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ANNIVERSARIES

Dulat Syzdykbekovich Dzhumabaev

Life and scientific activity (dedicated to the 70th birthday anniversary)

Professor Dulat Syzdykbekovich Dzhumabaev, Doctor of Physical and
Mathematical Sciences, was a prominent scientist, a well-known specialist
in the field of the qualitative theory of differential and integro-differential
equations, the theory of nonlinear operator equations, numerical and
approximate methods for solving boundary value problems.

Dzhumabaev D.S. was born in Kantagi, Turkistan district, South
Kazakhstan region, on April 11, 1954. From 1961 to 1971, he attended
secondary school in Turkistan. In 1971, he entered Faculty of Mechanics and
Mathematics of Kazakh State University named after S.M. Kirov (now Al-
Farabi Kazakh National University). After graduating with honors from the
Department of Mathematics in 1976, he continued to pursue postgraduate
studies at the Institute of Mathematics and Mechanics of the Academy

of Sciences of the Kazakh SSR. His scientific activity began under the guidance of Academician
Orymbek Akhmetbekovich Zhautykov, an outstanding scientist and mathematician, who made a
huge contribution to the creation and development of the mathematical science in Kazakhstan. After
successful completion of postgraduate studies in 1979, Dzhumabaev D.S. joined the Laboratory of
Ordinary Differential Equations headed by Academician Zhautykov O.A. He went from being a junior
researcher to becoming the head of the Laboratory of Differential Equations, one of the leading divisions
of the Institute of Mathematics. He chaired the laboratory from 1996 to 2012.

Dzhumabaev D.S. was a successful scientist and versatile specialist in the field of mathematics and
its applications. He devoted his talent and hard work to the study of nonlinear operator equations,
to the creation and development of qualitative methods in the theory of boundary value problems for
differential equations.

The main research areas and the results obtained by Professor Dzhumabaev can be divided into
several groups. The most significant and important scientific results are presented below in chronological
order.

1 Boundary value problems for ordinary differential equations with a parameter in a Banach space

During postgraduate studies, his research was focused on nonlinear boundary value problems with
parameter for ordinary differential equations of the following form:

dx

dt
= f(t, x, λ), x(0) = x0, (1)

x(T ) = x1, (2)
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where f : [0, T ]×B×B → B is a continuous function satisfying the existence conditions for the Cauchy
problem (1) on [0, T ] for all values of a parameter λ from some set G ⊂ B; here B is a Banach space.

The problem is to find a pair (λ∗, x∗(t)), where λ∗ ∈ G and x∗(t) is a solution to Cauchy problem
(1) with λ = λ∗, satisfying the boundary condition (2).

Let the right-hand part of the differential equation be defined on the set

D0 = {(t, x, λ) : 0 ≤ t ≤ T, ||x− x(0)(t)|| ≤ R(t)ρ, ||λ− λ0|| ≤ ρ}.

Here λ0 ∈ G, x(0)(t) is a solution to Cauchy problem (1) with λ = λ0, R(t) is a positive function
continuously differentiable on [0, T ], and ρ is a nonnegative number.

Let M(f) denote a set of triples (λ0 ∈ G,R(t) > 0, ρ ≥ 0) for which the Lipschitz condition

||f(t, x, λ)− f(t, x̃, λ̃)|| ≤ α(t) · (||x− x̃||+ ||λ− λ̃||)

is satisfied on the set D0, and the inequality

(a1) exp
{ t∫

0

α(τ)dτ
}
− 1 ≤ R(t)

holds (α(t) ∈ C([0, T ])).
The set M(f) is non-empty if so is the set G.
For a triple (λ0, R(t), ρ), a solution of problem (1), (2) is sought in the set α0 = α0

λ × α0
x(t), where

α0
λ = {λ : ||λ− λ0|| ≤ ρ} and α0

x(t) = {x(t) : ||x(t)− x(0)(t)|| ≤ R(t)ρ}.

Theorem 1. Problem (1), (2) is solvable if and only if, given some (λ0, R(t), ρ) ∈ M(f), for any
two pairs (λ, x(t)) and (λ̃, x(t)) from the set α0, there exist an invertible operator A ∈ L(B,B) and a
number θ > 0 satisfying the inequality

(a2)
∣∣∣∣∣∣λ− λ̃−A[∫ T

0
{f(t, x(t), λ)− f(t, x(t), λ̃)}dt

]∣∣∣∣∣∣ ≤ (1− θ)||λ− λ̃||,

and the following inequality is true

(a3)
1

θ

∣∣∣∣∣∣A[∫ T

0
f(t, x(0)(t), λ0)dt− (x1 − x0)

]∣∣∣∣∣∣ ≤ ρ(1− q),

where q = ||A||
θ ·
[
exp
{ T∫

0

α(t)dt
}
−1−

T∫
0

α(t)dt
]
< 1. Here L(B,B) is a space of linear bounded operators

mapping B into B.
Under the conditions of Theorem 1, problem (1), (2) is uniquely solvable on the domain α0.
For the linear boundary value problem

dx

dt
= Q1(t)x+Q2(t)λ+ f(t), x(0) = x0, x(T ) = x1,

the conditions of Theorem 1 are reduced to the bounded invertibility of the operator Q̄ =
T∫
0

Q2(t)dt.

The inequality (a3) guarantees the existence and uniqueness of a solution to problem (1), (2) on
the domain α0.

The proposed approach was applied to semi-explicit differential equations with nonlinear boundary
conditions:

dx

dt
= f

(
t, x,

dx

dt
, λ
)
, x(0) = x0, (3)
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Φ[x(T ), ẋ(T ), λ] = 0. (4)

Here f : [0, T ]×B×B×B → B is a continuous function satisfying the conditions for the existence of
a solution to the Cauchy problem (3) on [0, T ] for all λ ∈ G; G ⊂ B, Φ : B ×B ×B → B.

Analogously, the right-hand side of the differential equation is considered on the set D̃0 =
{(t, x, y, λ) : 0 ≤ t ≤ T, ||x − x(0)(t)|| ≤ R(t)ρ, ||y − ẋ(0)(t)|| ≤ Ṙ(t)ρ, ||λ − λ0|| ≤ ρ}, where
λ0 ∈ G, x(0)(t) is a solution to the Cauchy problem (3) with λ = λ0, R(t) is a positive function
continuously differentiable on [0, T ], and ρ is a nonnegative number. Let M̃(f) denote the set of triples
(λ0 ∈ G,R(t) > 0, ρ ≥ 0) for which the following inequalities are satisfied:

||f(t, x, y, λ)− f(t, x̃, ỹ, λ̃)|| ≤ α1(t) · (||x− x̃||+ ||λ− λ̃||) + α2(t) · ||y − ỹ||,

α2(t) < 1
(
αi(t) ∈ C([0, T ]), i = 1, 2

)
; c(t) exp

{ t∫
0

c(τ)dτ
}
≤ Ṙ(t)

(
c(t) =

α1(t)

1− α2(t)

)
.

For a triple (λ0, R(t), ρ), the following sets are introduced:

α̃0
x(t) = {x(t) : ||x(t)− x(0)(t)|| ≤ R(t)ρ, ||ẋ(t)− ẋ(0)(t)|| ≤ Ṙ(t)ρ},

D̃0(T ) = {(u, v, λ) : ||u− x(0)(T )|| ≤ R(T )ρ, ||v − ẋ(0)(T )|| ≤ Ṙ(T )ρ, ||λ− λ0|| ≤ ρ}.

Let the boundary function in (4) satisfy the Lipschitz condition ||Φ(u, v, λ) − Φ(ũ, ṽ, λ̃)|| ≤ Φu||u −
ũ||+ Φv||v − ṽ||+ Φλ||λ− λ̃|| on the set D̃0(T ).

