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In the study the existence of solutions of a class of fractional integro-differential equations with boundary
conditions was considered. The main tool, we employ, is the conventional monotone iterative technique,
which is highly effective method to examine the quantitative and qualitative characteristics of various
nonlinear problems. This technique produces monotone sequences whose iterations are unique solutions
of the certain linear problems. These bounds converge uniformly to the maximal solutions of the given
problems. Some types of coupled solutions are considered to obtain the claim of the main results under
suitable conditions.
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Introduction

The basis of our understanding of the world is frequently based on classical calculus, which involves
the operation of derivatives and integrals on integer orders. However, many real-world phenomena
exhibit memory effects and non-local interactions that cannot be fully captured by these integer-
order operations. At this point in the discussion, the concept of fractional calculus presents itself as a
relevant topic that should be considered [1]. Fractional calculus is a fascinating field of mathematics
that extends the concepts of differentiation and integration to non-integer orders [2,3]. This extension
facilitates a more sophisticated representation of memory-dependent processes, in which the current
state is affected by the entire history of the process. See [4–10] for recent works.

Fractional integro-differential equations (FIDEs) are of great importance in the area of fractional
calculus. Fractional derivatives and integral terms are combined in FIDEs, making them effective tools
for modeling many systems. For instance, FIDEs provide a flexible framework for modeling intricate
financial systems with memory effects, such as long-range dependencies in market behavior, and non-
classical diffusion processes characterized by varying anomalous diffusion rates, diverging from classical
diffusion. Furthermore, FIDEs effectively capture the delayed response of viscoelastic materials to
external forces, as these materials exhibit a combination of elastic and viscous properties [11–13].

Monotone iterative technique (MIT) proposes a powerful combination of theoretical and practical
tools for nonlinear problems. It provides a theoretical framework to determine the existence and
uniqueness of solutions for certain equations, while also offering an efficient iterative algorithm to
approximate these solutions numerically, making it valuable for various applications. MIT produces
a sequence of functions in which each iteration is derived by substituting the preceding one into the
specified linear differential equation. The fundamental principle of MIT is the notion of monotonicity,
which guarantees that the sequence is either consistently growing or consistently decreasing, hence
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gradually converging towards the solution of the given nonlinear problem. Under specific conditions,
MIT guarantees that the generated sequences converges uniformly in a closed set to the unique solution
of the differential equation lying between the initial lower and upper solutions (LUSs) [14]. Recently
MIT was adapted for some types of fractional differential or integro-differential equations involving
initial or boundary conditions. See [15–22] and the references therein.

In this work, we discuss the following FIDE with boundary conditions of the form:

CDq1u (t) = F (t, u (t) , Iq2u (t)) , h (u (0) , u (T )) = 0, (1)

where F ∈ C [J × R× R,R], J = [0, T ], h ∈ C
[
R2,R

]
, and 0 < q2 ≤ q1 < 1.

It should be observed that supplementary conditions h (u (0) , u (T )) = 0 may indicate initial,
boundary or other general conditions, depending on the selection of the function h. Therefore, prob-
lem (1) can be seen as a more comprehensive version of the boundary value problems that were
previously mentioned.

The basic objective of the study is to utilize the MIT in order to solve the problem (1), consequently
getting the extremal (minimal and maximal) solutions as the limit of the functions of sequences which
converge uniformly, by considering several types of coupled lower and upper solutions (LUSs) of (1).

The remainder of this article is structured as follows: Section 1 provides a brief overview of fractional
calculus and FIDEs with necessary definitions and lemmas, required for the proofs of main results.
The subsequent part presents the main results including the existence and uniqueness theorem for the
solution via selection of coupled LUSs. Final section offers concluding remarks and potential directions
for future research.

1 Mathematical preliminaries

Definition 1. [3] Let [0, T ] ⊂ R, Re(θ) > 0 and f ∈ L1[0, T ]. Then the Riemann-Liouville(R-L)
fractional integrals Iθ0+ of order θ is given by

Iθ0+f (x) =
1

Γ (θ)

x∫
0

f (t) dt

(x− t)1−θ , x ∈ (0, T ] .

Definition 2. The Caputo derivative of order 0 ≤ θ < 1 for t ∈ [0, T ], designated by cD0+ is given
by

cD0+f(x) := I1−θ
0+ Df (x) =

1

Γ (1− θ)

x∫
0

f ′ (t) dt

(x− t)θ
.

We offer multiple definitions regarding coupled LUSs to problem (1).

