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The goal of this study is to propose the existence of mild solutions to delay fractional neutral stochastic
differential systems with almost sectorial operators involving the Hilfer fractional (HF) derivative in Hilbert
space, which generalized the famous Riemann-Liouville fractional derivative. The main techniques rely on
the basic principles and concepts from fractional calculus, semigroup theory, almost sectorial operators,
stochastic analysis, and the Monch fixed point theorem via the measure of noncompactness (MNC).
Particularly, the existence result of the equation is obtained under some weakly compactness conditions.
An example is given at the end of this article to show the applications of the obtained abstract results.
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Introduction

Applications for fractional calculus extend from engineering and natural phenomena to financial
views and physical accomplishments, and the subject is always growing. Fields like viscoelasticity,
electrical engineering circuits, the vibration of seismic movements, biological systems, etc. usually
contain an increasing number of fractional frameworks. Numerous good monographs provide the
essential scientific methods for the attractiveness of this research topic. It should be possible to compare
frameworks with practical systems of fractional power to the framework of ordinary integer order.
Regarding fractional order, the derivative of the framework sum in the practical system might be
correct. Numerous models in scattering, sensor fusion, automation, and so forth might all be used
using this system. Learners can examine the literature [1-3|, as well as research articles [4-8] that deal
with the concept of fractional evolution systems to gain a thorough understanding of the concepts as
well as the specifics of how it is implemented.

Due to the prevalence of neutral differential equations in many applications of applied mathematics,
only neutral systems have received substantial attention in recent decades. In most cases, neutral
systems with or without delay serve as an optimal configuration of numerous partial neutral systems
that emerge in problems related to heat stream in components, viscoelasticity, acoustic waves, and
various natural processes. One may mention [9-11] for a very helpful discussion on neutral systems
involved in differential equations. Instead of deterministic models, stochastic ones should be studied
since both natural and manufactured systems are prone to noise or uncontrolled fluctuations. Differential
equations with stochastic components contain unpredictability in their theoretical depiction of a specific
event. For a general overview of stochastic differential equations (SDE) and its applications [12-15].
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The R-L and Caputo fractional derivatives were among the additional fractional order derivatives
that Hilfer [16] started. The significance and consequences of the Hilfer fractional derivative (HFD)
have also been found through conceptual forecasts of experiments in hard materials, pharmaceutical
industries, set architecture design, architecture, and other fields. Gu and Trujillo [17] recently showed
that the HFD evolution problem has an integral solution using a fixed point approach and a MNC
strategy. In order to identify the derivative’s order, he constructed the greatest current variable ¢ € [0, 1]
and a fractional variable ) so that ¢ = 0 generates the R-L derivative and ( = 1 generates the Caputo
derivative. Numerous papers have been written about Hilfer fractional calculus [18,19]. According
to [20-23], researchers discovered a mild solution for HF differential systems employing almost sectorial
operators and a fixed point method.

The research articles [24-27] to improve the fractional existence for fractional calculus by utilizing
almost sectorial operators. Investigators in the study by [20-22] employed almost sectorial operators
to get their results using Schauder’s fixed point theorem. Researchers have subsequently constructed
nonlocal fractional differential equations with or without delay using non-dense fields, semigroups,
cosine families, many fixed point strategy, and the MNC. To the best of our knowledge, the existence
of HF neutral stochastic differential systems using the measure of noncompactness mentioned in this
study is an exposed area of research that appears to give an extra incentive for completing this research.

The following subject will be looked at in this article: HF stochastic differential systems contain
almost sectorial operators with nonlocal condition

DY [:0) — 20, ))] = Asl) + Fprz) + Hlpz) Do ped' = ()

157 092(0) +R(2)) = a € LX(A, By),  p € (—00,0], (2)

where A denote the almost sectorial operator, which generate an analytic semigroup {7T'(p),p > 0} on
Y. Consider z(+) is the value in a Hilbert space Y with || - || and D + represents the HFD of order
n, 0 <1 < landtype ¢, 0 < ¢ < 1. The histories 2, : (—00,0] = B, zp( a) = z(p+a), a < 0 connected
with the abstract phase space B,. Fix ® = [0,d], and let F : ® x B, = Y, H : ® x B, — LY(J,Y)
and © : ® X B, — Y are the Y-valued function and non-local term X : B, — Y.

Now let’s break up our content into the following sections. In Section 1 we outline a few crucial
ideas and details from our study that are referenced throughout the body of this article. We discussed
the existence of a mild solution to the problem in Section 2. We provide an illustration of our main
notion in Section 3. Then, a few conclusions are offered.

1 Preliminaries

The fundamental concepts, theorems, and lemma that are used throughout the whole work are
introduced here.

