https://doi.org/10.31489/2024M3/93-100

Research article

Hessian measures in the class of *m*-convex (m - cv) functions

M.B. Ismoilov¹, R.A. Sharipov^{2,3,*}

 ¹National University of Uzbekistan named after Mirzo Ulugbek, Tashkent, Uzbekistan;
 ²Urgench State University, Urgench, Uzbekistan;
 ³V.I. Romanovskiy Institute of Mathematics of Uzbekistan Academy of Sciences (E-mail: mukhiddin4449@gmail.com, r.sharipov@urdu.uz)

The theory of *m*-convex (m - cv) functions is a new direction in the real geometry. In this work, by using the connection m - cv functions with strongly *m*-subharmonic (sh_m) functions and using well-known and rich properties of sh_m functions, we show a number of important properties of the class of m - cv functions, in particular, we study Hessians $H^k(u)$, k = 1, 2, ..., n - m + 1, in the class of bounded m - cv functions.

Keywords: Convex function, m-convex function, Strongly m-subharmonic function, Borel measures, Hessians.

2020 Mathematics Subject Classification: 26B25, 39B62, 52A41.

Introduction

It is well known that *m*-convex functions are a real analogue in \mathbb{R}^n strongly *m*-subharmonic (sh_m) functions in the complex space \mathbb{C}^n . Let us recall the definition of the class sh_m of functions, which at this time has become the subject of research by many authors (Z. Błocki [1], S. Dinew and S. Kolodziej [2–4], S. Li [5], H.C. Lu [6,7], H.C. Lu and V.D. Nguyen [8], A. Sadullaev and his students [9–11], etc.).

A twice differentiable function $u(z) \in C^2(D)$, $D \subset \mathbb{C}^n$, is said to be strongly *m*-subharmonic, if at each point of the domain D it holds inequalities

$$(dd^{c}u)^{k} \wedge \beta^{n-k} \ge 0, \quad k = 1, 2, ..., n - m + 1,$$

where $\beta = dd^c ||z||^2$ is the standard volume form in \mathbb{C}^n .

It's clear that $psh = sh_1 \subset sh_2 \subset ... \subset sh_n = sh$. Operators $(dd^c u)^k \wedge \beta^{n-k}$ are closely related to the Hessians. For a twice differentiable function $u \in C^2(D)$, the second-order differential $dd^c u = \frac{i}{2} \sum_{j,t} \frac{\partial^2 u}{\partial z_j \partial \overline{z}_t} dz_j \wedge d\overline{z}_t$ (at a fixed point $o \in D$) is a Hermitian quadratic form. After a suitable unitary coordinate transform, it is reduced to the diagonal form $dd^c u = \frac{i}{2} [b] dz \wedge d\overline{z}$.

tary coordinate transform, it is reduced to the diagonal form $dd^c u = \frac{i}{2} [\lambda_1 dz_1 \wedge d\bar{z}_1 + ... + \lambda_n dz_n \wedge d\bar{z}_n]$, where $\lambda_1, ..., \lambda_n$ are the eigenvalues of the Hermitian matrix $\left(\frac{\partial^2 u}{\partial z_j \partial \bar{z}_t}\right)$, which are real: $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{R}^n$. Note that the unitary transformation does not change the differential form. $\beta = dd^c ||z||^2$. Therefore, it is not difficult to see that

$$(dd^{c}u)^{k} \wedge \beta^{n-k} = k!(n-k)!H_{o}^{k}(u)\beta^{n},$$

where $H_o^k(u) = \sum_{1 \le j_1 < \ldots < j_k \le n} \lambda_{j_1} \ldots \lambda_{j_k}$ is the Hessian of dimension k of the vector $\lambda = \lambda(u) \in \mathbb{R}^n$.

^{*}Corresponding author. E-mail: sharipovr80@mail.ru; r.sharipov@urdu.uz

This research was funded by scientific research grant of the Ministry of Higher Education, Science and Innovation of the Republic of Uzbekistan (No. IL-5421101746).

Received: 15 January 2024; Accepted: 23 May 2024.

