE TPEXMEPHBIM YIJIOM, TPUTOHOMETPH-
YeCKUil 1MOJIMHOM, npon3BozHas JlumyBusuis-Beiist.
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Unique solvability of boundary value problem for functional
differential equations with involution

In this paper, we consider a boundary value problem for systems of Fredholm type integral-differential
equations with involutive transformation, containing derivative of the required function on the right-hand
side under the integral sign. Applying properties of an involutive transformation, original boundary value
problem is reduced to a boundary value problem for systems of integral-differential equations, containing
derivative of the required function on the right side under the integral sign. Assuming existence of resolvent
of the integral equation with respect to the kernel Ka(t, s) (this is the kernel of the integral equation that
contains the derivative of the desired function) and using properties of the resolvent, integral-differential
equation with a derivative on the right-hand side is reduced to a Fredholm type integral-differential equation,
in which there is no derivative of the desired function on the right side of the equation. Further, the obtained
boundary value problem is solved by the parametrization method created by Professor D. Dzhumabaev.
Based on this method, the problem is reduced to solving a special Cauchy problem with respect to the
introduced new functions and to solving systems of linear algebraic equations with respect to the introduced
parameters. An algorithm to find a solution is proposed. As is known, in contrast to the Cauchy problem
for ordinary differential equations, the special Cauchy problem for systems of integral-differential equations
is not always solvable. Necessary conditions for unique solvability of the special Cauchy problem were
established. By using results obtained by Professor D. Dzhumabaev, necessary and sufficient conditions for
the unique solvability of the original problem were established.

Keywords: system of integral-differential equations, boundary value conditions, parametrization method,
integral equation, resolvent, involution, unique solvability, Special Cauchy Problem.

Introduction

Boundary value problems for integral-differential equations have been studied by many authors [1-7],
however, with the development of computer technology, the question of creating constructive methods for solvi-
ng the problem arises. In connection with this, Professor D. Dzhumabaev proposed a method for parameterizing
the solution of a linear two-point boundary value problem for systems of differential equations [8]. This method
was applied to study various boundary value problems [9-14].

On the segment [0,7] we consider the following boundary value problem:

T T
dz(:) + diag(aq, as, ..., an)w = /Kl(t,s)x (s)ds+ /Kg(t,s)a'c (s)ds+ f(t), te€[0,T], (1)
Ba(0) + C(T) = d,d € R", 2)

where the matrices Ki(t, s), Ka(t, s) are continuous on [0, T x [0, T, respectively, n-dimensional vector-function
f(t) is continuous on [0,T]. «(t) is a reorientation homeomorphism « : [0,7] — [0,T] such that o?(t) =
= afa(t)) = t. It is known that the homeomorphism «(t) is called the involutive transformation. On the
segment [0,7] as such a transformation, we can consider the transformation a(t) = T — t. Properties of the
involutive transformation were studied by G.S. Litvinchuk [14], N.K. Karapetyants and S.G. Samko [15] and
others.

*Corresponding author.
E-mail: gjnazarova@mail.ru
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We consider a value of equation (1) at the point ¢ = «(t)

w—i—diag(ah az, ..., an)dx(t) :/ 1(a(t), d8+/K2 (5)ds + f(a(t))-
0

From the system

420 + diag(as, as, ..., a,) G = le(t,s)z(s) ds+fK2(t,s)5c (s)ds + f(t),
0 0
dale®) o diag(ay, as, ..., a,) 8 = [ Ka(a(t), s)z (s) ds + | Ka(a(t), )i (s) ds + f(a(t))
0 0
we define
T
diag(1 —a2,1— a2, ...,1— a )dx :/ K, (t,s) — diag(ay, ag, ..., an)Ki(a(t),s)] z(s)ds+
0
T
+/ [K2(t,s) — diag(a1, ag, ..., an)Ka(a(t),s)]@(s)ds + [f(t) — diag(a1, az, ..., a,)f(at))].
0
Suppose that the matrix diag(1 — a?,1 — a3, ...,1 — a2) is not degenerate, then it is invertible, and

boundary value problem (1)—(2) can be written in the form

%:/klts / (s)ds+ f(t), te0,T], 3)
0 0
Bz(0) + Cx(T)=d, d € R", (4)
where
Ky(t,s) = diag(1/(1 —a}), 1/(1 = a3),...,1/(1 —a})) [Ki(t,s) — diag(ar, az, ..., an)Ki(a(t),s)],
Ky(t,s) = diag(1/(1 — a?), 1/(1 —a2),..., 1/(1 —a2)) [Ka(t,s) — diag(ay, az, ..., an)Ka(a(t),s)],

f( ) = dlag(l/( - a1)7 1/(1 - a’2)7 ) 1/(1 - an)) [f(t) - diag(a’lﬁ az, ..., an)f(a(t))] :
Condition A. Let the following Fredholm integral equation of the second kind

s)ds + O(t)

o\ﬂ

has a unique solution for any function ®(t) € C ([0,T], R™).
If Condition A holds, then there exists I'z(t, s; 1) — resolvent of the Fredholm integral equation of the second
kind with the kernel K;(t, s) and a solution of the integral equation can be written as

T
+/F2tsl s)ds.
0

By using Condition A, problem (3) — (4) can be rewritten as

T
Ki(t,s)z(s)ds + f(t) + [ Ta(t, 1) (s)ds + f(r)| dr, te[0,T], (5)
& ] fran | e
Bz(0) + Cx(T) = d, de R" (6)
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Changing the order of integration in the integral term we obtain

T T /T T
s (t,s;1) (s,7)x(r)drds = Do(t, 7 1)Ky (7, 8)dr | z(s)ds = | K*1(t,s)z(s)ds.
[reanx I\ /
We denote R R
Ky (t,s) = K*1(t,s) + Ki(t, s),
T
f = j0 + [ Talt7i 0 f(ryar
0
Then we rewrite problem (5) — (6) in the form:
p T
%= [ Rt + fo), e, (7)
0
Bz(0) + Cz(T) = d, de R". ®)

We take the step h > 0, that fits N times on the segment [0,7] and along it we consider the partition
N
0,T) = U [(r = 1)h,rh).

r=1
We denote restriction of the function z(t) on the r-th interval [(r — 1)h, rh) by z.(t), i.e., 2,(t) is a system
of vector functions defined and coinciding with z(t) on [(r — 1)k, rh). Then, the original two-point boundary
value problem for systems of integral-differential equations is reduced to the equivalent multipoint boundary
value problem

d;t’ Z / R (t, 8)a;(s)ds + f(£), ¢ € [(r = 1)h, rh), )
I=G-nn

Bx1(0) + CtiiqgloxN(t) =d, (10)

t—ggl—oxs(t) =Zs11(sh),s=1,N — 1. (11)

Here (11) are gluing conditions at the interior points of the partition ¢t = jh, j =1, N — 1.

If the function z(t) is a solution to problem (7)—(8), then the system of its restrictions z[t] = (x1(t), z2(t), ...,
xn(t)) will be a solution of multipoint boundary value problem (9)—(11). And in inverse, if the system of vector
functions Z[t] = (Z1(t), Z2(t), ..., Zn(t))’ is a solution to problem (9)—(11), then the function Z(¢), defined by the
equalities Z(t) = Z,.(t), t € [(r — 1)h,rh), r =1,N, (T) = tii;rl O:EN(t) will be a solution of original boundary

value problem (7)—(8). By A, we denote a value of the function z,(¢t) at the point ¢ = (r — 1)h and on each
interval [(r —1)h, rh) we change z,(t) = u,(t)+ A, = 1, N. Then problem (9)—(11) is reduced to the equivalent
multipoint boundary value problem with parameters

duy
o= / Rt 9)[uy () + Al + £(0). (12)
I=NG=1)h
u[(r —1)h] =0,t € [(r — 1)h,rh),r =1, N, (13)
B)\1+C)\N+C lim ’LLN(t) :d, (14)
t—T—-0
As + lm us(t) = Asy1,s =1, N — 1. (15)
t—sh—0

Problems (9)—(11) and (12)—(15) are equivalent in the sense that if the system of functions z[t] = (x1(t),
xa(t), ..., zn(t))" is a solution of problem (9)—(11), then pair (A, u[t]) will be a solution of the problem
(12)"(15), where A = (21(0), 2a(h)s . en (N — D)) ult) = (21(6) ~22(0), 22(8) - 22() oo 2 (8) — 2 ((N
—1)h)). And in inverse, if pair (X, @[t ]) is a solution of the problem (12)-(15), where A = (A1, A2, ..., An)’,
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alt] = (y(t), da(t), ..., an(t))’, then the system of functions Z[t] = (A + @1 (t), Ag + G2 (t), ..., An + an (2))" will
be a solution of problem (9)—(11).

Appearance of the initial conditions w,.[(r — 1)h] = 0,r = 1, N, allows us to determine functions u,(t),
r =1, N, from the systems of integral equations for fixed values A = (A1, Aa, ..., An)":

t N Jh t
u,(t) = / > / Ki(7,8) [uj(s) + \;] dsdr + / f(r)ydr, te[(r—1)h,rh). (16)
(r—1h 7= G- (r=1)h

From (16) defining , un (t), , lir}? 0us(t), s = 1, N — 1, putting the corresponding expressions into
—sh—

I
L Nh=0 ’

the conditions (14), (15), and multiplying both sides of (14) to h > 0, we get the system of linear equations
concerning to the unknown parameters A, r =1, NV :

Nh N Jh
hBA; + hCAyn + hC / > / Ki(7,s)\jdsdr =

(N21h =N

Nh Nh N Jh
= hd — hC / f(r)(r)dr — hC > Ky (7, 8)uj(s)dsdr (17)
(NZ1)h (NInn =GR
sh N jh

Ao+ / > / Ky (7, 8)Ajds dr — Agyq =

(s—1)n 7= 0n

sh N jh sh
=— / Ki(7,8) uj(s) ds dr — / f(r)dr, s=1,N—1. (18)
(s=Dhr =L (s—1)h

We denote the nN x nlN dimensional matrix corresponding to the left side of the system of linear equations
(17), (18) by Q(h). Then the system of linear equations (17), (18) can be written in the form:

Q(h)A = —F(h) — G(u,h),\ € R"", (19)
where
Nh h (N=1)h
F(h)=| —hd+ hC / fi(r)dr, /fl(T)dT, . / fi(r)dr |,
(NZ1)h 0 (NZ2)h

Nh jh

G(u,h) = | hC / > / Kl(T,s)uj(s)dsdﬂ/hf:
0

(N)R TGS 7=

jh
Ky(r,s)uj(s)dsdr, . ..,
j—1)h
(N=Dh gk
Z / K (7, s)uj(s)dsdr
(NI =N
Therefore, to find unknown pairs (A, u[t]), solutions of the problem (12)—(15)... we have a closed system
of equations (16), (19). We find solution of the multipoint boundary value problem (12)—(15) as a limit of the
sequence of pairs (N*) u(F[t]), k =0,1,2, ..., defined by the following algorithm:
Step 0. a) Assuming, that the matrix Q(h) is invertible, from the equation Q(h)A = —F(h) we define the
initial approximation by the parameter \(%) = ()\go), )\go)’ e )\5\9)) € RN A0 = —[Q(R)] "' F(h).
b) Putting the found )\7(«0), r = 1, N into the right side of the system of integral-differential equations (12)
and solving the special Cauchy problem with conditions (13), we find u(?[t] = (ugo)(t), ug))(t)7 . ,ug\?) (1))
Step 1. a) Putting the found values 1L£0)(1f)7 r=1,N into the right side of (19), from the equation
QM)A = —F(h) — G(u®, h) we define AV = (A ALY A,
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b) Putting the found )\7(}), r = 1, N into the right side of the system of integral-differential equations (12)
and solving the special Cauchy problem with conditions (13), we find u()[t] = (ugl)(t), ugl)(t), e 7ug\l,)(t))’ and
etc.

Continuing the process, at the k-step of the algorithm we find the system of pairs (A*), u(®)[t]), k =0,1,2, ....

Unknown functions wu[t] = (u1(t), ua(t),...,un(t)) are determined from the special Cauchy problem for
systems of integral-differential equations (12) with initial conditions (13). In contrast to the Cauchy problem
for ordinary differential equations, the special Cauchy problem for systems of integral-differential equations is
not always solvable.

Sufficient conditions for unique solvability of the special Cauchy problem (12), (13) for known values of the
parameters A are established by

Theorem 1. Let the partition step h = T'/N satisfy the inequality

o0(h)=pBTh < 1,

where § = (t,s)e%(?,%“}](x[o,T]HKl(t,S)H.

Then, the special Cauchy problem (12), (13) has a unique solution.

Sufficient conditions for feasibility and convergence of the proposed algorithm, as well as existence of a
unique solution to problem (1), (2) are established by

Theorem 2. Let the following conditions hold:

1) Condition A,

2) matrix diag(1 —a?,1— a3, ...,1— a2) is invertible,

3) conditions of Theorem 1 hold,

4) matrix Q(h) is invertible and the following inequalities hold:

QM HI < ~(h),

__n)
1-06(h)

Then the two-point boundary value problem for systems of integral-differential equations (1), (2) has a
unique solution.

Proof of Theorem 1 and Theorem 2 is similar to the scheme of the proof of Theorem 1 and Theorem 3 from
[16] and is carried out according to the above algorithm, taking into account the specifics of the system (1).

In [5], necessary and sufficient conditions for unique solvability of a linear boundary value problem for the
following systems of differential equations were obtained

q(h) () max(1, h[|Cl))é(h) < 1.

T

d
%= [ Koais @, tepT),
0
Bz(0) + Cz(T)=d, d € R".
Theorem ([8; 1216]). For unique solvability of the problem (14), (15) it is necessary and sufficient existence
of h € (0, hg] : Nh =T, where the matrix Q. .(h) is invertible.
The above theorem implies
Corollary. For unique solvability of the problem (1), (2) it is necessary and sufficient the conditions 1 and
2 of Theorem 2, as well as existence of h € (0, ho] : Nh = T, where the matrix Q. .(h) is invertible.

Where hg is defined from the condition g(hg) = fThe < 1, and the matrix Q. .(h) is defined in the same
way as in [8].
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K.ZK. Hazaposa, K.bl. Ycmanon

Kooica Azmem Hcayu amovimdazor Xaavikapanrvix, Kasax-mypix yrusepcumemsi, Typxicman, Kazaxeman

NuaBoaonusabsl pyHKINOHAJABI-Ad depeHnna abIK TeHaeyJiep
VIIiH MIeTTIiK ecemnTiH OipMoH/Ii IeImiIiMIiIiri

Maxkasiazma TeHIEYIIH OH, »KaFbIHBIH, KYPaMbIHIA WHTErPaJl TaHOACHIHBIH, ACTBIHA 13AeMiHIl DyHKIMSAIaH
TYBIHIBICHI 6ap WHBOJIIOTUBTI TYpPJIeHIIpyMeH DpearosibM TUIITEC HHTETPAJILIK-Au(MHEPEHITNAIBIK, TEH-
neyJiep Kyieci yIIiH MIETTIK ecell KapacThIpbLIIbl. VHBOJIOTUBTI TYPJEHIIPY/IiH KacUeTiH maiiiaaany-
JaH GacTaIKbl ecell OH, XKakK, OeJIIriHAe MHTerpal TaHOACBIHBIH ACThIHIAA 13eTiH/Al (DYHKIUSIIAH TYBIHIBICHI
6ap MHTErpaaabIK-TudOEPEHITHAIIBIK, TEHAEY YIIH IMETTIK eCenKe KoHEe MHTETPAJIIbIK TEHIEY/IIH SIpO-
cot Ko (t, s)-xe (izmeningl GpyHKIMATAH TYBH/BICHL 6ap UHTErPAJIIBIK, TEHAEYAIH AAPOCh) GalIaHbICThI pe-
30JIbBEHTACHI 6ap JIEN KopaMaJIIal, HHTErpaIIblK-1uddepeHnaIbK TEHIEY OH, YKak, OoJIiriHae i3ae s
bYHKIUAIAH TYBIHABICHL KOK, TeHIeyre KeaTipiseni. Asbiaran mertik ecen npodeccop H.C. Txxymabaes
YCBIHFaH IapaMeTrpJiey oiciMed nibirapblirad. Ockl 9IicTiH HEri3iH/e ecell XKaHa eHri3iiren OyHKINAIIAPFa
GaiitaHbICTBI apHaiibl Komm ecebin KoHe eHri3iireH mapamerpiiepre GailjIaHBICTBI CHI3BIKTHI AJreOPaIbIK,
TeHeyep XKyiteci memnryre kenripiseai. Ecentin mrermimin Taby aaropurmi yebiHbLIFaH. Benrini 6omranmait,
Kol muddepeHnma bk TeHaeysep yirin Komm ecebine kaparanjia HHTErPAJIbIK-11dOdHEPEeHITUATIBIK, Te-
HJleysiep Kyiteci yiriH apHaiibl Komm eceGinin 6apJblK, yakbITTa mremnriMi 6ap 6osta 6epmeiini. [Ipodeccop
I.C. IxxymabaeBThIH aJIFaH HOTHUXKEJIEPIH KOJIIAaHA OTHIPHIN, apHaiibl Komm ecebinin 6ipMoH/Ii mremnimiMTi-
JITIHIH KaKeTTi MapTTapbl TarailbIHIaJIIbI.

Kiam cesdep: nuTerpasabik-anddepeHInaIablK, TEHAEYIEP KYiieci, MeTTIK mapTTap, mapamMeTpJiey 9Iici,
MHTErPaJIJIbIK, TEHJEY, Pe30JbBEHTa, HHBOJIONMs, OIpMOH/II IermiiMaIuTiK, apHaiisl Komm ecebi.

K.ZK. Hazaposa, K.I1. Ycmanos

Mesicdynapoonniii xkazaxcro-mypeyruts yrusepcumem um. Xoodocu Axmema Hccasu, Typrecman, Kazaxcman

OagHo3HaYHAasT Pa3peInnMOCTh KpaeBoil 3aa4un i
dbyukimonaJbHO-IUMDEePEHNTNATBHBIX YPAaBHEHUN C WHBOJIIOIHE

B craTbe paccMmoTpena kpaeBas 3ajada Jjisl CHCTEM WHTErpo-amddepeHInaipHbIX ypaBHeruit Tuma Ppe-
ATOJbMa C MHBOJIOTHBHBIM IIPEOOPA30BAHUEM, COMEPIKAIas B MPABOHl 9acTU MPOU3BOIHYIO OT MCKOMOM
byt 1071 3HaKOM uHTerpaJia. [1o1b3ysach cBOICTBOM MHBOJIIOTUBHOIO IIPEOOPA30BAHUS, 33/1a49a CBEJIe-
Ha K KPaeBOl 3ajade MJis CUCTEM HHTErpo-auddepeHIalbHbIX YPABHEHUM, COIepKaIell B MpaBoil Ja-
CTH TPOU3BOJIHYIO OT MCKOMON (DYHKIMH MO 3HAKOM HHTerpaJja. llpesamosiarasi cymecTBOBaHIE DPE30JIb-
BEHTBI MHTErPAJIbHOIO yPAaBHEHUsI OTHOCUTEJBHO S7Ipa K, (t,s) (smpo MHTErpaIbLHOrO ypaBHEHU, KOTOPOE
COJIEP?KUT TPOU3BOIHYIO OT MCKOMOH (DYHKIMH) W UCHOJIBb3ysl PE30JbBEHTY, MHTErpo-aud depennuaabaoe
ypaBHEHUE CBEJIEHO K YPAaBHEHUIO, HE COIAEPIKAIINEMY ITPOU3BOIHYIO OT MCKOMOM (DYHKIIUK B IPABOM YacTH
uHTErpo-auddepeHuaabHOro ypapaenus. /lajiee moydeHHast KpaeBasl 3a/a4da pelraeTcs MeTOJIOM Iapa-
MeTPHU3AINH, TpeIokeHHbIM mpodeccopoM /1. Jlxxymabaesbim. Ha ocHOBe JaHHOTO MeTO/1a 3aa1a CBEeIeHA
K PeIeHnIo CIeruaabHoi 3a1a4un Kol oTHOCHTEIbHO BBEJEHHBIX HOBBIX (DYHKIIAM U K PEIIEHUIO CUCTEM
JIMHEHHBIX aJredOpanvdecKnX ypaBHEHUI OTHOCHUTEIBHO BBEJIECHHBIX HapamerpoB. [Ipeioken ajaropurm Ha-
XOXKJIeHus pemnteruii. Kak u3BecTHO, B oT/in4dne OT 3aja4un Ko /111 0ObIKHOBEHHBIX (b dDepeHIuaaIbHbIX
ypaBHEHHUH, crieruajbHas 3adada Ko 1jisi cucreM UHTErpo-auddepeHnaabHbIX YPaBHEHUN He BCEeria
paspermmma. ABTopaMu OBLIN YCTAHOBJIEHBI HEOOXOAUMBbIE YCJIOBHSI OJHO3HAYHON Pa3pEelIuMOCTHU CIIEIIAa Tb-
Hoit 3agaun Komu. Vcmons3yst pesyabraTsl, momydenubie mpodeccopom 1. JlxxkymabaeBbiM, ObLIN HallI€HBI
HEOOXO/IMMbIE U JIOCTATOYHBIE YCJIOBUS OJIHOZHAYHON Pa3peImMOCTH UCXOTHON 3a/1a4u.

Kmouesvie crosa: cucrema nHTErpo-audpepeHnnaabHbIX yPaBHEHU, KPAeBble YCIOBUSI, METOT TapaMeTPH-
3aIui, UHTErpajJbHOE ypPaBHEHUE, PE30JIbBEHTA, MHBOJIIONUS, OJHO3HAYHAS Pa3PEIIUMOCTD, CIIeIHUaIbHAsS
3aga4a Kormmm.
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Factorization method for solving nonlocal
boundary value problems in Banach space

This article deals with the factorization and solution of nonlocal boundary value problems in a Banach
space of the abstract form

Biu= Au— S®(u) — GU(Aou) = f, u € D(By),

where A, Ag are linear abstract operators, S, G are vectors of functions, ®, ¥ are vectors of linear bounded
functionals, and u, f are functions. It is shown that the operator B; under certain conditions can be
factorized into a product of two simpler lower order operators as B1 = BBy. Then the solvability and
the unique solution of the equation Biu = f easily follow from the solvability conditions and the unique
solutions of the equations Bv = f and Bou = v. The universal technique proposed here is essentially different
from other factorization methods in the respect that it involves decomposition of both the equation and
boundary conditions and delivers the solution in closed form. The method is implemented to solve ordinary
and partial Fredholm integro-differential equations.

Keywords: boundary value problems, nonlocal conditions, factorization, linear operators, integro-differential
equations, closed-form solutions.

Introduction

Let X be a complex Banach space and X™* the adjoint space of X, i.e., the set of all complex-valued linear
bounded functionals ¢ on X. Let A, Ay : X — X be linear operators with boundary conditions incorporated,
O = col(g1, P2y ey Om), ¥ = col(wy, 2, ..., Ym) vectors of linear bounded functionals ¢;, 1, i = 1,2, ...,m, and
S(81, 825 s Sm)s G = (91, g2, --., gm) vectors of functions s;,¢g; € X, i =1,2,...,m. Let the operator By : X — X
be defined by

B =A—-5%—-GY(A),

and consider the boundary value problem
Biu= Au — S®(u) — GV (Agu) = f, wu € D(By),

where f € X is a given forcing function and u is the unknown function.

The primary objective of the paper is to establish factorization conditions under which this problem can
be decomposed into two simpler lower order boundary value problems and derive the unique solution in closed
form. The second goal is to implement this procedure to solve boundary value problems for ordinary and
partial Fredholm integro-differential equations with nonlocal boundary conditions. In this case B is an integro-
differential operator, A is a differential operator of order n with nonlocal boundary conditions incorporated,
and the functionals ¢;,;, ¢ = 1, ..., m are integrals with constant limits.

Integro-differential equations model many situations in biology, physics, economics, engineering and appli-
ed mathematics. Boundary value problems involving an integro-differential equation and nonlocal boundary
conditions are very difficult to solve analytically and therefore very often numerical methods are employed.
Factorization methods, where they can be applied, can reduce the problem to simpler lower order problems
which can be solved and thus construct the solution of the initial complex problem [1-20].

The novelty of the factorization method presented here differs from other factorization methods in the
literature in the respect that it involves decomposition of both the equation and boundary conditions and

*Corresponding author.
E-mail: paras@uth.gr
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delivers the solution in closed form. The technique is new development in Banach spaces and an extension of a
procedure used successfully by the authors to solve various other boundary value problems [21-24] and [25-27].

The method is simple to program to any Computer Algebra System.

The rest of the paper is organized as follows. In Section 1 some preliminary results are quoted. In Section 2
the solvability, uniqueness and decomposition conditions are established and the factorization solution method
is explicated. In Section 3 two example problems are solved to show the implementation and efficiency of the
method.

Preliminaries

Let X,Y be complex Banach space and A : X — Y a linear operator with D(A) and R(A) denoting
its domain and range, respectively. We recall that A is said to be injective (or uniquely solvable) if for all
uy,us € D(A) such that Auy = Aug, follows that u; = ug; alternatively, A is injective if and only if ker A = {0}.
The operator A is called surjective (or everywhere solvable) if R(A) =Y. The operator A is called bijective if
A is both injective and surjective. Lastly, A is said to be correct if A is bijective and its inverse A~! is bounded
on Y. The problem Au = f is called correct if the operator A is correct.

An operator By : X — X is said to be factorable if there exist two operators By, B : X — X such that B;
can be written as a product By = BBjy. In this case, BBy is a factorization (decomposition) of Bj.

Throughout the paper, we will use the notation ®(g) to denote the m x m matrix whose i, j-th entry ¢;(g;)
is the value of the functional ¢; on element g;, where i,j = 1,...,m. Note that ®(gC) = ®(g)C, where C is a
m x k constant matrix. We will also denote by ¢ the column vector ¢ = col(cy, ..., ¢;,) and by Oy, I, the zero
and identity m X m matrices, respectively.

We recall Corollary 3.11 from [25] which will need to prove the theorems below.

Corollary 1. Let A be a correct operator on a Banach space X and the components of the vectors
G =(91,...,9m) and F = col(F1,...F,,) are arbitrary elements of X and X*, respectively. Then the operator
B : X — X defined by

Bu=Au—-GF(Au)=f, D(B)=D(A), feX (1)

is correct if and only if
det L = det[],,, — F(G)] # 0. (2)

If B is correct, then the unique solution of (1) for every f € X is given by
uw=B7'f=AT' f+ AT'GlL, — F(Q)] ' F(f). (3)

The following theorem is the generalization of Theorem 1 in [28] and here we prove it without requiring
the correctness of the operator A and the linear independence of the components of the functional vector
U = col(¢1, eeey Vim)-

Theorem 2. Let X,Y and Z be Banach spaces and A : X — Y be a linear injective operator with
D(A) C Z C X. Further let the vector G = (g1, ..., gm) € Y™ and the column vector ¥ = col(1, ..., ¥ ), where
Y1, ooy YUy € Z. Then:

(i) The operator B : X — Y defined by

Bu=Au—-GY(u)=f, D(B)=D(A), felX, (4)

is injective if and only if
det W = det[I,, — U(A™'G)] # 0. (5)

(ii) If B is injective and A is bijective, then B is bijective and for any f € Y, the unique solution of (4) is given
by
u=Blf=A"1f+ AW U(ATLS). (6)

(iii) If B is injective and A is correct, then B is correct.

Proof. (i) The sufficient injectiveness condition of the operator B is proved as in [28§].

Now, we prove the converse statement “if the operator B is injective, then det W # 07 or equivalently "if
det W = 0, then the operator B is not injective”. Suppose det W = 0. Then there exists a nonzero vector
¢ = col(ey, ..., ¢) such that We = 0. Consider the element ug = A~!Ge. This element is nonzero, because
otherwise we would have

We=1[I, —¥(A'G)c=c— V(A" 'Gec) =c #0,
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which is a contradiction. Further,
Bug = Aug — G¥(ug) = Gec — GY (A G)c = G[I,,, — GY (A G)]c = GWe =0,

which means that ug € ker B and thus B is not injective.
(ii) Let B is injective and A is bijective. Then (5) holds (det W # 0) and for any f € Y from (4) follows
that
u=A"1GU(u) + A7f, (7)

and
U(u) = V(A GV (u) + U(ATLf),
L — WAL O W(u) = V(AL ),
U(u) = (I — U(ATIG)] (A7), (8)
Substituting (8) into (7), we obtain the unique solution (6). Since this solution is given for arbitrary f € Y,
then R(B) =Y, i.e., B is surjective. Hence B is a bijective operator.

