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Introduction

The neutron transport equation describes the distribution of neutrons in terms of their positions
in space and time, their energies and their travel directions. The various neutron transport equations
are studied by many researchers (see, [1–4] and the references given therein). Identification problems
play an important role in applied sciences and engineering applications and have been investigated in
various papers (see, e.g., [5–27] and the references given therein). In the present paper, we consider
the time-dependent source identification problem for two dimensional neutron transport equation

∂u(t,x,y)
∂t = ∂u(t,x,y)

∂x + ∂u(t,x,y)
∂y + p (t) q (x, y) + f (t, x, y) ,

t ∈ (0, T ) , x, y ∈ (0, L) ,

u (0, x, y) = ϕ (x, y) , x, y ∈ [0, L] ,

u (t, 0, y) = 0, u (t, x, 0) = 0, t ∈ [0, T ] , x, y ∈ [0, L] ,

u(t, l, y) = α (t, y) , t ∈ [0, T ] , y ∈ [0, L] , l ∈ (0, L] .

(1)

Here, u (t, x, y) and p (t) are unknown functions, f (t, x, y) , q (x, y) , ϕ (x, y) , and α (t, y) are
given sufficiently smooth functions and all compatibility conditions are satisfied.

In the rest of paper, the theorem on the stability of differential problem (1) is established. For
the approximate solution of problem (1), a first order of accuracy difference scheme is proposed. The
theorem on stability of this difference scheme is established. Some results of numerical experiment are
presented.
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1 Stability of differential equation

To formulate our results, we introduce the Banach space C (E) = C ([0, T ] , E) of all abstract
continuous functions φ (t) defined on [0, T ] with values in E equipped with the norm

‖φ‖C(E) = max
0≤t≤T

‖φ (t)‖E .

Let E = C[0,L]×[0,L] be the space of all continuous functions ψ (x, y) defined on [0, L]× [0, L] equipped
with norm

‖ψ‖C[0,L]×[0,L]
= max

0≤x,y≤L
|ψ (x, y)|

and C(1)
[0,L]×[0,L] be the space of all continuously differentiable functions ψ (x, y) defined on [0, L]× [0, L]

equipped with norm

‖ψ‖
C

(1)
[0,L]×[0,L]

= ‖ψ‖C[0,L]×[0,L]
+ max

0<x,y<L
|ψx (x, y)|+ max

0<x,y<L
|ψy (x, y)| .

We introduce the positive operator A, defined by formula

Au = −
(
∂u (x, y)

∂x
+
∂u (x, y)

∂y

)
with the domain

D (A) =
{
u : u, ux, uy ∈ C[0,L]×[0,L], u (0, y) = u (x, 0) = 0, 0 ≤ x, y ≤ L

}
.

Throughout the present paper, M denotes positive constants, which may differ in time and thus
are not a subject of precision. However, we will use M(α, β, γ,...) to stress the fact that the constant
depends only on α, β, γ,... .

We have the following theorem on the stability of problem (1):

Theorem 1. Assume that ϕ ∈ C(1)
[0,L]×[0,L], f (t, x, y) is a continuously differentiable function in t and

continuous in x and y, and α (t, y) is a continuously differentiable function in t and continuous in y.
Then, for the solution of problem (1) the following stability estimates hold:∥∥∥∥∂u∂t

∥∥∥∥
C(C[0,L]×[0,L])

+ ‖u‖
C
(
C

(1)
[0,L]×[0,L]

) + ‖p‖C[0,T ] ≤M (q)

[
‖ϕ‖

C
(1)
[0,L]×[0,L]

+

+ ‖f (0, .)‖C[0,L]×[0,L]
+

∥∥∥∥∂f∂t
∥∥∥∥
C(C[0,L]×[0,L])

+ ‖α(0, ·)‖C[0,L] + ‖αt‖C(C[0,L])

]
.

Proof. We will use the following substitution

u (t, x, y) = w (t, x, y) + η (t) q (x, y) ,

where η (t) is the function defined by formula

η (t) =

t∫
0

p (s) ds, η (0) = 0. (2)

It is clear that w (t, x, y) is the solution of the following initial boundary value problem
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∂w(t,x,y)
∂t = ∂w(t,x,y)

∂x + ∂w(t,x,y)
∂y + η (t) (qx (x, y) + qy (x, y)) + f (t, x, y) ,

t ∈ (0, T ) , x, y ∈ (0, L) ,

w (0, x, y) = ϕ (x, y) , x, y ∈ [0, L] ,

w (t, 0, y) = 0, t ∈ [0, T ] , y ∈ [0, L] ,

w (t, x, 0) = 0, t ∈ [0, T ] , x ∈ [0, L] ,

q (x, 0) = 0, q (0, y) = 0, q (l, y) 6= 0,

w (t, l, y) = α (t, y)− η (t) q (l, y) , t ∈ [0, T ] , y ∈ [0, L] .