The notations (Y, ||-||) and (7, ||-||) signify two real distinct Hilbert spaces. Suppose (A, .%, P) is a
full probability area connected with full family of right continuous growing sub o-algebra {.#, : p € D}
fulfills .#, C .#. Consider W = {W(p)},>0 is a Q-Wiener strategy identified on (A,.%, P) with the
correlation operator @ such that Tr(Q) < oo. We assume there exists a full orthonormal system ey,
k > 1in U, a limited series of non-negative real integers x; such that Qer = xrer, £ =1,2,--- and
{pi} of independent Brownian movements such that

(W(p),e)y = > vxrler e)uklp), e €U p=>0.

k=1

Assuming that the area of all @-Hilbert-Schmidt operators ¢ : Q%j ? Y with the inner product
HgoHé = (p,9) = Tr(pQy) is signified by the symbols L) = Ly(Q27,Y). Let us consider the
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resolvent operator of A, 0 € p(A), where S(-) is uniformly bounded, that is, [|S(p)|| < M, M > 1, and
p > 0. Thus, given ¢ € (0,1], the fractional power operator A% on its range D(A®) may be obtained.
Furthermore, D(A?) is dense in Y.

The succeeding substantial characteristic of A% will be discussed.

Theorem 1. [1]

1 If 0 < 8 <1, then Y5 = D(A%) is a Banach space with ||z||; = | A%z]|, z € Y.

2 Assume 0 < v < § < 1, embedding D(A\é) — D(/TV) and the implementation are compact
whenever A is compact.

3 For all 0 < é <1, there exists Cs > 0 such that

1A < 53, 0<p<d

Consider C : ® — Y is the family of all continuous functions, where ® = [0,d] and ®’ = (0, d] with
d > 0. Choose
Y ={z€l:lim Pl T2 (p) exists and finite },
p—0

which is the Banach space and its || - ||y, specified as

Izly = sup {p" =T z(p)| }.
peED’

Fix Zp(®) = {u € C such that |[ul| < P}. Let z(p) = p~ 1T+ (p), p € (0,d] then, z € YV if and
only if y € 0 and |z[ly = [|y[|. We produce H with ||H|1s(p r+), where H € LP(D,RT) for some p
along with 1 < p < 0co. Also LP(®,Y) represent the Banach space of functions H : © x B, — Y which
are the Bochner integrable normed by HHHLP(@,Y).

Definition 1. [16] For the function H : [d,+00) — R, the HFD of order 0 < n < 1 and type
¢ € [0, 1], presented by

Dy F(p) = (1" DO F)l(p)

The abstract phase space B; is now specified. Assume that w : (—o0,0] — (0,+00) is continuous
along [ = f_ooo w(p)dp < +o00. Now, for all n > 0, we obtain

B = {e:[-n,0] = Y such that £(p) is bounded and measurable},
and set the space B with the norm

lellj=n0 = sup [le(7)]], for all e € &.
T€[—n,0]

We now specify,

B, :{5 : (=00,0] = Y such that for all n. > 0, e[j_, o € #

0
and/ w(T)\|5\|[T,O]dT<+oo}.

—00

Suppose B; is endowed with

0
lells, = / ’u}(T)HEH[.,.’O]dT, for all € € By,

—00
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therefore (By, || - ||) is a Banach space.
Now, we specify the space

Bl = {z:(—00,d] — Y such that z|p € C, o € B, }.

Let us consider the seminorm || - || in By defined as

Izla = llall 5, + sup{[lz(7)]| - 7 € [0,d]}, = € By.

Lemma 1. If z € By, then for all p € ®, z, € B;. Furthermore,

Uz(p)| < llzpllB. < Nl +1 sup [z(r)],
r€(0,p]
where | = f_ooo w(p)dp < 0.

Definition 2. |25] We explain the family of closed linear operators @3, for0<d¥ <1, 0<w< 3,
the sector S, = {0 € C\{0} with |arg 0] <w} and A:D(A) C Y — Y that fulfills
(i) o(A) C Su;
(i) ||(6 - A) )7H| < Kele| ™7, for all w < & < 7 and there exists K. as a constant,
afterward A € 057 is bpemﬁed like almost sectorial operator on Y.

Theorem 2. 3| S,(p) and Q,(p) are continuous in the uniform operator topology, for p > 0, for all
d > 0, the continuity is uniform on [d, co).

Lemma 2. 28] Suppose {T;(p)},>0 is a compact operator, then {S, (p)},>0 and {Q;(p)},>0 are
also compact linear operators.

