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Geometric approach to define a railway plan model
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The construction of new railway lines is based on the railway plan. There are various ways to draw up
a railway plan. The basis of all railway plans is a scheme of geometric point locations, the projection of
the center of gravity of the carriage is on a horizontal plane and consists of a single flat line. The railway
plan consists of linear and curved parts connecting straight sections. However, the curves determining the
position of the rails of the railway track in the curved part will be spatial. To extinguish the centrifugal force
arising in the curved part of the road, an external rail rises. In this case, the elevated curve representing
the outer rail becomes spatial. Therefore, in the work, it is proposed to draw up a plan of a railway track
as two curves, one of which is flat, and the other depicts an external spatial rail. In this case, the distance
between the ends of the rectilinear parts and the angle between the rectilinear parts are selected as the main
parameters. In the work, for the simplest case, when both linear parts belong to the same horizontal plane,
it is proved that the curved part is a spatial curve. The curvature of the required curve was determined
and a dynamic system was constructed, the solution of which would be a curve that satisfied the technical
conditions presented for the railway route. This dynamic system is proposed as a mathematical model of
the railway route. In the rectilinear parts, the railway plan is straight on a horizontal plane. The curve of
the road should be spatial.
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Introduction

Railroad plan design has been the main issue of practical experience for many years. The railway
plan consists of linear parts and curved parts connecting them [1]. The curved part of the plan has
a curvature that is the inverse of the radius of the touching circle. Existing methods consider the
curved part of the plan to be a flat curve. For technical reasons, the curved part of the plan must be
spatial [2]. The work determines the steepness of the curve, which is the route plan, and provides a
mathematical model with which one can determine the equation of the route.

There are methods for designing and reconstructing existing roads using laser technology [3]. Re-
construction of existing roads using modern technologies is expensive [4].

1 Elements of the railroad plan

The railway plan is the projection of the track axis onto a horizontal plane. The railway in plan is
a combination of alternating linear and curved sections [5].

In straight sections, the main parameter is its direction, the technical name of which is azimuth. In
this case, the railway plan is linear on a horizontal plane. But even on a horizontal plane, due to the
terrain, the presence of settlements and other obstacles, there is a need to change the azimuth. The
new azimuth defines a new straight section on the horizontal plane.
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The pairing of linear sections with each other is carried out using curves. The presence of curves
in the railway plan is due to the need to deviate the route from the linear direction for the purpose of
bypassing [6].

The angle α between linear sections is called the angle of rotation. When a railway plan is considered
only the horizontal plane α ∈ (0, π). In general, α can take any value. If the linear sections belong
to horizontal planes of different levels, the connecting curve has the form of a spiral, then the angle
of rotation can take on arbitrary values. A section of a railway plan, on a horizontal plane, with a
rotation angle α can be represented in the form of two rays that make up this rotation angle (Fig. 1).

Figure 1. Curved section of the railway plan

The simplest, cost-effective solution for choosing a curved section is a circle of radius R and another
connecting points A and B of the straight sections a and b of the turn (Fig. 1). The position of the
railway significantly depends on the value of the radius of the circle R and it is called the radius of the
curve [7].

In the railway there are special tables that determine the radius of the curve R, taking into account
the technical and economic requirements for a given road [8]. In addition, the curved part of the road
is considered clothoidal [9, 10]. This table is compiled taking into account the need to limit the speed
of trains, removal of the designed line, increased wear of the rails, increased costs for the ongoing
maintenance of the upper structure of the track and repair of rolling stock and other factors associated
with the operation of the road.

Note that the curve of a railway plan section on a horizontal plane is considered as a flat curve on
this plane.

2 Properties of the curve describing the railway plan

To study the curve of the railway plan, it is important to consider the point describing the curve
in the profile section by the movement of the wagon.

When the wagon moves in a linear direction on a horizontal plane, the plan of the railway will be
a straight line, which is obtained by moving point M in azimuth (Fig. 2).
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Figure 2. The profile of the movement of the wagon in a straight section

Here N is the center of gravity of the wagon and pointM is its projection on the horizontal plane π0.
The plan of a railway track is understood as the geometric location of points M on a horizontal plane.
These geometric locations of points generally determine the curve that defines the railroad plan. As
stated above, this curve consists of linear and curved parts connecting straight parts.

To clarify the geometry of the curve formed by the point M , we consider the mechanics of the
movement of the wagon when turning, that is, when moving from one straight section to the next,
when these straight sections both belong to the same horizontal plane.

Theorem 1. With curved sections of the railway plan, the trace of point M will be a spatial curve.
Proof. We will prove the theorem for the simplest case of the railway plan, when both linear sections

a and b of the railway plan belong to the same horizontal plane α.
The proof of the theorem in complex conditions, that is, at least in the case of a and b lying on

different horizontal planes, becomes obvious, since the connection of points A and B at different levels
ensures the spatiality of the curve of the railway plan.