(3)

Applying the over determined condition u (t, l, y) = α (t, y) at substitution (2), we get

w (t, l, y) + η (t) q (l, y) = α (t, y) ,

η (t) =
α (t, y)− w (t, l, y)

q (l, y)
.

From that and p (t) = η′ (t) , it follows

p (t) =
αt (t, y)− wt (t, l, y)

q (l, y)
. (4)

From identity (4) and the triangle inequality, we get the estimate

|p (t)| =
∣∣∣∣αt (t, y)− wt (t, l, y)q (l, y)

∣∣∣∣ ≤M (q) [|αt (t, y)|+ |wt (t, l, y)|] ≤

≤M (q)

[
max
0≤t≤T

|αt (t, y)|+ max
0≤t≤T

max
0≤y≤L

|wt (t, l, y)|
]
.

From that it follows

‖p‖C[0,T ] ≤M (q)
[
‖αt‖C(C[0,T ], C[0,L]) + ‖wt‖C(C[0,T ], C[0,L])

]
. (5)

Using operator A with the domain D (A) we can rewrite problem (3) in the abstract form as an initial
value problem 

dw
∂t +Aw = −α(t,.)−w(t,l,.)

q(l,.) Aq + f (t) ,

w (0) = ϕ.

By the Cauchy formula, the solution can be written as

w (t) = e−tAϕ+

t∫
0

e−(t−s)A
{
−α (s, .)− w (s, l, .)

q (l, .)
Aq + f (s)

}
ds.
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Taking derivative with respect to t and using Leibniz integral rule, we obtain

wt (t) = −Ae−tAϕ+
{
−α(t,.)−w(t,l,.)

q(l,.) Aq + f (t)
}
+

t∫
0

−Ae−(t−s)A
{
−α(s,.)−w(s,l,.)

q(l,.) Aq + f (s)
}
ds.

Applying the integration by parts formula, we get

wt (t) = −Ae−tAϕ+ e−tA
{
−α(0,.)−w(0,l,.)

q(l,.) Aq + f (0)
}
+

+
t∫
0

e−(t−s)A
{
−αs(s,.)−ws(s,l,.)

q(l,.) Aq + f ′ (s)
}
ds =

3∑
k=1

Gk (t) ,

where
G1 (t) = −Ae−tAϕ,

G2 (t) = e−tA
{
−α(0,.)−w(0,l,.)

q(l,.) Aq + f (0)
}
,

G3 (t) =
t∫
0

e−(t−s)A
{
−αs(s,.)−ws(s,l,.)

q(l,.) Aq + f ′ (s)
}
ds.

Now, we estimate, G1, G2, and G3, separately. Using the triangle inequality, we obtain

‖wt‖E ≤ ‖G1 (t)‖E + ‖G2 (t)‖E + ‖G3 (t)‖E .

It is known (see [20]) that for any t ∈ [0, T ] ,∥∥e−tA∥∥
E→E ≤Me−δt, M > 0, δ > 0. (6)

Applying the definition of norm of the spaces E and estimate (6), we get

‖G1 (t)‖E =
∥∥−Ae−tAϕ∥∥

E
≤
∥∥e−tA∥∥

E→E ‖Aϕ‖E ≤M1 (δ) ‖Aϕ‖E . (7)

Let us estimate G2 (t) . Using the triangle inequality, we get

‖G2 (t)‖E =

∥∥∥∥e−tA{−α (0, .)− w (0, l, .)

q (l, .)
Aq + f (0)

}∥∥∥∥
E

≤

≤
∥∥e−tA∥∥

E→E

[[∣∣∣∣α (0, .)

q (l, .)

∣∣∣∣+ ∣∣∣∣w (0, l, .)

q (l, .)

∣∣∣∣] ‖Aq‖E + ‖f (0)‖E
]
,

‖G2 (t)‖E ≤
∥∥e−tA∥∥

E→E

‖Aq‖E→E ‖α (0, .)‖E + ‖w (0, l, .)‖E
min

0≤y≤L
|q (l, .)|

+ ‖f (0)‖E

 .