Lemma 3. [17] System (1)-(2) is unique to an integral equation offered by

a(0) — R(z,) ~ (0, a(0))

z(p) = T(C(1—mn) +n) p~ T 1+ 0(p, 2,)
+ F(ln) /op(p — )1t [A\zLdL + F (62 )de+ H (e, 2,)dW ()]

Definition 3. [17] Let z(p) be the solution of the integral equation offered by Lemma 3 then z(p)
fulfills

z2(p) = Sy.c(p) [a(O) — N(z,) — (0, a(O))} +0(p, 2p) + /OP Ky (p — L)]:(L, ZL)dL
+ /p Kn(p — )M (1, 2,)dW (), peD,
0

1- _
where S, c(p) = I 7" Ky (p), Ky(p) = p""1Qy(p) and Qy(p) = f5° ne,(e)T (p"e)de.
Definition 4. |7] A stochastic process z : (—0o0,d] — Y is sald to be a mild solution of the system

(1)-(2) if I(()}:n)(kC)z(O) + R(z,) = a € L3(n, By), p € (—00,0] and the preceding integral equation
that fulfills

z(p) = Spc(p) [oz(()) —N(zp) — D(O,a(O))] +0(p, 2p) + /Op(p — L)"ilA\Qn(p —0)0(¢, 2,)dL

+ [0 000y~ )2+ [ o= 0000 — MG 2)aW ().
0 0
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Lemma 4. |21]
1 Ky(p) and S, ¢(p) are strongly continuous, for p > 0.
2 Ky(p) and S, ¢(p) are bounded linear operators on Y, for all fixed p € Sz _,, we obtain

[Kn(0)z]| < kpp™ N2l (| Qu(p)z]| < mpp™ ™2,
I'(0) —1+¢—n¢+nd
ISnc0)2ll < T =y oy El

-~

Proposition 1. [19] Let n € (0,1), ¢ € (0,1] and for all z € D(A), then there exists a x; > 0 such
that

nkgl'(2 —q)
p1L(1+n(1—q))
The Hausdorff MNC will now be briefly discussed.

Definition 5. [29] For a bounded set X in a Banach space Y, the Hausdorff MNC p is represented
as

1A7Q,(p)z| < Iz]l, 0 < p < d.

u(X) =inf{e > 0: X can be linked by a finite number of balls with radii €}.

Theorem 3. (8] If {vx}72, is a sequence of Bochner integrable functions from ® — Y with the
measurement |vg(p)|| < u(p), for all p € V and for all k > 1, where u € L'(D,R), then the function
w(p) = p({v(p) : k> 1}) is in L'(D,R) and fulfills

u<{ /Opvk(b)dLi k> 1}> SQ/OPW(L)dL.

Lemma 5. [8] Let X C Y be a bounded set, then there exists a countable set Xy C X such that
1(X) < 2u(Xo).

Definition 6. [29] If E™ is the positive cone of an order Banach space (E, <). Let U be the function
represented on the family of all bounded subset of the Banach space Y with values in ET is known as

MNC on Y if and only if U(conv(t)) = U(¢) for all bounded subset ¢ C Y, where conv(t) denoted the
closed convex hull of «.

Lemma 6. [30] Let G be a closed convex subset of a Banach space Y and 0 € G. Suppose F' : G — Y
continuous map which fulfils Ménch’s requirements, i.e., if G; C G is countable and, G; C E({O} U
F(G1)) = G} is compact. Then F has a fixed point in G.

2 FExistence

We require the succeeding hypotheses:
(Hp) Let A be the almost sectorial operator of the analytic semigroup T'(p), p > 0 in Y such that
IT(p)|| < Ki where K; > 0 be the constant.
(Hz) The function F : ® x By — Y fulfills:
(a) Caratheodory circumstances: F(-, z) is strongly measurable for all z € B, and F(p,-) is
continuous for a.e. p € D, F(-,-): [0,S] — Y is strongly measurable;

1
(b) There exists a constant 0 < 171 < 1 and my € L™ (D,R") and non-decreasing continuous
function f: RT — R such that || F(p, 2)|| < mi(p)f(p* ¢ ||z])), z € Y, p € D where

f fulfills lim infs_, o @ = 0;
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(c) There exists a constant 0 < 72 <7 and e; € L (D, R™) such that, for any bounded subset
M cCY, p(F(p, M)) < er(p)u(M) for a.e. p€D.
(H3) The function H : ® x B, — L(J,Y) fulfills:
(a) Caratheodory circumstances: H(-, z) is strongly measurable for all z € B, and H(p,-) is
continuous for a.e. p € D, H(-,-) : [0, 5] — LY(T,Y) is strongly measurable;
(b) There exists a constant 0 < 13 < 1 and mg € L%(D,R"’) and non-decreasing continuous
function 7 : R* — R* such that ||H(p, z)|| < ma(p)h(p*~¢T"||2]|), 2 € Y, p € D where
h fulfills lim infy 0 28 = 0;
(¢) There exists a constant 0 < 1y <7 and ey € Li(Q,RJF) such that, for any bounded subset
MCY, u(H(p, M)) < e2(p)u(M) for a.e. p e D.
(Hy) The function X : C(®,Y) — Y is continuous, compact operator and there exists L; > 0 as the
value such that [|[R(z1) — R(z2)|| < L1]|z1 — 22|
(Hs) The function O : ® x By — Y is continuous and there exists ¢ > 0, 0 < ¢ < 1 such that © € D(ﬁq)
forallzeY, pe?, Eqa(-, z) is strongly measurable, then there exists M,, > 0, M/ > 0 such
that v1,72 € Y and KqD(p, -) satisfies the following:

