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In the present paper sets related to invariant Riemannian metrics of positive sectional and (or) Ricci
curvature on generalized Wallach spaces are considered. The problem arises in studying of the evolution
of such metrics under the influence of the normalized Ricci flow. For invariant Riemannian metrics of the
Wallach spaces which admit positive sectional curvature and belong to a given invariant surface of the
normalized Ricci flow equation we establish that they form a set bounded by three connected and pairwise
disjoint regular space curves such that each of them approaches two others asymptotically at infinity.
Analogously, for all generalized Wallach spaces with coincided parameters the set of Riemannian metrics
which belong to the invariant surface of the normalized Ricci flow and admit positive Ricci curvature
is bounded by three space curves each consisting of exactly two connected components as regular curves.
Mutual intersections and asymptotical behaviors of these components are studied as well. We also establish
that curves corresponding to Kähler metrics of spaces under consideration form separatrices of saddles of
a three-dimensional system of nonlinear autonomous ordinary differential equations obtained from the
normalized Ricci flow equation.
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Introduction

The paper is devoted to the study of structural properties of two important sets responsible for
positivity of the sectional and the Ricci curvatures of invariant Riemannian metrics on the Wallach
spaces and generalized Wallach spaces. The Wallach spaces

W6 := SU(3)/Tmax, W12 := Sp(3) / Sp(1)×Sp(1)×Sp(1), W24 := F4/Spin(8) (1)

are well-known and admit invariant Riemannian metrics of positive sectional curvature as it was shown
in [1]. As for generalized Wallach space, firstly, recall its definition and basic properties (see [2, 3]).
Let G/H be a homogeneous almost effective compact space with a (compact) semisimple connected
Lie group G and its closed subgroup H. Denote by g and h the corresponding Lie algebras of G
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and H. Then [· , ·] is a corresponding Lie bracket of g whereas B(· , ·) is the Killing form of g. Note
that 〈· , ·〉 = −B(· , ·) is a bi-invariant inner product on g. In this way invariant Riemannian metrics
on G/H can be identified with Ad(H)-invariant inner products on the orthogonal complement p of h
in g with respect to 〈· , ·〉. Compact homogeneous spaces G/H whose isotropy representation admits
a decomposition into a direct sum p = p1 ⊕ p2 ⊕ p3 of three Ad(H)-invariant irreducible modules p1,
p2 and p3 satisfying [pi, pi] ⊂ h for each i ∈ {1, 2, 3} were called generalized Wallach spaces in the
terminology of [3]. The main characteristic of these spaces is that every generalized Wallach space
can be described by a triple of real parameters ai := A/di ∈ (0, 1/2], i = 1, 2, 3, where di = dim(pi)
and A is some important positive constant (see [2] for details). It should be also noted that not every
triple (a1, a2, a3) ∈ (0, 1/2] × (0, 1/2] × (0, 1/2] corresponds to some generalized Wallach spaces. An
interesting fact is the fact that the Wallach spaces (1) are partial cases a1 = a2 = a3 = a of generalized
Wallach spaces with a = 1/6, a = 1/8 and a = 1/9 respectively (see [4]).

As noted above for a fixed bi-invariant inner product 〈·, ·〉 on the Lie algebra g of the Lie group
G, any G-invariant Riemannian metric g on G/H can be determined by an Ad(H)-invariant inner
product

(·, ·) = x1〈·, ·〉|p1 + x2〈·, ·〉|p2 + x3〈·, ·〉|p3 , (2)

where x1, x2, x3 are positive real numbers (a detailed exposition can be found in [2,3,5] and references
therein). In [2] the explicit expressions Ricg = r1 Id|p1 + r2 Id|p2 + r3 Id|p3 and Sg = d1r1+d2r2+d3r3
were derived for the Ricci tensor Ricg and the scalar curvature Sg of the metric (2) on generalized
Wallach spaces, where

ri :=
1

2xi
+

1

2ai

(
xi
xjxk

− xk
xixj

− xj
xixk

)
(3)

are the principal Ricci curvatures, {i, j, k} = {1, 2, 3}.
Knowing Ricg and Sg allowed us to initiate in [6,7] the study of the normalized Ricci flow equation

∂

∂t
g(t) = −2 Ricg +2g(t)

Sg
n

(4)

introduced by R. Hamilton in [8] on generalized Wallach spaces. Since then studies related to this topic
were continued in [9–14] concerning classifications of singular (equilibria) points of (4) being Einstein
metrics and their bifurcations. The authors of [15–17] studied an interesting and quite complicated
surface of bifurcations of (4) defined by a symmetric polynomial equation in three variables a1, a2, a3
of degree 12. In the sequel authors of [4,18] considered the evolution of positively curved Riemannian
metrics under the influence of (4) on an interesting class of generalized Wallach spaces with coincided
parameters a1 = a2 = a3 := a ∈ (0, 1/2) generalizing some results of [19, 20]. In this case (4) can be
reduced to the following system of three autonomous ordinary differential equations (see [4]):

dxi
dt

= fi(x1, x2, x3) :=
xi
xj

+
xi
xk

+ 2a

(
xj
xk

+
xk
xj
− 2

x2i
xjxk

)
− 2 (5)

with {i, j, k} = {1, 2, 3}.
In [4] it was proved that (4) deforms all generic metrics with positive sectional curvature into metrics

with mixed sectional curvature on each Wallach space in (1) (Theorem 1 in [4]) and all generic metrics
with positive Ricci curvature will be deformed into metrics with mixed Ricci curvature forW12 andW24