Hence,
‖G2 (t)‖E ≤M2 (δ, q) [‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E ] (8)

for any t, t ∈ [0, T ] .
Let us estimate G3 (t) . Using the triangle inequality, we get

‖G3 (t)‖E ≤
t∫
0

∥∥e−(t−s)A∥∥
E→E

{
max

0≤s≤T
|αs(s,.)|

E
′+‖ws(s,.)‖E

min
0≤y≤L

|q(l,.)| ‖Aq‖E + ‖f ′ (s)‖E
}
ds ≤

≤M3 (δ, q)
t∫
0

[
max
0≤s≤T

‖f ′ (s)‖E + max
0≤s≤T

|αs (s, .)|
]
ds+

t∫
0

M4 (δ, q) ‖ws (s)‖E ds,

(9)
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where E′ ⊂ E .
Combining estimates (7), (8), and (9), we get

‖wt‖E ≤M1 (δ) ‖Aϕ‖E +M2 (δ, q) [‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E ] +

+M3 (δ, q)
t∫
0

[
max
0≤s≤T

‖f ′ (s)‖E + max
0≤s≤T

‖αs (s, .)‖E′
]
ds+

t∫
0

M4 (δ, q) ‖ws (s)‖E ds.

Using Grönwall’s inequality, we can write

‖wt‖E ≤M5e
M4(δ,q)T ,

where

M5 =M6 (δ, q)

[
‖Aϕ‖E + ‖α (0, .)‖E + ‖ϕ‖E + ‖f (0)‖E + max

0≤s≤T
‖f ′ (s)‖E + max

0≤s≤T
|αs (s, .)|

]
.

(10)
Finally, combining estimates (10) and (5) it completes the proof of Theorem 1.

2 Stability of difference scheme

For the approximate solution of problem (1) we present the first order of accuracy difference scheme

ukn,m−u
k−1
n,m

τ =
ukn+1,m+1−ukn,m+1

h +
ukn,m+1−ukn,m

h + pkqn,m + fkn,m,

fkn,m = f (tk,xn,ym) , qn,m = q (xn, ym) , xn = nh, ym = mh,

tk = kτ, 1 ≤ k ≤ N, 1 ≤ n,m ≤M − 1, Mh = L, Nτ = T,

u0n,m = ϕ (xn, ym) , 0 ≤ n,m ≤M,

uk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

uks,m = α (tk, ym) , 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
l
h

⌋
.

(11)

To formulate the results on difference problem, we introduce the Banach space

Cτ (E) = C ([0, T ]τ , E)

of all grid functions
φτ = {φ (tk)}Nk=0

defined on
[0, T ]τ = {tk : tk = kτ, 0 ≤ k ≤ N, Nτ = T}

with values in E equipped with the norm

‖φτ‖Cτ (E) = max
0≤k≤N

‖φ (tk)‖E .

Let Ch = C[0,L]h×[0,L]h and C
(1)
h = C

(1)
[0,L]h×[0,L]h

be spaces of all grid functions ψh = {ψn,m}Mm,n=1

defined on [0, L]h × [0, L]h = {xn = nh, ym = mh, 0 ≤ n,m ≤M} equipped with the norms∥∥∥ψh∥∥∥
Ch

= max
0≤n,m≤M

|ψn,m| ,
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∥∥ψh∥∥
C

(1)
h

=
∥∥ψh∥∥

Ch
+ 1

h max
0≤n≤M

max
1≤m≤M

|ψn,m − ψn,m−1|+ 1
h max
1≤n≤M

max
0≤m≤M

|ψn,m − ψn−1,m| ,

respectively.
Moreover, we introduce difference neutron transport operator A

h

Ahuh = −
{
un+1,m+1 − un,m+1

h
+
un,m+1 − un,m

h

}M−1
n,m=1

acting in the space of grid functions uh = {un,m}Mn,m=1 , u0,m = 0, un,0 = 0, 0 ≤ n,m ≤M.