(iii) If B is injective and A is correct, then from (6) follows that B~! is bounded since A~! and ¥ are
bounded. Hence B is correct. O

Main results
Theorem 3. Let X and Zy, Z be Banach spaces, Zy, Z C X, the vectors Go = (910, -+, gmo0)s G = (g1 -+ Im),

S = (81,...,8m) € X™, the components of the column vectors ® = col(¢1, ..., 0m) and ¥ = col(¢1, ..., )
belong to Z; and Z*, respectively, and the operators By, B, B : X — X be defined by

Bou = Aou — GO(I)(U) = f, D(BO) = D(Ao) - Zo, (9)
Bu=Au—GU(u)=f, D(B)=D(A)C Z, (10)
B1U = AAQU - S(I)(’LL) - G\I/(AQU) = f, D(Bl) = D(AA0)7 (11)

where Ag and A are linear correct operators on X and Gy € D(A)™. Then the following statements are satisfied:
(i) It
SeR(B)™ and S = BG,=AGy— GY(Gy), (12)

then the operator B; can be factorized as By = BBy.
(ii) If (12) holds, then the operator By = BBy is correct if and only if the operators By and B are correct
which means that

det Ly = det[I,, — ®(A;'Go)] #0 and det L = det[l,, — ¥(A'G)] £ 0, (13)
and the unique solution of (11) is
u=B{'f=A"AT f+ [AgTATIG + Ay GoLg ' R(Ag T ATIG) [ LTI WA )
+ A GoLy ' (A AT, (14)
Proof. (i) Taking into account that Gy € D(A)™ and (9)-(11) we get
D(BBy) = {u € D(By) : Bou € D(B)}

= {u S D(Ao) 2 Agu — G0<I>(u) S D(A)}
={ue D(Ay): Apu € D(A)} = D(AAy) = D(By).
So D(B;) = D(BBy). Let y = Bou. Then for each u € D(AAp) since (10) and (9) we have

BByu = By = Ay — G¥(y)

= AlAgu — Go®(u)] — GU (Agu — Go®(u))

78 Bulletin of the Karaganda University



Factorization method for solving ...

= AAou — [AGy — GT(Go)]B(u) — G (Agu)
= AA()U - BG()(I)(u) - G\I/(Aou), (15)

where the relation BGy = AGy — GVU(Gy) follows from (10) if instead of u we take Gy. By comparing (15)
with (11) it is easy to verify that Byu = BBgu for each u € D(AAy) if a vector S satisfies (12).

(ii) Let the operator B; be defined by (11), where S = BGy. Then Equation (11) can be equivalently
presented in the matrix form:

—14-1
Biu = AAgu — (BGy, G) (‘I’<A0 4 AAO“)> =f

(AT AAgu)

or

Biu= Au—GF(Au) = f, D(By) = D(A),
where A = AAy, G = (BGy,G), F = C01(§’>‘i’)» and

d(v) (A, A )

Fl)={ = 0 .

0= (ae) = ("Wt

Notice that the operator ./fl = AA, is correct, because of A and Ag are correct, and that the vector F is bounded,
since the vector ® (resp.¥) is bounded as a superposition of a bounded functional ® (resp.¥) and a bounded

operator AgtA~! (resp. A~1). Then we apply Corollary 1. In accordance to (2), (3), the operator B is correct
if and only if

dot 14— et~ 7(6) g [ (1 ) (LG )

— det <Im — ®(AGy — GU(Gy))  —9(G) )
- ~U(AGo — GU(Gy)) I, — ¥(G)

et (T~ B(Ay Gy — AgTATIGU(Gy)) —B(A,1ATIG)
- —U(Gy — A~IGY(Gy)) In — U(ATIG)

— det (Im — B(Ay " Go) + B(Ag A~ G)U(Go) —¢>(A01A—1G)> o,

_W(Go) + U(A~LG)W(Go) I — U(A-1G) (16)

Multiplying by ¥(Gg) from the left the second column of the matrix in (16) and then adding to the first column,
we get

B I, — ®(A;'Go) —®(A;1ATG)
det L = det < 0, I — \I/(A‘lG)

= det[I,,, — ®(Ay ' Go)] det[L,, — (AT G)] = det Lo det L # 0.

So we proved that the operator Bj is correct if and only if (13) is fulfilled. From (13), by Theorem 2, follows
that the operators B and By are correct.
Let now u € D(AAp) and Byu = BBou = f. Then, by Theorem 2 (ii), since B, By are correct operators, we
obtain
Bou=B'f=A"f+AT'\GL'U(ATS),

u=By' (A f+ATIGLTI (AT ).

Denote g = A~'f + A7'GL 'W(A~1f). By using Theorem 2 (ii) again, with Ag, Go,®, Lo, g in place of
A, G,V L, f respectively, we get

u=Bylg=Ag'g+ Ay GoLy ' ®(Aytg) = Ag (AT f+ ATIGLTIU(AT )
+A GoLg '@ (Ag (AT f+ AT GLTI (AT ) = Ag AT F+ AJTATIGLT (AT )
+ A5 GoLy t[R(ATAT ) + @(AgTATIG) LT (AT )],

which implies (14). The theorem is proved. O
The next theorem is useful for applications and is proved by using Theorem 3.
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Theorem 4. Let the spaces X, Zy, Z, the vectors S, G, ®, ¥ be defined as in Theorem 3 and the operator

By : X —- X by
Biu= Au — S®(u) — GV (Agu) = f, wu € D(By), (17)
where Ay is a correct m-order differential operator with D(A4g) C Zy and A is a n-order differential operator,

m < n. Then the next statements are fulfilled:
(1) If there exists an n — m order differential bijective operator A : X — X such that

A= AAy, D(B;)=D(AAy), D(A)cCZCX, (18)
det L = det[I,, — V(A™'G)] # 0, (19)

then the operator Bj is factorized as By = BBy, where By, B are defined by (9), (10),
Go=A"'S+ A'GL™'u(A™LS), (20)

the operator A and vectors G, ¥ are determined from (18) and (17), respectively, and the operator Ay and a
vector ® from (17).
(ii) If in addition to (i) A is correct, then the operator By = BB is correct if and only if

det Ly = det[I,,, — ®(A;'Go)] # 0 (21)
and the unique solution of (17), (18) is given by
u=DBy'B7'f =By'v=Ay"v+ Ay 'GoLy ' ®(Ay '), (22)
where
v=AT1f+ ATIGLTIU (AT ). (23)

Proof. (i) Suppose that there exist the operators A, B, By, defined in (i). Acting by the operator B on the
vector Gy, defined by (20), we get.
BGy = AGy — G¥(Gy)

=A(AT'S+AT'GLTU(ATIS)) — GU (ATIS + ATIGLTIU(ATS))
=S+GL'U(ATIS) —GU(ATS) - GU(AIG) L U (ATLS)
=S+ G — V(ALY (ATLS) - GU(ATLS) = S.
So BGy = S. From (17) for A = AAp and BGy = S we get
Biu= AAou — BGy®(u) — GU(Apu) = f, u € D(AAp). (24)
Denote y = Agu. Then from (24) for any u € D(AAy) follows that
Biu= Ay — GY(y) — BGy®(u) = By — BGo®(u) = B (Aou — Go®(u)) = BByu.

In Theorem 3 (i) we proved that D(BBj) = D(AAp) = D(B;). Consequently, Bj is factorized in By = BB,.

(ii) Let A be a correct operator. Then by Theorem 2, since (19), (21), the operators B, By are correct too.
Remind that for Gy, defined by (20), we proved in (i) that BGy = S. Then by Theorem 3 (i), (iii), we have the
factorization By = BBy and Bj is correct if and only if det L # 0 and det Ly # 0. But by assumption det L # 0.
Thus By is correct if and only if (21) holds. Let BBou = f for any f € X. Then because of the operators B, By
are correct, we obtain

Bou=B 'f=A"'f+ ATI\GL7' U (AT ).
From the above, denoting v = A= f + A"'GL='W(A~Lf), follows that
Bou=v, u=Bj'v=A;'v+ Ay GoLy ' ®(Ay ),

which give (23) and (22). So the theorem is proved. O

Remark 5. Usually in applications X is the space Cla,b] or L,(a,b), p = 1,2, ..., and Zy, Z are the spaces
C*la, b] or WZ’f(a, b), k =1, ...,n, respectively. Problem (17) can be solved by factorization method if it is possible
to determine from (17) the vectors S, G, ®, ¥ and the operators Ay, A such that

A= AA, D(Bl) = D(z4x40)7 D(A) C Z, D(Ao) C Zy, detL 75 0, detLg 7& 0.

If the above conditions are fulfilled, then a unique solution to (17) can be found by (22), (23), where Gy is given
by (20).

80 Bulletin of the Karaganda University



Factorization method for solving ...

Illustrative Examples

To explain the implementation of the factorization method and to show its efficiency, we solve two example
problems.
Ezxample 1. Let us find the solution of the nonlocal boundary value problem

1 1
u (t) — (t + 1)/ (t — Du(t)dt — t2/ Bu'(t)dt=2-3t, 0<t<l,
0 0

w(0) +u(1) =0, «(0)— 4u'(1) = 0. (25)

The operator By : C[0,1] — C[0, 1] corresponding to the problem is correct. The unique solution to problem
(25) is given by the formula

5(1204t4 + 40225613 — 81185012 + 549488¢ — 70549
u(t) = — 2 + + ). (26)
4037236

Proof. First we need to find the operators A, Ay and check the condition D(B;) = D(AAy). If we compare
equation (25) with Problem (17), (18), it is natural to take X = C[0,1], m =1, I, = 1,

Au = AAgu = u" (1), (27)

D(By) = {u(t) € C?[0,1] : u(0) + u(1) =0, «/(0) —4u'(1) = 0},
Apu(t) = u/(t), D(Ag) = {u(t) € C'[0,1] : u(0) = —u(1)},

B(u) = /0 (t— Du(t)dt, U(Agu) = /0 Bl (t)dt, (28)

S =t+1,G = t2. Let us denote Agu(t) = u'(t) = y(t) = y. Then from (27) we have y € D(A),
AAou = (W' (t)) = y'(t) = Ay(t),y(0) — 4y(1) = 0. So we proved that
Ay =y'(t), D(A)={y(t) € C'[0,1] : y(0) — 4y(1) = 0}.

Further by definition we find
D(AAp) = {u(t) € D(Ao) : Aou(t) € D(A)}

= {u(t) € C'[0,1] : w(0) = —u(1), v'(t) € C*[0,1], u'(0) — 4/(1) = 0}
= {u(t) € C?[0,1] : w(0) + u(1) =0, /(0) —4u'(1) =0} = D(By).

So D(B;) = D(AAy). Tt is easy to verify that the operators A, Ay are correct on C[0,1] and that for every
f(t) € C[0,1] the following formulae hold true

» o 4 1
A7) = [ s@is =3 [ pwys, (29)
4510 = [ sy =3 [ fajan (30)
From (28) we have
1 1
o) = [ @ 1f@ds, W5 = [ afla)da. (31)

Then [®(f)| < 3||f(@)|lc, [¥(f)] < 1]|f(z)||c, thatis @, ¥ € C*[0,1] and Zy = Z = C[0,1]. Using (29),

(31) and (19), we obtain
‘ 4 [ 4
A_lG:/ xzdx—f/ idr = — — -,
0 3 Jo 3 9

1 34 4
U(A~G :/ x° (x—> de = ——,
( ) 0 3 9 63

det L = det[I,, — V(A7 G)] = 1+4/63 = 67/63, L' =63/67.
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So (19) is fulfilled. Further using (20), (23), (29), (31) for S =t +1,G =t? and f(t) =2 — 3t we find

3t 2 1
AN f=—" 2 — 2, WATf)=——
f 5 T 3 (A7) 50’
_79—%ﬂnm2—26&ﬁ+884

v= AT+ ATIGLT (AT ) = (32)

1340 ’

t 4 1 t2
A_lS:/(x—l—l)dx—f/(sc—i—l)d:cz——i—t—?,
0 3Jo 2

1 2
—lay 3 (% _ _ 1
U(A S)—/O:r (2—1-:10 Q)dx— &3’

3 _ 2
Go = A-15 + A-\GL-Tw(A-1g) — _ 273t = 20106 — 4020t 4 7676

4020
Taking into account (30), (31), we obtain
546t* — 5360t — 16080t% + 61408t — 20257 44509
A—l — _ [0)) A_l = — .
o Go 32160 > 2(Ag Go) 964800
Since 1009309 964800
det Ly = det[l,,, — (AT Gy)] = —— #£0, then Lj'= ——
et Lo = det| (Ao Go)l = Gergoo 7 O then Lo = 1559309"
and by Theorem 4 (ii), Problem (25) is correct. By (30)-(32) we calculate
. 14¢4 + 5360t3 — 10720¢2 + 7072t — 863 . 1223
Ay v =— , (A 'v) = .
10720 107200

Substituting these values into (22), i.e.,
u=Ay'v+ Ay GoLy ' (A ),
we obtain the unique solution to (25), which is given by (26).

Ezample 2. Let T = {(t,s) € R?: 0 < t,s < 1}, u = u(t, s), u}, u, € C(I). The operator By : C(IT) — C(II)
corresponding to the problem:

up(t,s) — (2t — ) /01 /01 u(t, s)dtds — (t + s) /01 /01 tsuy(t, s)dtds (33)

213s + 149t — 600

7

220
11
u(O,s):s/ / t2u(t, s)dtds,
o Jo

11
uy(t,0) = (2t — 1)/ / (s + 3)uy(t, s)dtds
0o Jo
is correct. The unique solution to Problem (33) is given by the formula

6s(25¢ + 1) 4+ 275¢(t — 1
u(t,s) = 5(25t+1) + ( ) (34)
55
Proof. First we need to find the operators A, Ay and check the condition D(B1) = D(AAy). If we compare
(33) with Problem (17), (18), it is natural to take X = C(II), m =1, I, = 1,

AApz = u:f/s (ta S)a (35)

1,1
D(By) = {u(t,s) € C(ID), u},uy, € C(I), u(0,s) = S/o /0 t2u(t, s)dtds,
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WL 0) = (26— 1) /0 1 /0 (s 4 3)ul (4, s)deds) (36)

Aou(t, s) = uj(t, s), (37)
D(4) = {ult, s) € C(TD) : l(t,) € C(TD),  u(0, s —s/ / Pu(t, s)dtds),

_ /0 1 /O ot s)dids, W(Agu) /O /0 tsul (¢, s)dtds, (38)

S =2t—s, G=t+s, f =—(21354+149t—600)/220. In (37), denote Agu(t,s) = uj(t,s) = y(t,s) = y. Then from
(35), (36) we have y € D(A), AAou = (ui(t,s))s = y.(t,s) = Ay(t, s) and y(t,0) = (2t—1) fol fol (s+3)y(t, s)dtds.
So we proved that

1 1
Ay =yl(t.s), D(A) = {y(t,s) € C() : o, € C(TD), y(t,0) = (2t — 1) / / (s + B)y(t, s)dtds}.

Then by definition
D(AAp) = {u(t,s) € D(Ay) : Apu(t,s) € D(A)}

= {u(t,s) e C(I) : u, € C(I0) Ost//tQ (t, s)dtds,
11
uy(t,0) = (2t — 1)/0 /0 (s + 3)uy(t, s)dtds, wuj,(t,s) € C(II)}
= {u(t,s) € C(I), u},uy, € C(I), u(0,s) = s/ / t2u(t, s)dtds,

uy(t,0) = (2t — 1)/O /O (s + 3)uy(t, s)dtds} = D(By).

Thus D(B;) = D(AA). It is easy to verify that the operators A, Ay are correct on C(II) and for every
f(t,s) € C(II) hold true

s 1 1 s
-1 . .
A7 f(t,s) = /0 f(t,z)dx + (2t 1)/O /0 /0 (s +3)f(t, z)dzdtds, (39)
t 11 gt
Agtf(t,s) = /0 f(z,s)dz + %/0 /o /0 t2f (2, s)dzdtds. (40)
From (38) we get
1,1 1 1
)= /0 /0 F(t,s)dids, W(f) = /O /0 15 (1, )dtds. (41)
Then ®, ¥ € C*(II) and Zy = Z = C(II). Using (39), (41) and (19) we obtain
. s 37(2t — 1) 29 e i
A6 = 5 bt —o v(AT'G) = %’ L=1-9(A"'G)=67/96, L~'=096/67.

So (19) is fulfilled. Further, using (39), (41), (23), (20) for S =2t — s,G =t + s and f(t) = —(213s + 149t —
—600)/220 we find

2675
4224’

2 _ _ _
a-if 2556 +248(149t52§80) 19927(2¢ — 1) B(ALf) =

33652 — 6s(424t + 5025) — 57187(2t — 1)

_ 41 -1 -1 —1p
v=A"1f+ ATTGLTIW(AT ) = T0Er ; (42)
ATLS = & + 25t + HE-1) V(A™LS) = 25
2 24 96°
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4252 — 318st — 239(2t — 1
Go— A1S + A-LGL-1p(A-Lg) — 4257 31851 ~ 28902 — 1)

134
Taking into account (40), (41) we obtain
210052t — 35(2650¢2 + 9) — 11950¢(¢ — 1) 6019
A'Gy = — P(ATIGY) = ———.
0 0 6700 + ®(4o Go) = 15500
Since 16219
det Ly = det[],, — ®(A; ! =
et Lo = det{lm = ®(4y"Go)] = 55555 7 0

then Ly ' = 49200 "and hence by Theorem 4 (ii), problem (33) is correct. By (40)-(42) we calculate

462197

ALy — 840052t — 65(5300t2 + 125625t 4 5043) — 1429675t (t — 1)
o 276375 ’
92438

829125

d(Ay M) =

Substituting the above values into (22), we obtain, by Theorem 4 (ii), the unique solution of (33)

65(25¢ + 1) + 275¢(t — 1)

u=Ag'v+ Ay GoLy ' ®(Ay ) = = ,

which is (34).

10

11

12

13

84
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N.H. ITapacuauc, E. [IpoBumac

Deccanusn ynusepcumemst, Jlapuca, I'peyus

Banax keHICTirinje JJoKaJabJi eMec MieKapaJibIK ecenTep/i
mIenryre apHaJjiran paKTopu3alius dIiCi

Maxkasia 6aHax KeHICTiriHge abCcTpakTiii omepaTopaapbl 6ap
BlU:A’U/—S@(U) —G\I/(Aou) :f, u € D(B1),

TYpIHJEri JIOKAIBI eMeC IIEeKTIK ecentep/i (pakTopusanusjay >KoHe INelryre apHajran, MyHmarsl A, Ag
CBI3BIKTBIK JepeKci3 oneparopiaap, S, G dyukmus Bekropsapbl, $, ¢ ChIBBIKTHIK, KTy (YyHKIUOHAJIBI
BEKTOpPJIAp KoHe u, [ PyHKImsaap. Bi omeparopsl 6esrii 6ip xkarmaitnmapma B1 = Bbo kimi eki Kapa-
maifibIM OIEepPATOP/IbIH, KOOeUTiHIiciHe dhaKTOpIaHybl MyMKiH eKeHiri kepcerinren. Coman keitin Biu = f
TeHJeyiHiH memnimMi MeH »KaJrb3 memmiMi Bv = f xkone bou = v TeHaeysep IemiMAepiHiy memiMaiIiri mex
Gipereiriri maprrapblHaH OHAll TYBIHIAMIBI. ¥ ChIHBLIFAH oMOebar oic 6acka pakTopusalus 9iiCTepiHeH
afiTap/IBIKTall epeKIeeHe T, OTKEHI OFaH TEHIEYy MEH IMIEKaPAJIBIK, MAPTTAPIABIH, (haKTOPUBAIUSICHI KipeTi
JK9He mrermiMi xKabbIK Typ/e yebiHaabl. by omic PpearosbMHBIH KapanaiibM yKoHE YKapPThLIail HHTErpo-
nuddepeHTIANIBIK, TEHJIEYIEPIH IIellyre apHaJjFaH.

Kiam ceadep: mekapabiK, ecenTep, JKePriiiKTi eMec KaFaaiiap, paKTOPU3aIlHsl, CI3BIKTHIK, OlepaTopIap,
uHTErpo-1uddepeHnnaIblK, TeHIeyIep, Ka0bIK, TyPeri memnmiMaep.

W.H. Ilapacunuc, E. IIpoBuaac

Vwnusepcumem Deccanruu, Jlapuca, I'peyus

Metona dpakTOpuU3anmum AJIsd pernieHns HeJIOKAJIbHBIX
KpaeBbIX 33/1a49 B 0AaHAXOBOM IIPOCTPAHCTBE

CraTbs MOCBsIIeHa (PAKTOPUIAINN U PEIIEHUIO HEJIOKAJIBHBIX KPAEBbIX 33/1a4 C OlrepaTopaMu abCTPaKTHOTO
BUIA
BlU:A’U/—S@(U) —G\I/(Aou) :f, u € D(B1),

B 6aHAXOBOM IpOoCcTpaHCTBe, rue A, A9 — juHeinble abcrpakTHbIe onepaTopbl; S, G — BeKTOPbI MYHKINIL;
®, U — BeKTOPHI IMHEHHBIX OTPAHUIEHHBIX (DYHKIIMOHAJNOB; & U, f — dyuknuu. [lokaszano, aro omeparop Bi
[IpU OTIPeIeIEHHBIX YCJIOBUSAX MOXKET OBITh (PaKTOPU30BAH B IPOU3BE/IEHNE ABYX 00JIee TPOCTHIX OIIEPATOPOB
MenbIero nopsiyika B1 = BBy. Torja pa3pemmMocTs 1 €JIMHCTBEHHOE pelllenre ypaBHenus Biu = f jerko
cJIeTyeT U3 yCJAOBHUI Pa3pennMOCTH U € UHCTBEHHOCTH pertennit ypasuenuit Bv = f u Bou = v. [Ipegnara-
€MBblif YHUBEPCAIbHBII METOJT CYIIECTBEHHO OTJINYIAETCHA OT APYTUX METOAO0B (DaKTOPU3AINHU, TTOCKOIbKY OH
BKJIIO4YaeT (haKTOPUSAIUIO YPABHEHNS U FPAHUYHBIX YCJIOBUN U IIPEIOCTABIISIET PENleHre B 3aMKHYTOU dop-
me. Merom paspaboTan Jjisi pelieHnst OOBIKHOBEHHBIX M YACTHBIX WHTErpO-IrpdhepeHITnaIbHbIX yPABHEHUT
®Dpearosbma.

Karowesvie crosa: KpaeBble 33/1a41, HEJIOKAJIbHBIE YCI0BUA, (DAKTOPU3alisl, TNHEHHbIE OIIePATOPbI, HHTErPO-
nuddepeHnpaIbHble ypaBHEHNs, PEIIeHUsT B 3aMKHYTOI (hopme.
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Summation of some infinite series by the methods
of Hypergeometric functions and partial fractions

In this article, we obtain the summations of some infinite series by partial fraction method and by usi-
ng certain hypergeometric summation theorems of positive and negative unit arguments, Riemann Zeta
functions, polygamma functions, lower case beta functions of one-variable and other associated functions.
We also obtain some hypergeometric summation theorems for:

8F7[9§§§§3=31'11111272;1}75F4 §ééll.2122-1}7sp4[Qﬁéll-gggg-l}

5555555555555 [ 335335502 153331233
13 551 1.5 . 1155 +¢.33 77, 3 3 .5 5 4.
5F4[ S ooy 18211 }1 5F4[ 5390905, 5,5,3 1 ]7 4F3[ 3 L3521 ],
2 1 .7 5 9. 7 13 11 o, . .
4F3[ 535 L1335 21 ]» 4F3[ oo bly, 21 ] and 4F3[ 1,1,1,1;3,3,3; -1 ]

Keywords: Riemann Zeta functions, Polygamma functions, Dougall’s theorem, Bernoulli polynomials, Catalan’s
constant.

Introduction and preliminaries

In this paper, we shall use the following standard notations:
N:= {1,2,3,---}; No:=NU{0}; 2zZ;:=z"J{0}={0,-1,-2,-3,---}.

The symbols C, R, N, Z, Rt and R~ denote the sets of complex numbers, real numbers, natural numbers,
integers, positive and negative real numbers respectively.

The classical Pochhammer symbol («), (o, p € C) is defined by ( [1; 22, Eq.(1), p.32, Q.N.(8) and Q.N.(9)],
see also [2; 23, Eq.(22) and Eq.(23)]).

A natural generalization of the Gaussian hypergeometric series o F [, 3;; 2] is accomplished by introducing
any arbitrary number of numerator and denominator parameters [2; 42, Eq.(1)].

The Riemann Zeta function ((z)([3; 19, 4; 1037]) is defined as:

k=1

The Catalan constant is defined as:

G f: DY g by 1 0.9159655942
T2 R M 5 3 o

The logarithmic derivative of the Gamma function also known as psi function or Digamma function ([1; 10,
Eq.(1)], [5; 24, Eq.(2)], [6; 12, Eq.(1)]), is defined as:

d '),

U(z) = T {T()} =

240,-1,-2,-3, ...

*Corresponding author.
E-mail: javidmagid375@gmail.com
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[e )

1 z
= —v— - E _ -1,-2,-3, ...
¢(Z) "y + n Z # 07 ) b 37 )

z = n(z+n)

> 1 1
w(Z):—v—nX:% {(Z+n) — (n+1)}; 2 #0,-1,-2,-3, ...,

where v is Euler-Mascheroni constant and v = 0.577215664901532860606512....

2 3 3 3
Y(1) = —, w(S)z—vﬂg[—QenS, w(2)=2—2€n2—% (1)
5\ V3 3 7\ ™3 3

3 w2 5 2
o2y _ o (2)y_ 4 _
w0 () =T -1 v (3) =5 -4

3 1473 5 1473 448
@(2)=—_——2 416 (O e s Rl
v <2> 25.79436 v (2) 25.79436 | 27

The polygamma function ¥ (2) ([5; 33, Eq.(52), Eq.(53), p.34, Eq.(58)], see also ([7; 260, Eq.(6.4.10),
Eq.(6.4.4)], [8; 45, Eq.(9)], [3; 15]), is defined as:

() dn+1 dn

> 1
Z/J(")(Z) — (_1)n+1 nl Z (Z " k)n+1; neN, z#0,—-1,-2,...
k=0
Lower case beta function of one variable:

B(x) =+ [w ('ZH) _ (2)] I R

2

o0 (_1)k 1 1, =z
g(z):kzzo iR o Fy e -1 |, 2#0,-1,-2,-3, ...
n dr n > (71)]C
D=tn2 8O0 = - B2 =1—tn2 V@) =" _1 3
B()_n75 ()__ﬁa 6()_ _nvﬁ ()_E_v ()
N7 o (1) B\_4-7m oo (3) e
6(2)—2,6 (2>— 4G,/3(2>— 5 , B 5 =4G — 4, (4)
5\_7m_ 4 ay(5)__ 32 Loy 3T oy o 3T
ﬁ(2>_2 3’6 (2)‘ 4G+9’ P (1)_51.58872’ g @) =2 51.58872° 5)

Some hypergeometric summation theorems in terms of Digamma (), trigamma w(l)(b), tetragamma
¥ (b) functions and derivatives of lower case beta function of one-variable are given below ... [9; 489, Entry
(7.3.6.(9))]

17 a7
o F1 -1 :aﬂ(a); 1+GEC\ZS (6)
a+1;
See ref. [9; 536, Entry (7.4.4.(33))]
1, a, b; ab
3F 1| = b) — , 7
I ey [(8) = V(o) @

where 1 +a, 1 +b€ C\Z; and b # a.
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See ref. [9; 536, Entry (7.4.4.(34))]

1, b, b
3F> 1| =0 M), (8)
b+1, b+1;
where 1+ b € C\Z, and b = a.
See ref. [9; 546, Entry (7.4.5.(5))]
]‘7 a7 a?
3F2 —1 | =—a® 8W(a), (9)
a+1, a+1;
where 1 +a € C\Z; and b = a.
See ref. [9; 554, Entry (7.5.3.(3))]
1, a, b, ¢
) ) ) ) b
4F3 1 | =—abe 5 ¥la) + qé}( ) b + 1/J(Clz ) (10)
adlebise b-ac—a)  @-he-b  @-ob-0o
where 14+a, 1 +b, 1+ce C\Z; and a # b,b# c,a # c.
See ref. [9; 554, Entry (7.5.3.(5))]
17 b7 b7 b7 _b3
4F; 1 :77¢@Mm (11)
b+1, b+1, b+ 1;
where 1 +be€ C\Z; anda=b=rc.
See ref. [9; 561, Entry (7.5.4.(5))]
17 a, a, a; CL3
aF3 -l =5 8% (a), (12)
a+1, a+1, a+1;
where 1 +a € C\Z; anda=b=rc.
Gauss’ classical summation theorem [1; 49, Th.(18)] in terms of Gamma function is given by:
o, f;
I ) 1—‘ 1_‘ _ _

7

where Re(y —a — ) > 0 and v € C\Z; .
Dougall’s theorem ([10; 71, Eq.(2.2.10), p.147, Entry(3.5.2)],[11],[9; 564, Entry(7.6.2(3))], [12; 56, Eq.(2.3.4.5),
p.244, Entry(I11.12)]), see also [13; 27, Eq.(4.4(1))] in terms of Gamma function is given as:

a, 1+%; ba & d7
5y 1] =
5 1+a—-b1l+a—c1+a—d;

T(1+a—b(1+a—T(1+a—dT(1+a—b—c—d)
Fl+al(l4a-b—c)l(1+a—-b-—d)T(1+a—c—d)’

(14)

provided Re(a —b—c—d) > —-land §, 1+a—0b, 1+a—¢c, 1+a—-decC\Z;.