Theorem 2. Problem (3), (4) is solvable if and only if, given some (λ0, R(t), ρ) ∈ M̃(f), for any two
pairs (λ, x(t)) and (λ̃, x(t)) from the set α̃0 = α0

λ× α̃0
x(t), there exist an invertible operator A ∈ L(B,B)

and a number θ > 0 satisfying the inequality ||λ− λ̃−A{K̃1[λ, x(t)]− K̃1[λ̃, x(t)]}|| ≤ (1− θ)||λ− λ̃||,
and the following inequality is true:

1

θ
||AK̃1[λ0, x(0)(t)]|| ≤ ρ(1− q),

where q = ||A||
θ ·

[
Φu ·

{
exp
{ T∫

0

c(t)dt − 1 −
T∫
0

α1(t)dt
}

+ Φv ·
{
c(T ) exp

{ T∫
0

c(t)dt − α1(T )
}]

< 1,

K̃1[λ, x(t)] = Φ
[
x0 +

T∫
0

f(t, x(t), ẋ(t), λ), f(T, x(T ), ẋ(T ), λ), λ
]
.

Conditions for the continuous dependence of a solution on the initial data and a criterion for the
existence of an isolated solution to problem (3), (4) were established.

Dzhumabaev D.S. justified a new version of the shooting method for nonlinear two-point boundary
value problems of the following form

dz

dt
= f(t, z), (5)

g[z(0), z(T )] = 0, (6)

where f : [0, T ]×B → B is continuous in t and z, g : B ×B → B.
Let λ denote the value of z(t) at the point t = 0. By the substitution x(t) = z(t)− λ, problem (5),

(6) is reduced to the following boundary value problem with parameter

dx

dt
= f(t, x+ λ), x(0) = 0, (7)

g[λ, λ+ x(T )] = 0. (8)
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Assume that in the closed regions D0 = {(t, x, λ) : 0 ≤ t ≤ T, ||x−x(0)(t)|| ≤ R(t)ρ, ||λ−λ0|| ≤ ρ} and
D0

1 = {(λ, u) : ||λ − λ0|| ≤ ρ, ||u − λ0 − x(0)(T )|| ≤ [1 + R(T )]ρ} (here x(0)(t) is a solution to Cauchy
problem (7) for λ = λ0, R(t) > 0 for t ∈ [0, T ], and ρ > 0), the following inequalities hold:

||f(t, x+ λ)− f(t, x̃+ λ̃)|| ≤ α(t)(||x− x̃||+ ||λ− λ̃||),

||g(λ, u)− g(λ̃, ũ)|| ≤ gλ||λ− λ̃||+ gu||u− ũ||,

and exp
{ t∫

0

α(τ)dτ
}
− 1 ≤ R(t).

Theorem 3. If for any two pairs (λ, x(t)) and (λ̃, x(t)) from the domain α0 = α0
λ×α0

x(t) and for some
N ≥ 0, there exist an invertible operator A ∈ L(B,B) and a number θ > 0 satisfying the inequality
||λ− λ̃−A{K(1)

N [λ, x(t)]−K(1)
N [λ̃, x(t)]}|| ≤ (1− θ)||λ− λ̃||, and the following inequality holds

1

θ
||A{K(1)

N [λ0, x(0)(t)]}|| ≤ ρ(1− q(1)
N ),

where q(1)
N = gu · ||A||θ ·

[
exp
{ T∫

0

α(t)dt
}
− 1−

T∫
0

α(t)dt− ...− 1
N !

( T∫
0

α(t)dt
)N]

< 1, then the boundary

value problem (7), (8) has a unique solution in α0.

Here K(1)
N [λ, x(t)] = g

[
λ, λ+

T∫
0

f(t, λ+ ...+
τN−3∫

0

f(τN−2, λ+ x(τN−2))dτN−2)...)dt
]
, N = 0, 1, 2, ....

For different values of N , various sufficient conditions for the unique solvability to problem (7),
(8) can be derived from Theorem 3. The problem of choosing an initial approximation and other
replacement versions in problems with parameter were also considered.

Dzhumabaev D.S. also studied nonlinear infinite systems of equations

Qj(λ1, λ2, ..., λi, ...) = bj , j = 1, 2, ..., (9)

where λ = (λ1, λ2, ...) and b = (b1, b2, ...) are elements of lp (1 ≤ p ≤ ∞). It is supposed that in the
domain D′ = {λ : ||λ − λ0|| < ρ} ⊂ lp, for all i (i = 1, 2, ...), functions Qi(λ1, λ2, ...) have continuous
partial derivatives with respect to all arguments and

1)
∞∑
j=1

sup
λ∈D′

∣∣∣∂Qi(λ)
∂λj

∣∣∣ ≤ k1 <∞; 2)
∞∑
k=1

sup
λ∈D′

∣∣∣∂Qk(λ)
∂λi

∣∣∣ ≤ k2 <∞.

Then there exist numbers θ1 and θ2 satisfying the inequalities
3)
∣∣∣∂Qi(λ)

∂λi

∣∣∣ ≥ ∑
j 6=i

∣∣∣∂Qi(λ)
∂λj

∣∣∣+ θ1; 4)
∣∣∣∂Qi(λ)

∂λi

∣∣∣ ≥ ∑
k 6=i

sup
λ∈D′

∣∣∣∂Qk(λ)
∂λi

∣∣∣+ θ2, for all λ ∈ D′ and i = 1, 2, . . .

The following definition extends the concept of complete regularity to the case of nonlinear infinite
systems in lp.

Definition 1. An operator Q = (Q1, Q2, ...) is called completely regular in the domain D′, if it
satisfies conditions 1)-4) wherein the numbers θ1 and θ2 are such that 5) p−1

p θ1 + 1
pθ2 = θ > 0.

Lemma 1. If Q is a completely regular operator in the domain D′ and 1
θ ||Q(λ0)− b|| < ρ, then the

infinite system of nonlinear equations (9) has a unique solution in D′.

Using Lemma 1, the results obtained for problems (1)-(2), (3)-(4), and (5)-(6) were concretized for
infinite systems of differential equations. Effective conditions were established for the unique solvability
of nonlinear boundary value problems for infinite systems of differential equations in the space lp.

The findings described in this Section were published in [1–5] and formed the basis of his candidate
thesis. In 1980, Dzhumabaev D.S. defended his dissertation “Boundary value problems with a parameter
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for ordinary differential equations in a Banach space” and earned a degree of Candidate of Physical
and Mathematical Sciences in the specialty 01.01.02 – Differential Equations.

The methods and results of [1–5] were applied to nonlinear differential equations of various classes
[6–12]. Dzhumabaev’s research was then focused on various problems for nonlinear operator equations
[13–17].

2 A linearizer and iterative processes for unbounded non-smooth operators

Consider the nonlinear operator equation
A(x) = 0, (10)

where x ∈ B1, A(x) ∈ B2, and each Bi is a Banach space with norm || · ||i, i = 1, 2. Let D(A) and
R(A) denote the domain and range of A, respectively.

For a point x0 ∈ D(A), the following sets are constructed: S(x0, r) = {x ∈ B1 : ||x − x0||1 ≤ r},
U0 = {x ∈ D(A) : ||A(x)||2 ≤ ||A(x0)||2 = u0}, and Ω = S(x0, r) ∩ U0. Assume that the operator A
is closed on Ω. As is known, iterative methods, that allow one to find a solution under some sufficient
conditions for its existence, rely on certain linearizations of the nonlinear operator. Linearization of
an unbounded operator naturally leads to unbounded linear operators. This motivated Dzhumabaev
D.S. to introduce the concept of a linearizer of an operator A at a point x̂ ∈ D(A) that generalizes the
Frechet derivative for unbounded non-smooth operators.

Definition 2. A linear operator C : B1 → B2 is called a linearizer of an operator A at a point
x̂ ∈ D(A), if D(A) ⊆ D(C) and there exist numbers ε ≥ 0 and δ > 0 such that

||A(x)−A(x̂)− C(x− x̂)||2 ≤ ε||x− x̂||1

for all x ∈ D(A) satisfying ||x− x̂||1 < δ.
If C ∈ L(B1, B2) is the Frechet derivative of A at a point x̂ ∈ D(A), then it is also a linearizer.

However, the definition of a linearizer, unlike that of the Frechet derivative, does not require: a) the
boundedness of the operator C and 2) the dependence of ε on δ (ε(δ) → 0 as δ → 0 for the Frechet
derivative).

While the Frechet derivative of an operator A is uniquely determined, there can be infinitely many
linearizers of this operator.