Then, the following theorem on stability of problem (11) is established.
Theorem 2. For the solution of problem (11), the following stability estimates hold∥∥∥∥∥∥

{{
ukn,m−u

k−1
n,m

τ

}N
k=1

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

∥∥∥∥{{ukn,m}Nk=1

}M
n,m=0

∥∥∥∥
Cτ

(
C

(1)
h

) + ‖pτ‖Cτ ≤

≤M1 (q)
[
‖ϕh‖

C
(1)
h

+
∥∥f1,h∥∥

Ch
+

∥∥∥∥∥∥
{{

fk
n,m
−fk−1

n,m

τ

}N
k=2

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

+

∥∥∥∥∥∥
{{

αks,m−α
k−1
s,m

τ

}N
k=2

}M
m=0

∥∥∥∥∥∥
Cτ(C[0,L]h)

+
∥∥∥{α1

m

}M
m=0

∥∥∥
C[0,L]h

 .
Proof. For the solution of difference scheme (11), we consider substitution

ukn,m = ηkqn,m + wkn,m, (12)
where

qn,m = q (xn, ym) ,

and ηk is the grid function determined by

ηk =
k∑
i=1

pi τ, η
0 = 0, pk =

ηk − ηk−1

τ
, 0 ≤ k ≤ N.

It is easy to see that grid function
{{
wkn,m

}N
k=1

}M
n,m=0

is the solution of difference scheme

wkn,m−w
k−1
n,m

τ =
wkn+1,m+1−wkn,m+1

h +
wkn,m+1−wkn,m

h

+ηk
[
qn+1,m+1−qn,m+1

h +
qn,m+1−qn,m

h

]
+ f (tk,xn,ym) ,

fkn,m = f (tk,xn,ym) , qn,m = q (xn, ym) , xn = nh, ym = mh,

tk = kτ, 1 ≤ k ≤ N, 1 ≤ n,m ≤M − 1, Mh = L, Nτ = T,

w0
n,m = ϕ (xn, ym) , 0 ≤ n,m ≤M,

wk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

wks,m = α (tk, ym) , 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
l
h

⌋
.

(13)
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Difference derivative of (12) can be written as

ukn,m − uk−1n,m

τ
=
ηk − ηk−1

τ
qn,m +

wkn,m − wk−1n,m

τ
= pkqn,m +

wkn,m − wk−1n,m

τ
. (14)

Hence,

pk =

ukn,m−u
k−1
n,m

τ − wkn,m−w
k−1
n,m

τ

qn,m
(15)

for n,m and k, 1 ≤ n,m ≤ M − 1 and 1 ≤ k ≤ N. Applying the overdetermined condition uks,m in
(15), we obtain that

pk =

uks,m−u
k−1
s,m

τ − wks,m−w
k−1
s,m

τ

qs,m
.

Using the triangle inequality, we obtain

|pk| ≤M7 (q)

[∣∣∣∣∣uks,m − uk−1s,m

τ

∣∣∣∣∣+
∣∣∣∣∣wks,m − wk−1s,m

τ

∣∣∣∣∣
]

for all 0 ≤ k ≤ N. From that it follows,

∥∥∥{pk}Nk=1

∥∥∥
C[0,T ]τ

≤M7 (q)

∥∥∥∥∥
{
uks,m−u

k−1
s,m

τ

}N
k=1

∥∥∥∥∥
C[0,T ]τ

+

+

∥∥∥∥∥
{
wks,m−w

k−1
s,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h, E))

 . (16)

Now using substitution (14) we get

ukn,m − uk−1n,m

τ
=
wkn,m − wk−1n,m

τ
+ pkqn,m.

Applying the triangle inequality, we obtain∥∥∥∥∥
{
ukn,m−u

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
C[0,T ]τ

≤

∥∥∥∥∥
{
wkn,m−w

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h))

+

+
∥∥∥{pk}Nk=1

∥∥∥
C[0,T ]τ

∥∥∥∥{{qn,m}Mn=1

}M
m=1

∥∥∥∥
C([0,L]h×[0,L]h)

(17)

for all 0 ≤ k ≤ N. We can rewrite difference scheme (13) in the abstract form as
wkh−w

k−1
h

τ +Ahw
k
h + ηkAq = fh (tk) ,

w0
h = ϕh, η0 = 0, tk = kτ, 1 ≤ k ≤ N, Nτ = T

(18)

in a Banach space Cτ (E) = C ([0, T ]τ , E) with the positive operator Ah defined by

Ahuh = −
{
un+1,m+1 − un,m+1

h
+
un,m+1 − un,m

h

}M−1
n,m=1

,
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acting on grid functions uh such that satisfies the condition uh = {un,m}Mn,m=1 , u0,m = 0, un,0 = 0,
0 ≤ n,m ≤M.

