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Expansion formulas associated with the multidimensional Lauricella hypergeometric functions are well-
established and extensively utilized. However, the recurrence relations inherit in these formulas add extra
complexities to their use. A thorough analysis of the characteristics of these expansion formulas shows that
they can be simplified and converted into a more convenient form. This paper presents new recurrence free
decomposition formulas, which are employed to solve boundary value problems.
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Introduction

The theory of multidimensional hypergeometric functions has gained significant interest because of
its capability to solve numerous applied problems involving partial differential equations (for details,
see [1]; also the references quoted in to [2] and [3]). As shown in work [4], for instance, hypergeometric
special functions with many arguments can be widely used to estimate the energy absorbed by the non
ferromagnetic conducting sphere located inside an internal magnetic field. In addition to their using in
solving partial deferential equations, hypergeometric series of several variables are utilized into different
quantum physical problems and also in quantum chemical applications [2,5]. Inter alia, the second order
degenerate differential equations in partial derivatives of elliptic-parabolic types, which are particularly
widespread in studying gas dynamics problems may be solved by means of diverse multidimensional
Gaussian series. Interesting examples consist of the studying problem of the adiabatic plane parallel
to the liquid or gas flow without any vortex. Also the problem of the flow of supersonic current from
a container with smooth walls and several other technical issues of gas-liquid flow may arise in various
applications [6, 7].

It is very essential to highlight that Riemann’s and Green’s special functions, as well as the fun-
damental solutions with singularity of the second order degenerate differential equations with partial
derivatives may be also expressed by multidimensional Gaussian series. When we research problems
with boundary values for similar differential equations in partial derivatives, we need to expand hyper-
geometric special functions of several variables into more simpler types of special functions, like Gauss
or Appell functions.
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The known operator method of Burchnall and Chaundy [8] has been very widely used by scientists
to receive formulas for expanding of hypergeometric functions of two independent arguments, the
known operator method of Burchnall and Chaundy [8] has been very widely used by scientists to
receive formulas for expanding of hypergeometric Gaussian series of two variables, expressing through
the use of simple Gauss’ hypergeometric series of one variable.

Based on the fundamental work of Burchnall and Chaundy [8], Hasanov and Srivastava [9, 10] in-
troduced formulas which extend the capabilities Burchnall-Chaundy operator, this leads to another
expansion formulas for various hypergeometric series of three variables. They also established recur-
rent formulas for higher-dimensional hypergeometric functions. Nonetheless, the recurrence introduces
potential complications when applying these decomposition formulas.

In this study, we develop novel decomposition formulas for all four multiple Lauricella’s hypergeo-
metric functions, providing they are independent of recurrence.

1 The expansions of Appell’s two-variable functions

The decomposition of a hypergeometric series with many arguments into several simpler components
is one of the main problems of the special functions theory. Such a decomposition is valuable because
it enables the simplification of complex calculations, reduces the dimensionality of the problem, and
facilitates the development of new identities and relationships between special functions.

In 1940, Burchnall and Chaundy [8] introduce the operators

∇ (h) =
Γ (h) Γ (δ1 + δ2 + h)

Γ (δ1 + h) Γ (δ2 + h)
, ∆ (h) =

Γ (δ1 + h) Γ (δ2 + h)

Γ (h) Γ (δ1 + δ2 + h)
, (1)

where δ1 = x
∂

∂x
and δ2 = y

∂

∂y
, through which they penned

F2

(
a, b, b′; c, c′;x, y

)
= ∇(a)F (a, b; c;x)F (a, b′; c′; y), (2)

F3

(
a, a′, b, b′; c;x, y

)
= ∆(c)F (a, b; c;x)F (a′, b′; c; y),

F1

(
a, b, b′; c;x, y

)
= ∇(a)∆(c)F (a, b; c;x)F (a, b′; c; y),

F4

(
a, b; c, c′;x, y

)
= ∇(a)∇(b)F (a, b; c;x)F (a, b; c′; y),

thus decomposing Appell’s functions using operators ∆ and ∇; they also obtained transformations of
Appell’s functions including

F1

(
a, b, b′; c;x, y

)
= ∇(a)F3

(
a, a, b, b′; c;x, y

)
,

F1

(
a, b, b′; c;x, y

)
= ∆(c)F2

(
a, b, b′; c, c;x, y

)
,

F4

(
a, b; c, c′;x, y

)
= ∇(b)F2

(
a, b, b; c, c′;x, y

)
,

and some others.
These symbolic representations are utilized to derive numerous expansions of Appell’s functions

either as products of ordinary hypergeometric functions or conversely. For instance, employing Gauss’
formula [11; 73],

F (a, b; c;x) ≡ F
[
a, b;
c;

x

]
=

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, c 6= 0,−1,−2, ...