To prove the theorem, let’s consider the profile of the movement of the wagon in a curve, which
looks like the one shown in Figure 3. To avoid the influence of centrifugal force when the part is curved,
an elevation of the outer rail h is arranged in relation to the inner one. The value of h depends on the
radius of R and the speed of the train in this section.

Figure 3. The profile of the movement of the wagon in a curve section

If we establish a Cartesian coordinate system with the origin at point A and the direction of
the x-axis along the direction of the segment AB, the y-axis is perpendicular to the x-axis and the
z-axis is along the normal of the horizontal plane, then the point M ′ has three coordinates (x0, y0, z0).
Moreover, the value of z0 depends on the value of h and will be different from zero, if h 6= 0. In the
curved part of the railway plan there is h 6= 0, therefore the curve that is the trace of point M is
spatial. The theorem is proved.
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To study the movement of pointM of the railway plan, the horizontal plane π0 is taken as the plane
z = 0. We select the y-axis perpendicular to the x-axis with a positive direction to the corresponding
direction of the linear part starting from point B.

Figure 4. The inner path of the curve section

Let’s assume that points A and B are connected to an arc of a circle with radius R and center at
point O′(x0, y0).

With the current selection of the coordinate system, the points A and B have the following coor-
dinates A(0, 0) and B(2x0, 0). The equation of a circle with center at point O′(x0, y0) and radius R
has the form

(x− x0)2 + (y − y0)2 = x2
0 + y2

0, (1)

since
R2 = x2

0 + y2
0.

The same equation can be written in parametric form:{
x = x0 +

(
x2

0 + y2
0

) 1
2 cos t,

y = y0 +
(
x2

0 + y2
0

) 1
2 sin t,

where the parameter t = S

(x20+y20)
1
2
is proportional to the length of the circular arc.

When the train moves along a curved part of the road, in order to extinguish the centrifugal force
that appears when turning, the outer country of the rail is raised to a certain height H. The value of
H depends on the radius of the curve R and on the speed of the train.

The position of the base of the wagon when turning is shown schematically in Figure 5.

Figure 5. Deviation from the horizontal plane
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The horizontal plane π0 takes on another position πψ, where ψ is the angle between these planes.
But the size of the angle ψ depends on the value of H. In this case, point M of the railway plan goes
into point M ′ on the plane πψ. Since the point M ′ differs from the M belonging to the horizontal
plane, it is spatial. Therefore, the curve describing the point M will also be spatial.

The technical and economic requirement for railways prefers not to change the internal part of the
track rail. Therefore, it is advisable to select plane π0 so that the inner part of the road rail remains
on a horizontal plane. Then the road traffic pattern takes the following form.

Figure 6. Deviation from the horizontal plane while maintaining the internal path on the horizontal
plane

At the same time, the spatiality of the curve formed by the point M ′ remains.
In Figures 5 and 6, L1 and L2 indicate the track rails. It is obvious in Figure 6 that the inner part

of the track rail is left unchanged and the outer part, that is, the point L2 goes into the point L′2.
Note that changes in point L2 linearly depend on pointM and on the track width, which is constant.

The position of the point L′2 is completely determined by the position of the point M ′. Therefore, we
can reason only with respect to the point M ′.

Let us assume that, relative to the section AB, the radius R is selected and the speed V is the
passage of the train. Then the lifting height of the outer rail HAB can be accurately determined, so
that the inner side of the track rail remains on a horizontal plane.

Then the plane π0 to which the circular arc belongs can be accurately determined by the equation.
This plane will be the plane passing through the points (x0, y0, 0), (0, 0, H) and (2x0, 0, H) of the
equation of this plane.

z = H

(
x

x0
+

y

y0
− 2

)
. (2)

The curve M ′ described by the point M is a spatial curve relative to the railway plan described by
the point M , but belongs to the plane (2). The equation of this curve can be written in metric form:

x = x0 +
(
x2

0 + y2
0

) 1
2 cos t,

y = y0 +
(
x2

0 + y2
0

) 1
2 sin t,

z =
(x20+y20)

1
2

x0
cos t+

(x20+y20)
1
2

y0
sin t− 2.

But curve γ will not be a continuous continuation of the path; it lies on a different plane relative
to the horizontal plane. A connection should be established using an additional curve connecting the
curve γ with the linear part a and b. For this purpose, we divide ÂB into three parts ÂC, ĈD and
D̂B with the condition that the length of the arc ÂC and D̂B in duration is greater than the length
of the two wagons. This is a general requirement for a curved part to ensure smooth movement of the
train along that part. Let’s assume that points C ′ and D′ are the images of points C and D on the
curve γ. Then we take part of the curve γ with ends at points C ′ and D′ as a part of the route.