149D (p, 11.(p)) — A%D(p,12(p))|| < Muwp™ ™" |ly1(p) — 72(p)| B,
149D (o, 2()| < My, (1 + o'~ 2], ).

Take ||A~49| = M.
Theorem 4. Suppose (H1) — (Hs) holds, then the HF neutral stochastic system (1)-(2) has a unique
solution on ® presented, a(0) € D(A?) with 6 > 1 + .

Proof. Consider the operator ¥ : B, — Bi, defined

¢

qjl(ﬂ)? (—O0,0],

Sn.c(p)[a(0) = R(z,) = D(0,a(0))] +(p, 2,)
Ve = + 7o o"wmApr< )i

+ 5 (0= 0 IQy(p — ) F (1, 2)de
+ [ (p— )" 1Qn( OH (1, 2)dW (L), peD.

Ly 2,

For ¥y € B,, we specify T as

I _ \Ijl(p)’ p < (*00’0]7
“m_{%Ammm,pen

then U € B! Let z(p) = p =<1 [y(p) + \T/(p)], o0 < p < d. Tt is trivial to establish that u fulfills
by the Definition 4 if and only if v satisfies vy and

v(p) == Spc(p) [N (pliﬁncimﬂ[i’p + @p]) +9(0, a(O))] + D(P> (Plf&ﬁciw [vp + @p}))
+ /p(p — L)n—lA\Qn(p — L)D(L, Ll_H”C_"ﬁ[UL + (I\/L])dL
0
+ /Op(p —0)"1Qu(p — ) F (1,1 CHIC=mI [y, 4 J)de

+ /Op(p —0)"1Qu(p — )H (¢, Loy, 4 \/I}L])dW(b).
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Let B! = {v € B : vy € B,}. For any v € By,

lvlla =llvolls, +sup{llv@)]| : 0 < ¢ < d}
—sup{Jlo(0)]| :0 < 1 < d}.

Hence, (B/,| - ||) is a Banach space.

For P > 0, take Bp = {v € B! : ||v||q < P}, then Bp C B} is uniformly bounded, and for v € %p,
by Lemma 1,

oo+ Woll, < llvplls, + [¥]5,
I(9)
<IlP+
< I'(¢C(1 —n)+nv)
=P,

’fpp_lﬂ_"“"ﬁ) + | 1] B,

Consider an operator U : B} — B!/, specified by

0, p € (—00,0],
=S0.c(p) R (p' =+ [0, 4+ W, ]) 4 2(0, 2(0))]
_ +9(p, (1’“’74””9 + 7))
Ou(p) = + [P(p— )" AQy(p — 1D (1, I [y, 4+ T, ) ) de
+ J§ (o = "1 Qup = ) F (117 o, + W) de
+ [P(p— )" 1Qy(p — O)H (1, LTIy, —l-\I/])dW(L), pED.

Then to prove U has a fixed point.
Step 1: To prove there exists a positive value P such that O(#p(D)) C Bp(D). Suppose the claim
is incorrect i.e., for all P > 0, there exists vI’ € Zp(D), but U(v!) not in Bp(D), that is,

2
Ep|?<P<E

sup p! I (0P ()
p€[0,d]

sx[lpd} p”*”c”ﬁ{ = Syc(p) [R(p T, +,]) +D(0,a(0))]
pel0,

+0(p, (0" vy + 0]

P ~ ~
+ / (p— )" AQ,(p — 1) (1, T [y, + 1, ] ) e
0

<FE

+ /p(p — L)”_IQ,,(p — L)]:(L, LI_C—'—T]C_nﬁ[UL + \/I\’L])db
0

2

N /Op(p _ L)n_lQn(p _ L)H(L, Ll—C-HIC—nﬁ[UL + @L])dW(L)}

< 5a2(=¢+n—nv) [EHSM(P) [N(pl CHme— 7719[ L3 ]) +9(0,a(0))] 2

2

+ B|0(p, ol 4 )

P R R 2
+FE / (p— )" TAQy(p — 1) (1, S P ) du
0

2

p ~
+FE / (p— )" 'Qu(p — )F (e, S P L)) du
0
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|

< 5?0 =crnemm) [Hsn,c(p)IIZ[L?IIvf + W17+ [IR(O)][ + M| |?]