Definition 3. Let ϑ, ω ∈ C1[J,R]. Then ϑ and ω are said to be

(i) natural LUSs of (1) if
CDq1ϑ (t) ≤ F (t, ϑ (t) , Iq2ϑ (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,

CDq1ω (t) ≥ F (t, ω (t) , Iq2ω (t)) , h (ω (0) , ω (T )) ≥ 0;

(ii) coupled LUSs of type 1 of (1) if
CDq1ϑ (t) ≤ F (t, ϑ (t) , Iq2ω (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,

CDq1ω (t) ≥ F (t, ω (t) , Iq2ϑ (t)) , h (ω (0) , ω (T )) ≥ 0;
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(iii) coupled LUSs of type 2 of (1) if
CDq1ϑ (t) ≤ F (t, ω (t) , Iq2ϑ (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,
CDq1ω (t) ≥ F (t, ϑ (t) , Iq2ω (t)) , h (ω (0) , ω (T )) ≥ 0;

(iv) coupled LUSs of type 3 of (1) if
CDq1ϑ (t) ≤ F (t, ω (t) , Iq2ω (t)) , h (ϑ (0) , ϑ (T )) ≤ 0,
CDq1ω (t) ≥ F (t, ϑ (t) , Iq2ϑ (t)) , h (ω (0) , ω (T )) ≥ 0.

Definition 4. The functions % and r, both belonging to the space C1[J,R], are called to be coupled
minimal and maximal solutions (MMSs) of (1), if, for any coupled solutions ϑ and ω, it holds that
% ≤ ϑ, ω ≤ r.

Next result is related to the solution of a linear fractional integro-differential equation.
Lemma 1. Let ϕ ∈ C1 [J,R] , 0 < q2 ≤ q1 < 1 and L,M be real numbers. Then, there exists a

unique solution ϕ ∈ C1 [J,R] of the problem

CDq1ϕ (t) = Lϕ (t) +MIq2ϕ (t) , ϕ (0) = ϕ0, (2)

such that

ϕ (t) =
∞∑
n=0

∞∑
m=0

(M)n (L)m
(
n+m
m

)
tq1(n+m)+nq2

Γ (q1 (n+m) + nq2 + 1)
ϕ0.

Proof. The proof and more general form of this result can be found in [23,24].

Lemma 2. [23] Suppose that ϑ and ω are natural LUSs of (1). Moreover following condition holds

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

L,M ≥ 0, whenever u1 ≥ u2, v1 ≥ v2.
Then ϑ (0) ≤ ω (0) implies ϑ (t) ≤ ω (t) on J .
Corollary 1. ([23]) Let p belongs to the space C1 [J,R] and L ≥ 0, M ≥ 0. If the inequality

CDq1p (t) ≤ Lp (t) +MIq2p (t) , p (0) ≤ 0,

holds, then we get p (t) ≤ 0 on J .
Analogously, CDq1p (t) ≥ −Lp (t)−MIq2p (t) , p (0) ≥ 0 implies p (t) ≥ 0 on J .

2 Main results

In this section, we formulate the monotone technique for the problem (1) via coupled LUSs with
the aid of the method of LUSs. We construct monotone functions of sequences, whose iterations are
generated by unique solutions of corresponding Caputo type fractional linear initial value problems,
hence converging uniformly and monotonically to the minimal and maximal solutions of the given BVP
problem (1).

In the following theorem, we first employ natural LUSs to reach the main objective.
Theorem 1. Assume that

(A1) ϑ0, ω0 ∈ C1 [J,R] are natural LUSs of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(A2) h (u, v) ∈ C
[
R2,R

]
is non-increasing in the second variable and there is a positive constant M

satisfying
h (u1, v)− h (u2, v) ≤M (u1 − u2) ,

for ϑ0 (0) ≤ u2 ≤ u1 ≤ ω0 (0) , ϑ0 (T ) ≤ v ≤ ω0 (T );
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(A3) the function F ∈ C [J × R× R,R] satisfies

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≥ −L (u1 − u2)−M (v1 − v2) , (3)

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0 and L > 0, M > 0.
Then there exist monotone sequences {ϑn (t)}, {ωn (t)} converging uniformly and monotonically

to the functions % and r on J , indicating that % and r serve as minimal and maximal solutions of (1),
respectively.

Proof. For any function µ ∈ C1 [J,R], we define the linear initial value problem

CDq1u (t) = F (t, µ (t) , Iq2µ (t))− L (u− µ)−MIq2 (u− µ) , (4)

u (0) = µ (0)− 1

M
h (µ (0) , µ (T )) . (5)

where ϑ0 ≤ µ ≤ ω0. Pay attention to the fact that the right-hand side of the equation (4) is Lipschitzian,
thus unique solution exits for every µ.