(see Theorem 2 in [4]), where given metric is said to be generic if xi 6= xj 6= xk 6= xi for i, j, k ∈ {1, 2, 3}.
According to Theorems 3 and 4 in [4] and Theorem 3 in [18] positiveness of the Ricci curvature will be
preserved for all generic metrics at a ∈ (1/6, 1/2) and for a special kind of metrics satisfying xk < xi+xj
at a = 1/6 (the equalities xk = xi + xj correspond to Kähler metrics), whereas all positively curved
metrics will be deformed into metrics with mixed Ricci curvature if a ∈ (0, 1/6). In [4,18] we used the
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description S :=
{

(x1, x2, x3) ∈ (0,+∞)3 | γ1 > 0, γ2 > 0, γ3 > 0
}
\
{

(r, r, r) ∈ R3 | r > 0
}
of the set

of Riemannian metrics with positive sectional curvature on the Wallach spaces (1) given in [21], where

γi := (xj − xk)2 + 2xi(xj + xk)− 3x2i , {i, j, k} = {1, 2, 3}. (6)

Analogously, R :=
{

(x1, x2, x3) ∈ (0,+∞)3 | λ1 > 0, λ2 > 0, λ3 > 0
}
\
{

(r, r, r) ∈ R3 | r > 0
}

is the
set of all Riemannian metrics of positive Ricci curvature on every generalized Wallach spaces with
a1 = a2 = a3 := a ∈ (0, 1/2), where

λi := xjxk + a
(
x2i − x2j − x2k

)
, {i, j, k} = {1, 2, 3} (7)

in accordance with (3).

The present paper is devoted to detailed proof of our observations in [4, 18] concerning structural
properties of surfaces and curves obtained from (6) and (7). For each i = 1, 2, 3 introduce the surfaces
(cones) Γi := {(x1, x2, x3) ∈ (0,+∞)3 | γi = 0} and Λi := {(x1, x2, x3) ∈ (0,+∞)3 | λi = 0}.

Denote by Σ the surface defined by the equation V = 1, where V := x1x2x3. Introduce also space
curves si := Σ ∩ Γi, ri := Σ ∩ Λi. The main result of this paper is contained in the following two
theorems.

Theorem 1. The following assertions hold for all indices with {i, j, k} = {1, 2, 3}:

1 For each Wallach space in (1) the set of invariant Riemannian metrics (2) which belong to the
invariant surface Σ of the differential system (5) and admit positive sectional curvature is bounded
by the pairwise disjoint regular space curves s1, s2 and s3 in Σ such that each sk is connected
and can be parameterized as

xk = t−1α−2, xi = tα, xj = α,

where

α = α(t) :=

 3

√(
−t− 1 + 2

√
t2 − t+ 1

)
t−1(t− 1)−2, if t > 0, t 6= 1,

3
√

6/2, if t = 1,

and α(t) > 0 for all t > 0.

2 Every invariant curve Ik of the differential system (5) given by the equations xi = xj = p,
xk = p−2, p > 0, intersects the only border curve sk at the unique point with coordinates
xi = xj = p0, xk = p−20 approaching at infinity the other two curves si and sj as close as we like,
where p0 = 3

√
6/2.

The results of Theorem 1 are illustrated in the left panel of Figure 1, where the curves s1, s2 and
s3 are depicted respectively in red, teal and blue colors, the invariant curves I1, I2, I3 are all yellow
colored.

6 Bulletin of the Karaganda University



Structural properties of ...

Figure 1. The curves s1, s2, s3 (the left panel); the curves r1, r2, r3, l1, l2, l3 and singular points
o0,o1,o2,o3 corresponding to a = 1/6 (the right panel)

Theorem 2. The following assertions hold for all indices with {i, j, k} = {1, 2, 3}:
1 For every generalized Wallach space with a1 = a2 = a3 = a ∈ (0, 1/2) the set of invariant

Riemannian metrics (2) which belong to the invariant surface Σ of the differential system (5)
and admit positive Ricci curvature is bounded by the space curves r1, r2 and r3 in Σ such that
each rk consists of two regular connected components rki and rkj parameterized by equations

xk = t−1β−2, xi = tβ, xj = β (8)

and
xk = t−1β−2, xj = tβ, xi = β (9)

respectively, where

β = β(t) :=
6

√
(t4 − a−1t3 + t2)−1 > 0,

t ∈ (0, a].
2 Every pair of the curves ri and rj admits a unique common point Pij with coordinates
xi = xj = a

1
3 , xk = a−

2
3 which belong to the components rij and rji; In addition, every in-

variant curve Ik of the system (5) meets the components rij and rji of ri and rj exactly at the
point Pij approaching their another components rik and rjk at infinity as close as we like.