^{© 2024} The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Consequently, the twice differentiable function $u(z) \in C^2(D)$, $D \subset \mathbb{C}^n$, is strongly *m*-subharmonic, if at each point $o \in D$ the next inequalities hold

$$H^{k}(u) = H^{k}_{o}(u) \ge 0, \quad k = 1, 2, ..., n - m + 1.$$
(1)

The following theorem is important

Theorem 1. (see [1]). For any twice differentiable $sh_m \cap C^2(D)$ functions $v_1, ..., v_k \in sh_m(D) \cap C^2(D), 1 \leq k \leq n-m+1$, the relation

$$dd^c v_1 \wedge \dots \wedge dd^c v_k \wedge \beta^{m-1} \ge 0$$

is valid. In particular, for $u \in sh_m(D) \cap C^2(D)$ and for any $v_1, ..., v_{n-m} \in sh_m(D) \cap C^2(D)$ it holds

$$dd^{c}u \wedge dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1} \ge 0.$$
⁽²⁾

The last property has dual character: if a twice differentiable function u, it satisfies (2) for all $v_1, ..., v_{n-m} \in sh_m(D) \cap C^2(D)$, then the function u is certainly sh_m function. Moreover, the class of second-order polynomials of the form is sufficient here (see [1,2])

$$v_j = \sum_{k=1}^n c_{j,k} |z_k|^2 \in sh_m \left(\mathbb{C}^n\right), c_{j,k} \in \mathbb{R} \text{ is } const.$$
(3)

Theorem 1 allows us to define sh_m functions in the class L^1_{loc} .

Definition 1. A function $u \in L^1_{loc}(D)$ is called sh_m in the domain $D \subset \mathbb{C}^n$, if it is upper semicontinuous and for any twice differentiable sh_m functions $v_1, ..., v_{n-m}$ of the form (3), the current $dd^c u \wedge dd^c v_1 \wedge ... \wedge dd^c v_{n-m} \wedge \beta^{m-1}$ defined as

$$\begin{bmatrix} dd^{c}u \wedge dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1} \end{bmatrix} (\omega) =$$
$$= \int u dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1} \wedge dd^{c}\omega, \ \omega \in F^{0,0}$$
is positive,
$$\int u dd^{c}v_{1} \wedge \dots \wedge dd^{c}v_{n-m} \wedge \beta^{m-1} \wedge dd^{c}\omega \ge 0, \ \forall \omega \in F^{0,0}, \ \omega \ge 0.$$

1 m-convex functions and associated measures

In this section, similarly to (1), we define Hessians $H^k(u)$, k = 1, 2, ..., n - m + 1, in the class of bounded *m*-convex functions as Borel measures. This method of defining $H^k(u)$ as a measure belongs to A. Sadullaev.

Let $D \subset \mathbb{R}^n$ and $u(x) \in C^2(D)$. Then matrix $\left(\frac{\partial^2 u}{\partial x_j \partial x_t}\right)$ is orthogonal, $\frac{\partial^2 u}{\partial x_j \partial x_t} = \frac{\partial^2 u}{\partial x_t \partial x_j}$. Therefore, after a suitable orthonormal transformation, it is transformed into a diagonal form,

$$\left(\frac{\partial^2 u}{\partial x_j \partial x_t}\right) \to \left(\begin{array}{ccccc} \lambda_1 & 0 & \dots & 0\\ 0 & \lambda_2 & \dots & 0\\ \dots & \dots & \dots & \dots\\ 0 & 0 & \dots & \lambda_n\end{array}\right).$$

where $\lambda_j = \lambda_j(x) \in \mathbb{R}$ are the eigenvalues of the matrix $\left(\frac{\partial^2 u}{\partial x_j \partial x_t}\right)$. Let

$$H^{k}(u) = H^{k}(\lambda) = \sum_{1 \le j_{1} < \dots < j_{k} \le n} \lambda_{j_{1}} \dots \lambda_{j_{k}}$$

be Hessian of the dimension k of the vector $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$.