+FE

[ =0yl = (et E £ B ) )
0

+ MZM?(1 4 @>(=C+ne—nd)y p!

P —~ —~ —~
4 / (p— 2D AT9Q, (p — o) 2B A% (1, P 1)) [Pl
0
p
4 /0 (p— 02T D) Qyp — )|Pm3(d) £2(P')d

+10(@ [ (o020 (o - L>u2m§<d>h2<P'>db}
e r'(9) 2

< sdtimermem [(F(C(l —n)+ 7719)>
[L2P? + RO + MZ]o?]

,igd2(—1+c—77€+m9)

+ MZM2(1 + @>(A=CHne=n)) pr2

M,"‘fl—qr(l""‘Q))z 2(1— -
w 1 4 @2(=¢+nc=nd) pry j2nq
( qr'(1 + nq) ( )

dn’ dn’

2 2
n (w) R2m2(d) f2(P') + Tr(Q) (W) nzmad)h?(P')]
S 5d2(17C+anm9)M**’

where

M*™ = [(F(C(l _<77))+n19>> Hng( 1+¢—n¢+n9) [L%PQ"’_HN(O)HQ_'_M{UQHO(HQ]

M k1-T'(1+¢q
ql'(1 +nq)
dm

(& Qnﬁm?(d)ﬁ(P’HTr(Q) — Qf@%m%(d)h?(P’%
no o

By dividing the aforementioned inequality by P and using the limit as P — oo, we arrive at the
contradiction, which is 1 < 0. Consequently, U(%p (D)) C £p(D).

Step 2: The operator U is continuous on Bp(D). For U : #p(D) — Bp(D) and for all vk,
v € Bp(®), k = 0,1,2,--- such that limj_,o v® = v, then we get limp_ v*(p) = v(p) and
limy,_so0 p! TR () = pl=CHIC=10q (),

By (H>),

Fp, z1(p)) = F(p, p' =T [0 (p) + W(p)]) = F(p, 0~ [0(p) + ¥(p)])
= F(p,z(p)) as k — 0.

2
+ M[?M{Uz(l + d2(1—<+n<—m9))p/2 + ( )) (1 + d2(1—C+77C—m9)p') d2na

Take
Fr(v) = F(, JLetne=nd ko (I\’L]) and F(1) = F(, Gy, 4 ‘/I}L])

Then, using the assumption (Hs) and Lebesgue’s dominated convergence theorem (LDCT), we can
obtain

/p(/’ = 0?7 VNQu(p = OIPE Fi(e) = F()|[*de = 0 as k — oo, p € D. (3)
0
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By (H3),

H(p, 2k(p)) = H(p, p =T [k (p) + W (p)]) = H(p, p' =T [0(p) + ¥ (p)])
=H(p,z(p)) as k — oo.
Take
Hp (1) = H(e, L=k ‘/I\/L]) and H(t) = H (e, ST [y, + ‘/I}L])

Then, using the hypotheses (H3) and LDCT, we can obtain

[ 0= P10 = 0B Helo) — HQ)PAW() = 0 s k> o0, pe .
0

Take Ni(p) = R(pt =T [vk + \/I\/p]) and N (p) = R(pl=¢Fm=my, + \Tlp]), from (Hy), we get

E|Ni(p) = N(p)||> = 0 as k — cc.

()

Then, Dk(p, zk(p) = D(p, p' = [vk + W,]) and D(p, 2(p)) = D(p, p' =T [uv, + W,]). From

hypotheses (Hj), we obtain

Ello(p, zi(p)) = 2(p, 2(p))[|* = 0 as k — oo,

Now,
2
I\ 2
+HABIRup. o) ~ 2002+ 463 (T3 ) BN - FOIP

o\ 2
+ATT(Q)K? (%) E||H.() - HO)|”.
Using (3), (4), (5) and (6), we obtain

EHka — UUHZ —0as k — 0.