Distinctive advantages of linearizers make it possible to extend the domain of application of iterative
methods to solving nonlinear operator equations. Dzhumabaev D.S. proposed a method for proving
the convergence of iterative processes that takes into account the specificities of unbounded operator
equations.

Theorem 4. Suppose that at each point x ∈ Ω the operator A has a linearizer Cx with constants
εx and δx such that: 1) Cx is a one-to-one mapping of D(C) onto R(C), and ||C−1

x || ≤ γx ≤ γ̄;
2) εx · δx ≤ Θ < 1; and 3) γx

δx
· ||A(x)||2 ≤ K. If γ̄

1−Θ · ||A(x)||2 < r, then (10) has a solution x∗ ∈ Ω, to
which the iteration process

x(n+1) = x(n) − 1

α
C−1
x(n)
{A(x(n))}

converges, here α = max{1,K}, n = 0, 1, 2, . . .

In the case when for a given δ > 0 there exists ε(δ) independent of x, the following assertion is
true.

Theorem 5. Suppose that at each point x ∈ Ω and for each δ ∈ (0, h) the operator A has a
linearizer Cx with constants δ and ε(δ) ≥ 0 satisfying the following conditions: 1) C−1

x exists on R(C),
and ||C−1

x || ≤ γ, 2) lim
δ→0

ε(δ) = 0.

Then (10) has a solution x∗ ∈ Ω, if the following inequality holds: 3) γ · ||A(x)||2 < r.
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Theorem 5 generalizes the local theorem of Hadamard to unbounded operator equations. This made
it possible to extend the well-known Newton-Kantorovich method to unbounded nonsmooth operator
equations and apply it to nonlinear boundary value problems for differential equations.

Consider the closed operator equation

A(x) ≡ Cx+ F (x) = 0, (11)

where C : X → Y is a closed linear operator, F : X → Y is a continuous operator, and X and Y are
Banach spaces with respective norms || · ||1 and || · ||2.

Assume that F has a Frechet derivative in some domain containing the ball S̄(x0, r) = {x ∈ X :
||x− x0||1 ≤ r}, x0 ∈ D(C), and R(C +F ′(x)) = Y for x ∈ S(x0, r). Then in D(A) = D(C)∩ S̄(x0, r)
the operator A has the linearizer C1(x) = C + F ′(x), and D(C1) = D(C) ∩X = D(C).

Theorem 6. Assume that the following conditions hold:
(1) For all x ∈ D(A), the linearizer C1(x) has a bounded inverse, and ||C−1

1 (x)||L(Y,X) ≤ γ;
(2) ||F ′(x)− F ′(y)||L(X,Y ) ≤ L · ||x− y||1, x, y ∈ S̄(x0, r);

(3) m
Lγ + γ bmb0 ||A(x0)||2

∞∑
s=0

(bm)2s−1 < r, where b0 = L
2 γ

2u0, u0 = ||A(x0)||2, βk = 1 − 1
4bk−1

,

bk = βk · bk−1, k = 1, 2, ...,m, where m is a nonnegative number such that bm < 1 and bm−1 ≥ 1.
Then the damped Newton-Kantorovich method

x(k+1) = x(k) − 1

αk
[C + F ′(xk)]−1[Cxk + F (xk)], k = 0, 1, 2, ...,

where αk = 2bk for k = 0, ...,m− 1 and αk = 1 for k = m,m+ 1, ..., converges to a solution of (11).

Theorem 7. Assume that the following conditions hold:
(1) For all x ∈ D(A), the linearizer C1(x) has a bounded inverse, and ||C−1

1 (x)||L(Y,X) ≤ γ;
(2) The Frechet derivative F ′(x) is uniformly continuous in S̄(x0, r);
(3) γ · ||A(x0)||2 < r.
Then there exist numbers αn ≥ 1, n = 0, 1, ..., such that the iteration process

x(m+s+1) = x(m+s) − [C + F ′(xm+s)]−1[Cxm+s + F (xm+s)], s = 0, 1, 2, ...,

converges to an isolated solution x∗ ∈ D(A) of (11). Furthermore, starting with some k0, we can take
αn (n ≥ k0) equal to 1, and the convergence rate becomes superlinear.

These results were published in “News of the Academy of Sciences of Kazakh SSR. Series Physical
and Mathematical”, 1984 [13, 14], and, at the request of the American Mathematical Society, were
translated and published in “American Mathematical Society Translations”, 1989 [16,17], as well as in
“Mathematical Notes” [15]. Various aspects of applications of these results were considered in [18–20].

3 The parametrization method for solving boundary value problems

Dzhumabaev D.S. developed the parametrization method for investigation and solving boundary
value problems. The method was originally offered in [21, 22] for solving two-point boundary value
problems for a linear differential equation of the following form

dx

dt
= A(t)x+ f(t), x ∈ Rn, (12)

Bx(0) + Cx(T ) = d, (13)

where A(t) and f(t) are continuous in (0, T ], B and C are n× n matrices, d ∈ Rn.
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Consider a partition dividing the interval [0, T ) into N equal parts with step size h > 0: [0, T ) =
N⋃
r=1

[(r− 1)h, rh). Let xr(t) denote the restriction of the function x(t) to the r-th subinterval, i.e. xr(t),

r = 1, N , is a vector function of dimension n defined on [(r − 1)h, rh) and coinciding there with x(t).
Problem (12), (13) is thus transformed into an equivalent multipoint boundary-value problem

dxr
dt

= A(t)xr + f(t), t ∈ [(r − 1)h, rh), r = 1, 2, ..., N, (14)

Bx1(0) + C lim
t→T−0

xN (t) = d, (15)

lim
t→sh−0

xs(t) = xs+1(sh), s = 1, 2, ..., N − 1. (16)

Here (16) are the matching conditions for the solution at the interior points of the partition.
Obviously, if x(t) is a solution of problem (12), (13), then the set of restrictions (xr(t)), r =

1, 2, ..., N, is a solution of the multi-point problem (14)–(16). Conversely, if a set of vector functions
(xr(t)), r = 1, 2, ....N , is a solution of problem (14)–(16), then the function x(t) obtained by piecing
together xr(t) is a solution of the original boundary value problem.

On each subinterval [(r − 1)h, rh), the substitution ur(t) = xr(t) − λr is made, where λr denotes
the value of xr(t) at the point t = (r − 1)h. Problem (14)–(16) is then reduced to the boundary value
problem with parameter

dur
dt

= A(t)ur +A(t)λr + f(t), t ∈ [(r − 1)h, rh), ur[(r − 1)h] = 0, r = 1, 2, ..., N, (17)

Bλ1 + CλN + C lim
t→T−0

uN (t) = d, (18)

λs + lim
t→sh−0

us(t) = λs+1, s = 1, 2, ..., N − 1. (19)

An advantage of problem (17)–(19) is that it involves the initial conditions ur[(r − l)h] = 0, so that
one can determine ur(t) from the integral equations

ur(t) =

t∫
(r−1)h

[A(τ)ur +A(τ)λr]dτ +

t∫
(r−1)h

f(τ)dτ. (20)

In (20), replacing ur(τ) by the right-hand side of (20) and repeating the process ν (ν = 1, 2, ...)
times, one obtains a representation of ur(t) by a sum of iterated integrals. Letting t → rh − 0 and
substituting lim

t→rh−0
ur(t), r = 1, 2, . . . , N, into (18) and (19) results in a system of nN algebraic

equations in the parameters λri, r = 1, 2, ..., N , i = 1, 2, ..., n:

Qν(h)λ = −Fν(h)−Gν(u, h), λ ∈ RNn. (21)

The basic idea behind the method is to reduce the problem in question to an equivalent problem with
a parameter (17)–(19) whose solution is determined as the limit of a sequence of systems of pairs
consisting of the parameter λ and the function u. The parameter is found from the system of linear
equations (21) determined by the matrices of the differential equation (12) and boundary conditions
(13). The functions ur are solutions of Cauchy problems (17) on the partition subintervals [(r−1)h, rh),
r = 1, 2, ..., N , for the found values of the parameter. The introduction of parameters made it possible
to obtain conditions for the convergence of proposed algorithms and, at the same time, for the existence
of a solution, in terms of the input data. This makes the parametrization method different from the
shooting method and its modifications, where shooting parameters are found from some equations
constructed via general solutions of differential equations, and convergence conditions are also given in
terms of general solutions.
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Theorem 8. Suppose that for some h > 0 (Nh = T ) and ν (ν = 1, 2, . . .) the matrix Qν(h) :
RNn → RNn is invertible and the following inequalities hold:

(a) ||[Qν(h)]−1|| ≤ γν(h);

(b) qν(h) = γν(h) max(1, h||C||)[eαh − 1− αh− ...− (αh)ν

ν! ] < 1, where α = max
t∈[0,T ]

||A(t)||.