Consider A as an operator, such that Aµ = u, which assists in the construction the sequences {ϑn}
and {ωn}.

We have to prove that

(i) ϑ0 ≤ A ϑ0 and ω0 ≥ Aω0;

(ii) the operator A is monotone on the sector [ϑ0, ω0] =
{
u ∈ C1 [J,R] : ϑ0 ≤ u ≤ ω0

}
.

To prove (i) , set Aϑ0 = ϑ1, where ϑ1 is the unique soluion of (4)-(5) with µ = ϑ0. Setting
p (t) = ϑ1 (t)− ϑ0 (t) for t ∈ J , we see that

CDq1p (t) = CDq1ϑ1 (t)−C Dq1ϑ0 (t)

≥ F (t, ϑ0 (t) , Iq2ϑ0 (t))− L (ϑ1 − ϑ0)−MIq2 (ϑ1 − ϑ0)

−F (t, ϑ0 (t) , Iq2ϑ0 (t))

= −Lp (t)−MIq2p (t) ,

and

p (0) = ϑ1 (0)− ϑ0 (0)

= ϑ0 (0)− 1

M
h (ϑ0 (0) , ϑ0 (T ))− ϑ0 (0)

≥ 0.

This gives, from Corollary 1, p (t) ≥ 0 on J , hence ϑ0 ≤ ϑ1. In the similar way, one can form
p (t) = ω0 (t)− ω1 (t), where Aω0 = ω1. Then, we obtain

CDq1p (t) = CDq1ω0 (t)−C Dq1ω1 (t)

≥ F (t, ω0 (t) , Iq2ω0 (t))− (F (t, ω0 (t) , Iq2ω0 (t))− L (ω1 − ω0)−MIq2 (ω1 − ω0))

= −Lp (t)−MIq2p (t)

and

p (0) = ω0 (0)− ω1 (0)

= ω0 (0)−
(
ω0 (0)− 1

M
h (ω0 (0) , ω0 (T ))

)
=

1

M
h (ω0 (0) , ω0 (T ))

≥ 0.
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This ensures that p(t) ≥ 0, thus meaning ω0 ≥ ω1 on J .
To achieve (ii) , consider µ1, µ2 ∈ [ϑ0, ω0] , such that µ1 ≤ µ2. Suppose that Aµ1 = u1 and Aµ2 = u2.

Set p (t) = u2 (t)− u1 (t), then

CDq1p (t) = CDq1u2 (t)−C Dq1u1 (t)

= F (t, µ2 (t) , Iq2µ2 (t))− L (u2 − µ2)−MIq2 (u2 − µ2)

−F (t, µ1 (t) , Iq2µ1 (t)) + L (u1 − µ1) +MIq2 (u1 − µ1)

= F (t, µ2 (t) , Iq2µ2 (t))− F (t, µ1 (t) , Iq2µ1 (t)) + L (u1 − µ1 − u2 + µ2)

+MIq2 (u1 − µ1 − u2 + µ2) .

Using the inequality (2), we receive

F (t, µ2 (t) , Iq2µ2 (t))− F (t, µ1 (t) , Iq2µ1 (t)) ≥ −L (µ2 − µ1)−MIq2 (µ2 − µ1) .

If the expression is plugged into the last inequality, we derive

CDq1p (t) ≥ −L (µ2 − µ1)−MIq2 (µ2 − µ1) + L (u1 − µ1 − u2 + µ2) +MIq2 (u1 − µ1 − u2 + µ2)

= −Lp (t)−MIq2p (t) .

Also we obtain

p (0) = u2 (0)− u1 (0)

= µ2 (0)− 1

M
h (µ2 (0) , µ2 (T ))− µ1 (0) +

1

M
h (µ1 (0) , µ1 (T ))

= µ2 (0)− µ1 (0) +
1

M
(h (µ1 (0) , µ1 (T ))− h (µ2 (0) , µ2 (T )))

≥ µ2 (0)− µ1 (0) +
1

M
(h (µ1 (0) , µ2 (T ))− h (µ2 (0) , µ2 (T )))

≥ µ2 (0)− µ1 (0) +
1

M
(−M) (µ2 (0)− µ1 (0))

= 0.