Definition 2. A twice differentiable function $u \in C^2(D)$ is called *m*-convex in $D \subset \mathbb{R}^n$, $u \in m - cv(D)$, if its eigenvalue vector $\lambda = \lambda(x) = (\lambda_1(x), \lambda_2(x), ..., \lambda_n(x))$ satisfies the conditions

$$m - cv \cap C^{2}(D) = \left\{ H^{k}(u) = H^{k}(\lambda(x)) \ge 0, \ \forall x \in D, \ k = 1, ..., n - m + 1 \right\}.$$

Potential theory of m - cv functions is poorly-studied and is a new direction in the theory of real geometry. However, when m = 1, this class $1 - cv \cap C^2(D) = \{H^1(\lambda) \ge 0\} = \{\lambda_1 \ge 0, \lambda_2 \ge 0, ..., \lambda_n \ge 0\}$ coincides with the convex functions in \mathbb{R}^n , and when m = n, the class $n - cv \cap C^2(D) = \{\lambda_1 + \lambda_2 + ... + \lambda_n \ge 0\}$ coincides with the class of subharmonic functions in \mathbb{R}^n , $cv = 1 - cv \subset 2 - cv \subset ... \subset n - cv = sh$. The class of convex functions is well studied A. Aleksandrov [12], I. Bakelman [13], A. Pogorelov [14], A. Artykbaev [15] and others. When m > 1 this class has been studied in a series of works N. Trudinger, H. Wang, N. Ivochkina and other mathematicians (see [16–22].

Principal difficulties in the theory of m - cv are the introduction of the class $m - cv \cap L^1_{loc}$, i.e. definition m - cv(D) of functions in the class of upper semicontinuous, locally integrable or bounded functions and the definition of Hessians $H^k(u)$, $u \in m - cv \cap L^1_{loc}$. So for m = n (the case of subharmonic functions) in the class of upper semicontinuous, locally integrable functions $u(x) \in n - cv(D)$ are defined as a distribution and the Laplace operator $\Delta u = dd^c u \wedge \beta^{n-1}$ is a Borel measure.

To define operators $(dd^c u)^k \wedge \beta^{n-k} \ge 0$, k = 1, 2, ..., n - m + 1 for the function $u(z) \in sh_m(D)$ in a domain $D \subset \mathbb{C}^n$ the function u(z) must be locally bounded, i.e. $u(z) \in L^{\infty}_{loc}(D)$. In this case, the operators $(dd^c u)^k \wedge \beta^{n-k} \ge 0$, k = 1, 2, ..., n - m + 1 are also positive Borel measures (see [10]).

In this work, by using the connection of m - cv functions with strongly *m*-subharmonic functions and using well-known and rich properties sh_m of functions, we show a number of important properties of the class of m - cv functions, in particular, of the Hessians $H^k(u)$, k = 1, 2, ..., n - m + 1, in the class of bounded m - cv functions.

We embed \mathbb{R}^n_x into \mathbb{C}^n , by $\mathbb{R}^n_x \subset \mathbb{C}^n_z = \mathbb{R}^n_x + i\mathbb{R}^n_y$ (z = x + iy), as a real *n*-dimensional subspace of the complex space \mathbb{C}^n .

Proposition 1. (see [23]). A twice differentiable function $u(x) \in C^2(D)$, $D \subset \mathbb{R}^n_x$, is m - cv in D, if and only if a function $u^c(z) = u^c(x + iy) = u(x)$ that does not depend on variables $y \in \mathbb{R}^n_y$, is sh_m in the domain $D \times \mathbb{R}^n_y$.

Proof. We establish a connection between the Hessians $H^k(u)$ and $H^k(u^c)$. We have,

$$\frac{\partial u^c}{\partial z_j} = \frac{1}{2} \left[\frac{\partial u^c}{\partial x_j} - \frac{\partial u^c}{\partial y_j} \right] = \frac{1}{2} \frac{\partial u^c}{\partial x_j};$$
$$\frac{\partial^2 u^c}{\partial z_j \partial \bar{z}_t} = \frac{1}{2} \frac{\partial}{\partial \bar{z}_t} \left[\frac{\partial u^c}{\partial x_j} \right] = \frac{1}{4} \left[\frac{\partial^2 u^c}{\partial x_j \partial x_t} + \frac{\partial^2 u^c}{\partial x_j \partial y_t} \right] = \frac{1}{4} \frac{\partial^2 u^c}{\partial x_j \partial x_t}$$

 $\partial z_j \partial \bar{z}_t \quad 2 \,\partial \bar{z}_t \left[\partial x_j \right]^{-} 4 \left[\partial x_j \partial x_t \right]^{-} \partial x_j \partial y_t \right]^{-} 4 \,\partial \overline{x_j \partial x_t}.$ Thus, $\left(\frac{\partial^2 u^c}{\partial z_j \partial \bar{z}_t} \right) = \frac{1}{4} \left(\frac{\partial^2 u}{\partial x_j \partial x_t} \right)$ and therefore, $H^k(u) = 4^k H^k(u^c)$, that is the proof of the proposition.