The present article is organized as follows. In section 2, we have shown that the difference of two divergent
series may be convergent. In section 3, we have obtained the summation of some infinite series whose general
terms are rational functions of n, by using some summation theorems of positive and negative unit arguments
and section 4 is related to the hypergeometrical representations of the involved infinite series.
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The difference of two divergent series

Consider the two positive terms infinite series » -, m and 07 m, which are divergent in nature
by using the comparison test.
Taking the difference of the above two series, we get

oo oo

1 = 1 2
;(3+2n)_;(5+2n):§(3+2n)(5+2n)‘ (15)

The right hand side of equation (15) is convergent by using the Raabe’s higher ratio test.
In terms of hypergeometric function, the equation (15) can be written as

S -T2 5k

§ Z Z
2 n=0 2 2
3 . 5 . 3 .
L F o b 1 1 F » b 1 2 F 2 b 1 16
52 1 5. 752 1 7. *1752 1 7. . ( )
27 2? 27

Since both the Gauss’ series having the positive unit argument on left hand side of equation (16) are divergent.
On using Gauss’ classical summation theorem (13) on right hand side of equation (16), we get

3 1. |
12F1 2 1 —12F1 2 1 :3 F(%)F(%*%*l)
R IR S B I e
3 1. ] 50 1.
1 29 ) 1 29 ) 1
§2F1 .y 1 —52F1 . 1 =3 (17)
27 J 27

which is convergent.
Multiplying both sides of equation (17) by 13—6, for application point of view in next section, we get the
difference of two divergent Gauss’ series having the positive unit argument may be convergent

3 1. 51
Loel 127 1= (18)
16 21 . g0 241 . = —.

27

NI~
—
ol -

Summation of some infinite series

The following summation formulas of some infinite series are derived:

i (4n* + 32n3 + 87n? + 92n + 28) _ 5 7 (19)
— (64n° + 768n° + 37920 + 985603 + 14220n% + 10800n + 3375) ~ 27 64
i (27n® +36n° + 150 4+2) {(3),}" 27 (20)
14 2 3

| (32n* + 120n° + 15602 + 82n + 15) {(3),}" 128 o1
; ()% (n® + Tn* + 19n3 + 25n2 + 16n+ 4)  3n2 21)
i (128n* + 144n® +48n+5) {(1) }' 322 )
= ) (n?+2n+1) BENGINOE

> . -Z-4 23)
= (16n* +96n° + 184n% +120n +25) 8 144
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- 1 2
=4-2Un2— —. o
nz:;) (4n3 + 16n2 + 21n + 9) n 1 (24)
[e'e) 1 1 _ 1
== —— — —/n 3. 25
7; (81n* + 270n3 + 31502 + 150n +24) 6 + 12v3 4" (25)
i . =/In 12+ /m V3 —3. (26)
2~ (36n° + 10802 + 107n + 35)
0o (_1)n+1 3
ngo(n6+9n5+33n4+63n3+66n2—|—36n+8) n2-5¢B) (27)

Proof of the result (19):
On factorizing the general term of equation (19) and making use of partial fractions, we have

(4n* + 32n3 + 87n?% + 92n + 28) B
(64n6 + 768n5 + 3792nt + 9856n3 4 14220n2 4 10800n + 3375)

3 —1 —1 -3 —1 1
16 16 4 16 16 4
= + . 28
Br2n)  Br2)?  Bronp T Gron) T GrmE  Bton)p (28)
Now taking summation on both sides of equation (28) and n varying from 0 to co, we get
i (4n* + 32n3 + 87n? + 92n + 28) 7
o (64n8 + 76805 + 3792n* + 9856n3 + 14220n2 + 10800n + 3375)
e 3 =1 =1 =3 =1 1
16 16 1 6 6 1
= + 5 =
ngo Br2n)  TB1r2m2  Brm)P Gt Brom)?E  (Bron)?
3 3 3 3 3
_ 1 i (3)n R (3), B, 1 i (3), B)., (i)n_
= 5 5 5 5 5 5
16 =(3), M=), 5), 1108:=(3), (3, 35),
3506 156, B) i (3)n 5)n (5)n
80 = (3), 400 =), ), 500 =3, (3, G
Using the definition of generalized hypergeometric function, we get
i (4n* + 32n3 + 87n? + 92n + 28) B
— (64nS + 768n5 + 3792n* + 9856n3 + 14220n2 + 10800n + 3375)
3 3 1. 3 3 3 1.
1 %7 17 1 P 27 2 17 . 1 27 29 2 17 )
16 > 5. T 144 777 5 5. T 5 5 5. B
27 27 27 27 2% 20
: 5 5 5 5 5
3 7 ga 17 ) 1 7 2y 2 ]-7 i 1 7 27 20 2 ]-a 1
BT I BTl B I T I
2 27 27 20 20 2
Using summation theorems (8), (11) and the result (18), we get
i (4n* + 32n3 + 87n? + 92n + 28) _
o (64nS + 76805 + 3792nt + 9856m3 + 1422012 + 108000 + 3375)
1 1 3 1 5 1 3 1 5
— - _ W2y 2 @ (2 @2 =
16 64 v <2> 64 v (2) * 64 v (2) 64 v (2)
11 (= 1 (7% 40 1 —1473 1 —147% 448
=== |44~ = |- )+=\lgagdmmat16) = |+ |-
16 64 \ 2 64 \ 2 9 64 \ 25.79436 64 \25.79436 = 27

Mathematics series. Ne 3(103)/2021

91



M.I. Qureshi, J. Majid, A.H. Bhat

On simplifying further, we arrive at the result (19).

Proof of the results (20) to (22):
The proof of the results (20) and (22) can be obtained in an analogous manner by following the same steps

as in the proof of the result (19) and making use of the summation theorem (14).

Proof of the result (23):
The proof of the result (23) can be obtained by following the same procedure as in the proof of the result
5 .

(19) and making use of the summation theorems (6), (9) and using the equations (4) and (5). So we omit the

details here.

Proof of the result (24):
On factorizing the general term of equation (24) and making use of partial fractions, we have

1 -2 -2 (29

1
MCES

AP+ 1602 +2n+9)  (1+n)  B+2n)

Now taking summation on both sides of equation (29) and n varying from 0 to oo, we get

> 1 > 1 —2 > 1
Z 3 2 - Z + -2 Z 2 =
= (4n® +16n* +2In+9) = ((1+n) (3+2n) — (3+2n)
> 1 > 1
= —_— - 2 =
7;0(14—@ (34 2n) ;(34—2@2
0o 3 00 3 3
o 1 Z (]‘)n (5)71, _ g Z (5)77, (i)n
= 5 5 5\ °
3 n=0 (2)n (§)n 9 n=0 (§)n (§)n
Using the definition of generalized hypergeometric function, we get
3 ) 3 3 1.
e 1 P 2 17 15 ) 2 P 25 2 17 )
Z n3+16n2+21n+9) 53 2 5 o. _53 2 5 5.
29 27 27 929

Using summation theorems (7) and (8), we get

S o) 03 ()

rt 4n3 +16n2 +21n+9

On simplifying further, we arrive at the result (24).

Proof of the result (25):
The proof of the result (25) can be obtained in an analogous manner by following the same steps as in the

proof of the result (19) and (24) and making use of Gauss’ classical summation theorem (13), the summation
theorem (7) and using the equation (1). So, we omit the details here.

Proof of the result (26):
The proof of the result (26) can be obtained by following the same procedure as in the proof of the result
2). So, i

(19) and (24) and making use of the summation theorem (10) and using the equations (1) and (2). So, we omit

the details here.

Proof of the result (27):

Similarly for the proof of the result (27), we make use of the summation theorems (6), (9), (12) and the

equations (3) and (5). So, we omit the details here.

Representation of infinite series (19) to (27) in Hypergeometric forms

The following hypergeometric representation formulas are derived:

9 3 3 3 3 3 3 1. 2
. 27 20 20 20 20 9 9 b ) _@_3375% (30)
857 _ 28 1792
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s 4 4 1 1. )
3733 3 3 27
5Fy 1| = —— 3 (31)
2122 | 8[()
rg 5 3 1 1. T
22 2 512
5F4 5 ]. - W (32)
L 4> 27 37 37 i
3 5 5 1 1. \/,
g 40 10 10 @ 32/2
5y 1| = — (33)
2,21, & 15y [I'(5)]
rp 1 1 5 5. G
2 2 2 2 25 275
F. -1 | =—-—. 34
o 3.3 1 7. 8 144 (34
L 20 20 20
r3 3 : 7
25 2 17 11 97.[.
4Fs 1| =3—-18n2— — (35)
5 5 9. 4
L 20 20 4
- . -
Rl . 1| —a—6ms+ 2T (36)
=4—60n3+ =
L 334 J
[ 55 L L
ya 1 | =35n 12 4 35¢n /3 — 105. (37)
13 11 9.
L 6 3 6 ) )
L L1, L
4F3 —1 [ =96 ¢n 2—-80+ 12 ((3). (38)
3, 3, 3
Proof of the result (30):
i (4n* + 32n3 + 87n? + 92n + 28) _
— (64nS + 76805 + 3792nt + 9856m3 + 1422012 + 108000 + 3375)
ERSTIN Rt DN T
Using the deﬁmtlon of generalized hypergeometric function, we get
i (4n* + 32n3 + 87n? + 92n + 28) 7
= (64n8 + 768n5 + 3792n* + 9856m3 + 14220n2 + 10800n + 3375)
9 3 3 3 3 .
28 27 27 25 29 > 37 37 1a
— o Fr 1. (39)
3375 7T 7 71 7 1 9 9.
27 25 923 29 3 ) 4y

Using equation (19) in equation (39), we arrive at the result (30).

Proof of the results (31) to (38):

The proof of the results (31) to (38) can be obtained in an analogous manner by following the same steps
as in the proof of the above result (30). So we omit the details here.

Conclusion

In this paper, we have obtained the summation of some infinite series by using some summation theorems of
positive and negative unit arguments, Riemann Zeta functions, polygamma functions, lower case beta functions
of one-variable and other associated functions. We have also obtained some new hypergeometric summation
theorems, which are not found in the literature. We conclude this paper with the remark that the summation
of various other infinite series can be derived in an analogous manner. Moreover, the results deduced above
are expected to lead to some potential applications in several fields of Applied Mathematics, Statistics and
Engineering Sciences.

Mathematics series. Ne 3(103)/2021 93



M.I. Qureshi, J. Majid, A.H. Bhat

94

Acknowledgments

The authors are very thankful to the anonymous referees for their valuable suggestions to improve the paper
in its present form.

References

Rainville, E.D. (1971). Special Functions. Bronx, New York: The Macmillan Co. Inc.; Reprinted by Chelsea
publ. Co.

Srivastava, H.M., & Manocha, H.L. (1984). A Treatise on Generating Functions. Chichester, Brisbane
and Toronto, New York: Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons.
Magnus, W., Oberhettinger, F., & Soni, R.P. (1966). Some Formulas and Theorems for the Special Functi-
ons of Mathematical Physics: Third Enlarged Edition. New York: Springer-Verlag.

Gradshteyn, I.S., & Ryzhik, I.M. (2007). Table of Integrals, Series and Products: Seventh Edition. New
York: Academic Press.

Srivastava, H.M., & Choi, J. (2011).Zeta and g-Zeta Functions and Associated Series and Integrals. Elsevi-
er.

Luke, Y.L. (1969). The Special Functions and Their Approzimations, Vol. I. New York: Academic Press.

7 Abramowitz, M., & Stegun, I.A. (1992). Handbook of Mathematical Functions with Formulas, Graphs and

10

11

12
13

Mathematical Tables, Reprint of the 1972 Edition. New York: Dover Publications, Inc.

Erdélyi, A., Magnus, W., Oberhettinger, F., & Tricomi, F.G. (1955). Higher Transcendental Functions,
Vol. I. Toronto and London, New York: McGraw-Hill Book Company.

Prudnikov, A.P., Brychknov, Yu. A., & Marichev, O.1. (1990). Integrals and Series, Vol. III: More special
functions, Nauka Moscow, 1986 (in Russian); (Translated from the Russian by G.G.Gould). Philadelphia
London, Paris, Montreux, Tokyo, Melbourne, New York: Gordon and Breach Science Publishers.

Andrews, G.E., Askey, R., & Roy, R. (1999). Special Functions. Cambridge, UK: Cambridge University
Press.

Dougall, J. (1907). On Vandermonde’s theorem and some more general expansions. Proc. Edinburg Math.
Soc. 25, 114-132.

Slater, L.J. (1966). Generalized Hypergeometric Functions. New York: Cambridge Univ., Press.
Bailey, W.N. (1935). Generalized Hypergeometric Series. London: Cambridge University Press.

M.U. Kyperm, JIxx. Mamkug, A.X. bxar

Iorcamun Munrus Heaamua (Opmano yrusepcumem), Horo-/leau, Yndicman

I'umepreomeTpusabiK (pyHKIUSITIAP MEH >KapTbhLjIail 6eJmnieK
9JIicTepiMeH Keiibip ImeKci3 cepusijiapabl >KUHAKTAY

Maxkanama Keitbip IIeKci3 KaTapsap/IblH *KapThLiail OeJIIeK 9IiciMeH OH YKOHE TepIC CHHTYJISIPJIBIK J19JIe]I-
nepai, Pumanubiy 3eTa pyHKIUIAPHIH, ToJUraMMa pyHKIUAIAPIH, Killll perucTperi 6ip aiiHbIMAJIBIHBIH,
GeTa QYHKIUSIIAPBIH YKOHE OacKa /1a 6ailIaHbICTBI (DYHKITUSIAD/IbI }KUHAKTAYIBIH KeiOip rumepreoMeTpusi-
JIBIK, TeopeMaJiapbl XKuHaKTaran. CoHgali-aK Keiibip rumepreoMeTpusiIbIK XKUBIHTBIK T€OpeMaJjiap aJIbIHFaH:

93333 T T 77l . 5 4 41 1.2 . 953115 .
8F7[ 55155533 155,5:5,5:5:2,251 ], 5F4[ 333055 02,21 ], 5F4[ ****** 2,3,31 ]

sPa[ 2550552251, sAl 5.5.3.5.53.5. 5. 51 ], 4R 55,115,521 ],
aFs [ 5,5L55,5.21 [, aB [ 5515, 6,21 ] and aFs[ 1,1,1,1;3,3,3;-1 ]

Kiam cosdep: Pumannbiy 3eta byHKIusIapsl, noauramMmma gpyHknusnapsl, Jlyramn Tteopemacsl, Bepaysin
kenmyitrenepi, Karaman koncranracsl.
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M.N. Kyperm, JIxx. Mamkug, A.X. Bxar

torcamus Munnus Heaamus (Lerwmparvnod ynusepcumem), Horo-/leau, Hnous

CyMmMupoBaHe HEKOTOPBIX OECKOHEYHBIX PS/I0B METOIaMU
runepreomMeTrpuiecknX (pyHKIIW U YaCTHBIX JTpoOeit

B crarpe momydeHo cymMMumpoBaHME HEKOTOPBIX GECKOHEYHBIX PsiJIOB METOJOM YACTHUIHBIX JApobeit u ¢ 1mo-
MOIIIBIO HEKOTOPBIX TUIIEPIE€OMETPUYECKUX TEOPEM CYMMUPOBAHUS ITOJI0KUTEIbHBIX U OTPUIATEJbHBIX €11~
HUYHBIX apryMeHTOB, n3eta-yHKinit Pumana, moauramva-dyHKnii, 6era-pyHKINi 0THON mepeMeHHO! B
HIKHEM PErucTpe W JIPpYyTruX CBsA3aHHBIX GyHKIui. Kpome Toro, aBropamu mosryueHbl HEKOTOPbLIE T'HIEp-
reOMEeTPUYIECKUE TEOPEMbI CYMMHUPOBAHUS JIJIS:

93333 TT 771 4 41 1.2 . 95311.5 .
8F7[ §a§7§7§7§737371757575757572»231 }7 5F4[§’§’§’§7§7§71727271 ]7 5F4[ Z:§7§7§7§v17273’311}
13 5 5 1 1.5 115 5 3 3 7 7 3 3 5 5
sFal 2,521 5 9,22,1 ], sFal 5.5.5,5,1,5,5,2,5;—1 ], aF3[ 2,3,1,1;3,5,2;1 ],
21 7 5 9. 75 13 11 o, . .
4F3[ 55571717§7§7271 ]7 4F3[ 67%71717?7?7271] u 4F3[ 17111717313)37_1]

Kmouesvie caosa: n3era-dpynrimu Pumana, nosmuramma-dyHkiun, Teopema Jlyrasia, muHOorowwieHsl bep-
HYyJLIH, KOHCTaHTa KararaHa.
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Applications of operations on generalized topological spaces

In this paper, 7,-open sets and -, -closed sets in a GT'S (X, u) have been studied, where v, is an operation
from p to P(X). In general, collection of v,-open sets is smaller than the collection of p-open sets. The
condition under which both are same are also established here. Some properties of such sets have been
discussed. Some closure as operators are also defined and their properties are discussed. The relation
between similar types of closure operators on the GTS (X, ) has been established. The condition under
which the newly defined closure like operator is a Kuratowski closure operator is given. We have also
defined a generalized type of closed sets termed as 7 ,-generalized closed set with the help of this newly
defined closure operator and discussed some basic properties of such sets. As an application, we have
introduced some weak separation axioms and discussed some of their properties. Finally, we have shown
some preservation theorems of such generalized concepts.

Keywords: operation, u-open set, 7,-open set, v, g-closed set.

Introduction

In 1979, Kasahara [1] introduced the notion of an operation on a topological space and introduced the
concept of an a-closed graph of a function. After then Jankovié defined [2] the concept of a-closed sets and
investigated some properties of functions with a-closed graphs. In 1991 Ogata [3] introduced the notion of
~-open sets to investigate some new separation axioms of a topological space. Recently, Krishnan et al. [4] and
Van An et al. [5] investigated the notion of operations on the family of all semi-open sets and pre-open sets.

In this paper our aim is to study an operation based on open like sets, where the operation is defined on
a collection of generalized open sets instead of a topology. The family of open sets plays an important role
in topology. For this, different open like sets or weakly open sets have been introduced by mathematicians to
study different weak forms of continuous functions and covering properties of topological spaces. But the most
common properties of these open like sets or weakly open sets are that they are closed under arbitrary union
and contain the empty set. Observing these, Csadszar introduced the concept of generalized open sets. We now
recall some notions defined in [6]. Let X be a non-empty set. A subcollection u € P(X) (where P(X) denotes
the power set of X) is called a generalized topology [6], (briefly, GT) if @ € u and any union of elements of i
belongs to u. A set X with a GT p on the set X is called a generalized topological space (briefly, GTS) and is
denoted by (X, u). If for a GTS (X, ) X € p, then (X, ) is known as a strong GTS. The elements of u are
called p-open sets and p-closed sets are their complements. The p-closure of a set A & X is denoted by ¢, (A)
and defined as the smallest p-closed set containing A which is equivalent to the intersection of all p-closed sets
containing A. It is also known from (7, 8] that for a GTS (X, u), A S X and z € X, z € ¢,(A) if and only if
UNA# 0 for every U € p containing x. We use the symbol i,,(A) to mean the p-interior of A and it is defined
as the union of all y-open sets contained in A i.e., the largest y-open set contained in A (see [6, 7]). We observe
that « € i, (A) if and only if there exists some p-open set U containing  such that U £ A and A € X is pu-open
(resp. p-closed) if and only if A =i (A) (resp. A =c,(A)). It is well known that i, and ¢, both are monotonic
and idempotent. For any subset A of a GTS (X, u), i, (X \ A) = X \ ¢, (A) holds.

Csaszar continued to try to find a more general structure from general topology, generalized topology, and
minimal structure. In 2010, he introduced the notion of weak structures [9] and proved that it can replace the

*Corresponding author.
E-mail: bishwambhar_roy@yahoo.co.in
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already defined structures in some cases. A sub-collection w € P(X) is said to be a weak structure on X if
and only if it contains the empty set. Its properties have been investigated intensively in [10-13]. In Section 2
we have introduced the concept of a type of generalized open sets termed as 7,-open sets, the class of which
is smaller than that of generalized open sets, by an operator defined on a GT. We have then studied some
properties of such sets in detail. In section 3 we have defined a new type of generalized closed sets and studied
some separation properties with the help of the idea developed in Section 2.

7y, -open sets and operations

Definition 2.1. [14] Let (X, u) be a GTS. An operation 7, on a generalized topology u is a mapping from
p to P(X) (where P(X) is the power set of X) with G € v, (G) for each GG € p. This operation is denoted by
7, . — P(X). Note that v, (A) and A™ are two different notation for the same set.

Definition 2.2. [14] Let (X, ) be a GTS and ~, an operation on . A subset G of a GTS (X, p) is called
7,.-open if for each point 2 of G, there exists a p-open set U containing x such that v, (U) € G.

A subset of a GTS (X, i) is called ,-closed if its complement is 7, -open in (X, ). We shall use the symbol
7, to mean the collection of all ,-open sets of the GTS (X, ).

Remark 2.3. (a) We observe that every 7, -open set is a u-open set i.e., v, & pu. Let G € 7,. If G = @ then
Gep IfG#@,let x € G. Then there exists a y-open set U containing x such that v, (U) € G. Thus for each
2 € G there exists a p-open set U containing x such that z € U € G. Thus z is a p-interior point of G i.e.,
rci, (G)ie, G<Si,(G) proving G to be a p-open set.

(b) We note that v, is a GT on X i.e., @ € v, and arbitrary unions of 7,-open sets are also vy, -open. For
let {G, : a € I} be a family of v,-open subsets of X. We shall show that U{G, : a € I} is also a 7,-open set.
In fact, let x € U{G,_ : « € I}. Then z € G, for some o, € I. Thus by 7,-openness of G, , there exists a
p-open set U containing z such that v, (U) & G., CU{G, :acl}.

Ezample 2.4. (a) Let X = {1,2,3} and p = {@,{1,2},{1,3},X}. Then p is a GT on X. Consider the
mapping v, : 4 — P(X) defined by v, (A4) = ¢, (A) for each subset A of X. It can be easily checked that {1,2}
is a p-open set but not a 7,-open set.

(b) Let X = {1,2,3} and p = {@, {1}, {1,2},{2,3}, X}. Then (X, ) is a GTS. Now 7, : pp — P(X) defined by

A ifle A
7. (4) = {{2, 3}, otherwise

is an operation. It can be easily checked that {1,2} and {2,3} are two v, -open sets but their intersection {2}
is not so.

Definition 2.5. A GTS (X, u) is said to be a v, -regular space if for each point x of X and each p-open set
V containing =, there exists a p-open set U containing x such that «, (U) cV.

Theorem 2.6. Let (X, u) be a GTS and v, : p — P(X) be an operation on a GTS X. Then (X, pu) is a
7,-regular space if and only if = 1,.

Proof. Let (X, 1) be a v, -regular space. In view of Remark 2.3 it is sufficient to show that u & ,. Let G be
a p-open set of X. If G = @, then G € v,. Thus we may assume that G # . Since (X, u1) is 7, -regular, then
G is a vy,-open set. Therefore, we have 1 C v, .

Conversely, let 2 € X and V' be a p-open set containing 2. Then V' is a 7, -open set containing 2 (as p = 7, ).
Thus by definition of v, -open sets, there exists a p-open set U containing  such that v, (U) & V. Hence (X, )
is a ,-regular space.

Theorem 2.7. A GTS (X, u) is a vy,-regular space if and only if for each point x € X and every p-open set
U containing z, there exists a 7,-open set W containing = such that W cv.

Proof. First let us assume that (X, u) be a v -regular space. Let € X and U be a p-open set containing x.
Then by Definition 2.5, there exists a p-open set W containing = such that W £ ~ (W) £ U. Thus by Theorem
2.6, W is a v,-open set. Hence there exists a , -open set W such that z € W S U.

Conversely, suppose that for each point x € X and every p-open set U containing = there exists a ,-open
set W containing = such that W € U. In view of Theorem 2.6 and Remark 2.3(a) it is now sufficient to show
that 4 € v,. Let U € p and = € U. Then by the given condition there exists a 7,-open set W containing x
such that W, S U. Thus U = U{W, : x € U and W, is v, -open}. Thus by Remark 2.3(b), U is ,-open.

Definition 2.8. Let (X, ) be a GTS. An operation v, : u — P(X) is said to be regular if for each point
z € X and any two p-open sets U and V' of X containing x there exists a pu-open set W containing x such that

7, (W) S, (U) Ny, (V).

Mathematics series. Ne 3(103) /2021 97



B. Roy, T. Noiri

Theorem 2.9. Let v, : p — P(X) be a regular operation. Then the intersection of two v, -open sets is also
a 7,-open set. Furthermore, v, is a topology if X € p.

Proof. Let G and H be two 7,-open sets in a GTS (X, u). We shall show that G N H is also a 7,-open set.
If GN H = & then the proof is done. Let x € GN H. Then by Definition 2.2, there exist two p-open sets U and
V with x € UNV such that v, (U) € G and v, (V) & H. Since v, : p — P(X) is a regular operation, there
exists a p-open set W' containing  such that v, (W) S v, (U)N~, (V) & GN H. Thus by Definition 2.2, GN H
is 7,-open.

If X € p, then for each » € X, there exists a pi-open set X (as X € p) containing z such that X € v, (X) & X.
Thus X is a ,-open set. It follows from Remark 2.3(b) that arbitrary union of v, -open sets is a 7,-open set.
Thus 7, is a topology on X.

Ezample 2.10. (a) Let X = {1,2,3} and p = {@,{1},{2},{1,2}}. Then v, : u — P(X) defined by
7,.(A) = ¢, (A) is an operation on the GTS (X, ) where p is not strong. It can be easily checked the X is not
a vy,-open set. We note that v, : u — P(X) is a regular operation.

(b) Let X ={1,2,3}, p = {2, X,{2},{1,3},{2,3}}. Then v, : p — P(X) defined by

4= {

is an operation on the GTS (X, u). We note that y, is not a regular operation. It can be checked easily that v,
is not a topology on X.

We now define the following two types of closure operators : one follows from the GT 7, on X and the
second one is defined in the sense of Jankovic.

Definition 2.11. Let (X, u) be a GTS and v, : p — P(X) be an operation.

(a) It follows from Remark 2.3(b) that +, is a GT. Thus the  -closure of a set A is denoted by c, (A) and
is defined as c, ( ) =M{F: Fisa, -closed set and A & F'}.

(b) v closure of A is denoted by v,-c(A) and defined by v,-c(A) = {z : AN+, (U) # @ for every p-open
set U contamlng x}.

A subset A(C X) is called y7-closed if 7,-¢(4) = A.

Proposition 2.12. Let (X, p) "be a GTS and 7, 4 — P(X) be an operation. For each x € X, x € c,, (4) if
and only if V N A # @ for any Ven, with x € V.

Proof. The proof follows from the fact that v, is a GT on X ( by Remark 2.3(b)) and the fact that for any
GT pon X, z €c,(A)[7, 8 if and only if U N A # @ for each p-open set U containing x.

Remark 2.13. It can be checked easily that for any subset A of a GTS (X, ), A S ¢, (A) € v,-c(A) S c, (A).

n

AU {1}, if A is any singleton subset of X
A, otherwise

Definition 2.14. An operation v, : p — P(X) is said to be p-open if for each point 2 of X and for every
p-open set U containing x there exists a ,-open set V' containing x such that V' S v, (U).

The next theorem gives the relation between the three types of closure operators.

Theorem 2.15. Let (X, u) be a GTS, v, : p — P(X) an operation and A a subset of X.

(i) The subset vy, -c(A) is p-closed in (X, p).

(ii) If (X, p) is v,-regular, then v -c(A) = c, (A).