It is required to construct a part of the railway plan connecting points A and C ′, also points D′

and B, so that when crossing the curve AC ′D′B, the smooth movement of the train is ensured.
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We denote by γ1 and γ2 the curved parts of the curve connecting points A and B consisting of the
arc ÂC ′ and D̂′B, respectively. For convenience, curves γ1 and γ2 can be considered symmetrical with
respect to the bisector x0 of the angle formed by the straight part a and b of the railway plan (Fig. 7).

Figure 7. The curve of the outer rail

The curve equation of part γ1 can be thought of as a spatial curve connecting points A(0, 0, 0) and
C ′(x1, y1, z1) ∈ γ with curvature k = 1

(x20+y20)
1
2
and torsion σ.

But torsion σ can be considered a linearly increasing function of the length of the road in the form
σ = m · s+ e. Moreover, given R and V , the values of m and e can be determined. Thus, curvature k
and torsion σ are functions of R radius of curvature and speed of movement. Then, using the Frenier
formula [11] for the curve γ1 , one can determine the equation of the curve. Having obtained the
equation of the curve, we can calculate the size of the railway track with the necessary accuracy, which
ensures the safe movement of the train along this track.

3 Dynamic system for determining the route schedule

The railway with the curved part is called the railway route. It has been proven that the route is
a spatial curve.

In the previous section it was shown that the radius of the curved part of the railway plan completely
determines the curvature of the curved part of the route [12].

Torsion of the curved part of the road is defined as a change in the angle of the contacting plane
of the curve representing the road route.

If the curve is given by the vector equation

~r(s) = ~x(s)i+ ~y(s)j + ~z(s)k,

where s is mastiff curve length, {i, j, k} is basis vectors and x(s), y(s), z(s) ∈ C2.
Then the touching plane at point (x0, y0, z0) is determined by the formula:∣∣∣∣∣∣

x− x0 y − y0 z − z0

x′(s0) y′(s0) z′(s0)
x′′(s0) y′′(s0) z′′(s0)

∣∣∣∣∣∣ = 0.

Consider at two points M(x0, y0, z0) and N(x0 + ∆x, y0 + ∆y, z0 + ∆z) the osculating plane of
the curve γ. Let us determine the angle ∆ψ between these planes. Speed change of angle ψ between
osculating planes

lim
∆s→0

∆ϕ

∆s
= ϕ′s = σ

called torsion of a curve into points M(x0, y0, z0).
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The torsion of plane curves is zero everywhere.
If we have a vector equation of a curve given by formula (1), then the curvature and torsion of the

curve are calculated by the formulas [13, 14]:

k =
∣∣r′′(s)∣∣

and
σ =

|(r′r′′r′′′)|
k2

.

It should be noted that the curvature depends on the coordinates of the center of the osculating
circle (x0, y0). The radius of the osculating circle is calculated using the formula R =

√
x2

0 + y2
0. The

torsion of the curve is determined depending on the radius R and the rise h- the outer part of the track
rail σ = f(R, h).

But the parameters R, h can be selected depending on the requirements for the road, which are
determined by technical and economic conditions. Therefore, Frenier’s formula

τ̇ = kν,
ν̇ = −kτ − σβ
β̇ = σν

(3)

is a dynamic system of differential equations overestimated from parameters R and V . The path
equation is a solution to the dynamic system (3). Setting parameters R, h is completely determined
by the solution of the system. Therefore, system (3) can be taken as a mathematical model of the
railway route.

Author Contributions

All authors contributed equally to this work.

Conflict of Interest

The authors declare no conflict of interest.

References

1 Verbilo, V.A., & Kozhedub, S.S. (2018). Osnovy proektirovaniia odnoputnykh zheleznykh dorog
[Fundamentals of designing single-track railways: educational method. Allowance]. M-transp.
and communications Rep. Belarus, Belorussian state university of transport. Gomel: BelGUT
[in Russian].

2 Dyunin, A.K., & Protsenko, A.I. (1967). Analiticheskii metod proektirovaniia pereustroistva
i zheleznodorozhnogo puti v plane [Analytical method for designing reconstruction and railway
tracks in plan]. Novosibirsk Publishing house NIIZhT [in Russian].

3 Gashaw, T., & Jilcha, K. (2022). Design risk modeling and analysis for railway construction
projects. International Journal of Construction Management, 23 (14), 2488–2498.
https://doi.org/10.1080/15623599.2022.2070344

4 Norberg, A. (2012). Implementing building information modeling within the railway sector.
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