Therefore, by applying Corollary 1, we can conclude that Aµ2 ≥ Aµ1.
We now define the sequences ϑn = Aϑn−1 and ωn = Aωn−1 for n = 1, 2, .... Based on the mono-

tonicity argument of the operator, we can infer that

ϑ0 ≤ ϑ1 ≤ ... ≤ ϑn ≤ ωn ≤ ... ≤ ω1 ≤ ω0,

on [0, T ] for all n ∈ N. These functions correspond to solutions of the following linear equations:

CDq1ϑn+1 (t) = F (t, ϑn (t) , Iq2ϑn)− L (ϑn+1 − ϑn)−MIq2 (ϑn+1 − ϑn) , (6)

ϑn+1 (0) = ϑn (0)− 1

M
h (ϑn (0) , ϑn (T )) . (7)

CDq1ωn+1 (t) = F (t, ωn (t) , Iq2ωn)− L (ωn+1 − ωn)−MIq2 (ωn+1 − ωn) , (8)

ωn+1 (0) = ωn (0)− 1

M
h (ωn (0) , ωn (T )) . (9)

Now we have to prove that the monotone sequences {ϑn} and {ωn} converge uniformly. In order to
accomplish this, we will utilize the Arzela-Ascoli’s theorem once we have revealed that the sequences
are equicontinuous and uniformly bounded.
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Given that ϑ0, ω0 ∈ C1 [J,R] are bounded on J , a constant K > 0 exists, such that |ϑ0 (t)| ≤ K
and |ω0 (t)| ≤ K on J . In the light of the fact that ϑ0 ≤ ϑn ≤ ωn ≤ ω0, it can be concluded that for
all n ∈ N , |ϑn (t)| ≤ K and |ωn (t)| ≤ K on J . As a result, {ϑn} and {ωn} are uniformly bounded on
J . Our next objective is to demonstrate that {ϑn} is equicontinuous. To do so, let 0 ≤ t1 ≤ t2 ≤ T .
Then for n > 0,

|ϑn (t1)− ϑn (t2)| =

=

∣∣∣∣∣∣ϑn (0) +
1

Γ (q1)

t1∫
0

(t1 − σ)q1−1 [F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)] dσ

−ϑn (0)− 1

Γ (q1)

t2∫
0

(t2 − σ)q1−1 [F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)] dσ

∣∣∣∣∣∣
≤ 1

Γ (q1)

t1∫
0

(
(t1−σ)q1−1−(t2−σ)q1−1

)
|F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))−L (ϑn−ϑn−1)−MIq2 (ϑn−ϑn−1)| dσ

+
1

Γ (q1)

t2∫
t1

(t2 − σ)q1−1 |F (σ, ϑn−1 (σ) , Iq2ϑn−1 (σ))− L (ϑn − ϑn−1)−MIq2 (ϑn − ϑn−1)| dσ.

Since {ϑn}, {ωn} , {Iq2ϑn} and {Iq2ωn} are uniformly bounded, there exist a K1 > 0, independent of
n, such that

|F (t, ϑn (t) , Iq2ϑn (t))| ≤ K1,

|F (t, ωn (t) , Iq2ωn (t))| ≤ K1,

|Iq2ϑn (t)| ≤ K1,

and
|Iq2ωn (t)| ≤ K1.

Thus, if these expressions are substituted into the inequality above, we get

|ϑn (t1)− ϑn (t2)|

≤ K2

Γ (q1)

t1∫
0

(
(t1 − σ)q1−1 − (t2 − σ)q1−1

)
dσ +

K2

Γ (q1)

t2∫
t1

(t2 − σ)q1−1 dσ

= − K2

q1Γ (q1)
(t1 − σ)q1

∣∣∣∣σ=t1

σ=0

+
K2

q1Γ (q1)
(t2 − σ)q1

∣∣∣∣σ=t1

σ=0

− K2

q1Γ (q1)
(t2 − σ)q1

∣∣∣∣σ=t2

σ=t1

=
K2

Γ (q1 + 1)
tq11 +

K2

Γ (q1 + 1)
(t2 − t1)q1 − K2

Γ (q1 + 1)
tq12 +

K2

Γ (q1 + 1)
(t2 − t1)q1

=
K2

Γ (q1 + 1)
[(t1)q1 − (t2)q1 ] +

2K2

Γ (q1 + 1)
(t2 − t1)q1

≤ 2K2

Γ (q1 + 1)
(t2 − t1)q1

=
2K2

Γ (q1 + 1)
|t2 − t1|q1 ,
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where K2 = K1 + 2LK + 2MK1. We conclude, that for given ε > 0, there is a δ (ε) =
(
εΓ(q1+1)

2K2

) 1
q1

(which merely depends on ε), such that |t2 − t1| < δ imply that |ϑn (t1)− ϑn (t2)| < ε. Therefore {ϑn}
is equicontinuous on J and so is {ωn} in the similar fashion. The use of Arzela-Ascoli’s theorem allows
us to conclude, that there exist subsequences {ϑnk

} and {ωnk
} that uniformly converge to % and r

respectively. Due to their monotonic nature, the entire sequences {ϑn} and {ωn} converge uniformly
to % and r respectively on J .