F (a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

, c 6= 0,−1,−2, ..., Re(c− a− b) > 0 (3)
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we symbolically express

∇(h) =
∞∑
r=0

(−δ)r(−δ′)r
(h)rr!

.

Now, by virtue of Poole’s formula [12; 26]

(−δ)rf(r) = (−1)rxr
drf(r)

dxr
,

we obtain
(−δ)rF (a, b; c;x) = (−1)r

(a)r(b)r
(c)r

xrF (a+ r, b+ r; c+ r;x)

and therefore (2) indicates the decomposition formula [8]

F2

(
a, b, b′; c, c′;x, y

)
=

∞∑
r=0

(a)r (b)r (b′)r
r! (c)r (c′)r

×

× xryrF (a+ r, b+ r; c+ r;x)F
(
a+ r, b′ + r; c′ + r; y

)
.

(4)

Through the inversion of (2) in the following form

F (a, b; c;x)F (a, b′; c′; y) = ∆(a)F2

(
a, b, b′; c, c′;x, y

)
and an associated expansion of ∆(a), which is related to (4),

F (a, b; c;x)F
(
a, b′; c′; y

)
=

∞∑
r=0

(−1)r
(a)r (b)r (b′)r
r! (c)r (c′)r

×

× xryrF2

(
a+ r, b+ r, b′ + r; c+ r, c′ + r;x, y

)
is obtained.

These expansions can be established through coefficient comparison of corresponding powers of x
and y.

Applying their way, Burchnall and Chaundy enacted 15 couples of expansions that binds Appell’s
two-variables functions to one-variables ordinary hypergeometric functions, along with many additional
expansion formulas involving hypergeometric series of many variables and confluent hypergeometric
series of Humbert.

The introduced method is applicable to functions with two arguments, relies on symbolic operators
that are mutually inverse, as detailed in subsequent literature [8].

2 Decomposition formulas for multiple Lauricella hypergeometric functions

To extend the operators ∇ (h) and ∆ (h) introduced in (1), Hasanov and Srivastava [9,10] proposed
new operators

∇̃x1;x2,...,xn (h) =
Γ (h) Γ (δ1 + ...+ δn + h)

Γ (δ1 + h) Γ (δ2 + ...+ δn + h)
,

∆̃x1;x2,...,xn (h) =
Γ (δ1 + h) Γ (δ2 + ...+ δn + h)

Γ (h) Γ (δ1 + ...+ δn + h)
,

where δk = xk
∂

∂xk
(k = 1, n), through which they successfully derived decomposition formulas for the

entire class of multiple Gauss series.
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Based on the ideas presented in [8], Hasanov and Srivastava [9] demonstrated that the recurrence
formulas [10] hold for all n ∈ N\{1}.

F
(n)
A (a,b;c;x) =

∞∑
|k′|=0

(a)|k′|(b1)|k′|

(c1)|k′|
x
|k′|
1

n∏
j=2

(bj)kj
kj ! (cj)kj

x
kj
j ×

× F
(
a+ |k′|, b1 + |k′|;c1 + |k′|;x1

)
F

(n−1)
A

(
a+ |k′|,b′ + k′; c′ + k′;x′

)
,

(5)

F
(n)
B (a,b; c;x) =

∞∑
|k′|=0

(−1)|k
′| (a1)|k′| (b1)|k′|

(c− 1 + |k′|)|k′| (c)2|k′|
x
|k′|
1

n∏
j=2

(aj)kj (bj)kj
kj !

x
kj
j ×

× F
(
a1 + |k′|, b1 + |k′|; c+ 2|k′|;x1

)
F

(n−1)
B

(
a′ + k′,b′ + k′; c+ 2|k′|;x′

)
,

(6)

F
(n)
C (a, b;c;x) =

∞∑
|k′|+|l′|=0

[
(a)|k′|

]2
(b)2|k′|+|l′|

(a)|k′| (c1)|k′|+|l′|
x
|k′|+|l′|
1

n∏
j=2

x
kj+lj
j

kj !lj ! (cj)kj+lj
×

× F
(
a+ |k′|+ |l′|, b+ 2|k′|+ |l′|;c1 + |k′|+ |l′|;x1

)
,

F
(n−1)
C

(
a+ |k′|+ |l′|, b+ 2|k′|+ |l′|; c′ + k′;x′

)
,

(7)