As a result, U is continuous on %Bp.
Step 3: To prove U is equicontinuous.
For z € Zp(®), and 0 < p; < p2 < d, we obtain

2

E] B2 (pa) — B(p)

pé_Gnc_W( = Suclp2) [R(p~ " vy, + U, ]) +0(0,(0))]
+ D(p27 (/0;_4—’_77C_n19 [vpz + ‘/I\/m]))

P2 R /\
4 [ o2 = 07 AQ 2 — 0D (et 4 8
0

P2 =~
[ o= 0y = )F (1 4 B
0

(6)
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+ /0P2 (p2 — L)"_lQn(pg — L)’H(L, LI_C"'"C_W[UL + (I\JL])dW(L)>

B p%—c+nc—m9< — Syc(p) [R(p [, 4+ 0,.]) +D(0, a(0))]

+ (o1, (01 vy + )
p1 R R

+ / (p1— )" T AQy(p1 — 1)O(e, JLene=ndy, 4 W,])de
0
p1 ~

[T =0y = 0 F 1+ T

P1 N 2
+ / (1 — )" Qulpr — M (1, =Sy, 4 M)dww)
0

<5k

p;—C-S-nC—W( — Syc(p2) [R(p2™H 0, +0,,]) +D(0, a(0))]

2
_ pi_f"‘”c_"ﬂ( —Sp.c(p1) [N (p%—€+77€—7719 [vp, + \/I\'m]) + (0, O‘(O))]>

Py D (2, (py T T 0y + W)

2

+5E‘

. p%—C-&-nC—WD(m’ (pi—g—&-nC—W[vpl + (I}Pl]))

+5E‘

p2 N ~
py STeTm / (p2 — )" TAQy(p2 — )O (1, 1T v, + W] ) de
0

P1 ,\ ~ 2
_ pi“”cnﬁ/ (p1— )" FAQy(p1 — )O (1, T v, + W) de
0

+55]

P2 =~
p%—C‘FUC—Wﬂ/ (p2 — L)nilQn(PQ — L)]:(L, JLctn=n? [v, + ‘I’L])db
0

P1 =~ 2
L /U (p1 — )" Qy(p1 — )F (1, 7T [y, + 0, de

—I—5E’

p2 ~
pr T / (p2 = )" Qulp2 — )M (1,1~ o, 4+ W) AW (1)
0

P1 -~ 2
_ phCnen / (p1 = )" Qypr — )H (1, = [, + W, )) AW (1)
0

< 10E||py TS, (02) [R(py =T T (g, + W) +D(0, a(0))]

2

=y TS, (o) R (T oy 4 T]) +D(0,0(0))]

+ 10E’ Py TS, (o) (R (o1 T [, + Ty ]) +2(0,a(0))]

2
— pi TS, (o) [R(01 T [,y + T ,,]) + D(0, (0))]

! 5E’ I (e (S W)
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2
A g (A 1)

+ 15E’

o1 N -
p%H"C"’?/ (p2 — )" FAQy(p2 — 1) (1, T v, + W) de
0

2

-~

P1 ~
_ piG"C"ﬁ/ (p1 — )" FAQ,(p2 — 1) (4, UL TR U,])de
0

+15E’

pP1 - ~
plm¢tne=m? /0 (p1 — )" AQy(p2 — 1D (1, P [y, + ] ) de

P1 -~ ~ 2
S / (p1— )T EAQy(p1 — )D (1, 1T 0, + W, ])du
0

2

P2 N ~
- 15E’ py ot / (p2 = )" AQy(p2 — 1)O (1,4 =y, + W] de
p1
p1 ~
+ 15E’ p;—ﬁnc—nﬂ/ (p2 — )" Qu(p2 — ) F (6, T [y, + T, ])de
0

P1 ~ 2
_ phGHneny /U (o1 — )" Qu(p2 — ) F (1, A=, 4 3] de

+ 15E’

p1 T
P}_H%_nﬂ/ (o1 = )" Qulpz — ) F (1, = o, + 0] e
0

P1 ~ 2
— plmcntomo / (p1 — )" Qy(p1 — )F (1, T [y, + 0] ) de
0

2
+15E’

p2 ~
ph=¢Hne—md / (2 — )" 1Qy(p2 — ) F (6, F=H [y, 0, ])de
p1

P1 =
pé—4+71§—7719/ (pg — L)n_lQn(pQ - L)H(L, Ll_C—HK_mg['UL + \PL])dW<L)
0

+ 15E’

1 ~ 2
_ pi—CJF”C_W/ (p1— )" Qy(p2 — )H (1, T [y, + 0] )dW (1)
0

+ 15E’

p1 ~
plm¢tne=nd / (p1 — )" Qup2 — )H (1, =T v, + ) AWV (1)
0

o1 ~ 2
_ p%G”C"ﬁ/ (p1 — L)”_lQn(Pl — L)H(L, JCHne—n? [v, + \I]L])dW([’)
0

2
+ 15E’

12
Z I.
=1

P2 o~
pp T / (p2 = )" Qulpz — )M (1, = o, + W, ])dW (1)
pP1

IN

L =10E||p, T™71S, (pa) [R(p5 T vy, + U,,]) + (0, a(0))]

2
—py TS, (p2) [N (o1 T gy + W) + (0, (0))]

2

~

<10E p;H"C*WSn’g(pz) <N (,oéfH”C*W [Vpy + Wp,]) — N(Piigncinﬁ [vpy + Eﬁn]))
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From hypotheses (Hy) and (5), we obtain I; tends to zero as p2 — pi.