We can prove that the limit functions (%, r) satisfy the problem (1). To do so, we establish corre-
sponding integral equations to (6)-(7) and (8)-(9), then take limits as n −→∞.

Finally, it is required to clarify that (r, % ) occurs as the maximal and minimal solutions of (1),
respectively. For any given solution u of (1) such that ϑ0 (t) ≤ u (t) ≤ ω0 (t) on J , we need to check
that

ϑ0 (t) ≤ % (t) ≤ u (t) ≤ r (t) ≤ ω0 (t) ,

on J . To achieve this, it is sufficient to demonstrate ϑn (t) ≤ u (t) ≤ ωn (t) on J . This fact is
obvious for n = 0. By applying induction principle, we claim that for some k > 0, the inequality
ϑk (t) ≤ u (t) ≤ ωk (t) on J is true. It is necessary to prove that the following relation holds:

ϑk+1 (t) ≤ u (t) ≤ ωk+1 (t) ,

on J . Taking p (t) = u (t)− ϑk+1 (t) leads to
CDq1p (t) = CDq1u (t)−C Dq1ϑk+1 (t)

= F (t, u (t) , Iq2u (t))− [F (t, ϑk (t) , Iq2ϑk)− L (ϑk+1 − ϑk)−MIq2 (ϑk+1 − ϑk)] .

Since we know that ϑk (t) ≤ u (t) , we can use the inequality (3) to attain

F (t, u (t) , Iq2u (t))− F (t, ϑk (t) , Iq2ϑk) ≥ −L (u− ϑk)−MIq2 (u− ϑk) .

By inserting the foregoing expression into the equation above, we acquire
CDq1p (t) ≥ −L (u− ϑk)−MIq2 (u− ϑk) + L (ϑk+1 − ϑk) +MIq2 (ϑk+1 − ϑk)

= −Lp (t)−MIq2p (t) .

Meanwhile, if we recall the characteristics of the function h (u, v), we can deduce

p (0) = u (0)− ϑk+1 (0)

= u (0)− 1

M
h (u (0) , u (T ))−

[
ϑk (0)− 1

M
h (ϑk (0) , ϑk (T ))

]
= u (0)− ϑk (0)− 1

M
(h (u (0) , u (T ))− h (ϑk (0) , ϑk (T )))

≥ u (0)− ϑk (0)− 1

M
(h (u (0) , ϑk (T ))− h (ϑk (0) , ϑk (T )))

≥ u (0)− ϑk (0)− 1

M
M (u (0)− ϑk (0))

= 0.

Owing to Corollary 1, it directly results in p (0) ≥ 0 on J . As a result, ϑk+1 (t) ≤ u (t). In the same
manner, we are able to demonstrate that u (t) ≤ ωk+1 (t) on J . Therefore, for all n, we get

ϑn (t) ≤ u (t) ≤ ωn (t) .

By taking the limit, as n approaches infinity, we may deduce that

% (t) ≤ u (t) ≤ r (t) ,

on J , which establishes the validity of the proof.
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Theorem 2. Along with the assumptions stated in Theorem 1, further assume that for L > 0,
M > 0

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0. Thereafter, a unique solution to equation (1) exists
in which % = u = r.

Proof. If we continue by keeping the fact % ≤ r aside, let p (t) = r (t)− % (t). Then, it follows that

CDq1p (t) = CDq1r (t)−C Dq1% (t)

= F (t, r (t) , Iq2r (t))− F (t, % (t) , Iq2% (t))

≤ L (r − %) +MIq2 (r − %)

= Lp (t) +MIq2p (t) ,

and

p (0) = r (0)− % (0)

= 0.

This facts indicate that p (t) ≤ 0. As a consequence, we arrive at % = u = r meaning that the sequences
approach to the same solution of (1).

In the subsequent result, we employ coupled LUSs of type 1 to derive monotone sequences that
uniformly and monotonically converge to coupled MMSs of the problem (1).