3 For every a ∈ (0, 1/2) all singular (equilibria) points of the differential system (5) belong to the
set Σ ∩R.

4 Kähler metrics xk = xi + xj of generalized Wallach spaces with a = 1/6 form separatrices lk of
saddles of (5) in Σ which can be defined by parametric equations

xk = t−1φ−2, xi = tφ, xj = φ, (10)

where φ = φ(t) := 3

√
(t2 + t)−1, t > 0.
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The results of Theorem 2 are illustrated in the right panel of Figure 1 for the case a = 1/6, where
the curves r1, r2 and r3 are depicted respectively in magenta, aquamarine and burlywood colors, the
curves l1, l2 and l3 are depicted by cyan colored curves and yellow colored points correspond to singular
points of (5).

It should be noted that we will consider only Riemannian metrics satisfying the unit volume condi-
tion V := x1x2x3 = 1 (see [4, 6]). In general, surfaces V = c, where c > 0, play the significant role for
study (5) on generalized Wallach spaces. It is known that any set determined by the equation V = c is
invariant under (5), moreover V = c is its first integral. Surfaces V = c will also be unstable (or stable)
manifolds of (5) and contain leading directions of motions of its trajectories (see [22]). Since the right
hand sides of (5) are all homogeneous, namely fi(cx1, cx2, cx3) = fi(x1, x2, x3) for any c, we can pass
to a new differential system of the same form as the original one, but with x̃1x̃2x̃3 = 1. Actually this is
reachable by replacings xi(t) = x̃i(τ) 3

√
c and t = τ 3

√
c. Therefore without loss of generality we assume

that the invariant surface is given by V ≡ 1.

1 Proofs of Theorems 1 and 2

Observe that the expressions for γi and λi in (6) and (7) are symmetric under the permutations
i→ j → k → i. Therefore it suffices to consider representatives only at fixed (i, j, k), where {i, j, k} =
{1, 2, 3}.

1.1 Proof of Theorem 1

Proof. (1) The curves s1, s2, s3 are pairwise disjoint and form the boundary of the set Σ ∩ S. For
each Wallach space in (1) the set S of Riemannian metrics (2) admitting positive sectional curva-
ture is bounded by the pairwise disjoint cones Γ1, Γ2 and Γ3 (these cones are depicted in the left
panel of Figure 2 in red, teal and blue colors respectively). Although this fact was proved in [22]
we repeat here the sketch of reasonings for convenience of the readers. Indeed the equation γk = 0

defines two connected components xk = 3−1
(
xi + xj − 2

√
x2i − xixj + x2j

)
and xk = Φk(xi, xj) :=

3−1
(
xi + xj + 2

√
x2i − xixj + x2j

)
of the cone Γk. Since the first of them gives xk < 0 for all xi, xj > 0

then γk > 0 is equivalent to 0 < xk < Φk(xi, xj) meaning that S is bounded by the plane xk = 0
and the positive part Γk of the cone γk = 0. By symmetry we have the same for Γi and Γj . Thus
∂(S) = Γ1 ∪ Γ2 ∪ Γ3 and hence ∂(Σ ∩ S) = s1 ∪ s2 ∪ s3.

Consider now the pair (i, j). The equations γi = 0 and γj = 0 defining the surfaces Γi and Γj can
admit only the following two family of common solutions xi = xj , xk = 0 and xi = xk, xj = 0. But we
need in positive solutions only. Hence Γi ∩ Γj = ∅ for all positive x1, x2, x3. By symmetry the same
assertions hold for the pairs (i, k) and (j, k).

Parameterizations of the curves s1, s2 and s3. Due to symmetry fix any unordered triple (i, j, k).
The parametric representation xk = t−1α−2, xi = tα, xj = α of the curve sk can be obtained putting
xk = x−1i x−1j in γk = 0. Then we have the following polynomial equation of degree 6 in two variables
xi and xj : x2ix

2
j (xi − xj)2 + 2xixj(xi + xj)− 3 = 0.

Substituting xi = txj , xj = 3
√
u into the obtained equation and solving it with respect to u we find

its two different roots u1 :=
(
−t− 1 + 2

√
t2 − t+ 1

)
t−1(t−1)−2, u2 :=

(
−t− 1− 2

√
t2 − t+ 1

)
t−1(t−

1)−2, where t > 0, t 6= 1, but the second of them, taken with the minus sign, gives only negative values
of xi and xj .