Let now u(x) be an upper semicontinuous function in the domain $D \subset \mathbb{R}^n_x$. Then $u^c(z)$ also will be upper semicontinuous function in the domain $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$.

Definition 3. An upper semicontinuous function u(x) in a domain $D \subset \mathbb{R}^n_x$ is called *m*-convex in D, if the corresponding function $u^c(z)$ is strongly *m*-subharmonic, $u^c(z) \in sh_m(D \times \mathbb{R}^n_u)$.

Let u(x) be a locally bounded *m*-convex function in the domain $D \subset \mathbb{R}^n_x$. Then $u^c(z)$ will be also locally bounded, strongly *m*-subharmonic function in the domain $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$. Therefore, the operators

$$(dd^{c}u^{c})^{k} \wedge \beta^{n-k}, \quad k = 1, 2, ..., n - m + 1$$

are defined as Borel measures in the domain $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$, $\mu_k = (dd^c u^c)^k \wedge \beta^{n-k}$.

Mathematics Series. No. 3(115)/2024

Since for a twice differentiable function $(dd^c u^c)^k \wedge \beta^{n-k} = k!(n-k)!H^k(u^c)\beta^n$, then for a bounded, strongly *m*-subharmonic function in the domain $D \times \mathbb{R}^n_y \subset \mathbb{C}^n_z$, it is natural to determine its Hessians, equating them to the measure

$$H^{k}(u^{c}) = \frac{\mu_{k}}{k!(n-k)!} = \frac{1}{k!(n-k)!} (dd^{c}u^{c})^{k} \wedge \beta^{n-k}.$$

We can now define Hessians H^k , k = 1, 2, ..., n - m + 1 in the class of locally bounded, *m*-convex domain $D \subset \mathbb{R}^n_x$ functions.

Definition 4. Let a function u(x) be locally bounded and *m*-convex in the domain $D \subset \mathbb{R}^n_x$. Let us define Borel measures in the domain $D \times \mathbb{R}^n_u \subset \mathbb{C}^n_z$,

$$\mu_k = (dd^c u^c)^k \wedge \beta^{n-k}, k = 1, 2, ..., n - m + 1.$$

Since $u^c \in sh_m(D \times \mathbb{R}^n_y)$ does not depend on $y \in \mathbb{R}^n_y$, then for any Borel sets $E_x \subset D$, $E_y \subset \mathbb{R}^n_y$, the measures $\frac{4^k}{mesE_y}\mu_k(E_x \times E_y)$ do not depend on the set $E_y \subset \mathbb{R}^n_y$, i.e. $\frac{4^k}{mesE_y}\mu_k(E_x \times E_y) = \nu_k(E_x)$. The Borel measures

$$\nu_k: \quad \nu_k(E_x) = \frac{4^k}{mesE_y} \mu_k(E_x \times E_y), \quad k = 1, 2, ..., n - m + 1,$$

we call by Hessians H^k , k = 1, 2, ..., n-m+1, for a locally bounded, *m*-convex function $u(x) \in m - cv(D)$ in the domain $D \subset \mathbb{R}^n_r$.

For twice differentiable function $u(x) \in m - cv(D) \cap C^2(D)$ the Hessians are ordinary functions, however, for a non-twice differentiable, bounded semicontinuous function $u(x) \in m - cv(D) \cap L^{\infty}(D)$, the Hessians H^k , k = 1, 2, ..., n - m + 1 are positive Borel measures.