Theorem 3. Assume that

(B1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 1 of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(B2) (A2) holds;

(B3) F (t, u, v) ∈ C [J × R× R,R] is non-decreasing in u and is non-increasing in v and

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≥ −L (u1 − u2) , (10)

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≤M (v1 − v2) , (11)

whenever u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0.

Then there exist monotone sequences {ϑn (t)}, {ωn (t)} converging uniformly and monotonically to
the functions % and r on J . It is implied that % and r coupled MMSs of (1), respectively.

Proof. Let ψ, ξ ∈ C1 [J,R] such that ϑ0 ≤ ψ ≤ ω0 and ϑ0 ≤ ξ ≤ ω0. We set the linear fractional
integro-differential initial value problems (IVPs):

CDq1u (t) = F (t, ψ (t) , Iq2ω0 (t))− L (u− ψ) , (12)

u (0) = ψ (0)− 1

M
h (ψ (0) , ψ (T )) , (13)

CDq1v (t) = F (t, ω0 (t) , Iq2ξ (t)) +MIq2 (v − ξ) , (14)

v (0) = ξ (0)− 1

M
h (ξ (0) , ξ (T )) . (15)

Define the mapping A and B by Aψ = u and Bξ = v and use it to construct the sequences {ϑn} and
{ωn} . We aim to prove that

(i) ϑ0 ≤ Aϑ0 and ω0 ≥ Bω0;
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(ii) the operators A and B are monotone on the sector [ϑ0, ω0].
To prove (i) , take Aϑ0 = ϑ1, where ϑ1 is the unique solution of (12)-(13) with ψ = ϑ0. By letting

p (t) = ϑ1 (t)− ϑ0 (t) , we see that
CDq1p (t) = CDq1ϑ1 (t)−C Dq1ϑ0 (t)

≥ F (t, ϑ0 (t) , Iq2ω0 (t))− L (ϑ1 − ϑ0)− F (t, ϑ0 (t) , Iq2ω0 (t))

= −Lp (t) ,

and

p (0) = ϑ1 (0)− ϑ0 (0)

= ϑ0 (0)− 1

M
h (ϑ0 (0) , ϑ0 (T ))− ϑ0 (0)

≥ 0.

According to Corollary 1, it appears that p (t) ≥ 0, which implies ϑ0 (t) ≤ ϑ1 (t) on J . Similarly, let
Bω0 = ω1, where ω1 is the unique solution of (14)-(15) with ξ = ω0. Setting p (t) = ω1 (t)− ω0 (t) , we
get

CDq1p (t) = CDq1ω1 (t)−C Dq1ω0 (t)

≤ F (t, ω0 (t) , Iq2ω0 (t)) +MIq2 (ω1 − ω0)− F (t, ω0 (t) , Iq2ϑ0 (t))

= F (t, ω0 (t) , Iq2ω0 (t))− F (t, ω0 (t) , Iq2ϑ0 (t)) +MIq2 (ω1 − ω0)

≤ F (t, ω0 (t) , Iq2ϑ0 (t))− F (t, ω0 (t) , Iq2ϑ0 (t)) +MIq2 (ω1 − ω0)

= MIq2p (t) ,

and

p (0) = ω1 (0)− ω0 (0)

= ω0 (0)− 1

M
h (ω0 (0) , ω0 (T ))− ω0 (0)

= − 1

M
h (ω0 (0) , ω0 (T ))

≤ 0.

By utilizing Corollary 1 yields ω0 (t) ≥ ω1 (t) on J .
To prove (ii) , let ψ1, ψ2 ∈ [ϑ0, ω0], such that ψ1 ≤ ψ2 and put Aψ1 = u1 and Aψ2 = u2. It is

enough to define p (t) = u2 (t)− u1 (t) in a manner that
CDq1p (t) = CDq1u2 (t)−C Dq1u1 (t)

= F (t, ψ2 (t) , Iq2ω0 (t))− L (u2 − ψ2)− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1)

= F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1 − u2 + ψ2) .

Using the inequality (10) and recalling the fact that ψ1 ≤ ψ2 , we may deduce that

F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) ≥ −L (ψ2 − ψ1) .