Then the boundary-value problem (12), (13) has a unique solution x∗(t), and the estimate

||x∗(t)− x(k)(t)|| ≤ γν(h) max(1, h||C||)(αh)ν

ν!
eαh

[qν(h)]ν

1− qν(h)
M(h), t ∈ [0, T ],

holds true, where

M(h) = γν(h)[eαh − 1] max
{

1 + h||C||
ν−1∑
j=0

(αh)j

j!
,
ν−1∑
j=0

(αh)j

j!

}
max(||d||, max

t∈[0,T ]
||f(t)||)h

+eαh max
t∈[0,T ]

||f(t)||h,

and x(k)(t) is a piecewise-continuously differentiable function on [0, T ], for which λ(k)
r + u

(k)
r (t) is the

restriction to [(r − l)h, rh), r = 1, 2, ..., N .

It was shown that the conditions of Theorem 8 are also necessary and sufficient for the unique
solvability of problem (12), (13).

The parametrization method was then applied to the study of singular problems for which the
problem of approximation by regular two-point boundary value problems was solved [23–27]. Necessary
and sufficient conditions were obtained for the well-posed solvability of the problem of finding a solution
to the system of differential equations (12), that is bounded on the whole axis R. For systems whose
matrices and right-hand sides are constant in the limit, approximating regular two-point boundary
value problems were constructed. The connection between the well-posed solvability of the original
singular problem and that of an approximating problem was established. In the general case, Lyapunov
transformations possessing certain properties were used to construct regular two-point boundary value
problems as approximations to the problem of determining a solution bounded on the entire real line.
The concept of a solution “in the limit as t→∞” was introduced and the behavior of solutions of linear
ordinary differential equations as t → ∞ was investigated. Necessary and sufficient conditions were
derived under which a singular boundary value problem with conditions assigned at infinity is uniquely
solvable, and an appropriate approximating problem was constructed. These results were developed to
the system of differential equations on the real axis:

dx

dt
= f(t, x), x ∈ Rn. (22)

In [28, 29] the results of Section 2 were also extended to system (22) with the nonlinear boundary
condition

g[x(0), x(T )] = 0.

Results of Sections 2 and 3 were included in the doctoral dissertation.
The doctoral dissertation by Dzhumabaev D.S. titled “Singular boundary value problems for

ordinary differential equations and their approximation” is a fundamental scientific work that
underwent comprehensive approbation in leading scientific centers, such as the Computing Center of the
Russian Academy of Sciences (A.A. Abramov, N.B. Konyukhova), the Institute of Applied Mathematics
of the Russian Academy of Sciences (K.I. Babenko), Lomonosov Moscow State University (V.M.
Millionshchikov, V.A. Kondratiev, N.Kh. Rozov), Institute of Mathematics NAS of Ukraine (Y.A.
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Mitropol’skii, A.M. Samoilenko, V.L. Makarov, V.L. Kulik), Voronezh State University (V.I. Perov),
I. Vekua Institute of Applied Mathematics of Tbilisi State University (I.T. Kiguradze), Kiev State
University named after T. Shevchenko (N.I. Perestyuk). Doctoral dissertation was defended at the
Specialized Council of the Institute of Mathematics of the NAS of Ukraine in 1994.

The parametrization method was extended to various linear and nonlinear boundary value problems
for ordinary differential equations on a finite interval and on the whole real line; necessary and sufficient
solvability conditions for those problems were obtained in [28–49].

4 Nonlocal problems for systems of second-order hyperbolic equations

The results obtained in Sections 2 and 3 provided a basis for solving nonlocal boundary value
problems for systems of second-order hyperbolic equations [50–70].

In the domain Ω = [0, T ] × [0, ω], consider the following nonlocal boundary value problem for the
system of hyperbolic equations with two independent variables:

∂2u

∂t∂x
= A(t, x)

∂u

∂x
+B(t, x)

∂u

∂t
+ C(t, x)u+ f(t, x), (23)

P2(x)
∂u(t, x)

∂x

∣∣∣
t=0

+P1(x)
∂u(t, x)

∂t

∣∣∣
t=0

+P0(x)u(t, x)|t=0+

+S2(x)
∂u(t, x)

∂x

∣∣∣
t=T

+S1(x)
∂u(t, x)

∂t

∣∣∣
t=T

+S0(x)u(t, x)|t=T = ϕ(x), x ∈ [0, ω], (24)

u(t, 0) = ψ(t), t ∈ [0, T ], (25)

where u(t, x) = col(u1(t, x), ..., un(t, x)) is an unknown function, the n × n matrices A(t, x), B(t, x),
C(t, x), Pi(x), Si(x), i = 0, 2, and the n-vector functions f(t, x), ϕ(x) are continuous on Ω and [0, ω],
respectively; the n-vector function ψ(t) is continuously differentiable on [0, T ].

Sufficient coefficient conditions for the existence and uniqueness of a classical solution of problem
(23)–(25) were established by a modification of the parametrization method [50, 53, 55, 60, 61]. A
relationship with the following family of boundary value problems for ordinary differential equations
was established:

∂v

∂t
= A(t, x)v + F (t, x), x ∈ [0, ω], (26)

P2(x)v(0, x) + S2(x)v(T, x) = Φ(x), (27)

here n-vector functions F (t, x) and Φ(x) are continuous on Ω and [0, ω], respectively.
For fixed x ∈ [0, ω] problem (26), (27) is a linear boundary value problem for the system of ordinary

differential equations. Suppose the variable x is changed on [0, ω]; then we obtain a family of boundary
value problems for ordinary differential equations.

Sufficient and necessary conditions for the well-posedness of nonlocal boundary value problem for
the system of hyperbolic equations (25)–(27) were obtained in [59,64,66,67].

Let C([0, ω], Rn) be a space of continuous on [0, ω] vector functions ϕ(x) with the norm
||ϕ||0,1 = max

x∈[0,ω]
||ϕ(x)||;

C1([0, T ], Rn) be a space of continuously differentiable on [0, T ] vector functions ψ(t) with the norm
||ψ||1,0 = max

(
max
t∈[0,T ]

||ψ(t)||, max
t∈[0,T ]

||ψ̇(t)||
)
;

C1,1(Ω, Rn) be a space of functions u(t, x) ∈ C(Ω, Rn) with continuous on Ω partial derivatives ∂u(t,x)
∂x ,

∂u(t,x)
∂t , ∂

2u(t,x)
∂t∂x with the norm ||u||1,1 = max

(
||u||0,

∣∣∣∣∣∣∂u∂x ∣∣∣∣∣∣0, ∣∣∣∣∣∣∂u∂t ∣∣∣∣∣∣0, ∣∣∣∣∣∣ ∂2u∂t∂x

∣∣∣∣∣∣
0

)
.
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Lemma 2. If problem (26), (27) has a solution for arbitrary F (t, x) ∈ C(Ω, Rn) and Φ(x) ∈
C([0, ω], Rn), then this solution is unique.

Definition 3. Problem (26), (27) is called well-posed if for arbitrary F (t, x) ∈ C(Ω, Rn) and Φ(x) ∈
C([0, ω], Rn) it has a unique solution v(t, x) ∈ C(Ω, Rn) and for it the estimate holds

max
t∈[0,T ]

||v(t, x)|| ≤ K max
(

max
t∈[0,T ]

||F (t, x)||, ||Φ(x)||
)
, (28)

where the constant K is independent of F (t, x) and Φ(x), and x ∈ [0, ω].