(iii) If v, is p-open, then v, -c(A) = c,, (A) and v, -c[y,-c(A)] = v,-c(A).

Proof. (i) We shall only show that ¢, [y, -c(A)] € 7v,-c(A). Let = € c,[y,-c(A)] and U be any p-open set in X
containing x. Then U Ny, -c(A) # @. Let y € UN~,-c(A). Then y € U and y € 7,-c(A). Thus v, (U) N A # @
i.e., x €7y,-c(A) (by Definition 2.11).

(ii) In view of Remark 2.13 we need only to show that in a v, -regular GTS (X, ), 7,-c(A) & ¢, (A). Let
x € 7,-¢(A) and G be any p-open set containing . Then there exists a p-open set U containing x such that
7. (U) € G (as (X, p) is 7,-regular). Since € 7,-c(A) we have v, (U) N A # @ and hence G N A # @. Thus it
follows that x € ¢, (A).

(iii) Suppose that z ¢ v, -c(A). Then there exists a p-open set U containing x such that v, (U)N A = @.
Since v, is p-open, for the p-open set U containing x, there exists a v, -open set V' containing = such that
V € v,(U). Hence VN A = @. This shows that x ¢ c, (A). Thus <, (A) & v,-c(A). Also from Remark 2.13,
7.-c(A) & c,, (A). Thus we have v,-c(A) = c,, (A). Hence v,-c[y,-c(A)] = c,, [Cm (A)] = c,, (A) (asy, isa GT
on X and c,, is idempotent) = vy, -c(A).

Ezample 2.16. (a) Let X = {1,2,3}, u = {2, {1},{3},{1,2},{1,3},{2,3}, X}. Then v, : p — P(X) defined
by
AU{3}, if A# {1}

A, otherwise

7, (A) = {
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is an operation. It can be easily checked that ¢, ({3}) = {3} # 7,-c({3}) = {2,3} and thus from Theorem 2.15
it follows that (X, u) is not v, -regular.
(b) Let X = {1,2,3,4}, pn = {2, {1,2},{2,3},{1,4},{1,2,3},{1,2,4},{2,3,4}, X}. Then v, : u — P(X)
defined by
A ifle A
7. (4) = { AU{1Lif 1¢A

is an operation. It can be checked that v, -c({2}) = {2,3,4} but v, -c[y,-c({2})] = X # 7,-c({2}). Thus it
follows from Theorem 2.15 that v, is not p-open.

Theorem 2.17. Let u be a GT on a set X and v, : p — P(X) be an operation. For any subset A of X the
followings are equivalent :

(i) Ais ,-open in (X, p).

(i) X \ A is y%-closed in (X, p).

(iii) c, (X\A4) =X\ A holds.

(iv) X \ A is v, -closed in (X, u).

Proof. (i) = (ii): Let + ¢ X \ A. Then x € A. Thus there exists a p-open set U containing = such that
7, (U) € Aie., v, (U)N(X\ A) = @. This shows that = € v,-c(X \ A). Thus it follows that v,-c(X \ 4) & X'\ A.

(if) = (iii): We have to show that <, (X\A) S X\ A Let x ¢ X\ A. It then follows from (ii) that there
exists a p-open set U containing = such that v, (U) N (X \ A) = @. Then A is a v,-open set containing .
Therefore AN (X \ A) = & and hence = ¢ c, (X\ A4).

(iii) = (iv): We shall show that A is 7, -open. Let z € A. Then by Proposition 2.12 and (iii), there exists a
7,.-open set U containing = such that U N (X \ A) = @. Since U is y,-open and x € U, there exists a p-open set
V containing = such that ~ (V) € U. Thus we have z € v, (V) £ U & A and hence A is v,-open.

(iv) = (i) : The proof follows from the definition.

Theorem 2.18. Let (X,u) be a GTS and v, : p — P(X) be an operation. If v, is regular, then

-c(AU B) = v,-c(A) U~,-c(B) for any two subsets A and B of X.

Proof. Let x & ~,-c(A) U~,-¢(B). Then = € v, -c(A) and x ¢ v,-c(B). Hence there exist two p-open sets U
and V' containing 2 such that v, (U) N A =, (V)N B = @. Since v, is regular, there exists a p-open set W
containing x such that vy, (W) € v, (U)Ny, (V). Therefore, we have (AUB)Ny, (W) & (AUB)N[y, (U)Ny, (V)] &
€ [Any, (U)Ju[BN~,(V)] = @. Hence ¢ v,-c(AU B). Therefore, we obtain v,-c(AUB) & v,-c(A) U, -c(B).

Corollary 2.19. Let p be a GT on a set X and v, : p — P(X) be an operation. If v, is regular and p-open,
then the mapping defined by 1(A) = v,-c(A) for A € X is a Kuratowski closure operator.

Proof. This follows from Theorem 2.15, Theorem 2.18 and Definition 2.11.

v, -generalized closed sets and vy, -T, spaces (i =0,1/2,1,2)

Definition 3.1. Let v, : p — P(X) be an operation. A subset A of a GTS (X, i) is said to be v,-generalized
closed (briefly v, g-closed) if v,-c(A) & U whenever A € U and U is ,-open.

The complement of a v, g-closed set is called a 7, g-open set.

We observe that every . *-closed set is v, g-closed. The converse is false as shown in the next example.

Ezample 3.2. Consider X = {1,2,3}, p = {2, {1}, {3},{1,2},{1,3},{2,3}}. Then v, : p — P(X) defined
by

AU{2}, ifA#A{1

7.(A) = { A,o{thirwise =

is an operation. It can be checked easily that {1,3} is v, g-closed but not v,-closed.

The following theorem gives the characterizations of v, g-closed sets.

Theorem 3.3. Let vy, : p — P(X) be an operation. Then for any A € X, the following are equivalent:

(i) A is v, g-closed.

(ii) For each x € ,-c(4), c ({x}) NA#a.

(iii) v,-c(A) Ker, (A) (Where Kerm( ) ={V:ACVandV is~y, -open} see [15] for detail).

Proof. (i) = (ii) : Suppose that A be a <, g-closed subset and also suppose that there exists a
point € 7,-¢(A) for which ¢, ({z}) N A = @. Then <, ({z}) is 7,-closed (by Remark 2.3(b) and Definition
2.11(a)). Put U = X'\ <, ({z}). Then A S U and = ¢ U with U a ~,-open set in (X, u1). Since A is v, g-closed,
v,-¢(A) S U. Thus z ¢ v,-c(A) which is a contradiction.
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(ii) = (iii) : Let 2 € 7,-c(A). We have only to show that x € Ker, (A). By (ii) there exists a point z € A
such that z € ¢, ({x}). Let U be any v, -open subset of X such that A £ U. Since z € U and z € ¢, ({x}), by
w u
Proposition 2.12 we have U N {z} # @ i.e., v € U. Thus x € Ker_ (A).

(iii) = (i) : Let A & U, where U be any v, -open set. Let x € 7,-c(A). It then follows from (iii) that
v e Ker, (A). Thus z € U i.e., v,-c(A) S U.

Theorem 8.4. Let vy, : p — P(X) be an operation, where (X, u) is a GTS. For each point x of X, {z} is a
7,-closed set or X \ {x} is a 7, g-closed set in (X, u1).

Proof. Let {x} be not a v, -closed set. Then the complement X \ {z} is not a v,-open set. Let U be any
7,.-open set with X'\ {} £ U. Then U must be equal to X. Thus v,-¢(X \{z}) £ U. Thus X\ {z} is 7, g-closed.

Proposition 8.5. Let v, : u — P(X) be an operation and A be a subset of a GTS (X, ). If A is 7, g-closed,
then v,-c(A) \ A does not contain any non-empty 7, -closed set. If the operation v, : u — P(X) is p-open, then
the converse part is also true.

Proof. If possible, let ' be any v, -closed set contained in 7,-c(A) \ A. Then A & X \ F' where X \ F' is
a v,-open set. Thus v, -c(A) & X \ F' (as A is v, g-closed). Thus FF & X \ 7,-c(A). Also ' € v,-c(A). Thus
F S vy,-c(A) N (X \v,-c(A)) = @, which is a contradiction. Thus F = &.

Conversely, let A & U where U be any ,-open set. Since the operation v, is p-open, by Theorem 2.15
7v,-¢(A) is 7,-closed. Thus 7 ,-c(4) N (X \ U) = F (say) is a v,-closed set (by Remark 2.3(b) and Definition
2.11(a)). Since X \U € X \ A, F' € v,-c(A) \ A. Thus by the assumption it follows that F' = & and hence we
have 7,-c(4) £ U.

Definition 3.6. Let vy, : p — P(X) be an operation, where y is a GT on X. Then (X, ) is said to be a
7,1, ,, space if every v, g-closed set is a 7,-closed set.

The next theorem characterizes a v,-T, , GTS.

Theorem 3.7. Let v, : 1 — P(X) be an operation, where ;1 is a GT on X. Then (X, u) is v,-T;,
if for each x € X, {x} is either v, -open or v, -closed.

Proof. Suppose that that (X,pu) is v,-T,, and {z} is not v, -closed. Then by Theorem 3.4, X \ {z} is
7,.g-closed. Since (X, p) is v,-T,,,, X \ {z} is 7,-closed. Thus {z} is 7,-open.

Conversely, let I be a 7, g-closed set in (X, u). By Theorem 2.17, it is sufficient to show that v, -c(F) & F. If
possible, let there exist a point & € ,-c(F) \ F. Then by the given condition {z} is either v, -open or v, -closed.
Case -1 : {z} is 7,-closed : For this case we have a v -closed set {z} such that {z} & v -c(F)\ F. This is
contrary to Proposition 3.5.

Case -2 : {x} is 7,-open : Then by Remark 2.13, x € c,, (F). Thus {x} N F # @. This is a contradiction. Thus
we have v, -¢(F) € F.

Definition 3.8. Let vy, : p — P(X) be an operation, where x is a GT on X. Then (X, i) is said to be
(a) v,-T, if for each pair of distinct points 2,y € X, there exists a p-open set G such that either x € G' and
y&v,(G),oryecGandxdgy, (G).

(b) ~,-T, if for each pair of distinct points x,y € X, there exist u-open sets G and H containing x and y,
respectively, such that either y ¢ v, (G) and x € v, (H).

(c) v,-T, if for each pair of distinct points x,y € X, there exist u-open sets G and H containing x and y,
respectively, such that v, (G) Ny, (H) = 2.

A~ -T, GTS is characterized by the following theorem.

Theorem 3.9. Let y, : u — P(X) be an operation, where y is a GT on X. Then the following are equivalent:

(1) (X, ) is 7,-T,.

(ii) For each x € X, {z} is a v7-closed set.

(iii) For each pair of distinct points z,y € X there exist 7, -open sets U and V' containing z and y,
respectively, such that either y ¢ U and x € V.

Proof. (i) = (ii) : Let x € X. We shall show that {z} is v*-closed. Let y ¢ {z}. Then by (i) there exists a
p-open set U, such that y € U, x ¢ v, (U, ). Thus v, (U,)N{z} = @. Thus y & v,-c({z}). Thus {z} is 7*-closed.

(ii) = (iii) Let 2 and y be two points of X with 2 # y. Then by (ii) {z} and {y} are two 7 -closed sets and
hence by Theorem 2.17, X \ {y} and X \ {z} are two v, -open sets containing x and y, respectively, such that
ve (X \{y}h) and y € (X \ {z}).

(iii) = (i) : Obvious.

Let v, : p — P(X) be an operation, where y is a GT on X. Then it follows from Definitions 3.6 and 3.8
that v ,-T, = ~,-T, = v,-T,,, = 7,-T,. None of the implications are reversible as shown in the next example.

1/2

if and only

2
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Ezample 3.10. (a) Let X = {1,2,3} and p = P(X). Then p is a GT on X. Then v, : 4 — P(X) defined by

AU{2}, if A={1}
AuU{3}, if A={2}

%A=Y A0y A= {3)
A, otherwise

is an operation. It can be checked that (X, u) is 7,-T), but not a v, -T, space.
(b) Let X = {1,2,3} and u = P(X). Then p is a GT on X. Then v, : p — P(X) defined by

AU {3}, if A#{1}
A, otherwise

7. (A) = {

is an operation. It can be checked that (X, ) is 7,-T} , but not a v,-T, space.
(c) Let X ={1,2,3} and p = {@,{1},{1,2},{1,3}, X}. Then pis a GT on X. Then v, : p — P(X) defined
by
A ifA£{1
7.(4) = {{1, 2}, othfrjvige
is an operation. It can be checked that (X, u) is 7,-T, but not a v,-T' , space.

Throughout the rest of the paper (X, 1) and (Y, A) will denote GTS’s and vy, : u — P(X) and 3, : A = P(Y)
will denote two operations on p and A respectively.

Definition 8.11. A function f : (X, u) — (Y, ) is said to be (v, 8)-continuous if for each x € X and each
A-open set V' with f(z) € V there exists a y-open set U containing z such that f(v,(U)) & B, (V).

Theorem 8.12. A (v, 8)-continuous mapping f : (X, u) — (Y, \) satisfies the following properties:

(i) f(7,-c(A)) & B,-c(f(A)) for every subset A of X.

(i) f~r(W) is 7,-open for every f3,-open set W of Y, i.e., the inverse image of any f3,-closed set of (Y, 3)
is 7,-closed in (X, ).

Proof. (i) Let y be a point of f(v,-c(A)) and V be any A-open set containing y. Then there exists a point x
in X such that f(r) =y and z € 7,-c(A). Thus by (v, 8)-continuity of f there exists a p-open set U containing
x such that f(v,(U)) & B,(V). As & € 7,-c(A), we have v,(U) N A # @, and hence @ # f(v,(U)NA) &
C £, (1)) 1 £(4) € B, (V) 1 F(A). This shows that y € ,-¢(f(A)).

(ii) Let W be a f3,-open set in (Y, A) and 2 any point of f~!(W). We have to show that f~'(W) is 5, -open.
There exists a -open set V containing f(z) such that 8, (V) € W. Thus by (v, 8)-continuity of f, there exists
a p-open set U containing x such that f(v, (U)) € 8,(V). Thus v, (U) € f~*(8,(V)) € f~1(W). Thus f~*(W)
is ,-open.

Definition 3.13. A function f : (X, u) — (Y, ) is said to be (v, 3)-closed if for any v, -closed set A of X,
f(A) is a B, -closed set in Y.

Let id, : p — P(X) be the identity operation, where (X,u) is a GTS. We note that id, -open sets and
p-open sets are identical.

Proposition 3.14. Let f: (X, u) = (Y, A) be a (v, 8)-continuous function and f be a (id, 8)-closed mapping.
The following properties hold:

(i) For each v, g-closed set A of X, f(A) is 3, g-closed in Y.

(ii) For each f3, g-closed set B of Y, f~(B) is v, g-closed.

Proof. (i) Let V be any f3, -open set of (Y, \) with f(A) € V. Then by Theorem 3.12 (ii), f~!(V) is a ,-open
set. Now as A is a y, g-closed set and A € f~1(V), we have ,-c(A) € f~1(V), and thus f(v,-¢c(4)) € V. From
the assumption and Theorem 2.15(i) it follows that, f(v,-c(A)) is §,-closed. Thus by Remark 2.13, we have
By-c(f(A4)) € Cq ((f(7,-c(A)))) = f(v,-c(A)) & V. This shows that f(A) is 3, g-closed in Y.

(ii) Let U be any v,-open set of (X, x1) such that f~*(B) is contained in U. Let F' =~ -¢(f~(B))N(X\U).
Then F is p-closed in (X, u) (by Theorem 2.15(i) and Remark 2.3(a)). Since f is a (id, 5)-closed function,
f(F) is a B,-closed set in (Y, \). Then by Proposition 3.5 and the relation f(F) € f3,-¢(B) \ B, it follows that
f(F) =@ and thus F = @. Thus v,-c(f~*(B)) S U i.e., f~}(B) is v,g-closed.

Theorem 3.15. Let f: (X, ) = (Y, A) be a (v, f)-continuous and (id, §)-closed function.

(i) If f is an injective function and (Y, ) is a B,-T, , space, then (X, u) is a v,-T} , space.

(ii) If f is a surjective function and (X, u) is a v,-T) , space, then (Y, A) is a 3,-T, ,, space.

space.

1/2

(iii) If f is bijective, then (X, u) is a v,-T, , space if and only if (Y, A) is a 3,-T, ,
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Proof. (i) We need only to show that every v, g-closed set is 7,-closed. Let A be a v, g-closed set of (X, u1).
It then follows from Proposition 3.14(i) that f(A) is f, g-closed and thus f(A) is B,-closed (as (Y, A) is 8,-T} ,,)-
Now by Theorem 3.12(ii), f~*(f(A)) is v,-closed (as f is (7, §)-continuous) i.e., A is -y, -closed.

(ii) Let B be a 8, g-closed set of (Y, X). We have to show that B is a §,-closed set. By Theorem 3.14(ii),
f7H(B) is a7y, g-closed set in (X, ). Thus f~!(B) is 7,-closed (as (X, ) is v,-T, ). Thus from the assumption
it follows that B(= ff~'(B)) is §,-closed in (Y, ). Thus it follows that (Y, X) is a 3,-T;,

(iii) The proof follows from (i) and (ii).

Theorem 3.16. Suppose that f : (X, u) — (Y, ) is a (v, B)-continuous bijection and f=1: (Y, \) — (X, ) is
(B,7)-continuous. Then (X, u) is a 7,-T, , space if and only if (Y, \) is a 3,-T) , space.

Proof. Let (X,u) be a v,-T, , space. In view of Theorem 3.7 it is sufficient to show that any singleton

1/2
set of (Y, ) is either 3, -closed 01/r B,-open. Let {y} be any subset of (Y, \). Then, since f is surjective, there
exists # € X such that f(z) = y. Then by Theorem 3.7 it follows that {x} is v, -closed or 7, -open (as (X, )
is 7,-T, ,). Then by Theorem 3.12, {y}(= f({z})) is B,-closed or §3,-open. Thus (Y, ) is a 3,-T) , space. The
proof of the converse is similar.

Proposition 3.17. Let f: (X, u) — (Y, ) be a (v, 8)-continuous injection and (Y, A) be a §,-T,, (resp. 8,-T,)
space. Then (X, u) is a v,-T, (resp. v,-T)) space.

Proof. Let (Y, \) be a 8,-T, space. Let z,y be any two points of X with x # y. Then there exist A-open
sets V and W of Y contaning f(x) and f(y) respectively such that 8, (V)N g, (W) = @. Now by (v, 3)-
continuity of f, there exist p-open sets G and H containing = and y respectively such that f(v,(G)) & B8, (V)
and f(vy,(H)) & B,(W). Thus v,(G) N, (H) = @. Thus (X, ) is a v,-T, space.

The proof of the case of 5,-T, can be done similarly.

Lemma 3.18. Let «y, : p — P(X) be a regular, py-open operation and X € p. If (X, u) is a ,-T, GTS, then
(X,v,) is a T, space.

Proof. We first note that since vy, : u — P(X) is regular and X € p, by Theorem 2.9, v, is a topology on
X. Let z,y be two distinct points of X. Then there exist py-open sets U and V containing = and y, respectively,
such that v, (U) N~v,(V) = @. Since v, is p-open, there exist v, -open sets U* and V* containing = and y,
respectively, such that U* € v, (U) and V* € v (V). Thus U* NV* = @ and (X, ~,) is a T, space.

Theorem 3.19. Let v, : u — P(X) be a p-open regular operation and 3, : A — P(Y) be a A-open regular
operation such that X ¢ pand Y € A. If f,¢9: (X, ) — (Y, \) are (7, 8)-continuous and (Y, ) is §8,-T,, then
the set A= {x € X : f(x) = g(x)} is 7,-closed in (X, ).

Proof. We observe first by Lemma 3.18 that, v, and 3, are two topologies on X and Y, respectively. We shall
now show that if f : (X, u) — (Y, A) is (7, B)-continuous, then f : (X,~,) — (Y, 3,) is continuous. Let » € X and

V be any f,-open set containing f(z). Then there exists a A\-open set V' such that f(z) € V' and 8, (V') S V.
Since f is (7, B)-continuous, there exists a p-open set W such that x € W and f(v,(W)) & B.(V') € V. Then
by p-openness of v, there exists a 7,-open set W' containing z such that W' C 7, (W). Thus f (W') € V. Thus
f:(X,y,) — (Y,,) is continuous and similarly g : (X,~,) — (Y, 3,) is continuous. By Lemma 3.18, (Y, ) is
a T, space. Therefore the set A = {x € X : f(z) = g(x)} is closed in (X,~,) and hence X \ A is ,-open. Thus
Ais 7,-closed in (X, ).

, space.
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B. Poit!, T. Hyapu?®

1 o . .
Otieadep pucmuar xoanreddci, Kaavkymma, Yrndicman;
24
yycupo, 2Kanonus

2KaJmplJIaHFaH TOMOJIOTHUSIJIBIK, KeHICTIKTepre
onepalusiapabl KOJIJIaHy

Maxanmana v, — alIbK KubHaap koHe v, -GTS-reri xabbik sxubmmap (X, 1), mysna v, - p-gan P(X)-ra
onepaiust 3epTTesred. 2Kanmpt, 7y, — aIlbIK KUBIHIAD KUBIHTLIFBI {-AINBIK KUBIHIAD KUBIHTHIFHIHAH a3.
CoHbIMEH KaTap, aBTOpJiap €Ki »KUbIH Oipjeil 60IaTbIHbIH aHbIKTaraH. MyHIail >KUbIHIap/IbIH Keibip Ka-
crerTepi TankbuTaHabl. CoHmal-aK, Kaby TYpPIiHiH KeWbip omepaTopiapbl AaHBIKTAJIBII, OJIAPILIH KacueTTepi
anpikTanapl. GTS (X, p)-ma yrcac kaby OIepaTOpJIapbIHBIH TYpJepl apacbiza GailylaHbIC OPHATBHLIFAH.
Beunrini 6ip TyiibikTamy TypiHiy onepaTopbl KypaToBCKHiliH TYHBIKTAJLy OIEpaTOphbl OOJBIN TaObLIATHIH
mapt Gepineni. Conmait-ak, 7, JeN aTajaThiH KaObIK, YKUbIHIAD/IBIH JKaJIbLIAHFAH TYPi aHbIKTAJIFaH-
JKaJIIbIJIAHFAH KA0BIK, KUBIH, OCHI 2KAHA/IAH AHBIKTAJIFAH »Ka0y OIepaTOPBIHBIH, KOMEriMeH KOHE OCBHIHIAM
JKUBIHIAP/IbIH, Keibip Herisri KacmerTepi TajkbLianraH. KockiMina periHe OGeJiMHIH 9/ICi3 aKcrnoMaJiapbl
EHTi31J1iI1, oJlap/IbIH, Keibip KacuerTepi TajakbLiaH bl. COHBIHIA OCBIHAAM YKAJIIbLIAHFAH YFBIMIAPIbI CAKTa~
V/BIH Keibip TeopeMaJsiapbl KOPCETiIreH.

Kiam cesdep: onepanus, (1 — AIIbIK *UbIH, Y, — AIIbIK KHUbIH, Y, § — KaObIK, YKUBIH.

B. Poit!, T. Hyapu?

1 . .
2Kenckuti xpucmuarckuts xKoanedrc, Karvkymma, Unousa;
2 STuycupo, Snonus

IIpniaoxkeHnns oneparuii Haa 0000IIEHHBIMU
TOIIOJIOTUTYECKMU ITPOCTPaHCTBaAMU

B craTbe u3ydeHsI 7y,-OTKPBITEIE U 7y, -3aMKHyThle MHOKecTBa B GTS (X, 1), Tme v, — omepanus u3 u B
P(X). B obmem cirydae HaGOD 7, ~OTKPLITHIX MHOXKECTB MEHBIIIe, €M HabOD (-OTKPBITHIX MHOXKeCTB. Kpome
TOr0, aBTOPAMH YCTAHOBJIEHO YCJIOBHE, [P KOTOPOM 00a MHOXKECTBA SIBJISIIOTCS OAUMHAKOBBIMU. O6Cy K IeHbI
¥ HEKOTOPBIE CBOMCTBa TaKuX MHOXKeCTB. OIpeie/ieHbl HEKOTOPBIE OTIEPATOPHI TUIA 3aMBIKAHUS U UX CBOM-
CTBa. YCTAHOBJICHA CBA3b MEXKJIy AHAJOTMIHBIMEA THOAMH Oomneparopos 3ambikanusa Ha GTS (X, u). Hano
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YCJIOBHE, TPU KOTOPOM ITO-HOBOMY OIIPEJIEJIEHHBIN OMEepaTop THUIA 3aMBIKAHUS SBJISIETCS OMEPATOPOM 3a-
mbiKanusa Kyparosckoro. Brissien 0600meH LI THIT 3aMKHYTBIX MHOYKECTB, Ha3BaHHBIH 7, -0000IIECHHBIM
3aMKHYTBIM MHOXKECTBOM, C IIOMOIIBIO STOI0 BHOBB OIIPEJIEJIEHHOI'O OIIEPATOPA 3aMbIKAHUS M 0OCYKIEHBI
HEKOTOPbIE OCHOBHBIE CBOMCTBA TAKWX MHOXKECTB. B KadecTBe MPUJIOZKEHHUsT aBTOPAMU BBEJIEHBI HECKOJIBKO
CJ1abbIX aKCUOM OT/ICJIEHUS U OIIPEJIEJICHbI HEKOTOPbIE UX CBOMCTBa. Takum 06pa3oM, IOKa3aHbl HEKOTOPbIE
TEOpEeMbl COXPAHEHUsT TAKUX OOOOIIEHHBIX HOHITHMN.

Karouesvie caoea: onepanus, [1-OTKPBITOE MHOXKECTBO, 7Y, -OTKPBITO€ MHOXKECTBO, 7, §-3aMKHYTOE MHOXKe-
CTBO.
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Analytical solution of a fractional differential
equation in the theory of viscoelastic fluids

The aim of this paper is to present analytical solutions of fractional delay differential equations (FDDEs) of
an incompressible generalized Oldroyd-B fluid with fractional derivatives of Caputo type. Using a modificati-
on of the method of separation of variables the main equation with non-homogeneous boundary conditions
is transformed into an equation with homogeneous boundary conditions, and the resulting solutions are
then expressed in terms of Green functions via Laplace transforms. This results presented in two condition,
in first step when 0 < o, 8 < % and in the second step we considered % < a,B <1, for each step 1,2 for
the unsteady flows of a generalized Oldroyd-B fluid, including a flow with a moving plate, are considered

via examples.

Keywords: Oldroyd-B fluid, fractional-order partial differential equations, analytical solutions, Delay di-
fferential equation, modified separation of variables method, Caputo fractional derivatives.

Introduction

Many real-world processes can be cast generally in the form of fractional differential systems with integer
order (i.e., ordinary differential equations and systems) but there is a growing number of researchers that believe
that fractional-differential equations can describe and model and complex physical processes more accurately
than the corresponding ordinary differential equations. So, in recent decades the search for analytical and numeri-
cal solutions to fractional differential equations has been of considerable interest [1-4]. Fractional differential
equations can be applied to the dynamic modeling of non-Newtonian fluids: for example, in the modeling of
melting plastics and in the study of emulsion plastics or soft tissue. Practically speaking, there are few Newtoni-
an fluids in reality, so most fluids are of the non-Newtonian type, which means there is no linear relationship
between the stress tensor and the deformation tensor [5].

Viscoelastic fluids form an important class of non-Newtonian fluids, which exhibit both elastic and viscous
properties. Among them the so-called Oldroyd-B fluid can be used to describe the response of fluids that have a
small memory. This means that whenever they flow, these fluids will spend less time to find the first state and
stability [6-7]. Due to the wide range of applications of these fluids, considerable attention has been paid to the
prediction of the behavior of non-Newtonian fluids. Structural equations that are presented in a constitutive
rheological fashion have a fractional calculation, so they are very effective for working with viscoelastic properties
[8-9]. The viscoelastic fluid equations in fractional models are obtained by replacing ordinary derivatives with
one of many possible definitions of fractional derivatives in the defining equations. In the study of fluids we
deal with a phenomenon called delay, which is due to the distance between the sensor and the source of
changes arising from e.g., plumbing, measurement slowness, or complex dynamics. Different methods for finding
analytical solutions of these type of equations are proposed: an analytical solution for unsteady helical flows is
presented by Tong et al in [10]. In Haitao and Mingyu [11] there is a discussion of an Oldroyd-B fluid between
two parallel plates. In addition, Fetecau [12-13] developed a generalization of the flow of viscoelastic fluids
between two-sided walls. Then Shah [14], Qi [15], Zheng et ol [16] and Hayat [17] discussed the generalized flow
of an Oldroyd-B fluid under varying conditions. In closing this brief review we mention that Javidi and Heris
[18] gave analytical solutions of various forms of such delay equations.