F
(n)
D (a,b; c;x) =

∞∑
|k′|+|l′|=0

(−1)|k
′| (a)2|k′|+|l′| (b1)|k′|+|l′| (c)2|k′|

(c− 1 + |k′|)|k′|
[
(c)2|k′|+|l′|

]2 x
|k′|+|l′|
1 ×

×
n∏
j=2

(bj)kj+lj
kj !lj !

x
kj+lj
j F

(
a+ 2|k′|+ |l′|, b1 + |k′|+ |l′|; c+ 2|k′|+ |l′|;x1

)
,

F
(n−1)
D

(
a+ 2|k′|+ |l′|,b′ + k′ + l′; c+ 2|k′|+ |l′|;x′

)
,

(8)

where
|k′| := k2 + ... + kn, k2 ≥ 0, ..., kn ≥ 0; |l′| := l2 + ... + ln, l2 ≥ 0, ..., ln ≥ 0; x′ := (x2, ..., xn);

a′ + a′ := (a2 + k2, ..., an + kn) and so on.
Certain properties of the Lauricella F

(n)
A function have been studied previously, differentiation

formulas, limit formulas, new integral representations and several decomposition formulas have been
derived [13]. Nevertheless, the recurrence that presents in formulas (5)–(8) may introduce additional
complexities when applying these expansions. Further investigation into the properties of Lauricella
functions has shown that these recurrence formulas can be simplified into more manageable forms.

3 New recurrence free decomposition formulas for the Lauricella hypergeometric functions

Until the presentation the main results, let’s determine some necessary notations

A(k) = A(k, n) =
k+1∑
i=2

n∑
j=i

mi,j , A(0) = 0; B(k) ≡ B(k, n) =
k∑
i=2

mi,k +
n∑

i=k+1

mk+1,i,

|mn| :=
n∑
i=2

n∑
j=i

mi,j , Mn! :=

n∏
i=2

n∏
j=i

mi,j !,

C(k) ≡ C(k, n) =
k+1∑
i=2

n∑
j=i

pi,j , C(0) = 0; D(k) ≡ D(k, n) =
k∑
i=2

mi,k +
n∑

i=k+1

pk+1,i,
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|pn| :=
n∑
i=2

n∑
j=i

pi,j , Pn! :=
n∏
i=2

n∏
j=i

mi,j !,

where k, n ∈ N, k ≤ n; mi,j ∈ N ∩ {0} (2 ≤ i ≤ j ≤ n); if we interpret the
s∑
i=2

as zero when s = 1, for

instance, our notations A(0) = B(1) = C(0) = D(1) = 0 are adopted.
Theorem 1. The following expansion formulas hold at n ∈ N

F
(n)
A (a,b; c;x) =

∞∑
|mn|=0

(a)A(n)

Mn!

n∏
k=1

(bk)B(k)

(ck)B(k)
×

×
n∏
k=1

x
B(k)
k F

[
a+A(k), bk +B(k);
ck +B(k);

xk

]
,

(9)

F
(n)
B (a,b; c;x) =

∞∑
|mn|=0

(−1)A(n)

(c)2A(n)Mn!
×

×
n∏
k=1

(ak)B(k) (bk)B(k)

(c− 1 +A(k)−A(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

x
B(k)
k F

[
ak +B(k), bk +B(k);
c+ 2A (k) ;

xk

]
,

(10)

F
(n)
C (a, b; c;x) =

∞∑
|mn|+|pn|=0

[
(a)A(n)+C(n)

]2
(b)2A(n)+C(n)

Mn!Pn!
×

×
n∏
k=1

x
B(k)+D(k)
k

(ck)B(k)+D(k) (a+A(k − 1) + C(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

F

[
a+A(k) + C(k), b+ 2A(k) + C(k);
ck +B(k) +D(k);

xk

]
,

(11)

F
(n)
D (a,b; c;x) =

∞∑
|mn|+|pn|=0

(−1)A(n)(a)2A(n)+C(n)

Mn!Pn!
[
(c)2A(n)+C(n)

]2×
×

n∏
k=1

(c+ 2A(k − 1) + C(k − 1))2A(k)−2A(k−1) (bk)B(k)+D(k)

(c+A(k) +A(k − 1) + C(k − 1))A(k)−A(k−1)
×

×
n∏
k=1

x
B(k)+D(k)
k F

[
a+ 2A(k) + C(k), bk +B(k) +D(k);
ck + 2A(k) + C(k);

xk

]
.