Denote α̃(t) = 3
√
u1(t) > 0. Note that limt→0+ α̃(t) = +∞ and limt→+∞ α̃(t) = 0. This predicts

the behavior of the curve sk for values t → 0+ and t → +∞ of the parameter t: limt→+∞ xj(t) = 0,
limt→+∞ xi(t) = limt→+∞ xk(t) = +∞ and limt→0+ xi(t) = 0, limt→0+ xj(t) = limt→0+ xk(t) = +∞.
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Connectedness of the curves s1, s2 and s3. Note also that limt→1+ α̃(t) = limt→1− α̃(t) = p0 := 3
√

6/2.
Hence assigning α(1) := p0 and

α(t) :=

{
α̃(t), if t > 0, t 6= 1,

p0, if t = 1

we define a continuous function α : G → G on G := (0,+∞). Therefore in the standard topology of
R3 the set (curve) sk = F (G) ⊂ G3 must be connected as a continuous image of the connected set G
under a function F : G → G3 with continuous coordinate components xi, xj , xk : G → G such that
xi(t) = tα(t), xj(t) = α(t) and xk(t) = t−1α(t)−2.

Smoothness of the curves s1, s2 and s3 can be proved using their parametric equations. But we
prefer another way. Due to symmetry it suffices to prove smoothness of the curve si = Σ∩Γi. Since Σ
and Γi are smooth (regular) surfaces it remains to show that their intersection is transversal, in other
words their gradient vectors ∇V = (x2x3, x1x3, x1x2) =

(
x−11 , x−12 , x−13

)
and ∇γi = (γi1, γi2, γi3) are

linearly independent along si, where

γij :=
∂γi
∂xj

=

{
xi + xj − xk, if j 6= i,

−3xi + xj + xk, if j = i,

for i, j ∈ {1, 2, 3}. Due to symmetry fix any i and suppose by contrary that ∇γi = c∇V for some real
c 6= 0. This means that the equalities γij = cx−1j hold for j ∈ 1, 2, 3. Then for j 6= i and k 6= i we
obtain equalities (xi + xj − xk)xj = (xi + xk − xj)xk = c equivalent to (xj − xk)(xi + xj + xk) = 0
which is impossible for xi 6= xj 6= xk 6= xi. Actually we proved the more strong fact that the normal
vectors ∇V and ∇γi are linearly independent not only along si, but everywhere where the surfaces Σ
and Γi are defined excepting points (x1, x2, x3) with non positive or coincided components.

(2) Intersections of s1, s2, s3 with I1, I2, I3. Due to symmetry it suffices to take the invariant curve Ik
of the system (5) defined as xi = xj = p, xk = p−2, p > 0. Consider the curve sk. The question is
whether Ik will cross the curve sk or not. It suffices to answer this question for Ik and the surface
Γk because existing of a point Z in (0,+∞)3 such that Z ∈ Ik ∩ Γk implies Z ∈ Ik ⊂ Σ and hence
Z ∈ Σ ∩ Γk = sk. Thus substituting xi = xj = p, xk = p−2 into the equation γk = 0 of Γk, we obtain
the equation γk = (4p3 − 3)p−4 = 0 which can admit the single root p = p0 = 3

√
6/2 providing the

unique common point xi = xj = p0, xk = p−20 of Ik with sk.

Consider now any curve si such that i 6= k. Then we obtain an incompatible system of equations
xi = xj = p, xk = p−2 and γi = 0 because of γi = p−4 6= 0. Moreover, si asymptotically tends to Ik as
p→ +∞ according to limp→+∞ γi = limp→+∞ p

−4 = 0. The same result holds for sj by symmetry in
the equation of Ik. Theorem 1 is proved.
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Figure 2. The cones Γ1,Γ2,Γ3, Λ1,Λ2,Λ3 and the planes xk = xi + xj for {i, j, k} = {1, 2, 3} (the left
panel); Crossing r2 and r3 by r1 (the right panel)

1.2 Proof of Theorem 2

To prove Theorem 2 we need the following Lemma containing auxiliary results.

Lemma 1. For every generalized Wallach space with a ∈ (0, 1/2) the set R is bounded by the
conic surfaces Λ1, Λ2 and Λ3. Each pair Λi and Λj has intersections along two different straight lines
xi = xj = u, xk = 0 and xi = xj = av, xk = v, where u, v > 0.

The cones Λ1, Λ2 and Λ3 are depicted in the left panel of Figure 2 in magenta, aquamarine and
burlywood colors respectively.

Proof of Lemma 1. Consider the surface Λk. Since D := x2i − a−1xixj + x2j is symmetric with
respect to xi and xj it can be considered as a quadratic polynomial in xj without loss of generality.
Then D ≤ 0 if mxi ≤ xj ≤Mxi and D > 0 if 0 < xj < mxi or xj > Mxi, where

m = m(a) :=
(

1−
√

1− 4a2
)

(2a)−1, M = M(a) :=
(

1 +
√

1− 4a2
)

(2a)−1. (11)

It is easy to see that 0 < m(a) < M(a) for all a ∈ (0, 1/2).
Depending on the sign of D the inequality λk > 0 admits the positive solution xk >

√
D if D > 0

and any xk > 0 can satisfy λk > 0 if D ≤ 0. This means that besides the planes x1 = 0, x2 = 0
and x3 = 0 the set R is bounded by two disjoint connected components Λkj and Λki of the surface
Λk = Λki∪Λkj defined by the same equation xk = Ψ(xi, xj) :=

√
x2i − a−1xixj + x2j but on the different

domains
{

(xi, xj) ∈ R2
∣∣ xi > 0, 0 < xj < mxi

}
and

{
(xi, xj) ∈ R2

∣∣ xi > 0, xj > Mxi
}
respectively.