Lemma 3. If v(t, x) is a solution to problem (26), (27), and the estimate holds

||v||0 ≤ K max
(
||F ||0, ||Φ||0,1

)
,

where K is a constant independent of the functions F (t, x) and Φ(x), then for every x ∈ [0, ω] the
inequality (28) is valid.

Denote by Ωη = [0, T ]× [0, η] and ||u||0,η = max
(t,x)∈Ωη

||u(t, x)||.

Definition 4. Boundary value problem (23)–(25) is called well-posed if for arbitrary f(t, x) ∈
C(Ω, Rn) and ψ(t) ∈ C1([0, T ], Rn) and ϕ(x) ∈ C([0, ω], Rn) it has a unique classical solution u(t, x)
and this solution satisfies the following estimate

max
(
||u||0,η,

∣∣∣∣∣∣∂u
∂x

∣∣∣∣∣∣
0,η
,
∣∣∣∣∣∣∂u
∂t

∣∣∣∣∣∣
0,η

)
≤ K̃ max

(
||f ||0,η, ||ψ||1,0, max

x∈[0,η]
||ϕ(x)||

)
,

where constant K̃ is independent of f(t, x) and ψ(t) and ϕ(x) and η ∈ [0, ω].

Theorem 9. The boundary value problem (23)–(25) is well-posed if and only if so is problem
(26), (27).

From Theorem 9 it follows that the well-posedness of problem (23)–(25) are equivalent to the
well-posedness of problem (26), (27).

These results were extended to a nonlocal problem with an integral condition for system (25)
(see [71]).

The problem of finding bounded solutions of system (23) and the families of systems (26) was
solved in [54,56–58,61–63,65,72].

The parametrization method was further developed to nonlinear nonlocal problems for a system of
hyperbolic equations [68–70,73].

5 Boundary value problems for loaded and integro-differential equations

On the basis of the parametrization method, constructive algorithms were developed for finding
solutions to various boundary value problems for integro-differential and loaded equations [72,74–82].

In the interval [0, T ], consider the following linear two-point boundary value problem for an integro-
differential equation:

dx

dt
= A(t)x+

T∫
0

K(t, s)x(s)ds+ f(t), x ∈ Rn, (29)

Bx(0) + Cx(T ) = d, d ∈ Rn, (30)

where A(t) and K(t, s) are continuous matrices on [0, T ] and [0, T ] × [0, T ], respectively; f(t) is
continuous on [0, T ].
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It is well known that the basic techniques for analysis and solving boundary value problems for
integro-differential equations are the Nekrasov method and the Green’s function method. Nekrasov’s
method applies to problem (29), (30), if we assume the unique solvability of the second-kind Fredholm
integral equation

x(t) =

T∫
0

M(t, s)x(s)ds+ F (t), t ∈ [0, T ],

with the kernel M(t, s) =
t∫

0

X(t)X−1(τ)K(τ, s)dτ , where X(t) is the fundamental matrix of the

differential part of equation (29) and F (t) ∈ C([0, T ],Rn). The Green’s function method applies to
problem (29), (30) under assumption that the boundary value problem for the differential part of
(29) is uniquely solvable; i.e., this method assumes the unique solvability of problem (29), (30) with
K(t, s) = 0.

However, the assumptions of neither Nekrasov’s method nor Green’s function method are necessary
conditions for the solvability of problem (29), (30).

In [83], a coefficient criterion for the well-posedness of problem (29), (30) was established in terms
of approximating boundary value problems for the loaded differential equation

dx

dt
= A(t)x+

m∑
i=1

Ki(t)x(θi) + f(t), x ∈ Rn,

subject to condition (30), by the parametrization method.
In [84], Dulat Dzhumabaev proposed a method for solving the problem (29), (30) that is based on

the parametrization method and properties of a fundamental matrix of the differential part of (29).

The interval [0, T ] is divided into N equal parts with step size h > 0: [0, T ) =
N⋃
r=1

[(r − 1)h, rh).

Let xr(t) be the restriction of x(t) to the rth subinterval [(r − 1)h, rh). The values of the solution
at the left-endpoints of the subintervals are assumed as additional parameters λr = xr[(r − 1)h]. By
the substitution ur(t) = xr(t) − λr at every rth subinterval, the problem (29), (30) is reduced to the
multi-point boundary value problem for a system of integro-differential equations with parameters

dur
dt

= A(t)ur +A(t)λr +

N∑
j=1

jh∫
(j−1)h

K(t, s)[uj(s) + λj ]ds+ f(t), t ∈ [(r − 1)h, rh), (31)

ur[(r − 1)h] = 0, r = 1, 2, ..., N, (32)

Bλ1 + CλN + C lim
t→T−0

uN (t) = d, (33)

λp + lim
t→ph−0

up(t)− λp+1 = 0, p = 1, 2, ..., N − 1. (34)

The introduction of additional parameters resulted in the emergence of the initial data (32) for the
unknown functions ur(t), r = 1, 2, ..., N . For fixed parameter values λ ∈ RnN , the system of functions
u[t] = (u1(t), u2(t), ..., uN (t)) is determined from problem (31), (32), which is a special Cauchy problem
for the system of integro-differential equations. Problem (31), (32) is equivalent to the system of integral
equations

ur(t) = X(t)

t∫
(r−1)h

X−1(τ)A(τ)dτλr +X(t)

t∫
(r−1)h

X−1(τ)

N∑
j=1

jh∫
(j−1)h

K(τ, s)[uj(s) + λj ]dsdτ+
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+X(t)

t∫
(r−1)h

X−1(τ)f(τ)dτ, t ∈ [(r − 1)h, rh), r = 1, 2, ..., N. (35)

By solving (35), one can find the representations of ur(t) in terms of λ ∈ RnN and f(t). Substituting
them into (33) and (34) yields a system of equations for finding the unknown parameters. Thus, when
applying the parametrization method to problem (29), (30), one has to solve an auxiliary problem,
namely, the special Cauchy problem (31), (32), or the equivalent system of integral equations (35).
However, unlike the auxiliary problem of Nekrasov’s method, the special Cauchy problem is uniquely
solvable for any sufficiently small partition step size h > 0. Let a number h0 > 0 satisfy the inequality

σ(h0) = βTh0e
αh0 < 1,

where β = max
(t,s)∈[0,T ]×[0,T ]

||K(t, s)|| and α = max
t∈[0,T ]

||A(t)||. It was shown that, for any h ∈ (0, h0] :

Nh = T , system (35) is uniquely solvable. This property of the auxiliary problem of the parametrization
method made it possible to establish solvability criteria for the boundary value problem considered.

Necessary and sufficient conditions for the solvability, including the unique solvability, of problem
(29), (30) were obtained in terms of a matrix Q∗,∗(h) constructed via the fundamental matrix of the
differential part of system (29), the matrices of boundary conditions (30), and the resolvent of an
auxiliary Fredholm integral equation of the second kind.

In [85], a family of algorithms was proposed for solving problem (29), (30). The numerical
parameters of the family are the partition step h > 0 : Nh = T , the number ν ∈ Rn of iterated integrals
used in the algorithm, and a nonnegative integer m specifying how many terms of the resolvent of the
corresponding Fredholm integral equation of the second kind are used in the algorithm. The basic
condition for the feasibility and convergence of the algorithm is that the matrix Qmν (h) is invertible
for chosen numerical parameters. The unknown parameters are found at the first stage of each step
in the algorithm by using the invertibility of this matrix. The special Cauchy problem (31), (32) with
the found parameter values is solved at the second stage of the algorithm. Necessary and sufficient
conditions for the well-posedness of problem (29), (30) were established in terms of the input data
without using the fundamental matrix or the resolvent.

In [86], the method and results of [84] were generalized to the case of an arbitrary partition.
Let ∆N denote a partition of [0, T ] into N parts: t0 = 0 < t1 < . . . < tN = T ; the case of no
partitioning is denoted by ∆1. Each partition ∆N is associated with a homogeneous Fredholm integral
equation of the second kind. The partition ∆N is called regular if the corresponding equation has
only the trivial solution. The regularity of ∆N leads to a unique solvability of the special Cauchy
problem mentioned above. The solvability criteria for linear two-point boundary value problem for
Equation (29) obtained in [86] are applicable for arbitrary regular partition ∆N . The algorithms of the
parameterization method for solving linear boundary value problems for Fredholm integro-differential
equations were offered in [70].