Substituting that expression into previous equation yields
CDq1p (t) = F (t, ψ2 (t) , Iq2ω0 (t))− F (t, ψ1 (t) , Iq2ω0 (t)) + L (u1 − ψ1 − u2 + ψ2)

≥ −L (ψ2 − ψ1) + L (u1 − ψ1 − u2 + ψ2)

= −L (ψ2 − ψ1 − u1 + ψ1 + u2 − ψ2)

= −L (u2 − u1)

= −Lp (t) ,
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and

p (0) = u2 (0)− u1 (0)

= ψ2 (0)− 1

M
h (ψ2 (0) , ψ2 (T ))− ψ1 (0) +

1

M
h (ψ1 (0) , ψ1 (T ))

= ψ2 (0)− ψ1 (0) +
1

M
(h (ψ1 (0) , ψ1 (T ))− h (ψ2 (0) , ψ2 (T )))

≥ ψ2 (0)− ψ1 (0) +
1

M
(h (ψ1 (0) , ψ2 (T ))− h (ψ2 (0) , ψ2 (T )))

≥ ψ2 (0)− ψ1 (0) +
1

M
(−M) (ψ2 (0)− ψ1 (0))

= 0.

It follows that Aψ2 ≤ Aψ1, whenever ψ1 ≤ ψ2 on J .
Similarly, assume that ξ1, ξ2 ∈ [ϑ0, ω0] such that ξ1 ≤ ξ2. Let Bξ1 = v1, Bξ2 = v2 and set

p (t) = v2 (t)− v1 (t), so that

CDq1p (t) = CDq1v2 (t)−C Dq1v1 (t)

= F (t, ω0 (t) , Iq2ξ2 (t)) +MIq2 (v2 − ξ2)− F (t, ω0 (t) , Iq2ξ1 (t))−MIq2 (v1 − ξ1) .

Furthermore, utilizing the inequality (11), we have

F (t, ω0 (t) , Iq2ξ2 (t))− F (t, ω0 (t) , Iq2ξ1 (t)) ≤MIq2 (ξ2 − ξ1) .

When the last phrase is included into previous relation, it gives

CDq1p (t) ≤ MIq2 (ξ2 − ξ1) +MIq2 (v2 − ξ2)−MIq2 (v1 − ξ1)

= MIq2p (t) .

We can figure out that p (0) ≤ 0 implies p (t) ≤ 0, based on the implications outlined in Corollary 1.
At this point, one may specify the sequences ϑn = Aϑn−1 and ωn = Bωn−1 for n = 1, 2, .... In this

case, the monotone sequences {ϑn} and {ωn} can be represented by the following iterative schemes.

CDq1ϑn+1 (t) = F (t, ϑn (t) , Iq2ωn)− L (ϑn+1 − ϑn) , (16)

ϑn+1 (0) = ϑn (0)− 1

M
h (ϑn (0) , ϑn (T )) . (17)

CDq1ωn+1 (t) = F (t, ωn (t) , Iq2ωn) +MIq2 (ωn+1 − ωn) , (18)

ωn+1 (0) = ωn (0)− 1

M
h (ωn (0) , ωn (T )) . (19)

Suppose that u is an arbitrary solution to the problem (1) satisfying ϑ0 (t) ≤ u (t) ≤ ω0 (t). Then we
must demonstrate that ϑn (t) ≤ u (t) ≤ ωn (t) for n ∈ N. The proof is clear for n = 0. Assume that for
some k, ϑk (t) ≤ u (t) ≤ ωk (t) is true on J . Thus, we prove the validity of the subsequent relationship

ϑk+1 (t) ≤ u (t) ≤ ωk+1 (t)

on J . In order to verify this, we implement p (t) = u (t)− ϑk+1 (t) and, have

CDq1p (t) = CDq1u (t)−C Dq1ϑk+1 (t)

= F (t, u (t) , Iq2u (t))− [F (t, ϑk (t) , Iq2ωk)− L (ϑk+1 − ϑk)]
≥ −L (u− ϑk) + L (ϑk+1 − ϑk)
= −Lp (t) .
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Reviewing the fundamental characteristics of the function g, we get

p (0) = u (0)− ϑk+1 (0)

= u (0)−
[
ϑk (0)− 1

M
h (ϑk (0) , ϑk (T ))

]
− 1

M
h (u (0) , u (T ))

= u (0)− ϑk (0) +
1

M
(h (ϑk (0) , ϑk (T ))− h (u (0) , u (T )))

≥ u (0)− ϑk (0) +
1

M
(h (ϑk (0) , u (T ))− h (u (0) , u (T )))

≥ u (0)− ϑk (0) +
1

M
(−M) (u (0)− ϑk (0))

= 0.