Due to symmetry the same properties hold for the surfaces Λi and Λj as well. Thus ∂(R) =
Λ1 ∪ Λ2 ∪ Λ3.

By the same reason it suffices to analyze only Λi∩Λj . Assume that some triple (x1, x2, x3) satisfies
both of λi = 0 and λj = 0. Then λi − λj = 0 and λi + λj = 0 imply the system of equations
(xi − xj) (xk − 2a(xi + xj)) = 0 and xk (xi + xj − 2axk) = 0. In what follows that the system of the
equations λi = 0 and λj = 0 can admit only the following two different families of one-parametric
solutions xi = xj = u, xk = 0 and xi = xj = av, xk = v with parameters u, v > 0. Lemma 1 is proved.
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Proof of Theorem 2. (1) Clearly ∂(Σ∩R) = r1 ∪ r2 ∪ r3 directly follows from ∂(R) = Λ1 ∪Λ2 ∪Λ3

proved in Lemma 1. Intersecting both of the connected components Λki and Λkj of the cone Λk the
surface Σ forms components rki = Σ ∩ Λki and rkj = Σ ∩ Λkj of the curve rk such that rk = rki ∪ rkj
and rki ∩ rkj = ∅.

Smoothness of the components of r1, r2 and r3. Consider the curve rk. We claim that the gra-
dient vectors ∇V =

(
x−11 , x−12 , x−13

)
and ∇λk = (λk1, λk2, λk3) of the surfaces Σ and Λk are linearly

independent for all positive x1, x2, x3 such that x1 6= x2 6= x3 6= x1, where

λkj :=
∂λk
∂xj

=

{
xi − 2axj , if j 6= k,

2axk, if j = k,

for k, j ∈ {1, 2, 3}. Indeed supposing ∇λk = c∇V , where c is a nonzero real number, we obtain
immediately an unreachable equality (xj − xi)(xj + xi) = 0. In what follows that each component rk1
and rk2 of the curve rk is a smooth curve as a transversal intersection of two smooth surfaces.

Connectedness of the components of r1, r2, r3. The variable xk can be eliminated from the system
of equations xixjxk = 1 and λk = 0 to obtain the equation

ax2ix
2
j

(
x2i + x2j

)
− x3ix3j − a = 0

of the projection of the curve rk onto the coordinate plane (xi, xj). By the same way as in Theorem 1
substituting xi = txj , xj = 3

√
u into the last equation and solving it with respect to u we obtain the

parametric equation
xk = t−1β−2, xi = tβ, xj = β

of the curve rk, where β = β(t) :=
(
t4 − a−1t3 + t2

)− 1
6 > 0. It is easy to see that the numbers

m = m(a) and M = M(a), 0 < m < M , given in (11) are different real roots of the polynomial
t2 − a−1t+ 1 for all a ∈ (0, 1/2). Therefore β can be rewritten in the form

β = β(t) :=
(
t2(t−m)(t−M)

)− 1
6 .

In what follows that the function β(t) is well defined, continuous and positive valued for t ∈ (0,m) ∪
(M,+∞). We conclude now that the components rki and rkj of rk are respectively continuous images
of the connected sets (0,m) and (M,+∞) under a vector-function with coordinates xi(t), xj(t) and
xk(t). Therefore rki and rkj are connected too.

Note that the components rki and rkj are symmetric under the permutation i→ j → i. Therefore
we can parameterize them on the same interval but using different formulas (8) and (9) respectively.
For simplicity we choose the interval (0,m).

Intersections of r1, r2 and r3. Consider the pair r1 and r2. By Lemma 1 the only common line of the
surfaces Λ1 and Λ2 which consists of points with nonzero coordinates is the straight line x1 = x2 = av,
x3 = v, v > 0. This line intersects the surface Σ at a unique point, denote it P12. Indeed substituting
x1 = x2 = av, x3 = v into x1x2x3 = 1 we get the unique value v = v0 := a−2/3. This yields coordinates(
a1/3, a1/3, a−2/3

)
of P12. Note that P12 (the point P in the right panel of Figure 2) is also the only

intersection point of the curves r1 and r2 (their components r12 and r21).
Now a value of t at which P12 is located in r1 can be found from the parametric representation

x1(t) = t−1β(t)−2, x2(t) = tβ(t), x3(t) = β(t) of r12. The condition x1 = x2 implies an equation
t−1β−2 = tβ admitting the single root t0 = a for all a ∈ (0, 1/2). Therefore the curve r1 passes
through P12 at t = t0 only. It should be noted that the curves r1 and r2 leave extra pieces after cross-
ing each other. In principle, we can preserve them, but it is advisable to remove them for greater clarity
of pictures. Basing on the values of the limits limt→0+ x2(t) = 0, limt→0+ x1(t) = limt→0+ x3(t) = +∞
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and limt→m− x1(t) = 0, limt→m− x2(t) = limt→m− x3(t) = +∞ we conclude that the tail PP ′ corre-
sponds to values t ∈ (a,m). Therefore the original interval of parametrization (0,m) can be reduced
to the interval (0, a] shown in the text of Theorem 2.