(12)

Proof. Equality (9) is proved with the help of the mathematical induction method. Three new
equalities (10)–(12) are also proved by mathematical induction.

Corollary 1. Let a, b1,. . . , bn be real numbers with a, ck, ck− bk 6= 0, −1, −2, ... and a > |b|. Then
the ensuing limit formulas valid at n ∈ N

lim
x→0

{
x−bF

(n)
A

(
a,b; c; 1− 1

x

)}
=

Γ (a− |b|)
Γ(a)

n∏
k=1

Γ (ck)

Γ (ck − bk)
; (13)
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lim
x→0

{
x−bF

(n)
B

(
a;b; c; 1− 1

x

)}
=

Γ (c)

Γ (c− |b|)

n∏
k=1

Γ (ak − bk)
Γ (ak)

, (14)

where
x−b := x−b11 ...x−bnn ;

1

x
:=

(
1

x1
, ...,

1

xn

)
.

Proof. Due to the above decomposition formula (9) we get next formula

F
(n)
A

(
a,b; c; 1− 1

x

)
=

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
×

×
n∏
k=1

(
1− 1

xk

)B(k,n)

F

[
a+A(k, n), bk +B(k, n);
ck +B(k, n);

1− 1

xk

]
.

(15)

Now applying the well-known Boltz’s formula

F (a, b; c; z) = (1− z)−bF
(
c− a, b; c; z

z − 1

)
for each hypergeometric function within sum (15), we obtain

F
(n)
A

(
a,b; c; 1− 1

x

)
= xb

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
(xk − 1)B(k,n)×

×
n∏
k=1

F

[
ck − a+B(k, n)−A(k, n), bk +B(k, n);
ck +B(k, n);

1− xk
]
.

Utilizing the property parity of the sum

n∑
k=1

B(k) = 2
n∑
k=2

k∑
i=2

mi,k = 2
n−1∑
k=1

n∑
i=k+1

mk+1,i,

we calculate the limit

lim
x→0

{
x−bF

(n)
A

(
a,b; c; 1− 1

x

)}
=

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n)

(ck)B(k,n)
×

×
n∏
k=1

F

[
ck − a+B(k, n)−A(k, n), bk +B(k, n);
ck +B(k, n);

1

]
and utilizing identity (3) to transform the hypergeometric Gauss series in the final summation, by
virtue of the previously received equality [14]

∞∑
|mn|=0

(a)A(n,n)

Mn!

n∏
k=1

(bk)B(k,n) (a− bk)A(k,n)−B(k,n)

(a)A(k,n)
=

=
Γ (a− |b|)

Γ(a)

n∏
k=1

Γ(a)

Γ (a− bk)
,

we obtain equality (13). Equality (14) is proved analogously to the proof of (13).
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4 Applications of the recurrence free decomposition formulas

Two dimensional case. In case n = 2, the formula (9) was known since 1940 in the work [8] (see the
expansion (4)) and it was effectively used in studying problems with boundary values for the differential
equation of elliptic type with two singular coefficients

uxx + uyy +
2α

x
ux +

2β

y
uy = 0, [2α, 2β ∈ (0, 1)]

in the works [15,16].
Three dimensional case. A following decomposition formula

F
(3)
A (a, b1, b2, b3;c1, c2, c3;x1, x2, x3) =

=
∞∑

i,j,k=0

(a)i+j+k(b1)j+k(b2)i+k(b3)i+j
i!j!k!(c1)j+k(c2)i+k(c3)i+j

×

× xj+k1 F (a+ j + k, b1 + j + k;c1 + j + k;x1)×
× xi+k2 F (a+ i+ j + k, b2 + i+ k;c2 + i+ k;x2)×
× xi+j3 F (a+ i+ j + k, b3 + i+ j;c3 + i+ j;x3)

is used in solving various problems with boundary values for the three dimensional differential equation
of elliptic type with the three singular coefficients

uxx + uyy + uyy +
2α

x
ux +

2β

y
uy +

2γ

z
uz = 0, 0 < 2α, 2β, 2γ < 1

in the works [17–19].
Four dimensional case. Sixteen fundamental solutions were constructed for degenerate elliptic type

equation with four variables [20]

ymzktluxx + xnzktluyy + xnymtluzz + xnymzkutt = 0, m, n, k, l ≡ const > 0, (16)

by means of following recurrence free expansion formula for the hypergeometric Lauricella’s series of
four independent variables