For equation (18) we have that

wkh = Rwk−1h +Rτ

(
Aq

α (tk)− wks
qs

+ fh (tk)

)
,

for all k, 1 ≤ k ≤ N, where R = (I + τAh)
−1 . By recurrence relations, we get

wkh = Rkϕh +
k∑
i=1

Rk−i+1 τ
qs
α (ti)Aq −

k∑
i=1

Rk−i+1 τ
qs
wisAq +

k∑
i=1

Rk−i+1τfh (ti)

for any k, 1 ≤ k ≤ N. Taking the difference derivative of both sides, we obtain that

wkh−w
k−1
h

τ = Rk−Rk−1

τ ϕh + 1
qs
α (tk)Aq +

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
α (ti)Aq−

− 1
qs
wksAq −

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
wisAq + fh (tk) +

k∑
i=1

(
Rk−i+1 −Rk−i

)
fh (ti) .

Applying the formula,

k∑
i=1

(
Rk−i+1 −Rk−i

)
wis =

k∑
i=1

(
Rk−i+1 −Rk−i

)
ϕ (xs, ym)+

+
k∑
i=1

(
Rk−i+1 −Rk−i

) i∑
j=1

wjs−wj−1
s

τ τ

and changing the order of summation, we get

k∑
i=1

(
Rk−i+1 −Rk−i

)
wis =

k∑
i=1

(
Rk−i+1 −Rk−i

)
ϕ (xs, ym)+

+
k∑
j=1

k∑
i=j

(
Rk−i+1 −Rk−i

)
wjs−wj−1

s
τ τ.

Consequently, we obtain the following presentation for the solution of equation (13)

wkh−w
k−1
h

τ = Rk−Rk−1

τ ϕh + 1
qs
α (tk)Aq +

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
α (ti)Aq−

− 1
qs
wksAq −

k∑
i=1

(
Rk−i+1 −Rk−i

)
1
qs
Aqϕh(xs,ym)−

k∑
j=1

k∑
i=j

(
Rk−i+1 −Rk−i

)
wjs−wj−1

s
τ τ+

+fh (tk) +
k∑
i=1

(
Rk−i+1 −Rk−i

)
fh (ti) .

Applying the definition of norm of the spaces Cτ (E) = C ([0, T ]τ , E) and methods of monograph [20],
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we can write,

∥∥∥∥∥
{
wkn,m−w

k−1
n,m

τ

}N
k=1

∥∥∥∥∥
Cτ(C([0,L]h×[0,L]h))

≤M8 (q)

‖ϕh‖C(1)
h

+

∥∥∥∥∥∥
{{

fk
n,m
−fk−1

n,m

τ

}N
k=2

}M
n,m=0

∥∥∥∥∥∥
Cτ (Ch)

+

+
∥∥f1,h∥∥

Ch
+

∥∥∥∥∥∥
{{

αk
s,m
−αk−1

s,m

τ

}N
k=2

}M
m=0

∥∥∥∥∥∥
Cτ(C[0,L]h)

+
∥∥∥{α1

m

}M
m=0

∥∥∥
C[0,L]h

 .
(19)

Finally, combining estimates (16), (17), and (19), it completes the proof of Theorem 2.

3 Numerical experiments

In this section, we study the numerical solution of the neutron transport identification problem
with initial condition

∂u(t,x,y)
∂t = ∂u(t,x,y)

∂x + ∂u(t,x,y)
∂y + p (t) sinπx sinπy + f (t, x, y) ,

f (t, x, y) = −e−2t(3 sinπx sinπy + π cosπx sinπy + π sinπx cosπy),

t ∈ (0, 1] , x, y ∈ (0, 1] ,

u (0, x, y) = sinπx sinπy, x, y ∈ [0, 1] ,

u (t, 0, y) = 0, t ∈ [0, 1] , y ∈ [0, 1] ,

u (t, x, 0) = 0, t ∈ [0, 1] , x ∈ [0, 1] ,

u(t, 12 , y) = e−2t sinπy, t ∈ [0, 1] , y ∈ [0, 1] .

(20)

The exact solution of problem is u(t, x, y) = e−2t sinπx sinπy and for the control parameter
p (t) = e−2t.