Many events in the natural world can be modeled to form of fractional delay differential equations (FDDEs).
FDDESs have important applications in many fields for example technology, economics, biology, medical science,

*Corresponding author.
E-mail: dastmalchi@iaut.ac.ir
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physics and finance [19]. Some numerical methods for FDDEs are introduced in [20-23] and etc. Heris and
Javidi [24] proposed a numerical method based on fractional backward differential formulas (FBDF') for solving
fractional delay differential equations. Also they found the Green’s functions for this equation corresponding to
periodic/anti-periodic conditions in terms of the functions of Mittag Leffler type.

In this paper we present analytical solutions for unsteady flows of a generalized Oldroyd-B fluid with
constant delay time using Riemann-Liouville fractional derivatives as the defining derivatives. A new separation
of variables method [25] and use of Laplace transforms for the Riemann-Liouville fractional derivative are
adapted to solve the new governing equation for fractional differential equations with constant delay when
applied to viscoelastic fluids.

The paper is structured as follows: in section 2 we recall some basic definitions of fractional calculus; in
section 3 we give the derivation of the governing equation; section 4 deals with the method of separation of
variables, the Laplace transformation applied to fractional derivatives in two steps 0 < «a, 8 < = and % < a,
B < 1, and the method of solution for each two steps separatively. Finally, in section 5 we give the examples
dealing with varying initial conditions by considering two condition for a and /.

Preliminaries

In this section we will introduce some of the fundamental definitions.
Defenition 1.1 ([1]). Euler’s gamma function is defined by the integral

I'(z) :/ e 't*7'dt, Re(z) > 0.
0
C(J, R) denotes the Banach space of all continuous functions from J = [0,T] into R with the norm
llull . =sup{lu(t)|:t € J}, T >0.

C™(J, R) denotes the class of all real valued functions defined on J = [0,T], T > 0 which have continuous n-th
order derivatives.
Defenition 1.2 [4]. The fractional integral of order v > 0 of the function f € C(J, R) is defined as

N O
I f(t)F(a)O/(ts)l‘o‘d’ 0<t<T.

Defenition 1.8 [4]. The Riemann-Liouville fractional derivative of order « > 0 of the function f € C(J, R)
is defined as

t .
DnIn—af(t) = ﬁ(iﬁ)‘!(tisf)(%mds,

RL Nna _
D) = n—1<a<mn,neN,

F@(t), a=n.
Defenition 1.4 [4]. The Caputo fractional derivative of order o > 0 of the function f € C™(J, R) is defined as

(m)(
m=eprf(t) = F(n @) f(tf)a ,2+1ds
n—1<oz<n,n€N7

™), a=n.
Defenition 1.5 [4]. Mittag-leffler functions are defined by

“Def(t) =

kZ:O T oszrﬂ , ,8€C,Re(a) >0,Ey(x) = Eqy 1.

Defenition 1.6 [22]. The generalized delay exponential function (of Mittag—Leffler type) is given by

nrm o oa (GAm \ Mt — (m 4 f)r) T |
Ga,/i (t)—;( j ) T(a(m + )+ B) H(t— (m+j)r),t>0,
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where A € C', «,8,7 € Rand m € Z and H(z) is the Heaviside step function. f A € C', o, 8,7 € Rand m € Z
then laplace transform of Gi’gm(t) is:

s P exp{—msT}

0.
(s — Aexp{—sT})m+1’ 5=

L(GYG™(1))(s) =

Governing equations
The fundamental equations governing the unsteady motion of an incompressible fluid are

divV =0, (1)

Vv
P = —Vp+div S + Fy. (2)

The constitutive equation for a generalized Oldroyd-B fluid is given by [15-16],

De DA

1+ A ——)S =pu(l+ N ==)A 3
where V = (u,v,w) is the fluid velocity, S = (S; ;) is the extra-stress tensor, 4; = (VV) + (VV)T present the
first Rivlin-Ericksen tensor, V is the gradient operator, and p is the pressure. Here Fy, = (Fyy, Fyy, Fp.) is the
body force, p, pu are the density and the dynamic viscosity coeflicient of the fluid respectively, A\, and Ag are the
material constants that represent the relaxation time and retardation time, respectively, and «, 8 denote the

orders of the fractional derivatives, i.e., real numbers that satisfy 0 < «, 8 < 1. Furthermore, g—; and 1%53 are
fractional material derivatives that can be expressed as
D*S
D = DS+ (VYIS = (VV)S — s(vv)T, (4)
DPS 3 T
DiF = DS+ (VV)S —(V.V)S - S(VV) . (5)

In Eq. (3), (5), the fractional derivative operator D¢ is taken in the Caputo.
We consider unidirectional flow, that is the case where the velocity and the stress take the form

V = u(y,t)i, S = S(y,t),

where ¢ is the unit vector along the x-direction of the Cartesian coordinate system x, y and z. Using Eq.
(6) below, the continuity Eq.(1) is satisfied automatically while Eq. (4), bearing in mind the initial condition
S(y,0) = 0, leads to the following relationships for the constitutive equation
sz = Szy = Syz = Szz = Syy =0, Syz = Sa:yy Sz:v = Swm
a B 3u
(14 AaDf) Siy = u(1+)\5Dt)8—y, (6)

2
a ou __ ou
(14 2aDf) oo = 220y 52 = ~200 (32)
Substituting Egs.(6) into momentum equation (2), we have the following equation in x-direction:

ou 0%u 1 ap
14+ A\, D2) 2 = (1 ADﬁ)— S+ 2D (Fp— 2. 7
(1+ t)at vl +Agly 3y2+p(+ 2 | Fo Oz (7)
where v = £ is the kinematic viscosity coefficient of fluid.
The constitutive equation of a generalized Burgers fluid is
D~ D2« D8
14+ Aag—=—+6 S = 14+ XAg—= | A1, 0 ,8<1), 8

where 0 is the material constant.
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Combining the constitutive equation (8) with the equation (2) we get the following fractional Burgers fluid
model

ou Pu 1 0
a 200 Y gy Y = - e 2c _ p
(1+XaDf +0D7) = _v(1+)\5Dt)8y2 p(1+/\ oD +0D; )(Fbx ax>’ 9)
where v =#/,. Egs. (7)and (9) have the following form:
ao D> u(y, t) + a1 D" u(y, t) + a2 Di**uly, t) + asDy u(y, t)
0?u(y, Pu(y,t) -
D u(y. 1) + agu(y.t) = b 0f By TUD | Fy ), (10)

Oy? Oy?
the delay form of Egs (10) is

ao D> u(y, t) + a1 D uly, t) + az D> u(y, t) + as Dy u(y, t)

0?2 o2 t —
rasDuly,t) + asu(y, t — 7) = by pf W)y T D) g

Oy? Oy
The associated initial and boundary conditions are as follows:
u(y,t) =vi(y,t),  u(0,t)=¢i(t), -7 <t <0,
ue (Y1) =2 (y, 1), w(lt) = (), O0<af<L

A method of separation of variables

At first, the problem involves non-homogeneous boundary conditions. We want to transform it into a problem
with homogeneous boundary conditions. So, consider

u(yat) :W(y,t)+V(y,t), (11)

where

Vigt) = (1= L) o1 () + La (1), (12)

which satisfies the boundary conditions

V(0,8) =1 (1), V(L) = pa (1)

Using Eqgs.(11) and Eqgs.(12) along with the associated initial and boundary conditions above, we have
Wiy )+ (1=-F) e+ {ea(t) =di(yt), —T<t<0,
Wiy t) + (1= 1) "1 () + £¢"2 (1) = ¥2 (1),
W(Lvt) +V(L7t) = P2 (t),
W (L,t) + V (L,t) = pa(t), o
Wy t) =1 (yt) = (1= 1) 1 (1) = F02 (1) £,

=1 (y,
Wi 0,0) = i (0.1) — (1~ ) 0 0~ /2 () = V(0.0

Now main problem is solving
2a+1 a+1 2c 1
ao Dy W (y,t) + a1 D" W (y,t) + ae D“*W (y,t) + as Dy W (y,t) +

0%w (y,t) 0%w (y,t)
B Y, Y, _
~bD] S T b g =

= _aODtQaJ’_lV (th) - a/lDtqulV (yat) - a/2Dt2aV (ya ) - a3Dt V( Y, ) )

+a4DtaW (yv t) + CL5W (y7t - T)

where the initial condition is

S " B, (0) bm— - Z Jsin 7L =3 2 101 (0) = (—1)"s (0)] 5111%’
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oo oo
. nTry 2 n . nﬂ-y
Z B, (0)sin ¥ L = ; d? (0) sin - - ; — [¢'1(0) = (—1)"¢'5 (0)] sin -
and
L
A =7 [0 00) sin" Ty, i=1.2
0
Let -
nmy
W(yvt):ZBn(t) Ta

Then, we have

athQOhLlZ By, (t) sin % + alDtaJrlZ By, (t) sin ? + athzaZ B, (t) sin %4—

n=1 n=1 n=1
+a3Dtlz B, (t) sin % + a4DtaZ B, (t) sm — + a5z B, ) sin %—
n=1 n=1
— (mr) D’BZB 51n——b2(mr) ZB sinw—
L
2 n o n . nr
2D [y ()~ (<1 (0] "7 — ay D, “Z @ (¢)] sin =77 -
nmw =
oo 2 oo
DY fr (1)~ (1) (D] sin T — a3 DS g (1) — (1) (1)) sin T
n=1 n=1
—as—Dy* Y o1 () — (—1)" 2 ()] sin —= — 5EZ [p1 (t —7) = (=1)"p2 (t — 7)]sin —+
n=1 n=1
> nwy
—|—n2::1 fr (t)sin T

Equating coeflicients leads to

agD* ™ By, (t) + a1 D" By, (t) + a2 D’ B, (t) + asDy' By, (t) +
+a1Di" By (1) + a5 By (t = 7) = b ( L) DB, ()—bQ("%)QBn (t) =
= —a0—= D2 [ () — (1) (6] — a1 =D iy (1) = (~1)"02 (8)] -
—a2 D2 o (1) — (~1)" 02 (8] = as—Di* [on (6) — (~1)" 2 ()] -

=D [p1 (6) ~ (<102 ()] — a5 [ipa (£ = ) = (=1)"p (= )] + fu (1)

with the boundary conditions

B, (0) = d" (0) - o (0) + (—1)nﬁ¥72 (0),
B (0) = d2 (0) = ¢y (0) + (~1)" '3 (0)

In this part we divide the main problem in two part
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310<a,<3)

when % < a, 8 <1 and applying the Laplace transform with respect to t defined by

B, (s) = /efStBn (t) dt.
0

In Eq.(13), we obtain

aos** B, () — ags®**B,, (0) 4+ a15*T' B, (5) — a15*B,, (0) + a25°* B, (s) — aps**~'B,, (0) +

0
+azsB, (s) — a3B,, (0) + ays* B, (5) — ags* ' B, (0) 4+ ase™*" /e’San (p)dp| —
nm\ 2

—ase *" B, (s) — b (T) "B, (s) + by (%)QSB_IBn (0) — bo (%)QBH (s) =

+as %e_ST /e—sp [1(p) — (—1)”<p2 (p)dp| + Fy (s).

-7

0 0
By assumption H (S) = [ ¢ [p1 (p) — (~1)"02 (p)] dp , G(s) = [ ¢~ B, (p)dp and k, = 5%, s0 we

can write
_ By, (0) [a0s® + a1s® + ass®* ™ + ag + ass® ! — bik,” s

Bn (8) = 2a+1 a+1 2 @ —SsT 2 B
aps + ays + a98%* + azs + a4s™ — ase — b1k, "sP — by

_|_
k2

—kn% [@1(s) — (=1)"%2 ()] [aos®* ™ + a1s*T! + a2 + azs + ags™ + ase™*7]

+
aps20tl 4 159t + 45829 4 a35 + ags® — age—5T — bik, 258 — bok,?

ﬁ [d%l) (0) — B, (O)} {aosm +a15“ + ags? ! 4 ag + a4s°‘71}

aps20+ 4 a5+ 4 ap520 4 ags + ags® — ase™T — bikp2sP — byky,?
—asG (s)e "™ + %ﬁe’”H (S)+ F, (s)

40529t 4 a159+ + 9529 4 ags + ags® — ase™5" — bk, 258 — bok

Using Eq.(14) we rewrite Eq.(13) as

_|_

. (14)

B oo k+it+j+l4+n+qg=m (71)m m!(_an)n-i-q

Bn (S) = esm'r E T &1ka21(13]a4lb1nb2q
ag™tl  klilgllg!
m=0  k,i,j,l,n,q>0

110 Bulletin of the Karaganda University



Applications of operations ...

Sa(k+2i+l+1)+k+[3ne—smr

Sa(k+2i+l+2)+k+[3ne—smr
) m—+1 +

m+1
(32a+1 _ @6—57)
ag

{Bn(0)[ao +a
(82a+1 _ ‘1756—57
ag

Sa(k+2i+l)+k+ﬁnefsm'r
+as )m+1 +

(s2a+1 _ (1756757
ag

Sa(k+2i+l+2)+k+[3nflefsmf

+CL2 Ml
(82o¢+1 _ 0«756757')

ag
sa(k+2i+l)+k+ﬂn678m‘r

—S8T

sa(k+2i+l+1)+k+ﬂn678m‘r

+ay T T ase TH+1]_
<82a+1 _ %6—37') <820¢+1 _ %e—sr)
ap aop
2 Sa(k+2i+l+2)+k+ﬁn+1e—smr Sa(k+2i+l+1)+k’+ﬁn+1e—smr
() ~ ()75 ()] fag v o
n (82(14-1 _ 0758—57') (52(14—1 _ aie—sr)
ap ao
Sa(k+2i+l+2)+k+6n675m‘r Sa(k+2i+l)+k+ﬂn+1675mf
“+as9 prew | + as prew | +
(82a+1 _ E675T> (82a+1 _ afsefs‘r)
ao ao
sa(k+2i+l+1)+k+ﬂn673m‘r sa(k+2i+l)+k+ﬁn675m‘r
+a4 m—+1 + a56*ST m—+1 ]+
<82a+1 _ %e—sr) <82a+1 _ %e—sr)
ap ao
2 ) sa(k+2i+l+2)+k+,8n€—sm7— sa(k+2i+l+1)+k+6ne—sm7—
+k L dn (O) — By (O) [ao m41 +a1 mF1
n (S2o¢+1 _ %6757') <S2a+1 _ afsefs‘r)
ao ao

Sa(k+2i+l+2)+k+3n71675mr Sa(k+2i+l+1)+k+ﬁn71675mr
+CL2 m+1 + as m+1 + ay m+1
) ) (82a+1 _ %efs‘r>

(82a+1 _ %efs‘r (82a+1 _ aiefsr
aop ao ao

Sa(k+2i+l)+k+ﬁnefsm‘r

Sa(k:+2i+l)+k+,8ne—sm7'

sa(k+2i+l)+k+5ne—smr

m—+1
(82a+1 _ 0756—37)
ag

2
+as——e °TH(SY) +

m—+1
knL (52a+1 _ %8_87)

—a5G (s)e”

(k+21+l)+k+,8n —smT

+F () )m+1}

(52a+1 _ afsefs'r
ao

Applying the discrete inverse Laplace transform to the preceding equation, we obtain

oo k+itj+l+ntg=m (71)m m!(_kn2)”+‘1

By, (t) -
m+1 170510 )
0 ki lmg>0 ag k‘.l.j.l.q.

alkazza3ja4lb1"b2q

( ) m (as ) T,m
{Bn (0) H (t = m7) [a0Go, 51 _a(hr2ist)y—h—pnir & —=mT) +a1Go ) L hioini 1) ppnia (E—mT)+
G( ) m G<a5).7,m
2G50 et 2itt)—k—pnte (E=MT) +a3Go 00— ioiiio9)kpnir (E—MT) +
LasclE) T (t —mr) — bk, 2GL) T (t— mr)]—
A 2041, —a(k+2i4+1—1)—k—Bn+2 1 20+1,—a(k+2i+1—2)—k—Bn+2
| (3),
2 n m
_ﬁ[/ [p1 (t—u) — (—=1)"p2 (t — u)] H (u — mT) (aon+1 (k2040 —k—fn (u—mT7)+
n
0
+a1G2a+1 7o¢(k+21+lf )—k—pBn (U - mT) + a2G2a+1 7oc(k+2z+l) k—pBn+1 ( mT) +
+‘L3G2a+1 —a(k+21+l—2) k—Bn (u—m7) + a4GQa+l —a(k+2i+l—1)—k—Bn+1 (u —m7))du]—
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—%/ (or (£ — ) — (~1)"a (¢ — w)] H (u — 7 (m + 1))

G2;i1 —a(k+2i+1—-2)—k—fBn+t1 (u—7(m+1))dut

1 ( ) T,m
Jrk: L [d( 1(0) = Bn (0 )} [a0G2a+1 —a(kt2il)—k—pgn+1 (E—mT) +
G( )Tm G(‘”’)r,m .
+a1G50 50 —a(eraiti-1)—k—gnt1 (&= 7) + 026530 o gesoir—k—pnia (E = mT) +

t— m7)+a4G( ) , (t —m7)]—

e G( 2),mm
3 20+1,—a(k+2i+1—1)—k—Bn+2

2a+1,—a(k+2i+1—2)— k*an+1(

t
a5/g (t—u)H u_T(m+1)>02(;iz,—7a(k+2z+l 9y Bn-i—l( —7(m+1))du—
0

t
(—aE’)‘rm
a )T

2
caspp [ B =0 H (=7 n 1) 630 i (0 7 1) du
0

(25)mm
ao

t
—|—/ fr(t —u) H (u—m7) G2a+1 (b4 20t —2)—k— Bt 1 (u—7(m+1))du.
0
Once the B, (t) are known, so are the W(y, t), and thus u(y,t) as desired.
3.2 (<a,B<1)

In the same way in the subsection 3.1 we could have

oo k+itj+l4+n+g=m (_1)m ml(_an)n—i-q

: ki, 4,1y nyq
R D a7 B
{Bn (0) H (t —mT) [a0G2a+1 7a(k+27,+l) f—pnt1 (E—mT) + a1G2a+1 7a(k+21+l 1)—k—Bn+1 (t —m) +
+a2G2a+1 —a(k+21+l) ke pnia (0= mT)+a3G2a+1 okt 2itl—2)—k—pnt1 (E—MT) +
(52)mm o (82)
+Q4G2a+1 a(k+2i+l—1)—k—Bn+2 (t =m7) = bikn"Gy, ) —a(k+2i+1—2)—k—fn+2 (t —m)+
B, (0)H &) mm t— i) mm t
+B'n (0) H (t = m7) [a0G 50,01 o (ur2isty—k—pnaa (E = MT) +a1G. 00 o hroirio1)—k—pnie (E—m7) +
+a2G2a+1 7a(k+2z+l) ks (E—mT) +a4G2a+1 7a(k+21+l 1)—k—Bn+3 (t —m7)]+

(% Tym

+B" 1, (0) aoGayty o (k4 2it 1) —k—pnt3 (

t—mr)—

N kjL [ / [pr (t—u) — (=1)"s (t — w)] H (u — m7) (a0G2(a+2 D e aint) kg (= mT) +

( 5)7—m (

(22).mm

Fa1Go0 ) _a(kriti—1)—k—pn (U= MT) +a2Go 07 L ioiiny g pnir (W —mT) +
(22)7.m (22),7.m
+a3G2o¢+1 —a(k+2i+1-2)—k—Bn (u—mr) +a’402a+1 —a(k+2i+1—1)—k— Bn+l( —mT))du]—
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2 n Z ,Tym
T kL [o1 (t —u) = (=1)"¢2 (t = w)] H (u =7 (m +1)) Gz(aiz —a(k42i+1-2)—k—pn1 (0= T (m+ 1)) dut
0
" &ﬂn( )~ B (0)] 00G ) T st (= 7) +
(5) 7 Y
+a1G2a+17 alk+2i+i-1)—k—pn+2 (E = M) + a2Gy, 41 et 2i+ ) —k—pnt3 (= MT)]+
+m |:d512) (O) - B/n( )] [CL()G2(X+1 —a(k+21+l) b frt 2 (t mT) +

(8)mm (53)m
a1 Gy 2, okt 2iti-1)—k—pnta (= 17) + 2G50, (b4 2it 1) —k—pnts (E— M)+

L [d(3 (0) = B", (0 )} a0G2a+1 —a(k+21+l) k—pn+3 (t—m7)—
t (2)
~a; / (¢ =) 1 u =7 (4 1) Go 0 laesioay o (07 (m + 1) =
0

2 T,m
_a5m h(t—uw)H u—T(m+1))G2(a+2 (b4 2iH—2)—k— Bt 1 (u—7(m+1))dut

0
(ag) T,m
+ fn t=w) H (u—=m7) Gy0l) _oger2iti—2)—h—pns1 (=T (m+1))du}.
0

Ezxamples

We consider the flow of an Oldroyd-B fluid when the body force and the pressure gradient are omitted and
the plate is accelerating. We present the analytical solution in the different initial conditions

Ezxample 1. In this example the plate is moving at speed ct, where ¢ is constant. The corresponding initial
problem is then given as

ou (y,t)

2
P yia u (g, ) +vAg Dﬁia u(y, ) Mu (y,t — 1)

2
+ )\aDtau (ya t) + eDt au (yv t) = 8y2 a 2

u(y,t)=c, u(0,t)=ct, —-7<t<0, y>0,
1

ug (y,t) = co, w(L,t) =0, §<a,ﬁ<1,

utt( )—0

Separating variables and use of the Laplace transformation yields,
oo k+itj=m | 2 NIty 1y i
>, . _smT (=nH™ m'(_k” ”) Ag Aa
Bn (S) =€ Z Z (o)ymF1 Rl
m=0 k,i,j>0
k+al+ﬁl —smT k+a('i+1)+Blflefsm-r Sk+o¢('i+2)+ﬁlfle—sm7

{Bn (0)[ 20 _ M- )m+1 + Ao S( 2a_%e*5")m+l + (Sza_%e—sr)m*l

(s

9 ghtaitB(1+1)—1,—smT / skta(l+d)+Bl—2 ,—smT skta(i+2)+81-2,—sm7
V)‘ﬂkn (Sza MefsT)m‘*'l ] +B (0) [/\a (520‘7%6*3*)"“#1 +0 (520‘*%87“)"&1
2Sk+m+/3(1+l) 2g—smT st ghtaitpl —smT
+V>\ﬂk (S M, — ST)m+1 ] e G(S) s2a 1\/[ —sﬂ')m+1
2 ktaitpfl—1,—smT _ _ g ghteitpl—2 —smr st ghtaitpl —smr _ ghta(l+i)+Bl—2 —smT
+k L[g( 1;16 ST)'rn#»f Me 4( oo 94 )m+1 +M€ H( ) (SQ(Y_%G_ST)WL+1 )\a (520_%5_57_)7n+1

k,+o¢(2+z)+ﬁl 2 —smT

— 00 (—a+2) SR
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Taking inverse Laplace transform gives us
oo k+itj=m m ol (—k. 20 ) Tt
—1 m: n vV B N
B, (t) = Z Z ((g)m)-*-l ( k:!i!)j!l!

m=0 k,i,j>0

(Ba ) H (¢ —mn) (G L

T,m T,m ( )Tm

(t - mT) + A Gga )k a(i—1)—pBl+1 (t - mT) + 9G20¢ —k—ai—pBl+1 (t - mT)

2
U)\gk Gga 2k a(i—2)—B(1+1)+1 (t _mT)]

B O PG me) 06T )
+V)\ﬂk 2Gga 2]: a(i—2)—p(+1)+2 (t_mT)]
_Mfg(t—u)H(u—T(m+1))G§jﬂ’,j;”;(i_2)_m (=7 (m +1)) du
0
P2 H (= mr) (G oy (= mr) = XGLTTT (= mr)

)TTYL

0T (—a+2) G (- )]

T,m

+QCMH( (m+1))Ggfgk oy _pige (=T (m+ 1)

4 kiCL{h (b =) H (w7 (m+ 1) G T o (=7 (m+ 1) du.

Ezample 2. We consider the flow of an Oldroyd-B fluid with the initial conditions ¥1(y) = ¢, ¥2(y) = 0 and
boundary conditions, ¢1(t) = ct, p2(t) = 0 where c is constant. The problem now becomes,

ou (y,t)

5t + Ao Di%u (y,t) = 76 u(y.1) +vAg Dﬁi8 u (9, 1) — Mu (y,t —71)

0y? y?

(y7 ):C U(O,t):

ct, —7<t<0, y>0,
ug (y,t) =0, u(L,t) =

0, 0<a,pB<i.
Using the preceding method we obtain,
oo k+itjtqg=m ml(ik)nQV)H’j/\ﬁj

_ ("
But)y= 2. 2 Goom

(B (0) H (t — mr) G (¢ — mr) 2, Ga) (b — )

m M rm
— k2GR ()] —Mfg (t—w) H (u— 7 (m+1) GO (0 (m 4+ 1)) du

T,m

+ QCLH(tfmT) {G(Aa)’ ’

kn oo k-pje1 (E=mT) = Aa G(k‘*) _pje (t—mT)

+2M B (t — 7 (m +1)) Gg o >,;”;;7+2 (t —7(m+1)
t

+ 25 I h(t—u)H(u—7(m+1)) Gg*o‘j )k g; (t =mT)du}, after which W (y,t) and so u(y,t) may be found.
0

Conclusion

In this paper we used a variant of the method of separation of variables to simplify the governing fractional-
order partial differential equations of a generalized viscoelastic Oldroyd-B fluid with constant delay in time
to a set of fractional-order ordinary differential equations with homogeneous boundary condition. The Laplace
transformation (followed by its inverse) was then employed to obtain the exact solutions of the linear fractional
ordinary differential equation. The solutions are given in terms of multivariate Green functions. We found exact
solutions for three specific situations illustrated by examples.
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C. Caramut, @.J1. Cau!, M. Txasuau?, M./Ix. Paxt

L Asad Heaam yrusepcumeminin, Tebpusdezi uauanv, Tebpus, Hpan;
2 Tebpus ynusepcumemi, Tebpus, Hpan

TyYTKBIPp CBIFBIHBI CYMBIKTBIKTAP TE€OPUSICHIHBIH, OOJIIIIeK
andpdpepeHIuaNabIK TeH/JAeyiHiH aHAJUTUKAJIBIK, MIeTTiMi

Maxkananbie MakcaTsl — Ouapoiti-b chIFbIIMaRTBIH 2KaanbLIaMa CYHBIKTHIFBIH KammyTo Typingeri Gedtimex
TYBIHBLIAPBIMEH KEINKTIPpY apKbLIbI Oesinek auddepeHnnaablK TeHIeYIePIiH aHATUTHKAIIBIK, IIIeIiM-
JiepiH yCcbIHY. ARHBIMAJIBLIAD/LI 60Ty OiCiHIH MOAMMUKAIMSCHIH KOJIJaHa OTHIPBII, 6IpTEKTI eMec IeKapa-
JIBIK, IIAPTTAPhl Oap Heri3ri TeHaey GipTeKTi meKkapaJsblK IapTTapbl 6ap TEeHIeyTre aifHAIaIbl, COMAaH KeiiH
anpiaraH memrivaep Jlanmac Typiennaipynepinin kemerimen ['pun dyHKIusIapsl apKbLibl Kepinemi. By
HOTHUZKEJIEP €Ki YKaFaiiga yeeHbLIFan: 6ipinmi kamamaa 0 < «, 8 < %, aJT eKiHII KaJ1aMaa % <a,6<1,0p
kagam yiaia 1, 2 Ongpoiia-b kannbutanraH CYMBIKTBHIFBIHBIH CTAIMOHAPJIIBIK, €MEC aFbIM/IaphI YIIIH, OHbIH
imringe KbUTKBIMAJIBI IIJTUTACHL 6ap aFblH MBICAJIAPMEH KAPACTBIPBLI/IBI.

Kiam cesdep: Onnpoiin-B cyWBIKTBIFBI, OOJINEK PETTI »KapThlIail TYBIHIALLIADIAFEl TEHJIEYJIED, aHATUTH-
KaJIBIK, MIENTiMIep, KeInKTipiireH muddepeHImaIIbK, TeHALY, afHbIMAIbLIAPIbI OOTYIiH MOIuMUKAIIASI-
smauraH omici, KanyToHbIH 6eJIIeK TybIHIBLIAPHI.