F
(4)
A (a; b1, b2, b3, b4; c1, c2, c3, c4;x1, x2, x3, x4) =

=

∞∑
m2,m3,m4,
i,j,k=0

(a)m2+m3+m4+i+j+k
(b1)m2+m3+m4

(b2)m2+i+j
(b3)m3+i+k

(b4)m4+j+k

(c1)m2+m3+m4
(c2)m2+i+j

(c3)m3+i+k
(c4)m4+j+k

m2!m3!m4!i!j!k!
×

×xm2+m3+m4
1 xm2+i+j

2 xm3+i+k
3 xm4+j+k

4

×F (a+m2 +m3 +m4, b1 +m2 +m3 +m4; c+m2 +m3 +m4;x1)

×F (a+m2 +m3 +m4 + i+ j, b2 +m2 + i+ j; c2 +m2 + i+ j;x2)

×F (a+m2 +m3 +m4 + i+ j + k, b3 +m3 + i+ k; c3 +m3 + i+ k;x3)

×F (a+m2 +m3 +m4 + i+ j + k, b4 +m4 + j + k; c4 +m4 + i+ k;x4) .

Using the obtained fundamental solutions, several boundary value problems were solved in both
finite and infinite domains. For equation (16) in an infinite domain, Neumann, Dirichlet, and several
mixed boundary value problems were solved [21, 22]. In a finite domain the Holmgren’s problem
analogue was solved [23].
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Multidimensional case. It is known that all fundamental solutions of the elliptic type differential
equation of many variables with singular coefficients

L
(m,n)
α,λ (u) ≡

m∑
i=1

∂2u

∂x2i
+

n∑
j=1

2αj
xj

∂u

∂xj
= 0, 0 < 2αj < 1, j = 1, n (17)

in the domain Rn+m := {(x1, ..., xm) : x1 > 0, ..., xn > 0} (m ≥ 2, 1 ≤ n ≤ m) are expressed by the
Lauricella hypergeometric function F (n)

A in the forms

qk(x; ξ) = γkr
−2βk

n∏
i=1

x2αi
i

k∏
i=1

(xiξi)
1−2αi ×

× F (n)
A

[
βk, 1− α1, ..., 1− αk, αk+1, ..., αn;
2− 2α1, ..., 2− 2αk, 2αk+1, ..., 2αn;

σ

]
, k = 0, n,

(18)

where

βk =
m− 2

2
+ k −

k∑
i=1

αi +

n∑
i=k+1

αi, k = 0, n;

γk = 22βk−m
Γ (βk)

πm/2

k∏
i=1

Γ (1− αi)
Γ (2− 2αi)

n∏
i=k+1

Γ (αi)

Γ (2αi)
, k = 0, n;

ξ = (ξ1, ..., ξm) : ξ1 > 0, ..., ξn > 0; σ = (σ1, ..., σn) , σj = 1−
r2j
r2
,

r2 =
m∑
i=1

(xi − ξi)2, r2j = (xj + ξj)
2 +

m∑
i=1, i 6=j

(xi − ξi)2, j = 1, n.

The singularity of fundamental solutions. By means of the expansion formula (9), it can be shown
that the received fundamental solutions (18) have their singularity at r = 0. Indeed, it is easy to
rewrite a fundamental solution qk(x; ξ) in the form

qk(x; ξ) =
1

rm−2
q̃k(x; ξ), m > 2,

where

q̃k(x; ξ) = γkX
−|b|

k∏
i=1

xiξ
1−2αi
i

r2−2αi
i

n∏
i=k+1

(
xi
ri

)2αi

F
(n)
A

(
βk,b; c; 1− 1

X

)
,

X :=

(
r2

r21
, ...,

r2

r2n

)
, X−|b| :=

k∏
i=1

(
r

ri

)2−2αi n∏
i=k+1

(
r

ri

)2αi

,

|b| := k −
k∑
i=1

αi +

n∑
i=k+1

αi, b := (1− α1, ..., 1− αk, αk+1, ..., αn) ,

c := (2− 2α1, ..., 2− 2αk, 2αk+1, ..., 2αn) , k = 0, n.