Using Theorem 1 and Preposition 1 (see also Definition 3) m - cv functions are defined as

Definition 5. A function $u(x) \in L^1_{loc}(D)$ is called *m*-convex function in the domain $D \subset \mathbb{R}^n_x$, $u(x) \in m - cv(D)$, if it is upper semicontinuous and for any twice differentiable m - cv(D) functions v_1, \ldots, v_{n-m} , the current $dd^c u^c \wedge dd^c v_1^c \wedge \ldots \wedge dd^c v_{n-m}^c \wedge \beta^{m-1}$ defined as

$$\begin{bmatrix} dd^{c}u^{c} \wedge dd^{c}v_{1}^{c} \wedge \dots \wedge dd^{c}v_{n-m}^{c} \wedge \beta^{m-1} \end{bmatrix} (\omega) = \\ = \int u^{c}dd^{c}v_{1}^{c} \wedge \dots \wedge dd^{c}v_{n-m}^{c} \wedge \beta^{m-1} \wedge dd^{c}\omega, \omega \in F^{0,0}\left(D \times \mathbb{R}_{y}^{n}\right)$$

is positive.

2 General definitions of m-convex functions

In various works (see, for example, [18, 19]) *m*-convex functions in the class of bounded upper semicontinuous m - cv(D) functions define using the "viscosity" definition: an upper semicontinuous function u(x) is called m - cv(D), $u(x) \in m - cv(D)$, if any quadratic polynomial q(x) for which the difference u(x) - q(x) achieves a local maximum only at a finite number of points $x^1, ..., x^q \in D$, is $m - cv(D), q(x) \in m - cv(D)$.

The following important proposition belongs to Trudinger-Wang [19]

Lemma 1. A semicontinuous function u(x) is in m - cv(D), if for each domain $G \subset D$ and each function $v(x) \in C^2(D) : H_m(v) \leq 0$ from $u|_{\partial G} \leq v|_{\partial G} \Rightarrow u_G \leq v|_G$.

Lemma 2. A semicontinuous function u(x) is in m - cv(D), if and only if for any domain $G \subset D$ there exists $u_j(x) \in C^2(G) \cap m - cv(G)$: $u_j(x) \downarrow u(x)$.

Lemma 3. If $m < \frac{n}{2} + 1$, then $m - cv(D) \subset C^{0,\gamma} = Lip_{\gamma}$, where $\gamma = 2 - \frac{n}{n-m+1}$, $0 < \gamma \leq 1$. Corollary 1. If $m < \frac{n}{2} + 1$, then $u(x) \in m - cv(D)$ continuous.

For our purpose, it is convenient to use the Trudenger-Wang's definition based on Lemma 2:

Definition 6. An upper semicontinuous function u(x) is called *m*-convex m - cv(D), if for any domain $G \subset C$ there exists a sequence of functions $u_j(x) \in C^2(G) \cap m - cv(G) : u_j(x) \downarrow u(x)$.

In fact, the two main ones, Definition 3 and Definition 6, are equivalent.

Theorem 2. A function u(x) is m - cv(D) in the sense of Definition 3, if and only if it is m - cv(D) in the sense of Definition 6.

Proof. Let the function u(x) have a monotonically decreasing sequence of functions $u_j(x) \in m - cv(G)$: $u_j(x) \downarrow u(x)$. Let us put \mathbb{R}^n_x in \mathbb{C}^n_z , $\mathbb{R}^n_x \subset \mathbb{C}^n_z = \mathbb{R}^n_x + i\mathbb{R}^n_y$ (z = x + iy), and construct a monotonically decreasing sequence $u_j^c(z) = u_j(x) \in sh_m (G \times \mathbb{R}^n_y)$. Then $\lim_{j \to \infty} u_j^c(z) = u^c(z) \in sh_m (G \times \mathbb{R}^n_y)$ and $u(x) = u^c(x)$ is m - cv(G).

On the other side, let the function u(x) be such that $u^c(z) = u(x) \in sh_m(D \times \mathbb{R}^n_y)$. Let us construct a standard approximation $u^c_j(z) = u^c \circ K_{\frac{1}{j}}(w-z)$, j = 1, 2, ... (see [10]). For any compact domain $G \subset D$, starting from a certain number $j \geq j_0$, they are defined, infinitely smooth functions $u^c_j(z) \in sh_m(G)$: $u^c_j(z) \downarrow u^c(z)$. Moreover, it is easy to see that $u^c_j(z)$ do not depend on $y \in \mathbb{R}^n_y$. Therefore, $u^c_j(x) = u_j(x) \downarrow u(x), u_j(x) \in m - cv(G) \cap C^{\infty}(G)$.