By symmetry the analysis of the pairs r1 ∩ r3 and r2 ∩ r3 (points in teal and red color in the
right panel of Figure 1) will be the same using permutations of the indices {i, j, k} = {1, 2, 3}. For
example, the equations x1(t) = t−1β(t)−2, x2(t) = β(t) and x3(t) = tβ(t) define another connected
component r13 of the curve r1 (which intersects r3) on the same interval (0, a]. Then coordinates(
a1/3, a−2/3, a1/3

)
of the point P13 (in fact {P13} = r13 ∩ r31) can be obtained at the same boundary

value t = a (the point Q in the right panel of Figure 2). Analogously at t ∈ (a,m) we get the tail QQ′

of r13.
(2) Intersections of r1, r2, r3 with I1, I2, I3. Without loss of generality consider the invariant

curve Ik. As in Theorem 1 it suffices to consider the surfaces Λi instead of the corresponding curves ri.
The curve Ik crosses both of the curves ri and rj (the components rij and rji) exactly at their common
point Pij because substituting xi = xj = p, xk = p−2 into λi = 0 and λj = 0 yields the equation

λi = λj = (p3 − a)p−4 = 0

which admit a single root p = a1/3 corresponding to Pij . Therefore Ik ∩ rij ∩ rji = {Pij}.
At the same time Ik approximates both of ri and rj (their components rik and rjk) at infinity.

Indeed
lim

p→+∞
λi = lim

p→+∞
λj = lim

p→+∞
(p3 − a)p−4 = 0.

For the curve rk we have λk = (1 − 2a)p2 + p−4 > 0 under the same substitutions. Therefore Ik
never cross rk, moreover, limp→+∞ λk = +∞.

(3) Every singular point of (5) belongs to Σ ∩ R. As it follows from [6] the system of alge-
braic equations fi(x1, x2, x3) = 0 has the following four families of one-parametric solutions for every
a ∈ (0, 1/2) \ {1/4}:

x1 = x2 = x3 = τ, xi = τκ, xj = xk = τ, τ > 0, {i, j, k} = {1, 2, 3}, (12)

where κ := (1− 2a)(2a)−1. At a = 1/4 these families merge to the unique family x1 = x2 = x3 = τ .
Substituting xi = τκ and xj = xk = τ into the expressions (7) for λ1, λ2 and λ3 we obtain

λ1 = λ2 = λ3 = (1− 2a)(1 + 2a)(4a)−1 τ2 > 0,

because a ∈ (0, 1/2). Obviously,

λ1 = λ2 = λ3 = (1− a) τ2 > 0

at x1 = x2 = x3 = τ . Therefore the straight lines (12) lye in the set R for all a ∈ (0, 1/2) according to
the definition of R. These lines cross the invariant surface Σ at the points (see also [22])

o0 := (1, 1, 1), o1 := (qκ, q, q) , o2 := (q, qκ, q) , o3 := (q, q, qκ) ,

being the singular points of the system (5) on Σ, where q :=
3
√
κ−1 (obviously, the unique singular

point (1, 1, 1) will be obtained if a = 1/4). Thus we conclude that oi ∈ Σ ∩ R for every a ∈ (0, 1/2)
and i ∈ {0, 1, 2, 3}.

(4) Invariancy of the curves l1, l2, l3. According to [6] the curves I1, I2 and I3 are separatrices
of the unique saddle point o0 (which has the linear zero type) of the system (5) if a = 1/4. For
a ∈ (0, 1/2) \ {1/4} the points o1,o2,o3 are all hyperbolic type saddles and o0 is a stable (respectively
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unstable) hyperbolic node if 1/4 < a < 1/2 (respectively if 0 < a < 1/4). Additionally, each invariant
curve Ik is one of two separatrices of the saddle ok (see [22]), where k = 1, 2, 3. At a = 1/6 we have an
opportunity to find analytically the second separatrice of each ok different from Ik. Indeed it is easy
to see that coordinates of ok satisfy the system of equations{

xk = xi + xj , {i, j, k} = {1, 2, 3},
xixjxk = 1,

(13)

where the equalities xk = xi + xj describe the set of Kähler metrics on a given generalized Wallach
space G/H with a1 = a2 = a3 = a = 1/6 (see also [4]). Therefore each saddle ok belongs to the
intersection lk of the invariant surface Σ with the plane xk = xi + xj (the curves l1, l2, l3 are depicted
in the right panel of Figure 1 in cyan color for all indices {i, j, k} = {1, 2, 3}). Parametric equations (10)
of the curves lk can be obtained repeating similar procedures as in the case of the curves sk and rk.