I = 1012]p§‘<+"<‘””sng(p2>[N(p%‘<+"4‘"ﬂ[vpl+—fﬁpJ) +9(0, a(0))]

2
— py TS, (1) [R (1T [, + U, ]) + D(0, (0))]

2

1— —n 1— —nd
< 10|y TS, (p2) — py TS, (1)

2
B (o1, 8, +200,0(0)

By the strong continuity of S, ¢(p) and (Hy), we get I — 0 as pa — p1.

~

I3 = 5E‘ P;HWGWD(P% (P;an?nﬁ[l’pz + \I’pz]))

2
- pi*CJrnC*m?D (Pla (p}*CJrnC*W [Um + \I’m]))

2

1=C+n¢—m9 _ 1-C+n¢—nd
P2

< 5MZM*(1 + P?) o1

From hypotheses (Hj), we obtain I3 — 0 as p2 — p1.

Iy = 15E‘

P1 N ~
pé_c"“"c_"ﬁ/o (p2 — )T L AQ,(p2 — 1), ey, v,])de
p1 —~ ~ 2
_ phmctnon /0 (p1 — )" AQy(p2 — 1) (b, T [y, + T, ]) e
p1
<15E H /0 (pi“ncw(m — )1 = gy gy — L)”‘1>

AQy(p2 = )2 (1! =T o, + W) de

P
<5 [ (s o = gt g - )
0

2

2

2

2

X A\I_an(PQ — ) AT (¢, Letne=ndy, 4 (I\’L]) du

g

/ 2
<15 M) (e
qU'(1 +nq)

P1
— 1- —nd — 1— —nv —
/O (p2 — )"V <p2 S (g = )T py T (=) 1>db

Implies Iy — 0 as p2 — p1.

2
X

~

P1 ~
Is = 15E||pi ¢t / (p1 — )" FAQy(p2 — )D (1, T [y, + 0] ) de
0

P1 Y ~ 2
_ p%GnCnﬁ/ (p1 — )" FAQ,(p1 — 1) (4, LNy, 4 U,])de
0

2
< 15M3M,L/U2(1 + p?(I*CJF??C*m?)P/Q)

pP1
ACMCWA (o1 — )" [Qulp2 — 1) — Qulpr — 1)) de
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Since Q;(p) is uniformly continuous in operator norm topology, we obtain Is — 0 as pa — py.

2
I = 15E‘

1—¢+n¢— nﬁ/ <P2 _ L)U—lA\Qn(p2 _ L)D(L, Ll—C+77C—7719[UL + \/I}L])dL
p1

< 15<M{uﬁl—q77r(1+Q)) (1+ 2(1—¢4n¢— ?719)]3/2) 2(1—C+n¢—nv) /pQ(pQ_L)%(lq)dL
ql'(1 + ngq) o1

Integrating and ps — p1 = I = 0.

I; = 15E‘

1—C¢+n¢— m‘}/ (p2 — L)nilQn(pQ _ L)f(L, L1*C+77<*7719[1)L + \/I\’L])db
0

p1 ~ 2
_éﬂwGW/(m_mlwwywvﬁf<ﬂ<wm+wmm
0
< 15EH /p1 <p§—4+n4—m9(p2 B L)n—l _ p}—CJrnC—nﬂ(pl N L)n—l)
0
Qy(p2 — A)}"(L, JLCtnC—nd [v, + (I\/L])db

P1
< 15r, /0 (pé_““_”ﬁ(m — )" =T (o L)”‘1>
(p2 = )*""~Vmi(d) f(P')de.

2

2

Implies Iy — 0 as p2 — p1.

Is = 15F

P [ o1 = 77 1Q = ) F (o 1 8
0

2l = ?
_ p%CH?C?W/ (p1— )" Qu(p1 — ) F (6, T [y, + T, ])de
0

_ _ P1 _
< 15p§(1 ¢Hné m?)/o (p1 — )2 1)HQ77(/)2 — 1) = Qulp1 — o)||mi(d) f2(P")de

Since Qy(p) is uniformly continuous in operator norm topology, we obtain Iz — 0 as pa — p1.

2
Iy =15E||p

2 ~
1=CHnc—nd / (2 — )" Qy(p2 — 1) F (1, A= 0, + 0] de
p1

p2
< 1523 = [ gy 2 V) (P
p1

Integrating and ps = p1 = Ig = 0.