3 Example (fundamental solution)

$$\chi_m(x,0) = \begin{cases} |x|^{2-\frac{n}{n-m+1}} & if \quad m < \frac{n}{2} + 1, \\ \ln|x| & if \quad m = \frac{n}{2} + 1, \\ -|x|^{2-\frac{n}{n-m+1}} & if \quad m > \frac{n}{2} + 1. \end{cases}$$

Thus, when $m < \frac{n}{2} + 1$, the fundamental solution is bounded and Lipschitz, when $m \ge \frac{n}{2} + 1$, it is equal $-\infty$ at the point x = 0. Note that at m = n, i.e. for the subharmonic case it coincides with fundamental solution of the Laplass operator Δ .

4 Weakly convergence of m-convex functions

We will continue our study of Borel measures

$$\left\{ H^k(u) \ge 0, \ \forall x \in D, \ k = 1, 2, ..., n - m + 1 \right\}$$

in the class $u(x) \in m - cv(D) \cap L^{\infty}_{loc}(D)$.

Theorem 3. If $u(x) \in m - cv(D) \cap L^{\infty}_{loc}(D)$ and $u_j(x) \in m - cv(D)$ are sequences of monotonically decreasing functions, converging to $u(x), u_j(x) \downarrow u(x)$, then there is weakly convergence of measures $H^k(u_j) \mapsto H^k(u), \ k = 1, 2, ..., n - m + 1.$

Proof. Let us continue the functions u(x), $u_j(x)$ from $D \subset \mathbb{R}^n_x$ to $D \times \mathbb{R}^n_y$, as sh_m -functions $u^c(z)$, $u_j^c(z) \in sh_m\left(D \times \mathbb{R}^n_y\right)$. Then $u^c(z) \in sh_m\left(D \times \mathbb{R}^n_y\right) \cap L^{\infty}_{loc}\left(D \times \mathbb{R}^n_y\right)$ and $u_j^c(z) \downarrow u^c(z)$. According to Theorem Sadullaev-Abdullaev (see. [10]), Borel measures

$$H^{k}(u_{j}^{c}) = \frac{\mu^{k}}{k!(n-k)!} = \frac{1}{k!(n-k)!} \left(dd^{c}u_{j}^{c} \right)^{k} \wedge \beta^{n-k}$$

Mathematics Series. No. 3(115)/2024

weakly converges: $H^k(u_j^c) \mapsto H^k(u^c), \quad k = 1, 2, ..., n - m + 1$. This implies weakly convergence $H^k(u_j) \mapsto H^k(u), \quad k = 1, 2, ..., n - m + 1$.

As is known, if $\{u_{\alpha}(z)\} \subset sh_m(D \times \mathbb{R}^n_y)$, $D \times \mathbb{R}^n_y \subset \mathbb{C}^n$, a family of uniformly bounded, strongly *m*-subharmonic functions, then for any compact set $K \subset C$ there exists a constant C(K), such that the integral averages

$$\int_{K} \left(dd^{c} u_{\alpha} \right)^{k} \wedge \beta^{n-k} \leq C\left(K \right), \quad k = 1, 2, ..., n - m + 1$$

(see. [10]). From this it follows that the Hessians

$$H^{k}(u_{\alpha}) = \frac{1}{k!(n-k)!} (dd^{c}u_{\alpha})^{k} \wedge \beta^{n-k},$$

which are Borel measures, are uniformly bounded on average on compact subsets of the domain D. This fact, discovered by Chern-Levine-Nirenberg [24] for a class of psh functions, then it played a main role in the construction of the theory of potential in the class psh and sh_m functions.

Here we will prove a similar fact for Hessians $H^k(u)$, k = 1, 2, ..., n-m+1, in the class of m-cv(D), $D \subset \mathbb{R}^n$, functions. At the same time, we note that, if in a class $sh_m(D \times \mathbb{R}^n_y)$, $D \times \mathbb{R}^n_y \subset \mathbb{C}^n$, the proof is based on differential forms and Stokes' Theorem, then for the estimate $H^k(u)$, k = 1, 2, ..., n-m+1, in the class of m - cv(D), $D \subset \mathbb{R}^n$, we do not have this technique.