For the approximate solution of problem (20), we get the following first order of accuracy difference
scheme 

ukn,m−u
k−1
n,m

τ =
ukn+1,m+1−ukn,m+1

h +
ukn,m+1−ukn,m

h + pkqn,m + fkn,m,

fkn,m = −e−2tk(3 sinπxn sinπym + π cosπxn sinπym + π sinπxn cosπym),

qn,m = sinπxn sinπym, xn = nh, ym = mh, tk = kτ,

1 ≤ k ≤ N, 0 ≤ n,m ≤M − 1, Mh = 1, Nτ = 1,

u0n,m = sinπxn sinπym, 0 ≤ n,m ≤M,

uk0,m = 0, ukn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M,

uks,m = e−2tk sinπym, 0 ≤ k ≤ N, 0 ≤ m ≤M, s =
⌊
M
2

⌋
.

(21)
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For the solution of difference scheme (21), we consider the substitution

ukn,m = ηkqn,m + wkn,m, (22)

where

ηk =

k∑
i=1

pi τ, η
0 = 0, (23)

wkn,m is the solution of difference scheme

wkn,m−w
k−1
n,m

τ =
wkn+1,m+1−wkn,m+1

h +
wkn,m+1−wkn,m

h +

+ηk
[
qn+1,m+1−qn,m+1

h +
qn,m+1−qn,m

h

]
+ fkn,m,

1 ≤ k ≤ N, 1 ≤ n,m ≤M,

w0
n,m = sinπxn sinπym, 0 ≤ n,m ≤M,

wk0,m = 0, wkn,0 = 0, 0 ≤ k ≤ N, 0 ≤ n,m ≤M.

(24)

Applying (21) and formulas (22), (23), we get

ηk =
uks,m − wks,m

qs,m
=
e−2tk sinπym − wks,m

qs,m
, (25)

pk =
1

τ

[
(e−2tk − e−2tk−1) sinπym − (wks,m − wk−1s,m )

sinπxs sinπym

]
(26)

for any k, 1 ≤ k ≤ N.
It is easy to see that (24) and (25) can be written in the matrix form

A wk +B wk−1 = ϕk, 1 ≤ k ≤ N, w0 = {sinπxn sinπym}Mn,m=0 ,

where 
ϕkn,m = e−2tk

[
sinπxn+1 sinπym+1−sinπxn sinπym+1

h + sinπxn sinπym+1−sinπxn sinπym
h

]
−

−e−2tk(3 sinπxn sinπym + π cosπxn sinπym + π sinπxn cosπym),

1 ≤ n,m ≤M, ϕk0,m = 0, ϕkn,0 = 0, 1 ≤ n,m ≤M.

Here A and B are (M +1)× (M +1)× (N +1) square matrices, wk and ϕk are (M +1)× (M +1)× 1
column matrices. First, we obtain wk by formula

wk = −A−1Bwk−1 +A−1ϕk, 1 ≤ k ≤ N,w0 = {sinπxn sinπym}Mn,m=0 .

Second, applying formulas (22) and (26), we get pk and uk.

146 Bulletin of the Karaganda University



Source identification problems ...

4 Error analysis

Now, we will give the results of the numerical analysis. In order to get the solution of (21), we used
MATLAB program. The errors are computed by

ENMu = max
0≤k≤N

max
0≤n,m≤M

∣∣∣u(tk, xn, ym)− ukn,m∣∣∣ , ENp = max
1≤k≤N

∣∣∣p(tk)− pk∣∣∣
of the numerical solutions for different values of M and N, where u(tk, xn, ym) represents the exact
solution, ukn,m represents the numerical solution at (tk, xn, ym), p(tk) represents the exact solution, and
pk represents the numerical solution at tk. Now, let us give the obtained numerical results (Table).

T a b l e

Error analysis of first order DS

Error N = M = 10 N = M = 20 N = M = 40 N = M = 80

EN
Mu 0.1813 0.0952 0.0488 0.0247

ENp 0.0698 0.0481 0.0264 0.0137

The obtained results indicate that when the numerical parameters N and M are multiplied by two,
the errors in the solution for first order difference scheme (21) decrease by approximately half.

Conclusion

In this study, we consider an inverse problem related to the two-dimensional neutron transport
equation with a time-dependent source control parameter. For the approximate solution of this prob-
lem, a first-order accuracy difference scheme is constructed. A finite difference scheme is presented for
identifying the control parameter. Stability inequalities for the solution of this problem are established.
The results of a numerical experiment are presented, and the accuracy of the solution for this inverse
problem is discussed.
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