Now using limit relation (13), we see that the function q̃k(x; ξ) is a limited expression at x→ ξ:

lim
r→0

q̃k(x; ξ) =
1

4πm/2
Γ

(
m− 2

2

)
.
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So, the constructed fundamental solutions of the differential equation (17) have a singularity of the
order m− 2 when r → 0.

Introduce the following notation:

Sp = {x : x1 > 0, ..., xp−1 > 0, xp = 0,

xp+1 > 0, ..., xn > 0, −∞ < xn+1 < +∞, ...,−∞ < xm < +∞} ,

X2
p := 1 + x21 + ...+ x2p−1 + x2p+1 + ...+ x2m, p = 1, n.

Dirichlet-Neumann problem
(
DkNn−k)∞ in unbounded domains. Find a regular solution uk (x) of

equation (17) from the function class C
(
Ω
)
∩ C2 (Ω) , satisfying conditions

uk(x)|xp=0 = τp (x̃p) , p = 1, k, (19)(
x
2αp
p

∂uk(x)

∂xp

)∣∣∣∣
xp=0

= νp (x̃p) , p = k + 1, n, (20)

and
lim
R→∞

uk (x) = 0, m > 2, k = 0, n (21)

(if m = 2, then the boundedless of the desired solution at infinity is required as well), where τp (x̃p)
and νp (x̃p) are defined functions in the following form:

τp (x̃p) =
τ̃p (x̃p)

X
εp
p

, τ̃p (x̃p) ∈ C
(
Sp
)
, εp > 0, p = 1, k,

and
νp (x̃p) =

ν̃p (x̃p)

X
1−2αp+εp
p

, ν̃p (x̃p) ∈ C
(
Sp
)
, εp > 0, p = k + 1, n.

The functions τp (x̃) (p = 1, k) satisfy the coordination conditions on the initial k lateral faces Sp
of the domain and at the origin:

τ1|x2=0 = τ2|x1=0 , τ2|x3=0 = τ3|x2=0 , ...., τk−1|xk=0 = τk|xk−1=0 ;

τ1 (0, 0, ..., 0) = τ2 (0, 0, ..., 0) = ... = τk (0, 0, ..., 0) .

The vector x̃p occurring in the problem setting is obtained from a vector x by excluding its pth
component:

x̃p := (x1, ..., xp−1, xp+1, ..., xm) , p = 1, n.

The problem’s unique solution
(
DkNn−k)∞ is represented in the next form

uk (ξ) =

k∑
p=1

∫
Sp

τp (x̃p) x̃
(2α)
p

(
x
2αp
p

∂qk (x, ξ)

∂xp

)∣∣∣∣
xp=0

dSp−

−
n∑

p=k+1

∫
Sp

νp (x̃p) x̃
(2α)
p qk (x, ξ)|xp=0dSp .

(22)

In (22), we use the notation∫
Sp

...dSp :=

+∞∫
−∞

...

+∞∫
−∞︸ ︷︷ ︸

m−n

+∞∫
0

...

+∞∫
0︸ ︷︷ ︸

n−1

...dx1...dxp−1dxp+1...dxndxn+1...dxm.
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By direct calculation, we establish that the function uk(ξ), defined in (22), is a solution to the
equation (17). Using the decomposition formula (9) and limit relation (13) we can prove that the
function uk(ξ) satisfies the conditions (19)–(21) of the problem

(
DkNn−k)∞ (for details, see [24]).

Other applications of the expansion formula (9) for the multiple Lauricella special function F
(n)
A

are found in [25].
We do not yet know any applications of the decomposition formulas (10), (11) and (12) for the

well-known Lauricella’s hypergeometric series F (n)
B , F (n)

C and F (n)
D , respectively.

Conclusion

In this paper, recurrence free decomposition formulas for the four Lauricella functions were pre-
sented. The obtained formulas were proved using the mathematical induction. These expansions can
be demonstrated by comparing the coefficients of equal powers of the variables x1, ..., xn on both sides.
Formulas (21) and (22) indicate a reciprocity property of the hypergeometric Lauricella functions FA
and FB, as these functions exhibit reciprocal values in the limit. Do the FC and FD functions have
similar properties? One of these decomposition formulas for the Lauricella’s series FA is often used in
studying problems with boundary values for partial differential equations of various types.
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