C. Carama!, ®.J1. Can', M. Ixxasuan?, M.JIx. Pax!

Y ®unuan Hearamerxozo yrusepcumema Azad 6 Tebpuse, Tebpus, Upan;
2 Viusepcumem Tebpusa, Tebpus, Hpan

Ananmrndeckoe perieHue apodoHoro auddepeHnaabHOro
ypaBHEHIsI TEOPUH BA3KOYHPYTHUX KHIKOCTE

Ilenp jtaHHOM CTATHU — NPEJACTABUTH AHAJUTUYIECKHAE PEIIeHUs JPOOHBIX JrddepeHImaabHbIX ypaBHEHUH
C 3aIas3/IbIBaHueM HeCKuMaeMoil 00obienHoi xuakoctu Ouapoitna-b ¢ ApoOHBIMU TPOU3BOIHBIMUA THUIIA
Kamnyro. Vcnonb3yst mogudukanuio MeToa pa3iesieHns IepeMeHHbIX, OCHOBHOE YPaBHEHNE C HEOIHOPO/I-
HBIMUA I'PAHUYHBIMU YCJIOBUSIMU IIpeoOpal3yeTcss B YpaBHEHUE C OJHOPOJHBLIMHU MDAHUYIHBIMH YCJIOBUSMU, &
MOJTyYEHHBIE PEITEeHUsT 3aTeM BBIPAXKAITCs Yepe3 PyHKIUN [ puHa ¢ moMoIrso npeobpasoBanuit Jlammaca.
OTu pe3yJsIbTaThl IPEJICTABIEHBI B IBYX YCJIOBUSIX: Ha 1epBoM mare, kKorga 0 < «, f < %, a Ha BTOPOM — IIpU
% < a, < 1. Jna kaxkaoro mara 1, 2 171 HeCTallnOHAPHBIX TedeHuit 06061meHHoi )kuakoctu Ouapoitna-b,
BKJIFOYasl IOTOK C JIBUKYIIEHNCS TIJIACTUHOM, MPUBEIEHBI TPUMEDHI.

Kmouesvie caosa: xugkoctb Quapoiiia-bB, ypaBHeHUs B 9aCTHBIX TPOM3BOIHBIX JIPOOHOTO MOPSIIKA, aHA-
JUTHYecKue pereHus, nuddepeHnnaabHoe ypaBHEHNE ¢ 3a1a3/bIBaHuEM, MOINMHUIINPOBAHHBII METO, Pa3-
JleJIeHNsI TIEpEMEHHbBIX, TPOOHBIE TTPOou3BoIHbIe KarmmyTo.
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On Discrete Solutions for Elliptic Pseudo-Differential Equations

We consider discrete analogue for simplest boundary value problem for elliptic pseudo-differential equation
in a half-space with Dirichlet boundary condition in Sobolev—Slobodetskii spaces. Based on the theory of
discrete boundary value problems for elliptic pseudo-differential equations we give a comparison between
discrete and continuous solutions for certain model boundary value problem.

Keywords: Digital pseudo-differential operator, Discrete solution, Discrete boundary value problem, Rate
of approximation.

Introduction

As soon as boundary value problems for partial differential equations were formulated, then at the same
time the necessity of solving methods has appeared. Since finding exact solution for these problems is a very
seldom phenomenon, numerical and approximate methods are extensively used. According to development of
computer technologies, a preference is given to such methods which can be easily realized by computers.

There are a lot of approximate methods for solving boundary value problems in mathematical literature
(see, for example, classical books [1-4] and many others) All authors consider a priori given boundary value
problem and construct for it certain approximate structures. As a rule this way leads to final system of linear
algebraic equations and the solution of the latter system us declared as an approximate solution for the starting
problem.

In our opinion there is a reason to study discrete objects initially and then to apply their properties for
studying approximation of starting continuous objects. This approach was started from papers [5-10] and further
it was developed in [11-15]. We based on Eskin’s approach for elliptic model pseudo-differential equations in a
half-space [5] and have developed appropriate discrete theory. This report is devoted to a special case how we
can approximate the infinite discrete objects by finite ones.

Digital Operators and Discrete Equations

We will use the following notations. Let T™ be m-dimensional cube [—m,7]™, h > 0,h = h~!. We will
consider all functions defined in the cube as periodic functions in R™ with the same cube of periods.

If ug(%),& € hZ™ is a function of a discrete variable, then we call it “discrete function”. For such discrete
functions one can define the discrete Fourier transform

(Faua)(§) = @a(§) = D e " Cug(@)h™, &€ hT™,

TEhZ™

if the latter series converges, and the function 44 () is a periodic function on R™ with the basic cube of periods
AT™. This discrete Fourier transform preserves basic properties of the integral Fourier transform, particularly
the inverse discrete Fourier transform is given by the formula

1

(Fy 00)(#) = ovm

/ e Lug(€)de, T e hZ™.

RT™

*Corresponding author.
E-mail: vladimir.b.vasilyev@gmail.com
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Let T™ = [—7,nw|™, h > 0, A4(§), € € R™ be a periodic function with basic cube of periods AT™, D C R™
be a domain. We introduce a digital pseudo-differential operator

(Aqua)(@) = Y Ag(&)e' D Sy (g)den™, &€ Dg= DNhZ™,
GERZ™ Yo

which is defined for functions of a discrete variable £ € hZ™.
We study operator equations
Adud = Vd, (1)

its solvability and approximate properties for small h.

m )
Let us denote (2 = h=2 Y (e7# ¢ — 1)2) S(hZ™) is a discrete analogue of the Schwartz space S(R™) [7]
k=1
and introduce the following:
Definition 1. The space H*(hZ™) is a closure of the space S(hZ™) with respect to the norm

1/2

ltalls = / (1 -+ [C21)* aa€) [2de

Tm

Further, let D € R™ be a domain, and Dy = D N hZ"™ be a discrete domain.

Definition 2. The space H®(Dy) consists of discrete functions from H*(hZ™) which supports belong to Dg.
A norm in the space H*(Dy) is induced by a norm of the space H*(hZ™). The space H§(D,) consists of discrete
functions ug with a support in Dy, and these discrete functions should admit a continuation into the whole
H?(hZ™). A norm in the H§(D,) is given by the formula

[|ual|§ = inf ||fuqlls,

where infimum is taken over all continuations £.

Of course, all such norms are equivalent to the Lo-norm but this equivalence depends on h. Let us note that
all constants below in our considerations do not depend on h.

To study the equation (1) in a discrete half-space (D = R}' = {x € R" : & — (2/, 2,), xp, > 0}) we use a
special factorization for the symbol A,4(§)

Ada(§) = Aa1(8) - Aa,—(8)
where the factors A4 (€) admit a holomorphic continuation into half-strips AIl,
My ={2€C:z2=E,+ir,&n € [-h7tn, b tn], £ > 0}.
with respect to the last variable &, under fixed (£1,--- ,&n_1) € RT™~! and satisfy some estimates [1-3].
Discrete Equations
We consider the class E,,, which includes symbols satisfying the following condition
er(1+[¢2)*? < [Aa(©)] < ea(1 + ¢/

with universal positive constants c1, co non-depending on h and the symbol A4(§).
Definition 3. Periodic factorization of an elliptic symbol A4(§) € E,, is called its representation in the form

Aa(§) = Ag 1 (§)Aa,—(§),

where the factors A4 +(€) admit an analytical continuation into half-strips ALy on the last variable &, for
almost all fixed ¢’ € AT™ ! and satisfy the estimates

AZLEOI < a1+ 1CN5E, [ATLE©)] < o1+ |C)=77,
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with constants ci, c; non-depending on h,

k=1

m—1
¢G=n (Z (M8 — 1) 4 (e (EnTiT) — 1)2> \ & tiT € AL,
The number @ € R is called an index of periodic factorization.

Such a representation can be constructed effectively and it fully determines a solvability picture for the
equation (1).

Conditions for a Unique Solvability

Some auxiliaries Firstly, for an elliptic symbol A4(€) such periodic factorization exists always [5, §].
Secondly, the index & of periodic factorization determines how much additional conditions for the solution
ug or for the right hand side vy we need [7, 9].
Thirdly, the equation (1) is uniquely solvable in the discrete half-space H*(Dy) for arbitrary right hand side
vg € Hj~%(Dg) only under the condition
le — 5| < 1/2, (2)

Kernel of elliptic digital operator in a discrete half-space

In this paper we consider more complicated case when the condition (2) does not hold. There are two
possibilities in this situation, and we consider one case which leads to typical boundary value problems. We use
the following result from [7] in a simplest form.

Theorem 1. Let & — s = n+ §,n € N,|§| < 1/2. Then the Fourier image for a kernel of the operator Ay

consists of the following functions
n—1

(&) = A7 ()Y en(€)Ch,

k=0
where ¢;(¢), k=0,1,---,n — 1, are arbitrary functions from H(hT™ 1), s, = s — e+ k — 1/2.
The a priori estimate

n—1
ualle < a’>lewls,
k=0

holds, where [, denotes a norm in the space H**(hT™ '), and the constant a does not depend on h.
Discrete Structures as Approzimating Objects.

Initial Observations for D = R™. Here and below we consider model pseudo-differential operators with
symbols A(¢) satisfying the condition

a(T+ €D < [AE)] < call + €)%

Further, the symbol A4(§) will be defined in the following way. We take a restriction of A(£) on the cube
AT™ and periodically extend it onto a whole R™. We consider such operator as an approximate operator for
A. For arbitrary function u the notation Q,u will denote the same construction. So, to find an approximate

discrete solution for the equation
(Au)(z) = v(z), = €D,

for D = R™ we can use the following discrete equation
Aqua = Qpv.

Its solution is given by the formula

ud(i) =

/ FTEATNE)H(E)dE,  F € hE™,

RT™

(2m)™

so that we do not need to find an approximate solution for an infinite system of linear algebraic equations.
For our case we need to apply any kind of cubature formulas for calculating the latter integral and a cubature
formula for calculating the Fourier transform ¢(¢). For v € S(R™) the discrete solution ug(Z) tends to u()
very fast under h — 0 [12].
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Rate of Approzimation.

Infinite Discrete Half-Space Case. Here we consider the case &2—s = 140, |d| < 1/2. According to Theorem 1,
the kernel of the operator A, includes only one arbitrary function so that we need only one additional condition.
The continuous analogue of the discrete boundary value problem

(Aqua)(Z) =0, T € Dy, (3)
ug(#,0) = gg(a’), & € hzZ™*, (4)
is the following
(Au)(z) =0, = €RT, (5)
u(z’,0) = g(z'), 2’ e R™1, (6)

where A is a pseudo-differential operator with symbol A(£). To obtain some comparison between discrete and
continuous solutions we will remind how the continuous solution looks. If the index of factorization equals to
e and & — s =14 4,|0] < 1/2 then the unique solution for the problem (5),(6) is constructed by the similar
formula

a(€) = b 1(€)9(€) AT (€ &m),
where Ay (¢',¢&,,) are elements of factorization of the symbol A() [5],

—+oo

b(e') = / ATHE e ),

— o0

assuming that b(&') # 0,V € R™ 1. Let us note that this is simplest variant of Shapiro-Lopatinskii conditi-
on [5].
We have the following discrete solution [§]

@a(€) = b3 (€)7a(€)AG 4 (€, &m),

+hm

bd(gl): \/A,;i_(flafm)dgmv

—hm

in which we choose special approximations. We take g4 = Qpng and Ag 1 (¢, &) we take as restrictions of
AL (€,&) on AT™. Then the periodic symbol

Ag(&) = Ag (& &m)Aa— (& &m)

satisfies all conditions of periodic factorization with the same index g. Moreover, §4(§') and Aq 4+ (&', &) coincide
with g(¢’) and A (¢',¢&,,) respectively on AT™.

Theorem 2. Let e > 1,5 > m/2,g € H*~'/2(R™~!). A comparison between solutions of problems (3), (4)
and (5), (6) is given in the following way

|u(Z) — ug(F)| < Ch*~Y, & € hZ™.

Proof. We need to compare two integrals:

@)= Gy [ OB
R™
and 1
wal?) = oy [ 75 €)FEALE G, ™)
RT™
for £ € hZ™.
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Thus, we have

u(@) — ua(®) = / EFE(BL(E) — b (€))FEVATE em)dET

1 .
/ ST (E)G(E) AT (E )i,
R™\RT™

because the functions g, g¢ and A4, Ag 4+ coincide in AT™.
Now we estimate the second integral.

/ e HENGENATHE  En)dE| < const / 1G(ENATHE &m)ldE <

R™\RT™ R™\RT™

—hm —+ 00

const [ N[ [+ [ )45 g ldende

Rm—1\RTm~1 hm

Further, we estimate

—hm —+ “+o0
/ + / AT 6 dEn < const / (L4 1€] + [€nl)"dén =
— 00 hr hm

const
-1
Now by Cauchy—Schwartz inequality we have

(1+ €|+ hm) = < cgh™ L.

|l <
R7n—1\hT7n71
1/2 12
[ serasgeta [ asep e
nzfl\hTmfl TYlfl\ﬁTmfl

Since g € H*~1/2(R™~1) [5] the first factor is less than [g]_1 /> and the second one tends to zero if s > m/2.
For the first integral we use the estimate

=LY — b7H(E")] < const - h®}

(see [15]).
Finally,
L iT-E (3 — —L e\ (e A—17¢t
e T/ EFEDHE) — b €)IHEIAT € n)de]| <
const -0~ [ 1g€AT € g lde < const et [ IO ge
N RTm—1

and further as above using Cauchy—Schwartz inequality.
Finite Truncation. To obtain finite object for calculation we can apply an arbitrary cubature formula for
the integral (7) and to approximately find its value in nodal points.
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Conclusion

Here only model operators in a half-space were considered. We hope that these ideas and technique will be
useful for more complicated situations in which both an operator depends on a spatial variable or a domain is
not a half-space.
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! Beazopod memnexemmir yammuow 3epmmey yrusepcumemi, Beazopod, Peceii;
2 1Cesepepynn"XKIIK, Mocxey, Peceti

DIINNITUKAJIBIK, TIceBJI0 A depeHnanabl TeH ey IePIiH
JAUCKPETTi ImentiMaepi TypaJabl

CobosteB-Ciobomenkunii kenicriringeri Jlupuxie mexapaJsblk >Kargaibl 0ap >KapThliail KeHICTIKTEerl 3J11u-
NITAKAJIBIK, [1ceBoud depeHaibl TeHIEYH KapanaibiM IeKapaJblK ecebiHiH JUCKPEeTTI aHAJIOTbI Ka-
PaCTBIPBLIFaH. DJUTHNTUKAJIBIK, TCEBIOANMpMEPEHITUAIBI TEHIEYIED VIIMIH JUCKPETTI XKUEK ecenTepi Te-
OpHUsIChIHA CYW€He OTBIPHIN, GIp MOMENBIIK NMIEKAPAJIBbIK €Cell VIIMH JAUCKPETT] YKoHEe Y3IIKCI3 Imermimmaep
apachIHIaFbl CAJIBLICTBIPY OepijireH.

Kiam cesdep: muckperti nceBnopuddepeHnmaiipl onepaTop, AUCKPETTI IIemiM, JIUCKPETTI IeKapasblK,
€ecerl, XKYBbIKTay PeTi.

O.A. Tapacosa!, A.B. Bacuines?, B.B. Bacuibes!

! Beazopodckuti zocydapemeeriond Hayuonaibhod uccaedosamenvckul yrusepcumem, Beazopod, Poccus;
2
000 «Cesepepynns, Mockea, Poccus

O AncKpeTHBIX pereHnsIX SJIIUITHIECKNX
nceBoanpepeHImaIbHbIX YPABHEHUTI

PaccmoTpen uckperTHbIii aHAJIOT MPOCTERINel KpaeBoi 3a1a4n Ui SJUTUIITHIECKOrO MceBRoand depeHIim-
aJIBHOI'O yPaBHEHUs B IIOJIYIPOCTPAHCTBE € I'paHUYHBbIM ycsoBueM Jlupuxisie B npocrpancrse CobosieBa—
Ciobomenikoro. OCHOBBIBasICh HA TEOPUH JUCKPETHBIX KPAEBBIX 3a1a4 TSI SJTUITHIECKUX TceBaoandde-
PEHIINAJIbHBIX yPaBHEHUN, TaHO CPaBHEHNUE MeXK/Iy JUCKPETHBIMU U HeIPEePBIBHBIMU PElIeHUAMHU IS OJHON
MOJIeJIbHOI KpaeBOU 3a/la4u.

Karoueswie crosa: TUCKpeTHBIN 11ceB10 ¢ depeHIInaIbHbIi OIIepaTop, AUCKPETHOE PEIIeHne, JUCKPETHAS
KpaeBasl 33/1a4a, OPJIOK AIPOKCUMAITIH.
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On atomic and algebraically prime models
obtained by closure of definable sets

This article discusses the properties of atomic and prime models obtained with the some closure operator
given on definable subsets of the semantic model some fixed Jonsson theory. The main result is to obtain
the equivalence of the thus defined atomic and prime models, and this coincidence follows the assumption
that there is some model with nice-defined properties.

Keywords: Jonsson theory, semantic model, prime model, atomic model, algebraically prime model, pre-
geometry, definable subset.

The paper considered the syntactic and semantic characteristics of prime and atomic models [1]. A. Robinson
defined a natural generalization of a prime model, and he called such a model an algebraically prime model.
In work [2] the corresponding notions of atomicity and their connection with an algebraically prime model
were systematically studied. We propose several new types of atomic models and refine these concepts for
algebraically prime models within the framework of these types of atomic. We have previously obtained some
results in connection with these new concepts in works [3-6].

With these concepts of types of atomic and primary models we can work in fixed classes of Jonsson theories,
depending on the conditions of the problem under consideration. In work [7] generalizations of the concept
of isomorphic embedding were considered and within the framework of this definition results were obtained
connecting the concepts of atomic and algebraically prime within the framework of this generalization. Thus,
this work is a synthesis of new results obtained using ideas and concepts of works [3-6] and [7]. In [8-13] some
new directions related to the study of Jonsson theories and their companions were considered and studied. The
results of this work can be useful for studying the properties of countable models related to the above topics
from the list of papers [3-6], [8-13].

Remind some concepts from [7].

Let a < w, A, B are models first order of L. Then the mapping f : A — B is called o an embedding if for
any formula ¢(Z) € II, and any tuple a € A from the fact that 2 |= ¢(a), it follows B = ¢(f(a)). A model A
of the theory T is called a-algebraically prime if 2l a-embeddable into any model of the theory T'.

From the above definitions it is easy to see that the concepts of an algebraically prime model and a prime
model are obtained from the concept of an a-algebraically prime models for « = 0 and a = w respectively.
If T is a set of formulas, then we put I'* = {—¢/p € T'}. If @ =< ag...a, >, A is a model, then @ € A means
that a; € A,i < n. A type p is called a I-type if p C T'. Further, t¥(a) = {0(z)/p(z) € L, A = ¢(a)}
is called a I'- type a in . T'y-type p is called a I'i-the main type if there is a 'y is formula ¢(Z) such that
T E=V(Z)(e(Z) — (z)) forall ¥(Z) € p. In this case p(Z) is said to generate p.

It is easy to see the following fact. Let 2 is a model of the theory T, then 2 is (I'y, I'y)-atomic model T' if
and only if for any @ € A there is such a formula ¢(Z) € T'y, which is true:

a) A = o(z);

b) ¢(&) generates t¥ . (a).

Similarly, if 2 = T, then 2 is weakly (I';,T'2) atomic model of T if and only if for any a € A there is a
formula ¢(Z) € T'; that is true:

a) A = o(7);

b) ¢(Z) generates 7 (a).

In papers [3-6] the properties of atomic models were considered with the help of the closure operator
specifying some pregeometry on subsets of the semantic model of a fixed Jonsson theory.

*Corresponding author.
E-mail: aibat.kz@gmail.com
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Let cl is some closure operator defining a pregeometry over C' (for example ¢l = acl or cl = dcl). It is clear
that such operator is a special case of the closure operator and its example is a closure operator defined on any
linear space as a linear shell. Further, the concepts under consideration are produced within the framework of
a perfect Jonsson theory and if the contrary is not specified then the considered Jonsson theories are assumed
to be complete for existential sentences.

Let us give definitions related to the atomic and prime model considered in this theory.

Definition 1. A set A will be called the (I'1,I'3)-¢l atomic in T if:

1) Va € A, 3p(z) € I’y such that 2 = ¢(a);

2) ¢(Z) generates t2 . (a);

3) cl(A) = M, M € Er, where Er class of existentially closed models of the theory T}
and obtained model M is said to be the (I'1,T'2)-cl atomic model of the theory T

Definition 2. A set A is said to be weakly the (I'1,'9)-cl atomic in T, if Va € A Jp(z) € T'; such that:

1) ¢(Z) UT is consistent;

2) ¢(&) generates tlg“lgurg (@);

3) cl(A) = M, M € Er, where Er class of existentially closed models of the theory T'; And obtained model
M is said to be weakly (I'1,I'3)-¢l atomic model of the theory T

Definition 3. A set A is said to be almost-weakly (I';,T'3)-¢l atomic in T if for any a € A there exists a
formula ¢(z) € T'; such that:

1) ¢(Z) UT is consistent;

2) ¢(Z) generates 7' (a);

3) cl(A) = M, M € Er, where Er is the class of existentially closed models of theory T'; And obtained
model M is said to be almost-weakly (I'1,'2)-cl atomic model of the theory T

Definition 4. A set A is said to be the (I'y,I's)-cl algebraically prime of the theory T, if ¢cl(4) = M, M is
(T'1,T)-cl atomic model of the theory T, M € Ep N APp, where APr (| Er # & and obtained model M is said
to be (I'1,'y)-cl algebraically prime of the theory T'.

Definition 5. A set A is said to be almost (I'1,T'2)-cl algebraically prime of the theory T, if cl(4) = M, M
is been almost (I'y,I'2)-cl atomic model of the theory T, M € Er N APy, where APr () Er # 0 and obtained
model M is said to be almost the (I'y, T'2)-cl algebraically prime of the theory T.

Definition 6. A set A is said to be almost-weakly (I';,T'2)-cl algebraically prime of theory T, if cl(A) = M,
M is been almost-weakly (I';,T'2)-cl atomic model of the theory T', M € Er N APp, where APr () Er # 0 and
obtained model M is said to be almost-weakly (I'y,I'3)-cl algebraically prime of the theory T

For the convenience of expression

" is (I'y,T'a)-cl atomic model of the theory T";

"A is weakly ("1, I'2)-cl atomic model of theory T";

"2 is an almost (I'y, I'2)-cl atomic model of theory T";

"2 is an almost-weakly (I'y,I'2)-cl atomic model of theory T";
and denote by (1), (2), (3), (4), respectively.

Lemma 1.

1. If (Ty = T%), then (1) < (2), (3)

2. If (I'; C I'y), then (1) < (3), (2)

3. If (T UT3) C I's, then if

a) A is weakly (I';,T'2)-cl atomic model of the theory T, then it is true (1);

b) 2 is an almost-weakly (I'1,'z)-¢l atomic model of the theory T', then it is true (3).

4. If (T5 Cc Ty CT3), then (1) & (2) (3) & (4).

5.If (Ty =Ty =T%), then (1) & (2)& (3) & (4).

6.If (I, C T, (T'y C T%), then 7 — (I, I'})-¢l atomic model of the theory T' = 7 — ('}, I'2)-cl atomic model
of the theory T, where 7 € {{), weakly, almost, almost-weakly}.

Proof. The proof follows easily from the definition.

Lemma 2. T T is complete for Ty (i.e., if ¢(Z)UT consistent and ¢(Z) € T'y, then it is true that T = 3z (T))
and (I'y UTY) C T'y then it is true (1) < (2)<(3) < (4).

Proof. Since I'; C T'g, then, by part 2) of Lemma 1, it suffices to show (2) < (1). Let (2) a € A, A = ¢(a),
¥(z) € I'y, (Z) generates tF (a).

Let —p(Z) € T'5 and A = —¢p(a). Let us show that T = ¢(Z) — —¢(T).

(4).
(4).

=
=
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Suppose the opposite: TU{¢(Z) A p(Z)} consistent. Since T is complete for 3Ty, then T = IZ((Z) A p(T)).
So there is b € A such that 2 |= 1 (b) A o(b). Let () € Ty, 2 = 0(b) and 6(Z) generates i (b) by (2). Note
that T |= 0(Z) A o(Z) (1) as well as T'F ¢(Z) A =0(Z) (2).

Since ~0(z) € I'; C T’y it follows from (2) that =0(z) ¢ 1! (a), i.e., A }= 0(a). According to (1), in this case,
A = (@) must be true. Contradiction. Recall that A, = ¥, N1L,.

Corollary 3.

HIUT, =Ty =3, then (1) & (2)& (3) & (4).

2) For any a < f <w, if Ty = A, Ty = 3, T is complete for 3, then it is true (1) & (2)& (3) & (4).

Proof. 1) follows from part 5) of Lemma 1;

2) from Lemma 2.

If T e {; 11}, then I'(A, @)zca denotes the set of sentences of the form I' in the language L that are true
on (A, q)aca-

Lemma 4. If 2 is a model of T', then following conditions are equivalent:

1) A is (T'y,Ty)-cl algebraically prime of the theory 7.

2) Every model T can be enriched to the model T UTI(, @)zca

3) Every model T' can be enriched to the model T'U 3(2, @)zeca

Proof 3)& 2) < 1) obviously.

Let’s show 1)< 3).

Let f : A — 9B be isomorphic embedding a € A, ¢(Z) € X1: A E ¢(a), ¢(Z) = IgY(y,T), ¥(y,z) € 11,
a € A, A = (ay,a). Then B = (f(d1), f(a)) due to the fact f is an isomorphic embedding.

Further, we have B = Jyy (7, f(a)) i.e., B = o(f(a)). Hence (B, f(a))aca are the model of TUX1 (A, @)zeca

Definition 7. Let ®(zy...x,;) be some set of formulas of the language L from variables z;...x,;,. We say that
I’y locally omitted @ if for any formula consistent with T formulas ¢(z...x,) € T’y there is such a formula
0(z1...x,;) € ® such that ¢ A =6 consistent with T

Theorem 5. Let T be Ils-axiomatizable consistent theory of a countable language L and for any n < w let
®(x1...2,,, ) be the set of the II; are formulas of m,, variables. If T' 31 locally omitted every ", n < w, then T
has a countable model which omitted every set ", n < w.

The proof can be taken from [15].

Theorem 6. Let T be a perfect Jonsson theory complete for I sentences. Then every (X, 3)-cl algebraically
prime model of theory T is an almost-weakly (3, ¥)-cl atomic model of the theory T'.

Proof. Let 2 be the (3, ¥)-cl algebraically prime model of theory T'. Suppose there is a a € A, such that
t3(a) is not be the ¥y is principle type. Since ¥; C I3 then by Theorem 5, there exists a model B of the theory
T, which omits t3 (a). Let f : 2 — B be an embedding. Then by Lemma 4 we have t3 (a) C t3 (f(a@)). It
follows that f(a@) implements 3 (@) to 8. This contradicts Theorem 5.

Definition 8. Let t1 be the I'1-type, to be the I's-type, then they say that ¢; and to T-equivalent if T'Ut; F to
& T Uty F ty. In this case, write t1 ~7 to. The following is known next lemma.

Lemma 7. Let T be perfect Jonsson theory complete for II; sentences and 2 |= T, then there is a model B,
such that:

1) B ET;

2) 2 is isomorphically embeddable in 9B;

3) for any b € B t8 (b) ~r tg, (b).

Proof. The proof follows from [14] and the above definitions.

Theorem 8. Let T be the perfect Jonsson theory complete for II5 sentences. Then every (2, X)-cl algebraically
prime model of the theory T is an almost-weakly (X, ¥)-cl atomic model of the theory T

Proof. Firstly, we prove the following fact (F). If ¢(z) € £; and ¢(Z) UT is consistent, then there is a
formula ¢(Z) € £ such that T U(Z) is consistent and T = ¢(Z) — ¢(Z). Indeed, let ¢(Z) € ¥; and o(Z)UT
are consistent. Since that T is complete for I sentences we have T + 3Z¢(Z). Since T Tl is axiomatizable,
then by Lemma 7 there exists a model B |= T, such that for any b € B is holds

£, (b) ~r 13, (D) (%)

Let b € B such that B |= ¢(b). Due to (*) and the closedness concerning the conjunction of the type 8 (b)
there is a formula ¢ (z) € t& (b), such that T+ ¢(z) — ¢(z). Fact (F) is proved.