It is easy to show that li ∩ lj = ∅ for i 6= j. Moreover, we claim that each of l1, l2, l3 is also an
invariant curve of the differential system (5). To show it consider the case k = 3 due to symmetry.
Substitute the parametric representation x1 = φ, x2 = tφ, x3 = t−1φ−2 of the curve l3 into f1, f2
and f3 in (5), where

φ = φ(t) := 3
√

(t2 + t)−1, t > 0.

For x1 = φ, x2 = tφ and x3 = t−1φ−2 the functions f1, f2, f3 take the following forms

f1 = −2

9

(2t+ 1)(t− 1)

t(t+ 1)
, f2 =

2

9

(t+ 2)(t− 1)

t+ 1
, f3 =

2

9

(t− 1)2

t
.

The value t = 1 providing f1 = f2 = f3 = 0 gives a stationary trajectory, namely it is the singular
point o3 = (q, q, qκ) itself. Thus assume t 6= 1. The identities

dx2
dx1

=

dx2
dt
dx1
dt

≡ (tφ)′

φ′
= −(t+ 2)t

2t+ 1
=
f2
f1
,

dx3
dx1

=

(
t−1φ−2

)′
φ′

= − t
2 − 1

2t+ 1
=
f3
f1
,

dx3
dx2

=

(
t−1φ−2

)′
(tφ)′

=
t2 − 1

t(t+ 2)
=
f3
f2

imply that l3 is a trajectory of (5) for t > 0 and t 6= 1. Moreover, l3 passes through the singular
point o3. This means that l3 is a separatrice of o3. Invariancy of the curves l1 and l2 respectively
passing through o1 and o2 can be proved using the same idea. Theorem 2 is proved.

Remark 1. As it was noted in the proof of Theorem 2 the equations (8) define for t ∈ (M,+∞)
the same curve as (9) for t ∈ (0,m). In the case t ∈ (M,+∞) the tail removing procedure leads to
the equation t−1β−2 = β equivalent to at2 − (a2 + 1)t + a = 0. Its first root t = a corresponds to
the point Pki and the second root t = 1/a gives the point Pkj . Obviously 0 < a < m < M < 1/a for
all a ∈ (0, 1/2). Therefore both components of each curve rk can be parameterized by one formula,
say (8), but using the different intervals (0, a] and [1/a,+∞).

Remark 2. We proved that all singular points o0,o1,o2 and o3 of the normalized Ricci flow on
generalized Wallach spaces with a1 = a2 = a3 = a belong to the set Σ ∩ R of metrics with positive
Ricci curvature. Unfortunately a similar assertion does not hold for the set Σ ∩ S. Lemma 3 in [22]
shows that there exists a critical value a = 3/14 such that o1,o2,o3 ∈ ΣS only if a ∈ (3/14, 1/2) and

Mathematics Series. No. 4(116)/2024 13



N.A. Abiev

the boundary cases oi ∈ si (i = 1, 2, 3) hold if a = 3/14. The only generalized Wallach spaces which
admit metrics with positive sectional curvature are the Wallach spaces (1) which satisfy the condition
a ∈ (0, 3/14).

Remark 3. The case a = 1/6 is original, where Kähler metrics provide separatrices of saddles oi.
For a 6= 1/6 it is a difficult problem to find similar separatrices analytically. Knowing all separa-
trices allows to predict the dynamics of the Ricci flow in more detail. To demonstrate the main
idea consider an arbitrarily chosen singular point in the case a = 1/6. Without loss of generality take
o3 =

(
2−1/3, 2−1/3, 22/3

)
(the Kähler-Einstein metric) and observe that the curve l3 defined by the equa-

tions x3 = x1+x2 and x1x2x3 = 1 coincides with the unstable manifoldW u
3 of o3 as it was shown in [22].

The stable manifold of o3 is W s
3 :=

{
(x1, x2, x3) ∈ R3

∣∣ x3 = p−2, x1 = x2 = p, 0 < p < 1
}
⊂ I3. It is

clear now that controlling byW s
i andW u

i trajectories of (5) never can leave the domain bounded by the
curves (13) because of no trajectory originated in that domain can intersect separatrices by the unique-
ness of a solution of an initial value problem. This explains the fact proved in Theorem 4 in [4] that
Riemannian metrics (2) on generalized Wallach spaces with a = 1/6 (on the Wallach space SU(3)/Tmax

in particularly) preserve the positivity of their Ricci curvature for xk < xi + xj ({i, j, k} = {1, 2, 3}).
In Figure 3 the separatrices l1, l2, l3 and some trajectories of (5) are depicted for illustrations.

Figure 3. The case a = 1/6: the separatrices li (in cyan color), Ii (in yellow color) of the saddles oi
and some trajectories (in black color) of system (5), i = 1, 2, 3

2 Additional remarks

i) The well known fact that the positivity of the Ricci curvature follows from the positivity of the
sectional curvature can be justified and illustrated via inclusion S ⊂ R, where S is depicted in Figure 2
as a set bounded by three cones in red, teal and blue colors, respectively R is bounded by six conic
surfaces in magenta, aquamarine and burlywood colors.