These results were extended to boundary value problems for impulsive integro-differential equations
in [87].

6 New general solutions to linear Fredholm integro-differential equations and their applications in
solving boundary value problems

It is known that Volterra integro-differential equations are solvable for any right-hand side and
have classical general solutions. However, there exist linear loaded differential equations and Fredholm
integro-differential equations that do not admit classical general solutions. The question arises as to
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whether it is possible to construct such general solutions that exist for all differential and integro-
differential equations and would allow solving boundary value problems for these equations.

Dzhumabaev D.S. proposed a novel approach to the concept of the general solution for a linear
ordinary Fredholm integro-differential equation based on the parametrization method in [88]. The
domain interval is partitioned and the values of the solution at the left endpoints of the subintervals
are considered as additional parameters. By introducing new unknown functions on the partition
subintervals, a special Cauchy problem for a system of integro-differential equations with parameters
is obtained. Using the solution of this problem, a new general solution of the linear Fredholm integro-
differential equation was constructed.

Suppose ∆N is a partition t0 = 0 < t1 < . . . < tN = T. Let x(t) be a function, piecewise continuous
on [0, T ] with the possible points of discontinuity: t = tp, p = 1, 2, ..., N −1. Let xr(t) be the restriction
of x(t) to the rth subinterval [tr−1, tr), i.e. xr(t) = x(t), t ∈ [tr−1, tr), r = 1, 2, . . . , N. For definiteness,
assume that xr(tr−1) = lim

t→tr−1+0
xr(t), r = 1, 2, ..., N. If x(t) is piecewise continuously differentiable

on (0, T ) and satisfies the Fredholm integro-differential equation (29) for each t ∈ (0, T )\{tp, p =
1, 2, ..., N − 1}, then the system of its restrictions x[t] = (x1(t), ..., xN (t)) satisfies the following system
of integro-differential equations:

dxr
dt

= A(t)xr +
N∑
j=1

tj∫
tj−1

K(t, τ)xj(τ)dτ + f(t), t ∈ [tr−1, tr), r = 1, 2, ..., N. (36)

Let C([0, T ],∆N ,RnN ) denote the space of function systems x[t] = (x1(t), x2(t), ..., xN (t)), where
xr : [tr−1, tr)→ Rn is continuous and has the finite left-sided limit lim

t→tr−0
xr(t) for any r = 1, 2, ..., N,

with the norm x[∆]2 = max
r=1,2,...,N

sup
t∈[tr−1,tr)

||xr(t)||.

A function system x[t] = (x1(t), x2(t), ..., xN (t)) ∈ C([0, T ],∆N ,RnN ) is called a solution to the
system of integro-differential equations (35) if the functions xr(t), r = 1, 2, ..., N , are continuously
differentiable on (tr−1, tr) and satisfy equations (36).

Suppose that the function system x∗[t] = (x∗1(t), x∗2(t), ..., x∗N (t)) is a solution to (36). Then the
function x∗(t), defined as x∗(t) = x∗r(t) for t ∈ [tr−1, tr), r = 1, 2, ..., N , and x∗(T ) = lim

t→T−0
x∗N (t), is

piecewise continuously differentiable and consistent with Eq. (29) for t ∈ (0, T )\{tp, p = 1, 2, ..., N−1}.
The introduction of the parameters λr = xr(tr−1), r = 1, 2, ..., N , and substituting new unknown
functions ur(t) = xr(t) − λr on each subinterval [tr−1, tr), yields the system of integro-differential
equations with parameters

dur
dt

= A(t)ur +A(t)λr +
N∑
j=1

tj∫
tj−1

K(t, τ)[uj(τ) + λj ]dτ + f(t), t ∈ [tr−1, tr), r = 1, ..., N, (37)

subject to the initial conditions

ur(tr−1) = 0, r = 1, 2, ..., N. (38)

Problem (37), (38) is called a special Cauchy problem for the system of integro-differential equations
with parameters. Without the interval’s partition, problem (37), (38) is the Cauchy problem with the
initial condition at t = 0 for the Fredholm integro-differential equation with parameter.

A solution to the special Cauchy problem (37), (38) with fixed values of parameters λ∗r ∈ Rn,
r = 1, ..., N , is a function system u[t, λ∗] = (u1(t, λ∗), u2(t, λ∗), ..., uN (t, λ∗)) ∈ C([0, T ],∆N ,RnN ),
which satisfies the system of integro-differential equations (37) with λ = λ∗ and initial conditions (38).
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Let Xr(t) be a fundamental matrix of the differential equation dx
dt = A(t)x on the interval [tr−1, tr].

Then problem (37), (38) is equivalent to the system of integral equations

ur(t) = Xr(t)

t∫
tr−1

X−1
r (τ1)A(τ1)dτ1λr +Xr(t)

t∫
tr−1

X−1
r (τ1)

N∑
j=1

tj∫
tj−1

K(τ1, τ)[uj(τ) + λj ]dτdτ1+

+Xr(t)

t∫
tr−1

X−1
r (τ1)f(τ1)dτ1, t ∈ [tr−1, tr), r = 1, 2, ..., N.

Take an arbitrary partition ∆N and consider the corresponding homogeneous Fredholm integral
equation of the second kind

y(t) =

T∫
0

M(∆N , t, τ)y(τ)dτ, t ∈ [0, T ], (39)

where M(∆N , t, τ) =
t1∫
τ
K(t, τ1)X1(τ1)dτ1X

−1
1 (τ), t ∈ [0, T ], τ ∈ [0, t1],

M(∆N , t, τ) =
tj∫
τ
K(t, τ1)Xj(τ1)dτ1X

−1
j (τ), t ∈ [0, T ], τ ∈ (tj−1, tj ], j = 2, ..., N.

Definition 5. A partition ∆N is called regular for Equation (29) if the integral equation (39) has
only the trivial solution.

Let σ([0, T ]) denote the set of regular partitions of the interval [0, T ]. The set σ([0, T ]) is not empty.

Definition 6. The special Cauchy problem (37), (38) is called uniquely solvable if it has a unique
solution for any pair (f(t), λ) with f(t) ∈ C([0, T ],Rn) and λ ∈ RnN .

Definition 7. Suppose that ∆N ∈ σ([0, T ]), λ = (λ1, λ2, ..., λN ) ∈ RnN , and the function system
u[t, λ] = (u1(t, λ), u2(t, λ), ..., uN (t, λ)) is a solution to the special Cauchy problem for the system
of integro-differential equations with parameters (37), (38). Then the function x(∆N , t, λ) defined by
the equalities x(∆N , t, λ) = λr + ur(t, λ), t ∈ [tr−1, tr), r = 1, 2, ..., N , and x(∆N , T, λ) = λN +

lim
t→T−0

uN (t, λ) is called the ∆N general solution to the integro-differential equation (29).

Theorem 10. For any ∆N ∈ σ([0, T ]), there exists a unique ∆N general solution to the linear
Fredholm integro-differential equation (29).

In contrast to the classical general solution, the ∆N general solution exists for all linear
nonhomogeneous Fredholm integro-differential equations and containsN arbitrary parameters λr ∈ Rn.

The concept of new general solution, introduced by Dzhumabaev, made it possible to derive the
solvability criteria for the linear Fredholm integro-differential equations and boundary value problems
for this equation. The proposed method consists of the construction of ∆N general solutions and solving
linear algebraic equations with respect to parameters of those solutions. The Cauchy problems for
ordinary differential equations and problems of evaluation of the definite integrals on the subintervals
are used as auxiliary problems. Depending on the choice of methods for solving auxiliary problems,
either numerical or approximate methods were obtained in order to solve the linear boundary value
problems for Fredholm integro-differential equations [89–92].

The new general solution made it possible to propose new numerical and approximate methods
for solving boundary value problems with and without parameter for nonlinear ordinary differential
equations [93–98]. These methods are based on the construction and solving a system of algebraic
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equations for arbitrary vectors of the new general solution. The coefficients and the right-hand sides of
this system are determined using solutions of the Cauchy problems for ordinary differential equations
on the subintervals. Using the new general solution, solvability criteria were established for boundary
value problems for nonlinear ordinary differential equations.