Further 2 be (X, ¥)-cl algebraically prime model of theory T, @ € A, t = t3(a). By Theorem 6 2A-almost-

weakly (X, X)-¢l atomic model of theory T'. Therefore, there is a formula ¢(Z) € X consistent with T, which
generates t3(a). According to (F), there exists a formula ¢(z) € ¥ consistent with T, for which the following
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holds: T+ 9(Z) — ¢(&). Obviously ¥(Z) generates t&(a). Due to the arbitrariness @ € A a model 2 is almost-
weakly (X, ¥)-cl atomic model of the theory T

Remark. Let a, B <w, % =<z;:1<i<l4+a>a*"=<a;:1<i<1+a>.

Definition 9. 1) a-type is called any set of formulas consistent with T, the free variables of which are found
in T;
2) w-type p is called T-w-type, if p C T
3) T-w-type p is called T'y-principle type if there exists such a sequence (1, (Z") : 1 < n < w) I';-formulas,
such that:

a) T U, (T™) is consistent, 1 <n < w;

b) 1, (Z") generates p | ", where p | Z" is set of formulas from p, the free variables of which are among
(1, 2n), 1 <n <w;

c) T (Z") < IZpi 1V (2", 1 <n < w.

Definition 10. A model 2 of the theory T is said to be the fine almost-weakly (I'1,T's)-¢l atomic model of
T if each tuple of w elements 2 implements I';-principle type I's w-type.

Lemma 9. Let 2 be a countable model of the perfect Jonsson theory T', A = a* =< ay..., ay, ... > implements
(%, X)-w-type. B = T, B is the isomorphically embeddable in 2(. Then B is a fine almost-weakly (X, ¥)-cl atomic
model of T'.

Proof. Let b* =< by, ...,by, ... > be an arbitrary tuple of w-elements B. Such that 9B is the isomorphically
embeddable in A, then by = a;, for some 1 <k < w.

Let npy =145:1<j <k,

Zk = 172337"77746 \Zj 1 S] < kvgk =< Y1, Yk >

Such that @* implements the ¥-principal type Y-w-type, then there exists a sequence of ¥-formulas (1, (Z") :
1 < n < w), for which the following is true:

1)1, (™) U T is consistent, 1 < n < w;

2)1p, (Z") generates t3(a") 1 < n < w;

BT b hn(2") ¢ T (2°71) 1 < 10 < .

Let us denote by what

Py (2) (1'1‘1; mﬂjik) LA Zp =10

_ Yis - Yk
Sk(7") =

3$s¢nk (jnk)SeZk (Iil, ceny l’ik) 7 if 7, 75 0.
Y15 Yk

Then it is clear that:

a) Sp(7F) eX1 1<k <w;

b)S(7*) consistent with 7', 1 < k < w;

¢)S(y*) generates t3 (bF), 1 <k < w;

d)T F Sk(zjk) ~ Hyk+15k+1(gk+l), 1<k<w.

Further such that 9B is isomorphic embedding 2I, then t&(b*) C t¥(a*). Hence S(7*) generates t¥ (b*)
1 < k < w. Thus, since b* is arbitrary, the model B is fine almost-weakly (¥, X)-cl atomic model T

Corollary 10. Let A =T , a* = A. Then:

1) if @ implements X is principle type ¥-w-type, then any infinite ¢ implements some Y-principle type
Y-w-type;

2) if 2 is the fine an almost-weekly (X, 3)-cl atomic model T, then 2 is almost-weakly (X, X)-cl atomic
model T'.

Proof. Follows from Lemma 9.

Lemma 11. Let T has a fine almost-weakly (X, ¥)-cl atomic model, then each (X, ¥)-cl algebraically prime
model of theory T is a fine almost-weekly (3, ¥)-cl atomic model of the theory T'.

Proof. Let B be an arbitrary (X, X)-cl algebraically prime model of theory T',  is fine an almost-weekly
(2, %)-cl atomic model of the theory T, then there is an embedding f : A — B. Let 2 = f[B]. Obviously
2" embedded in 2, and by Lemma 9 2, therefore B is also fine almost-weakly (3, X)-cl-atomic models of the
theory T'.

Lemma 12. Let T perfect Jonsson theory complete for IT;-sentences. Then every fine almost-weakly (X, X)-
cl-atomic models of the theory T is a (2, X)-cl algebraically prime model of T.
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Proof. Let a¥ =< aq, ..., an, ... > are elements from A. Since a* implements -principal ¥; —w-type, there
exists (¢, (Z") : 1 < n < w)- is a sequence of ¥;-formulas for which the condition of item 3 of Definition 7 is
true. Such that T is complete for II;-sentences, then B = Iz"4, ("), 1 < n < w, where B |= T'. Further, since
T & 4, (") + 32" 1,41 (") for each 1 < n < w, then it is possible (step by step) to gradually find such
b1, ...,by from B, such that B | 1, (Z"),1 < n < w, where b"™ = (b, ..., b,). But 1, (Z") generates t3 (a"), so
t3 (@) CtR ("), 1<n<w

Therefore, the mapping f : 2 — B, where f(a,) = b,,1 <n < w, is an isomorphic embedding.

Theorem 13. Let T be the perfect Jonsson theory complete for II;-sentences and has fine almost-weakly
(%, X)-cl atomic model. Then the following conditions are equivalent:

1) 2 is the (X, X)-cl algebraically prime model of theory T'.

2) 2 is the fine almost-weakly (X, X)-cl atomic model of the theory T.

Proof. 1) = 2) follows from Lemma 11. 2) = 1) from Lemma 12.
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A.P. Emkees, A K. Ucaesa, H.K. IIlamaraesa

Axademur E.A.Boxemos amwindazw. Kapazanov ynusepcumemi, Kapazando, Kasaxcman

AHbIKTaJIPaH 2KNBbIHBIHBIH TYﬁLIKTay ornepaTopbl KeMeriMeH
AJIbIHFaH aTOMJAbIK 2Ko9HEe a..TII‘e6pa..TIbIK JKa MoOoJeJibAep TypaJibl

MakaJsrama Kaugait ma 6ip 6eKiTijireH HOHCOHIBIK, TEOPUSTHBIH CEMAHTUKAJIBIK, MOJAEIIHIH, AHBIKTAIFAH 1IKi
KUBIHBIHIA OepiireH Kanjaiiia 6ip TyHbIKTay OIEpaTOPBIHBIH KOMETriMeH aJIbIHFaH aTOM/IBIK KOHE »Kai
MOJIEJIBJIEPIiH, KACUeTTepl KapacThIpbLiraH. Herisri HoTmke peTiHIe aTOMJIBIK >KOHE XKaill MOIeJIbIepe
aHBIKTAJIFAH dKBUBAJEHTTIIIKTI Taby OOJIBII TaObLIAIbI, SFHU OyJI COMKECTIK »KaKChbl KacheTTepiMeH Oe-
pinren kaumait ga 6ip Moaesb Oap JereH IMIbIFaIbI.

Kiam cosdep: HOHCOHJIBIK, TEOPHUSICHI, CEMAHTUKAJIBIK, MOJEJb, YKail MOIEJb, aTOMIBIK MOJE/b, aJredPaJIbIK,
2Kall MOJIeJIb, IIPEreOMeTPHsI, aHBIKTAJIFAH IITKi KUbIH.

A.P. Emkees, A.K. Hcaesa, H.K. [Ilamaraesa

Kapazandunckul yrusepcumem umenu axademura E.A.Byxemosa, Kapazanda, Kazaxcman

O6 aTOMHBIX U aJIredpamvecKn IIPOCTBIX MOJIEJIAX,
IIOJIy9YeHHbBIX 3aMbIKAHNEM OIpPeae/IMMbIX MHOXKECTB

B crarpe paccMoTpenBI CBOICTBa aTOMHBIX U IIPOCTBIX MOJIEJIEN, IOy YEHHBIX C IIOMOIIBIO HEKOTOPOTO OIle-
paTopa 3aMbIKaHUsI, 33 IaAHHOTO HA ONPEIETNMBIX ITOAMHOYKECTBAX CEMAHTUIECKON MOJIEN HEKOTOPOit (bu-
KCHUPOBAHHON HOHCOHOBCKOI Teopun. OCHOBHBIM PE3yJILTATOM SIBUJIOCH IIOJIYyY€HUE SKBUBAJIEHTHOCTU OIIPe-
JICJIEHHBIMY TaKUM 00pa3oM aTOMHON M IIPOCTOM MOJIejiell, IPUYeM 9TO COBIIAJICHUE CJIeLyeT IPHU IPeJIio-
JIOKEHUH, UTO CyIIeCTByeT HEKOTOpadA MOEJb C XOPOIIO 3aJaHHBIMHU CBOMCTBAaMMU.

Kmouesvie cro6a: HOHCOHOBCKas TEOPHsl, CEMAHTUYIECKAasl MOJIE/Ib, IIPOCTas MOJEJb, AaTOMHAs MOJIENb, aJl-
redpandecKu MPOCTasi MOJIEIb, IPEATeOMEeTPUSsI, OIIPEIETNMOE TOIMHOXKECTBO.
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On the boundedness of the partial sums operator
for the Fourier series in the function classes families associated
with harmonic intervals

The article is devoted to the study of some data from the theory of functions approximation by trigonometric
polynomials with a spectrum from special sets called harmonic intervals. Due to the limited perception range
of devices, the perception range of the senses of the person himself, when studying a mathematical model
it is often enough to find an approximation of the object so that the error (noise, interference, distortion)
is outside the interval of perception. Harmonic intervals model problems of this kind to some extent. In the
article the main components of the approximation theory of functions by trigonometric polynomials with
a spectrum from harmonic intervals are presented, the theorem on estimating the best approximation of
a function by trigonometric polynomials through the best approximations of a function by trigonometric
polynomials with a spectrum from harmonic intervals is proved. Theorems on the boundedness of the partial
sums operator for the Fourier series in the function classes families associated with harmonic intervals are
considered; such a theorem for the Lorentz space is generalized and proved. The article is mainly aimed
at scientific researchers dealing with practical applications of the approximation theory of functions by
trigonometric polynomials with a spectrum from special sets.

Keywords: harmonic interval, trigonometric polynomials with a spectrum from harmonic intervals, best
approximation of a function by trigonometric polynomials, partial sums operator of the Fourier series for
a given function, interpolation theorem.

Introduction

In approximation theory one of the most relevant problems is the approximation of periodic functions
by polynomials with a spectrum from special families of sets. Here we note the works of K.I. Babenko,
S.A. Telyakovsky, V.N. Temlyakov [1] and others in the case when the spectrum is a hyperbolic cross; the
works of V.I. Yudin, M.I. Dyachenko [2] in the case when the spectrum is a ball, etc.

In the study of many applied problems the question of approximating the mathematical model of the object
under study naturally arises. However, due to the limited range of perception («window of perception») of
devices, the range of perception of the human senses, when studying a mathematical model it is often enough
to find an approximation of the object so that the error (noise, interference, distortion) is outside the interval
(«window» ) of perception.

In this paper we consider approximations of functions by trigonometric polynomials with a spectrum from
harmonic intervals, which to some extent model problems of this kind.

Note that harmonic intervals are some fractal self-similar sets, the concept of which was introduced by
E.D. Nursultanov in [3-5] and, as it turned out, harmonic intervals have an important role in harmonic analysis.
Thus, in the works of N.T. Tleukhanova, K.S. Saydakhmetov, D.S. Karimov, such objects as harmonic segments
and harmonic intervals were essentially used.

In the studying the problem of the boundedness of the partial sums operator for the Fourier series in the
function classes families associated with the best approximations over harmonic intervals the method of real
interpolation is used. Among the works devoted to the properties of interpolation spaces, as well as to the
methods of interpolation, one should note the works of Y. Berg and J. Lefstrom [6], S.G. Krein, Yu.I. Petunin,
E.M. Semenov, Yu.A. Brudny [7], [8], H. Tribel [9], [10].

*Corresponding author.
E-mail: work.ksu21@mail.ru
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Definitions and auxiliary results

Let k,v, N € N, k < N. A set of the form

Iy = G (I=k, k] + 2vN) = G (m+2vN :m € [—k, k)

v=—00 v=—00

is called a harmonic interval in Z.
We denote by T,gv the set of trigonometric polynomials of the form

T,ﬁvz{za,,~ei”x:aV:0ifV§éI,iV,s€N}.

v=-—s

The value
EY(f)p = inf ||f—t
i (F)p o, If—tllp

is called the best approximation over the harmonic interval I of the function f € L,[0,27), 1 < p < oo, by
trigonometric polynomials from T,iv of order less than or equal to k.

Let f € Ly[0,27), 1 < p < co. The partial sum of the Fourier series for the function f over the harmonic
interval [ ,iv is called the function

S = Y a-e,

velY

Theorem 1. [11] Let f € L,[0,27), 1 < p < oo, m € N. SN (f) and EN(f) are the partial sum of the Fourier
series and the best approximation of the function f over the harmonic interval I respectively, then we have
the following relation

En(Pp ~ If = Sn(H)llp-
Lemma 1. [11]]Let n € N, 1 <p < g <o00,1 <7 < oo, then
1_1
ITnlL,, < Cne™a||ThllL,. (1)

q,r —

Let 1 <p,g<oo,7r>0, f€Ly0,27m). The family of function classes {B;’q‘N}N is defined by the equality

pan ={f:flsy, , <oof, NeN,

where 1
q

N
IfllB;, = (Z BT (Ezivl(f)p)q>
k=1

Let two families of function classes {AN } v and {BN } o IV €N, be given. We assume that the ratio
[fllan ~ [ fll B~
holds if there are parameters Cy, Cy such that for any f € AN the following inequality

Crllfllsy < Nfllav < Collfllp~

is valid, moreover, the parameters C7, Co do not depend on f and N.

Theorem 2. [12] Let f € By , om, m € N. Then for 1 <p, ¢ < oo, r > 0 we have

1£115y, 4 ~ (Z 2ok (E§£”1<f>p)q>
k=1

Theorem 8. [12] Let m € N, 1 < p,pg,p1 < 00,0 <0 <1, 79> 0,7 >0, 19 # 71, % — 1—0_,_1%’
r=(1-0)-rg+0-r, then

1
q

(5

. T1 — T
P0,P0,2™) Bp1 »P1,2™ ) 0p Bp,p,2m )
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Estimation by the best approximations over harmonic intervals

Theorem 4. Let f € L,[0,27), 1 < p < oo, n € N. 3" a, - €”? is the trigonometric Fourier series of the
VEZ
function f, then the following inequality holds

= ZE@J 1)n

Proof. By Lemma 9.3 [13] we have
En(f)p ~ If = Su(f)llp,

when 1 < p < oo or
En(f)p ~ Z ay - e (2)
veZ~[—n,n]

By entering the notation of harmonic intervals in Z

D {1(27 =1)n; (27 + 1) n] + 27 'mn} =

m=—0oo

U {[-n;n] + 290 (2m + D}, j=12,..,

m=—0oQ

we obtain

Then from (2) we get the relation in this form

n[27 (2m+1)+1]

iZay-ei”z = i i Z as - e . (3)
j=1lveV; » Jj=1m=—00 s=n[27(2m+1)—1] P

We denote by W;, j = 1,2, ..., the following sets
W, =27~V (4)

where

Q {[= (@ =) n; (2 = 1) n] + 27 'mn}

or
W I(QJ n:*

We note that the sets W;, 7 = 1,2,... are also harmonic intervals in Z as complements of the harmonic
intervals V;, j = 1,2, ... in Z. Then, according to Theorem 1, using (4), from (3) we obtain the required inequality

Ex(Pp~ (D D aw-e™ Z f=Sw, ()| <

j=1veZ~W;
J ’ P P

The theorem is proved.
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Theorems on the boundedness of the partial sums operator for the Fourier series
of a function f in the function classes families {B;q.N}N

Theorem 5. [11] Let N €N, 1<p<qg<o00,1<r<o00,>0,a—3=2— %. Bgr is the Besov space [14],
then the partial sums operator for the trigonometric Fourier series of the function f

N
Sy (f(x) = > Flk)e™
k=—N

such that
Sy : BS,. N — B,

is bounded, that is, there is the inequality

IS8 (Hlsg, < CUflgs
where the parameter C' do not depend on f and N.
Corollary 1. [11] Let N e N, 1 <p<qg<o0,1<r<oo, >0, a—p=

— %, then the partial sums
operator for the trigonometric Fourier series of the function f

1
p

S By = By
is bounded, that is, the following inequality

1S5 sz < Clfllps,
where the parameter C' do not depend on f and N.
Theorem 6. [11] Let m e N, 1 <p < ¢ < o0, =

%, then the partial sums operator for the trigonometric
Fourier series of the function f

1_
P

SQm : Ba

g, 2m L,

is bounded, that is, we have the following inequality

182 (N, = Clifllse ..

q,2m

where the parameter C' do not depend on f and m.
Remark 1. Theorem 6 can be formulated in a more general form.

Let NeN,1<p<qg<oo,a=2<—1 then the partial sums operator for the trigonometric Fourier series

of the function f P
SN : B](;équN — Lq

is bounded, that is, there is the inequality of the form

185Dl < Clifllgy, -

N

where the parameter C' do not depend on f and N.
We generalize Theorem 6 to Lorentz spaces.
Theorem 7. Let N e NJ1<p<qg<oo,1<r<oo, a=

— %, then the partial sums operator for the
trigonometric Fourier series of the function f

1
p

SN : BS’T,N — Lq,r
is bounded, that is, this inequality holds
IS8 (Dlls,., < Cllfllps

where the parameter C' do not depend on f and N.
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Proof. We estimate the norm of the partial sum operator in the Lorentz space

flogy N || 2F—1 4 [logy N]
[ENGIESY > ape™ = > Nk (Sv(ly, . - (5)
k=1 n=—2k-1 Lo k=1

Applying the inequality of different metrics (1), we transform the relation (5) as follows

[10852 N] L. [log2 N]
1Sx(Nllz,, <C S0 2°G=D ap (Sv(Ml, =C 3 2% ok (Sv (), - (6)
k=1 k=1

Z’I’LI

Taking into account that Ap (Sy(f)) is a partial sum of the function > ane
neZ~IN

and using the M.
2k—1_1

Riesz theorem [15], Theorem 1 and Theorem 2, we reduce relation (6) to the form

[log, N]
1SN (DI, <C > 2% [lag (Sn(H)l,, <
k=1
[log, N _ [logy N]
<C Z 2O‘k Z ane'™® =C Z QO‘ka Sgk 14 )HLPS
nEZ\I,C 1 k=1
2 -1 Lp
[logy N] logz N]
<C Z M EN L (fp=C-2% Y 22®VEN L (), <
k=1
[log, N]
<C Y 22BN (fy~Clifllss,
k=1
= [Sv(Hllz,. <ClflBe, - (7)

We take pairs («g, 1), (go,q1), (ro,71) that satisfy the following conditions

oy <a<a, g<qg<q, ro<r<r,
1 1 1 1

a)y=———, 0 = — — —.
P 9o P @

Taking into account the relation (7), we obtain the following
SN : BO‘O ~N — Lgoro

. a1
Snt Byt v = Lgym

then, by the interpolation theorem [6], we have

SN - (B;,Ul,N;Bg,ll,N) - (L‘IOyro;qu»Tl)G,r' (8)

o,r

Using Theorem 3, we receive that this relation holds
(Byxe B;ll,N)e =B

where ) 1_8 9
ag=(1-0)-ap+0-a;, —-=—=+—, 0<6<1.
T To T1

It follows from the theorem on the interpolation of Lorentz spaces [6] that

(Lgo,ro’ qu,rl)g,r = Lqg,r,
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where

1 1- 6 1 1-6 0
+

qe qo G T To T1

Since there is a dependency

co=1=0) a0t —-0) (1= L) pp (1o 1) 1L

P Qo

then there is 8 € (0;1) such that

Qp =, (g = (.

As a result, from (8) we obtain the required relation

and

. «@
SN . Bp,’I“,N — Lq;p,

1S (Nllg,, < Clflps .

N

where the parameter C' do not depend on f and .

The theorem is proved.

Remark 2. In Theorems 5, 7 and Remark 1, the operator Sy (f) can be replaced by the operator S, (f),
where 0 < n < N. Indeed, from M. Riesz’s theorem we have

1Sa(£)llz, < C IS8 (DI,

where the parameter C' do not depend on f and N.

10
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l'apMoHuUKaabIK MHTEpPBaJgapMeH OaitjlaHbICThI (PYHKIUATIAPD
KJacTtaphbl yiipiageri ®ypbe KaTapblHBIH Jepbec KOCBIHIbLIaphl
OIepaTOPBIHBIH, IITEHEJITEHIITI TypPaJIbl

Maxkasia rapMOHUKAJIBIK, HHTEPBAJIIAD el ATAJATHIH apHANBI JKUBIHTHIKTAP CIIEKTPi 6ap TPUTOHOMETPUKA-
JIBIK, TIOJIMHOMTap DYHKITUSITIAPBIH YKYBIKTAY TEOPUSACHIHBIH KeOip /1epekTepin 3eprTeyre apuaaran. Mare-
MAaTHKAJbIK, MOJIEJIbII 36PTTEY Ke31H/e KYPbLIFbLIAD/IBIH KabbLIIay ayKbIMbI, 8JaMHBIH Ce3IM MyIIeIepiHiy
KabbLIZIay ayKBIMBI IEKTEYJ OOJFAHIBIKTAH KATeNiK (Iry, Kemepri, 6ypmasay) KaObLiIay MHTEPBAJIBGIHAH
TBIC 6OJIATBIHIAN eTil KayKeTTi 00 beKTIHIH KYbIKTaMaChlH Ta0y KebiHece >KeTKiJIKTI 6ostaapl. 'apmoHuKa-
JIBIK, MHTEPBaJIJap OCBIHJIAM TUIITErl Macesesep/i oesrii Oip JieHreiae Mmoaebaeitai. MakaJsajia rapMoOHU-
KaJIbIK, THTEPBAJIIAP Il ATAJATHIH apHANBI KUBIHTHIKTAP CIIEKTPi 6ap TPUTOHOMETPUKAJIBIK, TTOJTMHOMIAD
(DYHKIUIaPbIH YKYBIKTaY TEOPHUSCHIHBIH, HET3ri KOMIIOHEHTTEPI KEJITiplIreH, rapMOHUKAJIBIK HHTEPBAJIIAD
JIeTl aTaJIaThIH apHabl XKUBIHTBIKTAP CIIEKTPi 6ap TPUTOHOMETPUKAJIBIK, TOJTUHOMIAP (PYHKIUSICHIH €H Ka-
KCBI KYBIKTay APKbLIbI TPUTOHOMETPHUKAJBIK MOJAHOMIAD (DYHKIUSICHIH €H YKAKCHI KYBIKTAYIbl Oarasay
TypaJibl TEOPEMACHI JRJIEIEH . | apMOHUKAJIBIK MHTEPBAJIIapMEH OaMIaHBICTHI DYHKIUIIAD KJIACTapbl
yitipianeri @ypre KaTapbIHBIH JepOec KOCBIHIIBLIAPHI OII€PATOPBIHBIH, IIIEHEJIIeH N TypaJibl TeopeMaJap
KeJITipiiares, MyHgai Teopema JIOpeHIT KeHICTIT YImiH »Ka/JIIbLIaHIBIPBLIFAH YKOHE JTJeaenren. Herizinen
MaKaJia apHabl KUBIHTHIKTAP CIIEKTPi 0ap TPUTOHOMETPHUKAJIBIK, HOJIMHOMAAD (DYHKIUIIAPBIH KYBIKTAY
TEOPUSICBIHBIH TPAKTUKAJIBIK, KOJJIAHYBIMEH aiiHABICATHIH FHUIBIMU 3€PTTEYIINIIEPTe apHAJIFAH.

Kiam cesdep: rapMOHUKAJIBIK WHTEPBAJ, FAPMOHUKAJIBIK WHTEPBAJAAP CIEKTPI 6ap TPUrOHOMETPUKAJIBIK,
MMOJTMHOM/IAP, TPUTOHOMETPHUKAJIBIK, IIOJTUMHOMIAD (DYHKITUSCHIH €H XKAKChI KYBbIKTay, OerilenreH OyHKIHsT
yiiin Pypbe KaTapbIHbIH Jepbec KOCBIHIbLIAPHI OIIEPATOPBI, NHTEPIOJIAIUSIBIK, TEOPEMA.
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OO0 orpaHMYEHHOCTH OIlEpPaTOpPa YACTUIHBIX CYMM
paaa Pypbe B cemeiicTBaxX KJjaccoB (pyHKITHIA,
CBA3aHHBIX C TAPMOHUYECKUMU MHTEPBaJIaMU

Crarbsl TOCBSIIIEHA MCCIEJOBAHUIO HEKOTOPBIX JAHHBIX TEOPUN HPHUOINKEeHUsT (DYHKIMIA TPUTOHOMETPHYe-
CKMMU TOJIMHOMAaMH CO CIEKTPOM M3 CIIEIIHAJIBbHBIX MHOXKECTB, Ha3bIBAEMBIX TaPMOHUYECKIMHI WHTEpBaJa-
mu. B cuty orpanndeHHOCTH nrana3oHa BOCIPUATHS IPUOOPOB, AUATa30Ha BOCIIPUSATHSI OPTAHOB YyBCTB Ca-
MOI'0 4YeJIOBeKa IIPH UCCIIEJOBAHUYN MaTEMATHYECKON MOJEIN YacTO JIOCTATOYHO HANTH IPUOINKEHHE UCKO-
MOTO 0OBEKTA TAK, 9TOOBI MOTPEITHOCTD (IIyMBbI, TIOMEXH, NCKAYKEHUs) OKA3aJIaCh BHE HHTEPBAJIA BOCIIPUSI-
Tusd. ['apMOHUYeCKe NHTEPBAJIBI B HEKOTOPOH CTENEeHN MOJETUPYIOT 33/a4Ui TAKOTro poja. B crarbe mpen-
CTaBJIEHBI OCHOBHBIE KOMIIOHEHTHI TEOPUU IIPUOIMKEeHNST (DYHKIIUH TPUTOHOMETPUIECKUMU ITOJIMTHOMAMU CO
CITEKTPOM W3 TAPMOHUIECKUX WHTEPBAJIOB, IOKa3aHa TeOpeMa 00 OIeHKe HAWJTYYIero NpudInKeHns QpyHK-
MY TPUTOHOMETPUIECKUMHY HOJMHOMAMHU Yepe3 HAMJIYdIue TpuOInKeHus PyHKIIMH TPUTOHOMETPUIEeCKU-
MU IIOJIMHOMAMHU CO CIIEKTPOM U3 FapMOHHMYECKUX HUHTEpBaJIOB. lIpuBejieHbl TeopeMbl 00 OrpaHUYEeHHOCTH
omepaTopa 9acTUIHBIX CyMM psiia Pypbe B ceMeiicTBax KJIACCOB (DYHKIW, CBSI3aHHBIX C TAPMOHIIECKIMU
uHTepBajaMu, 0600IIeHa U JoKa3aHa Takas Teopema i npocrpancrsa Jlopenna. CraTbs opueHTHPOBaA-
Ha, B OCHOBHOM, Ha HAy4YHBIX HCCJIJOBAaTeJIElNl, 3aHNMAIOIINXCS TPAKTUYECKUMU IIPUJIOKEHUSIMUA TEOPHUU
npubIMKeHnY (PYHKIUH TPUTOHOMETPUIECKUMU TTOJIMHOMAMU CO CIIEKTPOM U3 CIENUAJbHBIX MHOXKECTB.

Karouesvie caosa: rapMOHUYECKHI UHTEPBAJI, TPUTOHOMETPUYIECKNE TIOJIMHOMBI CO CIEKTPOM U3 TapMOHU-
YeCKUX WHTEPBAJIOB, HAWJIydIllee MPUOIMKeHNe (DYHKIIUN TPUTOHOMETPUYECKUMU TTOJTUHOMAMHE, OIIEPATOD
YaCTUYHBIX CyMM psga Pypbe 111 3aJaHHON (DYHKINH, HHTEPIIOISINOHHAST TEOPEMA.
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On a Hilfer Type Fractional Differential Equation with
Nonlinear Right-Hand Side

In this article we consider the questions of one-valued solvability and numerical realization of initial value
problem for a nonlinear Hilfer type fractional differential equation with maxima. By the aid of uncomplicated
integral transformation based on Dirichlet formula, this initial value problem is reduced to the nonlinear
Volterra type fractional integral equation. The theorem of existence and uniqueness of the solution of given
initial value problem in the segment under consideration is proved. For numerical realization of solution
the generalized Jacobi—Galerkin method is applied. Illustrative examples are provided.

Keywords: Ordinary differential equation, equation with maxima, Hilfer operator, one-valued solvability,
generalized Jacobi—Galerkin method.

Introduction

Let (to; b) € R*T = [0; c0) be a finite interval on the set of positive real numbers, and let o > 0. The
Riemann-Liouville a-order fractional integral of a function 7)(t) is defined as follows:

t

I n(t) = ﬁ/(t—s)a’ln(s)ds, 0 >0, ¢ (ty: b),

to
where I'(e) is the Gamma function [1; 112].