To establish S ⊂ R for all a ∈ (0, 1/2) it suffices to show the inclusion ∂(S) ⊂ R. We will follow
this opportunity since a direct attempt to establish S ⊂ R leads to pairs of inequalities of the kind
γi > 0 and λi > 0 whose analysis is much more complicated than to deal with the system consisting
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of one equation γi = 0 and one inequality λi > 0:{
(xj − xk)2 + 2xi(xj + xk)− 3x2i = 0,

xjxk + a
(
x2i − x2j − x2k

)
> 0.

(14)

By symmetry fix any i ∈ {1, 2, 3} and consider the component Γi of the boundary of S. Every
point of the cone Γi belongs to some its generator line xi = νt, xj = µt, xk = t, t > 0, where
µ = 1 − ν + 2

√
ν(ν − 1) > 0, ν > 1 (see also [22]). Indeed generators satisfy the equation in (14)

and the inequality in (14) takes the form (X − Y ) t2 > 0 with X :=
(
4a(ν − 1) + 2

)√
ν(ν − 1) and

Y := 4aν2 + (1− 6a)ν + 2a− 1.
Obviously X > 0 for all a ∈ (0, 1/2) and ν > 1. Since Y = 0 has roots ν1 = 2a−1

4a < 0 and ν2 = 1 the
inequality Y > 0 holds as well at ν > 1. Thus X − Y > 0 is equivalent to X2− Y 2 = (ν − 1) p(ν) > 0,
where the quadratic polynomial p(ν) = 8aν2−(2a+3)(2a−1)ν+(2a−1)2 admits two different negative
roots ν1 = 2a−1

16a

(
2a+ 3 +

√
(2a− 1)(2a− 9)

)
and ν2 = 2a−1

16a

(
2a+ 3−

√
(2a− 1)(2a− 9)

)
for every

a ∈ (0, 1/2). It follows then p(ν) > 0 and hence X2 − Y 2 > 0 at ν > 1 independently on a ∈ (0, 1/2).
Therefore λi > 0 for any point of Γi which means that Γi ⊂ R. Since i was chosen arbitrarily we obtain
∂(S) = Γ1 ∪ Γ2 ∪ Γ3 ⊂ R and hence S ⊂ R with the obvious consequence Σ ∩ S ⊂ Σ ∩R.

ii) There are useful asymptotical representations for practical aims. For instance, at t → 0 the
expressions x1(t) = x3(t) = t−1/3 +O

(
t5/3
)
, x2(t) = t2/3 +O

(
t8/3
)
are valid for coordinates of points

of the curve s3 defined as a variety of solutions of the system{
(x1 − x2)2 + 2x3(x1 + x2)− 3x23 = 0,

x1x2x3 = 1.
(15)

For t tending to 0 the curve r1 :

{
x2x3 + a

(
x21 − x22 − x23

)
= 0,

x1x2x3 = 1
has a similar asymptotic

x1(t) = t−1/3 +O
(
t5/3
)
, x2(t) = t2/3 + t5/3

6a + O
(
t8/3
)
, x3(t) = t−1/3 + t2/3

6a + O
(
t5/3
)
in accordance

with the fact that s3 and r12 ⊂ r1 approach the same invariant curve I2 at infinity.

iii) Often it is easier to deal with a planar analysis of the dynamics of the normalized Ricci flow.
Choose the coordinate plane x3 = 0 without loss of generality. Then the projection of the set Σ ∩ S
of Riemannian metrics with positive sectional curvature onto the plane x3 = 0 is bounded by the
following plane curves s′1, s′2 and s′3 defined implicitly 3x41x

2
2 − 2x31x

3
2 − x21x42 − 2x21x2 + 2x1x

2
2 − 1 = 0,

3x42x
2
1 − 2x32x

3
1 − x22x41 − 2x22x1 + 2x2x

2
1 − 1 = 0 and x41x22 − 2x31x

3
2 + x21x

4
2 + 2x21x2 + 2x1x

2
2 − 3 = 0.

For example the equation of s′3 can be obtained eliminating x3 in the system (15).
Analogously, boundary curves of the projection of the set Σ ∩ R of Ricci positive metrics onto

the plane x3 = 0 have equations ax41x22 − ax21x42 + x1x
2
2 − a = 0, ax42x21 − ax22x41 + x2x

2
1 − a = 0 and

ax41x
2
2 + ax21x

4
2 − x31x32 − a = 0.

Projections of the Kähler metrics x1 = x2 + x3, x2 = x1 + x3 and x3 = x1 + x2 will be defined by
x1x2(x1 − x2) = 1, x1x2(x2 − x1) = 1 and x1x2(x1 + x2) = 1 respectively.

We recommend to compare the pictures demonstrated in this paper with planar pictures depicted
in the right panels of Figures 3, 6 and 7 obtained in [4] in the coordinate plane (x1, x2).
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