The results and methods were extended to linear nonlocal boundary value problems for systems of
loaded hyperbolic equations and Fredholm hyperbolic integro-differential equations [99,100].

The new approach to the general solution became the basis of methods for research and solving
nonlinear boundary value problems for loaded differential and integro-differential equations [101–111].
The methods are based on the construction and solving systems of nonlinear algebraic equations for
arbitrary vectors of new general solutions. To solve nonlocal boundary value problems for nonlinear
partial differential and integro-differential equations, a modification of Euler’s broken lines method was
developed.

These results were further extended to multi-point problems, periodic problems with impulse effects,
and control problems for various classes of differential, loaded differential, integro-differential, and
partial differential equations [112–114].

Conclusion

Dzhumabaev D.S. was a highly qualified expert in the theory of differential, integral and
nonlinear operator equations, computer and mathematical modeling of applied problems. He has
published over 300 papers in scientific journals, including authoritative periodicals like Journal
of Mathematical Analysis and Applications, Journal of Computational and Applied Mathematics,
Mathematical Methods in Applied Sciences, Mathematical Notes, Computational Mathematics and
Mathematical Physics, Differential Equations, Ukrainian Mathematical Journal, Journal of Integral
Equations and Applications, Journal of Mathematical Sciences, Eurasian Mathematical Journal, etc.
The list of his major publications is given below.

The research findings were presented and discussed at many international symposia and conferences.
His scientific results were widely recognized in Kazakhstan and at the international level by experts in
the field of differential equations and computational mathematics. The scientific direction formed by
Dzhumabaev D.S. has been further developed by his students, who successfully work at the Institute
of Mathematics and Mathematical Modeling and leading universities in Kazakhstan.

In 1998, Dzhumabaev D.S. was awarded the title of professor (specialty 01.01.00 – Mathematics).
Under his supervision, two doctoral, twenty candidate dissertations, and one PhD thesis were defended.
He supervised five PhD students. In 2004-2005, Dzhumabaev D.S. was the chair of the Expert
Commission on Mathematics and Computer Science of the Committee on Supervision and Certification
in Education and Science of the Ministry Education and science of the Republic of Kazakhstan.

Professor Dzhumabaev made a great contribution to academic community. He led a scientific
seminar on the qualitative theory of differential equations at the Institute of Mathematics and
Mathematical Modeling. He was a scientific expert of the State Expertise of the Ministry of Education
and Science of the Republic of Kazakhstan. For many years, Dzhumabaev D.S. was a member of
Dissertation Councils at the Institute of Mathematics, Al-Farabi Kazakh National University, Abai
Kazakh National Pedagogical University, K. Zhubanov Aktobe Regional State University.

In 2014, at the invitation of the university authorities, Professor Dzhumabaev began to
deliver lectures at the International University of Information Technology. He taught such courses
as “Mathematical Analysis”, “Methods of solving linear and nonlinear boundary value problems
for ordinary differential equations”, “Problems for integro-differential equations of processes with
consequences”, “Boundary value problems, their applications and methods for solving”. It should be
noted that his scientific results of recent years were obtained under the influence of teaching at the
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International University of Information Technology. While giving lectures and conducting practical
classes, he realized with great clarity the importance of developing numerical methods for solving
applied problems. Having set himself the goal of bringing to the final numerical implementation the
theoretical results and algorithms of the parameterization method, he made a breakthrough in the
field of mathematical and computer modeling. Under scientific supervision of Professor Dzhumabaev,
master students and undergraduates of the International University of Information Technology carried
out research in the area of numerical methods for solving boundary value problems for differential and
integro-differential equations.

Professor Dzhumabaev chaired the Mathematics Section of Academic Council of the Institute of
Mathematics and Mathematical Modeling. He was a member of the editorial board of the scientific
journals News of NAS RK. Series: Physics and Mathematics, Kazakh Mathematical Journal, Bulletin
of Karaganda State University. Series: Mathematics.

Dzhumabaev D.S. was awarded the lapel badge “For Contribution to the Development of Science
and Technology” and the Certificate of Merit of the Ministry of Education and Science of the Republic
of Kazakhstan (2014).

Since 2018, Dzhumabaev D.S. headed the Department of Mathematical Physics and Mathematical
Modeling at the Institute of Mathematics and Mathematical Modeling. In 2019, his research
team, together with mathematicians from Ukraine, Uzbekistan, Azerbaijan, Germany, and the
Czech Republic, received funding from the European Union’s Horizon 2020 research and innovation
programme under EU grant agreement 873071-H2020-MSCA-PISE-2019 (Marie Sklodowska-Curie
Research and Innovation Staff Exchange), project titled “Spectral Optimization: From Mathematics to
Physics and Advanced Technology” (SOMPATY).

The first publication in the framework of this project is devoted to the application of the
parameterization method to multipoint problems for Fredholm integro-differential equations and was
published in Kazakh Mathematical Journal (2020, Vol. 20, No. 1).

At the end of 2019, having applied for the competition from the International University of
Information Technology, Professor Dzhumabaev became the owner of the grant “The Best University
Teacher 2019” of the Ministry of Education and Science of the Republic of Kazakhstan.

A prominent scientist, an outstanding teacher, and a talented organizer, Dulat Syzdykbekovich
Dzhumabaev passed away on February 20, 2020. He will be lovingly remembered by his wife Klara
Kabdygalymovna, daughters Dana and Damira, son Anuar, and fours grandchildren. His memory will
live in the hearts of his friends, colleagues, as well as generations of grateful and adoring students. His
research, scientific ideas and plans will be continued and implemented by his students.

The major publications by Dzhumabaev D.S.

1 Almukhambetov, K.K., & Dzhumabaev, D.S. (1977). Inverse boundary value problem for a
countable system of differential equations not resolved with respect to the derivative in the
space lp. Izv. AN KazSSR. Ser. fiz.-matem., (5), 7–11 [in Russian].

2 Dzhumabaev, D.S. (1978). Multi-iteration method for solving two-point boundary value problems
for semi-explicit differential equations in Banach spaces. Izv. AN KazSSR. Ser. fiz.-matem., (3),
9–15 [in Russian].

3 Dzhumabaev, D.S. (1978). Reduction of boundary value problems to problems with a parameter
and justification of the shooting method. Izv. AN KazSSR. Ser. fiz.-matem., (5), 34–40 [in
Russian].

4 Dzhumabaev, D.S. (1979). Necessary and sufficient conditions for the existence of solutions to
boundary value problems with a parameter. Izv. AN KazSSR. Ser. fiz.-matem., (3), 5–12 [in
Russian].
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5 Dzhumabaev, D.S. (1979). Boundary value problems for infinite systems of differential equations.
Izv. AN KazSSR. Ser. fiz.-matem., (5), 71–73 [in Russian].

6 Dzhumabaev, D.S. (1982). On one method for studying ordinary differential equations. Izv. AN
KazSSR. Ser. fiz.-matem., (3), 1–5 [in Russian].

7 Dzhumabaev, D.S. (1982). On the boundedness of the solution and its derivative on the entire
axis of a first-order differential equation. Izv. AN KazSSR. Ser. fiz.-matem., (5), 4–7 [in Russian].

8 Dzhumabaev, D.S. (1982). On the boundedness of the solution and its derivative on the half-axis
of some boundary value problems for ordinary differential equations. Differentsialnye uravneniia,
18 (11), 2013–2014 [in Russian].

9 Dzhumabaev, D.S. (1983). Justification of the broken line method for a boundary value problem
of a linear parabolic equation. Izv. AN KazSSR. Ser. fiz.-matem., (1), 8–11 [in Russian].

10 Zhautykov, O.A., & Dzhumabaev, D.S. (1983). On one problem for first order partial differential
equations. Izv. AN KazSSR. Ser. fiz.-matem., (3), 31–34 [in Russian].

11 Dzhumabaev, D.S., & Medetbekova, R.A. (1983). On the separability of a linear differential
equation. Izv. AN KazSSR. Ser. fiz.-matem., (5), 21–26 [in Russian].