Let n—1 < a <n, n € N. The Riemann-Liouville a-order fractional derivative of a function 7(¢) is defined
as follows [2, Vol. 1, p. 27]:

mn

@ d n—ao
D n(t) = wfto-s- n(t), te (to; b)~

The Caputo a-order fractional derivative of a function n(t) is defined [2, Vol. 1; 34| by

t
o n—a_(n 1 ™ (s)ds
Diyn(t) = 100 = s [ Gy € (t )
to

Both the derivatives are reduced to the n-th order derivatives for a« =n € N [2, Vol. 1; 27-34]:

D/ n(t) =« D n(t) = dTnn(t)’ t € (to; b).

The so-called generalized Riemann-Liouville fractional derivative (referred to as the Hilfer fractional derivative)
of order a, n — 1 < a < n,n € N and type 8, 0 < § < 1 is defined by the following composition of three
operators: [1; 113]:

o —a) A" (1—8)(n—
Dtofn(t) = ftf(f a)dTnItEﬁ e a)n(t), t € (to; b).

*Corresponding author.
E-mail: tursun.k.yuldashev@gmail.com
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For 8 = 0 this operator is reduced to the Riemann— L10uV1lle fractional derivative Dt + = D/}, and the case
8 = 1 corresponds to the Caputo fractional derivative D’ + = DS ..

Let vy =a+ 8n—apf. It is easy to see that a« <y < n. Then it is convenient to use another designation for
the operator Dti‘fn(t):

D*(t) = D5:In(t).

The generalized Riemann-Liouville operator was introduced in [1] by R. Hilfer on the basis of fractional
time evolutions that arise during the transition from the microscopic scale to the macroscopic time scale. Using
the integral transforms, he investigated the Cauchy problem for the generalized diffusion equation, the solution
of which is presented in the form of the Fox H-function. Note [3, 4], the generalized Riemann—Liouville operator
was used in studying dielectric relaxation in glass-forming liquids with different chemical compositions. In [5]
the properties of the generalized Riemann—Liouville operator were investigated in a special functional space,
and an operational method was developed for solving fractional differential equations with this operator. Based
on the results of the work [5], the authors of [6] have developed an operational method for solving fractional
differential equations containing a finite linear combination of the generalized Riemann-Liouville operators with
various parameters.

Fractional calculus plays an important role in the mathematical modelling of many scientific and engineering
disciplines (see more detailed information in [7]). In [8] problems of continuum and statistical mechanics are
considered. In [9] the mathematical problems of Ebola epidemic model are studied. In [10] and [11] the fractional
model for the dynamics of tuberculosis infection and novel coronavirus (COViD-2019), respectively are studied.
The construction of various models of theoretical physics by the aid of fractional calculus is described in |2, Vol. 4,
5], [12, 13]. A specific interpretation of the Hilfer fractional derivative, describing the random motion of a particle
moving on the real line at Poisson paced times with finite velocity is given in [14]. A detailed review of the
application of fractional calculus in solving problems of applied sciences is given in [2, Vol. 6-8], [15]. More
detailed information related to the theory of fractional integro-differentiation, including the Hilfer fractional
derivative one can find in the monograph [16]. In [17] the unique solvability of boundary value problem for weak
nonlinear partial differential equations of mixed type with fractional Hilfer operator is studied by analytical
method. In [18] the solvability of nonlocal problem for a mixed type fourth-order differential equation with Hilfer
fractional operator is studied. In [19] it is considered an inverse problem for a mixed type integro-differential
equation with fractional order Caputo operators (see also [20-22]).

In the modern scientific world information technologies are widely used in various fields of science and
engineering [23, 24]. In application of differential equations the numerical methods play an important role.
Different methods are used for the numerical solution of differential, integral and integro-differential equations
[25-34]. In particular, the book [28] is devoted to Chebyshev and Fourier spectral methods and [30] tells us
about polynomial approximations of solving differential equations. The work [35] is devoted to study of nonlinear
Volterra integral equations with weakly singular kernels by generalized Jacobi Spectral-Galerkin method.

In the present paper we consider the questions of one-valued solvability and numerical realization for a Hilfer
type fractional differential equation with nonlinear right-hand side and maxima. This equation we solve under
initial value condition. Differential equations with maxima play an important role in solving control problems
of the sale of goods and investment of manufacturing companies in a market economy [36]. In [37] it is justified
that the theoretical study of differential equations with maxima is relevant.

We consider the Hilfer type fractional differential equation on a interval (to; T):

D () +we (1) = (¢, @ (1), max{@ (0) |0 € [t 1]} ) (1)
under initial value condition

lim JL e () = xo, (t) = p (1), t ¢ (to, T), (2)

t—to

where f (¢, u, ¥) € C (), ¢ (t) € C ([0; to] U [T; o)), 0 < w is real parameter, zg = const, Q = [to; T] x X x X,
0 <tp, XCR = (—00; 00), X is closed set. Here

d
DO“"Y—JtOJr dtJt“’ 0<a<~y<1
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is Hilfer operator and Jg, is the Riemann-Liouville integral operator, which is defined by the formula

t
1 n(s)ds
JE () = , > 0.

to+77( ) I‘(a) / (t* 8)1704 o

to
We set 0 < ¢1 < g2 < oo and understand that there are possible cases: 1) 0 < 1 < g2 < 1;2) 0 < ¢ < 1,
1<@e<00;3)1<q <go <oo.
Fractional integral equation

Lemma. The solution of the differential equation (1) with initial value condition (2) is represented as follows

()= () =a0(t—t0) " Ea (—w(t—t0)*) +
¢
b [ 9 B (e (= 97 £ (5, 2 (5), maxc {2 (6) 0 € fns: ) ds 3)
to
where E, -(z) is Mittag-Leffler function and has the form [2, vol. 1, 269-295]

k

> z
E, 4(2) = —, z,a,y€ER>0.
“r kzzol"(ak—&—ﬂ

Proof. We rewrite the differential equation (1) in the form
Tit Dz (t) = —wa(®) + £ (¢, ),

where f (¢, ) = f (t, z (t), max{z (0) |0 € [1t; q2t]}).
Applying the operator J;* . to both sides of this equation, taking into account the linearity of this operator
and the formula [6]

1 _ _
T Dipaalt) =20) = 5 s 2Ol o (0= 00) 7
we obtain 2o
z(t) = ) (t—to) " HTE () —w I a(t). (4)

Using the lemma from [38], we represent the solution of equation (4) in the form

#(t) = oy (0= t0) T T T ()=

t

o [ 9" B (-9 |7

(s—to)7_1+Jg+f(s,-) ds. (5)

We rewrite the representation (5) as the sum of two expressions:

I (8) = 20 “‘Ft&);_ —Ffw /(t—s)“_lEa,a(—w(t—s)o‘)(s—to)"’_lds , (6)
L2(0) = Jiy (69 = [(6= 9% Baa (-wlt=5)") I £ () ds, (7)

to

We apply the following representations [2, vol. 1, 269-295]

1
Eary(z):erZEarHa(z)v a>0, v>0, (8)
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z

1
F(k)/(z —t) k-1 EOL,’Y (_wta) t’Y*l dt = Z’Y“Fk*l Ea,’y—‘,—k (—CL)ZQ)7 k> 07 v > 0. (9)

to

Then for the integral (6) we obtain the representation
Iit)=zo(t—t0)"  Ea, (—w(t—1t)?). (10)

The integral in (7) is easily transformed to the form

/(t—&)a—lEa,a (cw(t—€)%) I3, f (€ )dE =

(]t— ) B (— d&/ $)%1f (s, ) ds =
/

/t—g)a—l(g—s)a—lana(—w (t—€)?) d&. (11)

Taking (9) into account the second integral in the last equality of (11) can be written as
t
JE= 16 =) B (w0 (t = %) dE =T () (= €** Bz (-0t - )°).
Then, taking into account (8), we represent (7) in the following form
t

Iy(t) = / (t =€) B n(~w(t—6)%) [ (£ )dE. (12)

to

Substituting (10) and (12) into the sum z(t) = I1(t) + I2(¢), we obtain (3). The lemma is proved.
Exzxistence and uniqueness of solution

Theorem. Let the following two conditions be satisfied:

< —
1) Igtaé(\f(txyﬂ M = const < oo;

2) | f(tzr, 1) — f(t, @2, 92) | <L (Joy — 22|+ |41 —y2]), 0< L = const < oo.
Then there exists a unique solution of the initial value problem (1), (2) in the space of continuous functions
C (to; T'), which can be found by the method of successive approximations:

zo () = G(1),
{xZJrl(t):%(t;xk), k=0,1,2, ..., (13)

where G(t) =z (t — to)ﬁy_lEaﬂY (—w(t— to)a)
Proof. Mittag—Leffler function E,, (z) has the following property [39]: we assume that 0 < o < 2, 7y is real
constant and arg z = 7. Then there holds
A
1+ [z]

B~ (2)] <

where A is positive constant and does not dependent on z. Then it is not difficult to see that from the approxi-
mations (13) we obtain that there following estimate holds

’ (t—to) " "zo(t) \ <J@ol | B o (—w (tE—10) )| < 20| Co, (14)

where | Eq o (—w (t —5)%)| < Cp.
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By virtue of first condition of the theorem and estimate (14), from approximations (13) we obtain

|z1(t) —zo(t) | <

< / |(t = 8)* " Ba,a (—w (t = 5)") f (s, wo(s), max {zo(0) |0 € [q15; g25]})| ds <

to

¢
x
SM'Co|$0|/(t—S)aild8§ MM'CO'(t—tQ)a. (15)
!
to
We continue the Picard iteration process for the integral equation (3) according to the approximations (13).
Then, by virtue of conditions of the theorem and taking the estimate (15) into account, we derive

|22(t) — 21 (D) | < / ‘ (t =) Ba,o (~w(t—5)*) [f (s, 21(s), max {2 1(0) |0 € [g15; q25]}) —

—f (s, zo(s), max{xo(0) |0 € [q15; qas]})] | ds < L/ | (t =) Ea,a (—w (t = 5)%) [ [le1(s) — zo(s)| +
+ ‘ max {z1(0) |0 € [q15; g2s]} — max{zo(0) |0 € [q15; g25]} H ds <
< ZCOL/(t —8)* i (s) — zo(s)|ds < @M . CgL/(t —8)* (s —tg)ds.

By the changing the argument as s = tg + (t — tO)T, from the last estimate we obtain

t

|2a(t) — a1 (8) | < @M.ch/ (t—t0)" " (1 = 7)o (t — 1) O (¢ — to) dr <
20, )
< Sl M L Co - (¢ - 1)), (16)

Analogously, taking the estimate (16) into account, for the next difference we derive

| 23(t) — 22(t) | < L/I(t—S)a_lEa,a(—w (t=9))[[l2a(s) —21(s) |+

+ |max {z2(0) |0 € [q15; g25]} — max {x1(0) |6 € [g15; q25]}|] ds <

< QCOL/(t — )" Haa(s) —mi(s)|ds <

) r(an(i)M B /(t — )7 (s —10)*"ds <
3 «
- F(F304(+)1) Jwo| - M - (2L)7 - [Co - (t —19)*] . (17)

Continuing the estimation processes (14)—(17) for arbitrary difference we obtain

| 2a(t) = Zn1(t)] < F(fm(‘fl) Nao| - M- 2)" 7 [Co - (t—10)"] "
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(&)
For the absolute value of difference | x,,(t) — x,—1(t) | we show that > |2, (t) — 2,—1(t) | < oo in the space
n=1
C (to; T). So, we denote the right-hand side of (18) as

n

" (a)

tn = Fna+1)

-2L0)" 7 [Co - (t—to)"]
and we put
_ ]_'\nJrl(a)
T Pt at )

Then we consider the following limit

2L)" [Co- (t—10)"]"

. Ongl a . F(na+1)

1 =2L-T -Co- (t—1t 1 - 19
o0 an (a) - Co- (t—to)" Jlim_ T(n+1l)a+l) (19)
Taking known formula [40]

(a=Db)a—b—-1)
2z

+ O(z—Q)]

into account, we obtain

) Fna+1)
11m e E———
n— 00 F((na+a+ 1) n— 00

l-a-1)1-a-1-1)
2n «

+O0(n a)_Q] =

Consequently, for (19) we have

. Gnyl a . F'(na+1)
1 =2L-T(a) - Co- (t—to)" lim ——— "~ =
o () Co- (t—to)" - lim T((ntDatl)

a(l + a)

1
+ 2na

:2F(Oé)'L~C'0'(lf—if())a'L lim —

+O0(n a)_Ql =0.

Hence, according to d’Alembert’s convergence criterion of series, we have

S () — i ()] < F(l;;f‘fl) O Lt — 1) < oo (20)

for all t > to. Since we consider the solution of the integral equation (3) in the space of continuous functions
C (to; T), it follows from (20) that the sequence of functions {zx(t)} -, converges absolutely and uniformly to
solution of the integral equation (3) with respect to argument ¢. Hence implies the existence of a solution of
the problem (1), (2) on the interval (¢p; T'). Now we show the uniqueness of this solution. Assuming that the
integral equation (3) has two different solutions z(t) and y(t) on the interval (¢o; T'), we obtain the following
integral inequality

|z(t) —y(t) | < 2L/ | (t = 5)" " Ea,a (—w(t —)*) || 2(s) —y(s) | ds. (21)

Applying Gronwall-Bellman inequality to estimate (21), we obtain that |2 (t) —y (¢)| =0 for all t € (to; T).
Therefore, the Cauchy problem (1), (2) has a unique solution on the interval (¢o; T'). The theorem is proved.
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The generalized Jakobi—Galerkin method
Now, to the problem (1), (2) we apply the generalized Jacobi-Galerkin method as a numerical realization

of solution (3). This solution (3) is nonlinear Volterra type fractional integral equation. On the interval (—1; 1)

for the given numbers 31, B2 > —1 we consider standard Jacobi polynomial J {1 B2) (€) of degree n with weight
function A (B1:82)(¢) = (1 — €)P1(1 + €) 2. For the standard Jacobi polynomial the following relation is true

1
/ TP () T (€ AP P(€) A = i )b, (22)
-1

where 4, 5 is the Kronecker function and

2ﬁ1+ﬁ2+11—‘(,@1+1)1—‘(52+1) m_o
(51752)(5) — T (B1+B2+2) ’ -
Tm 221 HT (g By +1) T (mfa+1) >
CmAPtBa+l) miT (m+Bitpat2) 04

From (22) we note that the set of standard Jacobi polynomial J {Pr:h 2)(5) is a complete orthogonal system in
the space L3 5, 5,,(—1; 1) with weight function A B 82)(€). In particular, Jéﬁl’ﬂQ)(g) =1
The shifted Jacobi polynomial of variable ¢t and degree n is defined by the following formula

. 2 (t—to)
(B1,82) (4) — (B1,B2) _ .
J (Pr, B2 (t) J (P1: Bz < T 1 1) , t € (t07 T) (23)

We note that the set of shifted Jacobi polynomial .J P 2)(t) is a complete orthogonal system with weight

function A(Tﬂl’ﬁQ)(t) =(T-t+ to)ﬁl (t—to)  in the space L3 (4, 4,) (to; T) and by the aid of (23) we have the
analogue of the (22)

T

= = T+t
[ I A g ar = (S0

2

B14+PB2+1
) 8B ()6 . (24)

to

For any integer N > 0 we denote by {gfl’ﬁ"‘), nj(Bl 52)} the nodes and the corresponding Christoffel
j=0

numbers of the standard Jacobi-Gauss interpolation on the interval (—1; 1). By the Py (to; T) we denote the

set of polynomials of degree at most N on the interval (to; T) and by the tg-ﬁl’ﬁ 2) we denote the shifted
Jacobi-Gauss quadrature nodes on the interval (¢o; T')

T—t
t;ﬁ1152): 5 0 (5](&1”82)4-1)-1-1507 0<j<N.

By virtue of the property of the standard Jacobi-Gauss quadrature it’s implied that for any ¢ (t) € P, N+1(to; T)
we have
Bi+pB2+1 N
, T+ tg , ,
/¢ ﬁl 52) )dt _ ( 5 ) Z(b (tj(ﬁl ﬁz)) nj(ﬁl ﬁz). (25)
j=0

By virtue of (25) from (24), we have for any 0 < m +n < 2N + 1,

_ 77(51 ﬁ2)5m7n_

Mz

J (B1:82) (t§51752)) J (B 2) (tgﬂl,ﬂz)) n{Prfa) =
7=0
By the aid of shifted Jacobi polynomial J (P B 2)(t) we define the shifted generalized Jacobi function of degree

n as (see [41])
PPLB () = P2 JPr B (1) By By > 1, tE (to; T). (26)
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By virtue of (24) and (26), we see that
T

_ T+t
/P,sﬂl’ﬁz)(t)P,(nﬁl’ﬁz)(t)Ag?l’ ﬁ2)(t)dt: ( —g 0

B1+p2+1
) ,77(7631752)5771’”.

to

By virtue of (25), for any ¢ (t) = t272¢ (t) we have

L T+t B1+B2+1 N —28s
- 0 : : ,
/(p(t)A<Tﬁ1 5 (1) dt = ( : ) S (1) T (180 ), (27)

to Jj=0

By the aid of (27) we introduce the inner product in Li(ﬁl, oy (0; T) as
T

B1+B24+1 N B
oo = (F5°) () () o (1

2

We need also to introduce finite N-dimensional fractional polynomial space [41]
F g T) = {t52 Y(t): v (t) e PP (1 T) } = span {Pgﬁhﬁﬂ(t) L 0<n< N}.

Then we note that for any ¢, ¢ € F {*? (to; T') hold the equalities
(¢7 w)A(Tﬁl»—/iz) = <¢7 w>A(T317—/32) .

Now in integral equation (3) we make variable transformation s = %, T E (to; T). Then the we describe
integral equation (3) as

2 () =S(t2) =GO +Ve) =G+ (;)a/t(TT)alEa,a (w (;)a(TT)a> y

to
tT tT qQtT qtT
— — ; . 2
xf(T,x(T>,max{x(9)96[T, T}})dT (28)
For the Hilfer fractional operator’s order 0 < @ < 1 we denote o« — 1 = —p, where 0 < p = const Then for
U, pe F](vk”) (to; T') we apply the generalized Jacobi-Galerkin method to equation (28):
(U, @)Ahmu*l) = (G, @)A(*uw*l) + VU, W)Awwwl) . (29)
T T T
We set
N
Ut)=> am®) PG 9(1), @) =PI#H(), 0<m, n<N.
m=0

Then for (29) we have

A Al
Hence, we come to nonlinear system - o
Bz =G+9(z), (30)
after introducing designations:
7= (0, 21, .-, EN) ", B=(bnm)ocnmen
b = (PRI PERTI0) = ()T T
T

G=(Go, Gr, ..., GW)T, Gult) = (G 0), P,E*W*“)(t))A(_W_U :
(@) =W, V1, 0x) " D) = (VU @), PEH0)

Ag:“’ p—1) 7

where by (ug, 1, ..., un) T we denoted the transposition of the matrix (ug, u1, ..., un).

Mathematics series. Ne 3(103) /2021 147



T.K. Yuldashev, B.J. Kadirkulov, A.R. Marakhimov

We use the quadrature formula

B1+B2+1 N
T+t L Ba)\ 282 . . N
(£, 9)p o1 —02) :< 5 ) Z(tgﬁ /32>) f@ﬁ ﬁ2>) g(tgﬂ m)) i)

Jj=0

to obtain approximate formulas:

Galt) ~ <G(t), P,(L_”’l_”)(t)> —

A,(T—lt‘llr—l)
T \22n N IR o o
:( "2‘0> Z(t(j_#,l #)) G(t(j“’l “))P( u,lu)((#lu))n(j p, 1 H)7 (31)
§=0
—2p N (=p, 1=p) L=p (—p, 1—p) 1-n
C (T ) t L t -
T D 4 Ut s B e
xf (tij, U (i), max{U(0) [0 € [q1 - tij; g2 - tiz]}) X
s P (e 1=m) (tl(*u,lfu)) 771(#%17#)77](5#,0)7 (32)
p(mr =)y (=, 0)
where t;; = —J

In approx1mately solving the system (30) one can use the Newton iterative method.
[llustrarive examples

As an example, we consider the simple equation of the form

Dg:%u(t) = Au(t) + f(¢), t € (0;T)

with initial value condition

The solution of this problem has the form
t
() = wo 7 B (M%) + /(t — ) By o (Mt — 5)) f(s)ds, (33)
0

where y =a+ 8 — af.
Ezample 1. We consider cases o = 3 = %, ft)=1t°, o> —1. Since v = % + % —5°5= %, from (33) we
have

(t—s) B ()\(t - s)%) s7ds. (34)

£
—~
~
~—
I
g
o
i
=
=
=
i
/
>
=~
[N
N—
-+
O\ -

Taking into account
1
ﬁ/ (z—t)" " E, s (M) tP 7 dt = 2P LB, 50, (A2, v >0, B>0,
V)
0

we calculate the integral in (34):
¢
/ t — S %E;
3
0
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Substituting (35) into (34), we obtain

ult) = \[E%}% ()\\/i) +T(o + DIVIES 3, ()\\f) (36)
In particular case, when o = 0, from (36) yields
Ug
u(t) = HE) 4 (\WVE) + VB, 4 (\VE). (37)
Taking into account
1
Eo u(2) = == +2E, a+u(z), a>0, > 0,
we obtain X
VO ()\\/) fEl y (A\/) 5
Therefore (37) takes form
Ug 1
=25, ()« 35,0 (294

ult) = %E (W) + 5 [cosh <\/T\/E) - 1} .

Ezample 2. The case of Caputo operator: o = %, B=1, ft)=t", o0 > —1.
Since y =1 +1—1.1=1, from (33) we have

¢
u(t):uoE%,l )\t2 +/ (t—3s) %E%7% (/\(t—s)%) s%ds. (38)
0
Taking (35) into account, from (38) we obtain
w(t) = uoky (A\/E) +T(o + DI°VIE,s 3., (/\\/i> . (39)

We are looking for real solutions. Since E 1, 1(2) = cosh /z, then for A > 0 we present the solution (39) as

u (t) = ug cosh <\//\>\/E> +T(c+ 1)t"\/fE%7 4o (Aﬁ) .

For the cases 0 = 0 and A > 0 we have

u (t) = ug cosh (m) + \/iE%’% (A\/i) . (40)
Taking
Ey u(2) = ﬁ +2E4, atu(2), >0, p>0

into account, the last summand easily presents as

1
\[lé()\\[) *E11(>\\[> N
202 by

So, taking E1 4(z) = cosh \/Z into account, from representation (40) we obtain the simple form of solution

wi01= 2 o syt (VaE) 1]

Now we consider an example of a nonlinear differential equation.
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Ezample 3. The equation

oDy (t) = éI‘(a 1)t (yQ(t) + 4. max {y2(0) 10 ¢ [;’ b t] }) Ca> % (41)
on the interval (0; 1) has a solution
y(t) = 12 (42)
Indeed,
%F(a + 1)t 2 <y2(t) + 4 - max {yz(ﬁ) 16 € B t; t} }) = %I‘(a +1)t72 (5¢2) =T(a+1) (43)
and r 1 r 1
cDy(t) =c DG, (t*) = Mt“a = rm(jj—)a) =T(a+1). (44)

From (43) and (44) we come to the conclusion that function (42) is a solution of the Caputo fractional differential
equation (41) on the interval (0; 1).

Remark. The function (42) is not a solution of fractional differential equation (41) on the semiaxis (1; co).
If we consider the solvability of the differential equation (41) on the entire positive semiaxis RT = (0; o0), then
this equation suffers a discontinuity of the first kind at the point ¢t = 1.

Conclusion

In this paper we consider the questions of unique solvability of initial value problem for a nonlinear fractional
differential equation (1) with maxima on the given segment (¢; T'). We reduce this initial value problem to the
fractional order nonlinear integral equation of Volterra type. Then we used the method of successive approxi-
mation and proved the theorem on existence and uniqueness of solution of the problem under consideration. We
apply the generalized Jacobi—Galerkin method as a numerical realization of solution of the fractional order nonli-
near integral equation (3). We make a variable transformation in integral equation (3): s = %, TE (to; T).
Applying the generalized Jacobi-Galerkin method to equation (28), we come to the system (30). By using the
quadrature formula we obtain the necessary approximation formulas (31) and (32).
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T.K. FOnnames!, B.2K. Kagupxymnos?, A.P. Mapaxmmvos?

1 .
Osbexcman yammuok yrusepcumems, Tawxenm, ©3b6excman;
2 Tawwenm memaexemmir ITvevicmany Yrnusepcumemi, Tawwewm, O36excman;
3 Tepmes memaexemmir yrusepcumemi, Tepmes, Oz6excmarn

ChIBBIKTBIK, €MecC OH, >karbl 0ap Xmujibdep Tunrec 06JIIeK
anddepeHInaIabIK TeHJIEY TYPaJibl

Makasaza MakCUMaJsIIbl CHI3BIKTHIK eMec Oeostiek auddepeHnnaablk TeHaey YIIiH 6acTalnkel ecenti 6ip-
KeJIKI IIelITy YKoHe CaHIbIK ICKe aChIpy Macesesepi KapacTeIpblaanl. Jlupuxite (popmytackiHa HETi3Me/ITeH Ka-
pamnaifblM MWHTETrPAJIILIK TYPICHIIPY/Il KOIIaHa OTHIPHIN, KAPACTBIPBLIBIIT OTHIPFaH 6acTanKkbl MiHIeT BOsb-
Tepp THUIIHJEr] CHI3BIKTHI eMec 0OJIIIeK MHTerpasIabIK TeHIeyre eilin a3adanpl. KapacTeIpblral cerMeHTTe
Gepinren GacTamKbl €CerTi MmentyaiH 6ap 60ybl MeH Gipereiitiri Teopemach! goaeaaerai. [lerrimmai canabik
TypZie XKy3ere aceipy yuriH [amepkuu fkoOHIiH KaamblIaHFAH CHEKTPJIIK 9/aici Koamanbuiran. KepHeki
MBICAJIJIAD KEJITIPIJIreH.

Kiam cesdep: kapamaiibiM auddepeHInaablK TeHIey, MaKCUMYyMIApMEH TeHJIey, XUIb(Mep OMepaTophl,
6ip Monail menmiMaIK, latepkun AKoOuIiH KaJIIbLIAHFAH CIEKTPJIK dJIicCi.
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T.K. Oanames!, B.2K. Kagupxymnos?, A.P. Mapaxumos®

! Hayuoransnoi ynusepcumem Yabexucmana, Towxernm, Yabexucman;
2 Tawkenmexuiti zocydapemeenmolli yHueepcumem socmorosedenus, Tawxenm, Yabexucman;
8 Tepmescruti zocydapemeenmonti yrusepcumem, Tepmes, Yabexucman

O6 omHoM apobHOM amdpepeHITIaAIPHOM YPABHEHUN THUIIA
Xunbdepa ¢ HeJIMHETHO TpaBoil YacThbIO

B craThe paccMoTpeHbl BOPOCHI OIHO3HAYHOM PA3PEIIMMOCTH U IUCICHHON PeaTu3alny Ha9aIbHOM 324N
JUIsi HeJinHeiHoro npo6GHoro muddepennuaabHoro ypasHenus Tuna Xuiibdepa ¢ makcumymamu. C momo-
B0 HECJIOXKHOI'O HHTErPAJILHOTO IIpeobpa3oBaHust, OCHOBaHHOTO Ha (opmyste lupuxie, paccmarpuBaemast
HadJaJIbHAs 3a7[avda CBe/IeHA K HEJIMHEHHOMY JIPOOHO-MHTErpaJbHOMY ypaBHeHuIo Tuna Bosbreppa. lokaza-
Ha TeopeMa CyIIeCTBOBAHUS U eMHCTBEHHOCTHU PEIIeHNs 3a/JaHHOM HAYaJIbHOM 3a/1a491 Ha PACCMaTPUBAEMOM
orpeske. /s 9ucIeHHO pean3alii pelleHns MpUMeHeH 0600IEeHHbBIN ClIeKTpaIbHbIN MeTo [atepkuHa-
Axobu. Ilpuseiennbl HADISAIHBIE TTPUMEDPHI.

Kmouesvie crosa: 0bbIKHOBEHHOE A DEpeHITNATBHOE YPABHEHNE, YPABHEHNE C MAKCUMyMaMHU, OIIE€PATOP
Xuibdepa, oHO3HAYMHAsT PA3PEIINMOCTb, 000OINEHHbIN crieKTpa bHbIi MeToj 1 ['anepkuna- Axkobu.
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