Following Corollary 1, we see that ϑk+1 (t) ≤ u (t) on J . By using a similar approach, we can show
that u (t) ≤ ωk+1 (t) on J . This result in for all n,

ϑ0 ≤ ϑ1 ≤ ... ≤ ϑn ≤ u ≤ ωn ≤ ... ≤ ω1 ≤ ω0.

By employing standard techniques as in the preceding result, we reveal that the sequences {ϑn} and
{ωn} converge uniformly and monotonically to the functions % and r, respectively. To prove that %
and r are coupled solutions of the main problem, one can establish the corresponding Volterra integral
equations to the problems (16–19) and then taking limits as n→∞, that is,

CDq1% (t) = F (t, % (t) , Iq2r (t)) , h (% (0) , % (T )) = 0,

and
CDq1r (t) = F (t, r (t) , Iq2% (t)) , h (r (0) , r (T )) = 0.

Finally, we need to demonstrate that (%, r) are coupled MMSs of (1), respectively. Let u be any solution
of (1) such that ϑ0 (t) ≤ u (t) ≤ ω0 (t) on J. After proving the inequality ϑn (t) ≤ u (t) ≤ ωn (t) with
the same approach as before and considering the limit as n −→ ∞, we receive % (t) ≤ u (t) ≤ r (t) ,
which concludes the proof.

Theorem 4. In addition to conditions of Theorem 3, suppose also

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≤ L (u1 − u2) ,

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≥ −M (v1 − v2) ,

whenever u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0. Then we have unique solution of (1) such that
% = u = r.

If we utilize coupled LUSs of type 2 of (1), we get also monotone sequences that converge uniformly
and monotonically to the extremal solutions of (1) that we state as the next result.

In order to prevent repetition, we shall omit the details of the proofs for the subsequent results.

Theorem 5. Suppose that

(C1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 2 of problem (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(C2) (A2) holds;
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(C3) F (t, u, v) ∈ C [J × R× R,R] is non-increasing in u and non-decreasing in v, moreover

F (t, u1 (t) , v (t))− F (t, u2 (t) , v (t)) ≤ L (u1 − u2) ,

F (t, u (t) , v1 (t))− F (t, u (t) , v2 (t)) ≥ −M (v1 − v2) ,

where u1 ≥ u2 , v1 ≥ v2 and L > 0, M > 0.

Then there exist two sequences {ϑn (t)}, {ωn (t)} such that limn−→∞ ωn = r , limn−→∞ ϑn = % uni-
formly and monotonically on J and that (%, r) are coupled MMSs of (1).

Remark 1. Observe that coupled LUSs of type 1 together with increasing and decreasing properties
of F in Theorem 3 result in the natural ULSs and coupled ULSs of type 3 separately, hence both yield
the coupled LUSs of type 2 at the end. The analogous approach for coupled LUSs of type 2 is true
and this can be stated in the opposite manner.

In the following theorem, we take coupled LUSs of type 3 and find the similar conclusion as in
Theorem 1.

Theorem 6. Let the following conditions hold:

(D1) ϑ0, ω0 ∈ C1 [J,R] are coupled LUSs of type 3 of (1) with ϑ0 (t) ≤ ω0 (t) on J ;

(D2) (A2) holds;

(D3) the function F (t, u, v) ∈ C [J × R× R,R] is non-increasing in both u, v for each t ∈ J and

F (t, u1 (t) , v1 (t))− F (t, u2 (t) , v2 (t)) ≤ L (u1 − u2) +M (v1 − v2) ,

where ϑ0 ≤ u2 ≤ u1 ≤ ω0 and ϑ0 ≤ v2 ≤ v1 ≤ ω0 and L > 0, M > 0.

Then we obtain the sequences {ϑn (t)}, {ωn (t)} such that ϑn −→ % and ωn −→ r as n −→ ∞
uniformly and monotonically on J and % and r are the MMSs of (1), respectively.

Remark 2. Note that the assumption (D1) with the non-increasing property of F (t, u, v) in both u
and v for each t ∈ J implies the natural LUSs of (1) for the functions ϑ0, ω0.

3 Conclusion

We have considered the boundary value problem of a Caputo fractional integro-differential equation
to analyze the existence and uniqueness of the problem. We employ the monotone iterative technique
generating monotone sequences that converge uniformly to the extremal solutions of the main problem.
It would be valuable to explore extensions and refinements of the monotone iterative technique for
solving more general classes of FIDEs, as well as to investigate its applicability to practical problems
arising in real-world applications. Additionally, the development of computational algorithms based on
the theoretical results could lead to the implementation of efficient numerical solvers for FIDEs with
boundary conditions.
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