Theorem 4. If $\{u_{\alpha}(x)\} \subset m - cv(D), D \subset \mathbb{R}^n_x$, is a family of locally uniformly bounded *m*-convex functions, then the family of measures $\{H^k(u_{\alpha})\}, k = 1, 2, ..., n - m + 1$, in Hessians are uniformly bounded on average on compact subsets of the domain *D*. In other words, for any compact set $K \subset D$ there is a constant C(K) that is upper bound for integral averages

$$\int_{K} H^{k}(u_{\alpha}) \le C(K), \quad k = 1, 2, ..., n - m + 1.$$

Proof. Let us use Proposition 1 and Definition 3. We put \mathbb{R}_x^n in \mathbb{C}^n , $\mathbb{R}_x^n \subset \mathbb{C}_z^n = \mathbb{R}_x^n + i\mathbb{R}_y^n$ (z = x + iy), as a real *n*-dimensional subspace of a complex space \mathbb{C}^n and construct a family of locally uniformly bounded functions. $\{u_\alpha^c(z)\} \subset sh_m(D \times \mathbb{R}_y^n)$. For this family Borel measures $\{H^k(u_\alpha^c)\}$, k = 1, 2, ..., n - m + 1 is uniformly bounded on average on compact subsets of the domain. $D \times \mathbb{R}_y^n$. From the definition of measures $\{H^k(u_\alpha)\}$ in Hessians it follows that the family of measures $\{H^k(u_\alpha)\}$, k = 1, 2, ..., n - m + 1 is uniformly bounded on average on compact subsets of the domain D.

Acknowledgments

The authors express their sincere gratitude to Professor Azimbay Sadullaev for multiple discussions of the results work and for valuable advice.

Author Contributions

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

- 1 Błocki, Z. (2005). Weak solutions to the complex Hessian equation. Annales de l'Institut Fourier, 55(5), 1735–1756. https://doi.org/10.5802/aif.2137
- 2 Dinew, S., & Kolodziej, S. (2014). A priori estimates for the complex Hessian equations. Analysis and Partial Differential Equations, 7(1), 227–244. https://doi.org/10.2140/apde.2014.7.227
- 3 Dinew, S., & Kolodziej, S. (2018). Non standard properties of m-subahrmonic functions. Dolomites Research Notes on Approximation, 11(4), 35–50. https://doi.org/10.14658/PUPJ-DRNA-2018-4-4
- 4 Dinew, S. (2022). m-subharmonic and m-plurisubharmonic functions: on two problems of Sadullaev. Annales de la Faculte des sciences de Toulouse : Mathematiques, Serie 6, 31(3), 995–1009. https://doi.org/10.5802/afst.1711
- 5 Li, S.Y. (2004). On the Dirichlet problems for symmetric function equations of the eigenvalues of the complex Hessian. Asian J. Math., 8(1), 87–106. https://doi.org/10.4310/AJM.2004.v8.n1.a8
- 6 Lu, H.C. (2013). Solutions to degenerate Hessian equations. Journal de Mathématiques Pures et Appliquées, 100(6), 785–805. https://doi.org/10.1016/j.matpur.2013.03.002
- 7 Lu, H.C. (2015). A variational approach to complex Hessian equations in Cⁿ. Journal of Mathematical Analysis and Applications, 431(1), 228–259. https://doi.org/10.1016/j.jmaa.2015.05.067
- 8 Lu, H.C., & Nguyen, V.D. (2015). Degenerate complex Hessian equations on compact Kehler manifolds. *Indiana University Mathematics Journal*, 64 (6), 1721–1745. https://doi.org/10.1512/ iumj.2015.64.5680
- 9 Sadullaev, A. (2012). Teoriia pliuripotentsiala. Primeneniia [Theory of pluripotential. Applications]. Palmarium Akademic Publishing [in Russian].
- 10 Sadullaev, A., & Abdullaev, B. (2012). Potential theory in the class of m-subharmonic functions. Proc. Steklov Inst. Math., 279, 155–180. https://doi.org/10.1134/S0081543812080111
- 11 Abdullaev, B.I., Imomkulov, S.A., & Sharipov, R.A. (2021). Struktura osobykh mnozhestv nekotorykh klassov subgarmonicheskikh funktsii [Structure of singular sets of some classes of subharmonic functions]. Vestnik Udmurtskogo universiteta. Matematika. Mekhanika. Kompiuternye nauki – Bulletin of Udmurt University. Mathematics. Mechanics. Computer science, 31(4), 519–535 [in Russian]. https://doi.org/10.35634/vm210401
- 12 Aleksandrov, A.D. (1955). *Intrinsic Geometry of Convex Surfaces*. German transl., Berlin: Akademie Verlag.
- 13 Bakelman, I.J. (1994). Convex Analysis and Nonlinear Geometric Elliptic Equations. Springer-Verlag: Berlin-Heidelberg.
- 14 Pogorelov, A.V. (1973). *External geometry of convex surfaces, 35.* Translations of mathematical monographs: American Mathematical Soc.
- 15 Artykbaev, A. (1984). Recovering convex surfaces from the extrinsic curvature in Galilean space. Mathematics of the USSR-Sbornik, 47(1), 195–214. https://doi.org/10.1070/sm1984v047n01abeh 002637
- 16 Trudinger, N.S. (1997). Weak solutions of Hessian equations. Comm. Partial Differential Equations, 22(7-8), 1251–1261. https://doi.org/10.1080/03605309708821299
- 17 Trudinger, N.S., & Chaudhuri N. (2005). An Alexsandrov type theorem for k-convex functions. Bulletin of the Australian Mathematical Society, 712(2), 305–314. https://doi.org/10.1017/S0004 972700038260
- 18 Trudinger, N.S., & Wang, X.J. (1997). Hessian measures I. Topological Methods in Nonlinear Analysis, 10(2), 225–239. https://doi.org/10.12775/TMNA.1997.030