12 Dzhumabaev, D.S., & Medetbekov, M.M. (1987). On the boundedness of the solution of a second-
order nonlinear ordinary differential equation. Izv. AN KazSSR. Ser. fiz.-matem., (3), 20–23 [in
Russian].

13 Dzhumabaev, D.S. (1984). On the solvability of nonlinear closed operator equations. Izv. AN
KazSSR. Ser. fiz.-matem., (1), 31–34 [in Russian].

14 Dzhumabaev, D.S. (1984). On the convergence of a modification of the Newton-Kantorovich
method for closed operator equations. Izv. AN KazSSR. Ser. fiz.-matem., (3), 27–31 [in Russian].

15 Dzhumabaev, D.S. (1987). Convergence of iterative methods for unbounded operator equations.
Mathematical Notes, 41 (5), 356–361. https://doi.org/10.1007/BF01159858

16 Dzhumabaev, D.S. (1989). On the solvability of Nonlinear Closed Operator Equations. American
Mathematical Society Translations - Series 2, 142, 91–94.

17 Dzhumabaev, D.S. (1989). On the Convergence of a modification of the Newton-Kantorovich
Method for Closed Operator Equations. American Mathematical Society Translations - Series 2,
142, 95–99.

18 Zhautykov, O.A., & Dzhumabaev, D.S. (1987). Solving boundary value problems based on a
modification of the Newton-Kantorovich method. Izv. AN KazSSR. Ser. fiz.-matem., (5), 19–29
[in Russian].

19 Zhautykov, O.A., & Dzhumabaev, D.S. (1988). About one approach to justifying the shooting
method and choosing an initial approximation. Izv. AN KazSSR. Ser. fiz.-matem., (1), 18–23 [in
Russian].

20 Dzhumabaev, D.S. (1988). Convergence rate of iterative processes for unbounded operator
equations. Izv. AN KazSSR. Ser. fiz.-matem., (5), 24–28 [in Russian].

21 Dzhumabaev, D.S. (1988). About one approach to justifying the shooting method and choosing
an initial approximation. Vestnik AN KazSSR., (1), 48–52 [in Russian].

22 Dzhumabayev, D.S. (1989). Criteria for the unique solvability of a linear boundary-value problem
for an ordinary differential equation. U.S.S.R. Comput. Math. Math. Phys., 29 (1), 34–46.
https://doi.org/10.1016/0041-5553(89)90038-4

23 Dzhumabaev, D.S. (1987). Approximation of the problem of finding a bounded solution by two-
point boundary value problems. Differentsialnye uravneniia, 23 (12), 2188–2189 [in Russian].

24 Dzhumabaev, D.S. (1989). Approximation of a bounded solution and exponential dichotomy on
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the axis. Differentsialnye uravneniia, 25 (12), 2190–2191 [in Russian].
25 Dzhumabayev, D.S. (1990). Approximation of a bounded solution of a linear ordinary differential

equation by solutions of two-point boundary value problems. U.S.S.R. Comput. Math. Math.
Phys., 30 (2), 34–45. https://doi.org/10.1016/0041-5553(90)90074-3

26 Dzhumabayev, D.S. (1990). Approximation of a bounded solution and exponential dichotomy
on the line. U.S.S.R. Comput. Math. Math. Phys., 30 (6), 32–43. https://doi.org/10.1016/0041-
5553(90)90106-3

27 Dzhumabaev, D.S. (1992). Singular boundary value problems and their approximation for
nonlinear ordinary differential equations. Comput. Math. Math. Phys., 32 (1), 10–24. EID: 2-
s2.0-44049120854

28 Dzhumabaev, D.S. (1997). On one approach to solving nonlinear boundary value problems. Izv.
MN-AN RK. Ser. fiz.-matem., (5), 17–24 [in Russian].

29 Dzhumabaev, D.S. (2001). Iterative processes with damping multipliers and their application.
Matem. journal, 1 (1), 20–30 [in Russian].

30 Dzhumabaev, D.S. (1996). About one sign of exponential dichotomy on the entire axis. Izv.
MN-AN RK. Ser. fiz.-matem., (5), 43–48 [in Russian].

31 Dzhumabaev, D.S. (1998). Estimates for the approximation of singular boundary problems for
ordinary differential equations. Comput. Math. Math. Phys., 38 (11), 1739–1746.

32 Dzhumabaev, D.S., & Asanova, A.T. (1999). On a unique solvability of a linear two-point
boundary value problems with parameter. Izv. MN-AN RK. Ser. fiz.-matem., (1), 31–34 [in
Russian].

33 Dzhumabaev, D.S., & Asanova, A.T. (2000). On estimates of solutions and their derivatives of
boundary value problems for parabolic equations. Izv. MON, NAN RK. Ser. fiz.-matem., (5),
3–9 [in Russian].

34 Dzhumabaev, D.S., & Minglibayeva, B.B. (2004). Well-posed solvability of a linear two-point
boundary value problem with parameter. Matem. journal, 4 (1), 41–51 [in Russian].

35 Dzhumabaev, D.S., & Temesheva, S.M. (2004). On one approach to the choice of initial
approximation for a nonlinear two-point boundary value problem. Matem. journal, 4 (2), 47–
51 [in Russian].

36 Dzhumabaev, D.S., & Imanchiyev, A.E. (2005). Well-posed solvability of a linear multi-point
boundary value problem. Matem. journal, 5 (1), 24–33 [in Russian].

37 Dzhumabaev, D.S. (2006). Parameterization method for studying and solving a nonlinear two-
point boundary value problem. Vestnik KazNU im. al-Farabi. Ser. matem., mech., inform., (1),
51–55 [in Russian].

38 Dzhumabaev, D.S., & Nazarova, K.Zh. (2006). Parameterization method for studying a linear
boundary value problem and algorithms for finding its solution. Matem. journal, 6 (4), 40–47 [in
Russian].

39 Dzhumabaev, D.S., & Temesheva, S.M. (2007). A Parametrization method for solving
nonlinear two-point boundary value problems. Comput. Math. Math. Phys., 47, (1), 37–61.
https://doi.org/10.1007/s40314-018-0611-9

40 Dzhumabaev, D.S., & Temesheva, S.M. (2009). On an algorithm for finding isolated solutions
to a nonlinear two-point boundary value problem. Vestnik KazNU im. al-Farabi. Ser. matem.,
mech., inform., 4(63), 30–37 [in Russian].

41 Dzhumabaev, D.S., & Abildayeva, A.D. (2010). Isolated and bounded on the whole axis solutions
to systems of nonlinear ordinary differential equations. Matem. journal, 10, 1(35), 18–24 [in
Russian].
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42 Dzhumabaev, D.S., & Imanchiyev, A.E. (2010). Criterion for the existence of an isolated solution
to a multi-point boundary value problem for a system of ordinary differential equations. Izv.
NAN RK. Ser. fiz.-matem., (3), 117–121 [in Russian].

43 Dzhumabaev, D.S., & Temesheva, S.M. (2010). Convergence of one algorithm for finding a
solution to a nonlinear nonlocal boundary value problem for systems of hyperbolic equations.
Vestnik KarGU im. E.A. Buketov. Ser. matem., fiz., inf., 4(60), 30–38 [in Russian].

44 Dzhumabaev, D.S., & Temesheva, S.M. (2010). Necessary and sufficient conditions of the
existence “izolated” solution of nonlinear two-point boundary-value problem. J. Math. Sci.,
194 (4), 341–353. https://doi.org/10.1007/s10958-013-1533-0

45 Dzhumabaev, D.S., & Uteshova, R.E. (2015). Bounded solutions of linear loaded ordinary
differential equations with essential singularities. Matem. journal, 15 (4), 54–65 [in Russian].

46 Dzhumabaev, D.S., Temesheva, S.M., & Uteshova, R.E. (2016). On the approximation of the
problem of finding bounded solution to a system of nonlinear ordinary differential equations with
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47 Dzhumabaev, D.S., & Abil’daeva, A.D. (2017). Properties of the isolated solutions bounded on
the entire axis for a system of nonlinear ordinary differential equations. Ukrainian Math. J.,
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