- 19 Trudinger, N.S., & Wang, X.J. (1999). Hessian measures II. Annals of Mathematics, 150(2), 579–604. https://doi.org/10.2307/121089
- 20 Trudinger, N.S., & Wang, X.J. (2002). Hessian measures III. Journal of Functional Analysis, 193(1), 1–23. https://doi.org/10.1006/jfan.2001.3925
- 21 Ivochkina, N.M., Trudinger, N.S., & Wang, X.J. (2005). The Dirichlet problem for degenerate Hessian equations. *Communications in Partial Differential Equations*, 29(1-2), 219–235. https://doi.org/10.1081/PDE-120028851
- 22 Wang, X.J. (2009). The k-Hessian equation. In: Chang, SY., Ambrosetti, A., Malchiodi, A. (eds) Geometric Analysis and PDEs. Lecture Notes in Mathematics, 1977, 177–252. https://doi.org/ 10.1007/978-3-642-01674-5_5
- 23 Sharipov, R.A., & Ismoilov, M.B. (2023). m-convex (m cv) functions. Azerbaijan Journal of Mathematics, 13(2), 237-247. https://doi.org/10.59849/2218-6816.2023.2.237
- 24 Chern, S.S., Levine, H., & Nirenberg, L. (1996). Intrinsic norms on a complex manifold. A Mathematician and His Mathematical Work, 332–352. https://doi.org/10.1142/9789812812834 0024

Author Information*

Mukhiddin Bakhrom ugli Ismoilov — PhD student, National University of Uzbekistan named after Mirzo Ulugbek, University str 4, Tashkent, 100174, Uzbekistan; e-mail: *mukhiddin4449@gmail.com*; https://orcid.org/0009-0005-9339-0582

Rasulbek Axmedovich Sharipov (corresponding author) — PhD, Department of Mathematical analysis, Urgench State University; Institute of Mathematics named after. V.I. Romanovsky Academy of Sciences of Uzbekistan, Kh. Alimdjan str 14, 220100, Urgench, Uzbekistan; e-mail: *r.sharipov@urdu.uz*; https://orcid.org/0000-0002-3033-3047

 $^{^{*}}$ The author's name is presented in the order: First, Middle and Last Names.