To = 15E‘

p1 ~
1=Cne=nd /O (p2 =)' Qulp2 — )H (1, =T o, + W,])dW (1)

PL ~ 2
_piu%vm/ (o1 = )" Qylp2 = )M (1, = [0, + W,])dW (1)
0

P1
< 15EH /0 (p;CJrnCW(pz _ L)n—l . pifCJrnC*nﬂ(pl _ L)??—1>
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2
Q,(p2 — L)H(L, L1_<+77C_7719[UL + \/I}L])dW(L)

P1
/ <p;‘<+"<‘"ﬁ<pz — O >>
0
(p2 = P Dmi(d)R* ().

2

< 15T7"(Q)/<;127

Implies I1g — 0 as p2 — p1.

I = 15E‘

1=C4ne— 7719/ (p1— )" Qy(p2 — ) H (e, ey, 4 (I}L])dW(L)
0

p1 ~ 2
e / (1 = )" Qulpr — )H (1, =T o, + W) dW (1)
0

p1
< 15Tr(Q)py ) /0 (o1 — 027V Qyp2 — 1) — Qulpr — 0)||*m3(d)R2(P")de.

Since Q,(p) is uniformly continuous in operator norm topology, we get I — 0 as ps — p1.

2
Iip = 15E‘

1=C+n¢— nﬂ/ (pg — L)nilQn(p2 - L)H (L, Llicﬂ]cinﬁ [UL + \/I}L])dW([’)
pP1

p2
<15Tr (@) [ oy = P V(@) ()

p1

Integrating and py — p1 = I12 = 0.
Hence, U is equicontinuous on 3.

Step 4: The Monch statement is true.
Let G =01 + Uy + U3 + U4 + U5, where

B10(p) = =Syc(p) [R(p" 7 0, + W,)) + (0, a(0))],
Bav(p) = (p, (P!, + T, ))),

Bau(p) = [0 =01 AQy (= 02 (01, 8 ),
Gio(p) = [ o= 077 1Qu = 0F (17T, 4 B )
Usv(p) = /Op(p — )" 1Qu(p — ) H (e, LSy, 4 (I\’L])dW(L).

Suppose G C Bp is countable and G; C co({0} U F(G;)). We demonstrate that u(Gy) = 0,
where p is the Hausdorff MNC. Without loss of generality, suppose Gy = {v*}%°,. Since U(G1) is
equicontinuous on ® as well.

Utilising Lemma (see [29]), and the hypotheses (H2)(c), (H3)(c), and (Hy), we have

n({B1F (0)1i21) < id — Spc(@) (P f 4+ 8,1) +0(0,a(0)] 132,
since N is compact, then S, ¢(p) is relatively compact, we get U;v(p) becomes zero. Next consider,
({20 (0)}72) < (D (p, (P~ g + D)) 1

({30 () 17) < u{ / (0= 0 LAQy (p — D (1, Pk 4 @A)cu}

o0

k=1

Mathematics series. No.1(113)/2024 187



S. Sivasankar, R. Udhayakumar et al.

From hypotheses (Hs) and properties of function o and A\Q, we obtain, that terms are relatively
compact. So Ugv(p) and Usv(p) become zero.

o0

u({Uw (p) Iz 1) < {/Op(p—L)"lQn(p—L)]:(L,LlC+n§nﬁ[vf+\flL])dL}
2 [0 0o - e swp (eI )

—00<6<0

< 2( TV lrl g gy (O,

k=1

IN

/\

o

u({Ts* ())72) < u{ / "0 — Q0 — Y H (1, I @J)dwm}

k=1

<21v(@ | "= Q- Des(t) s p({0h(0)}32)de

—00<0<0
uos

d oo
<2r(Q) (55 Jleal, g 0,30 HRENEL):
Thus, we have

p({00%(p)12) < n({B10%(0)132) + 1({B20"(p)}221) + n({Usv™(p)}221)
+ ({00 (0)1221) + 1 ({Us0%(0)132)

<2( TVl g gy (5O
+20rQ) (5 Yleal oy (EEOE)

9
§2<Cf;9>[’61\| 1 +Tr(Q)]|ea| Ju({o* (0)152)

L2 (D,RT) L (D,RY)

% dnﬂ
where 0 =2(55 ) [leal y o+ Tr@eal g )

Since G and U(Gy) are equlcontlnuous on D, it follows from Lemma (see [29]) that the constraint
implies that u(0G1) < M*u(Gy).

Therefore, given the requirements of the Mdnch’s, we get
1(G1) < p(ea{0} UB(G1)) = w(UG1) < M*uGh.

Given M* < 1, we have u(Gy) = 0. Therefore, G is relatively compact. As a result, U has a fixed
point v in Gy from Lemma 6.

Hence, completed the proof.
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3 FExample

Consider the HF neutral stochastic differential systems with infinite delay of the form
3¢
Dgy [2(p,7) + [y p(B;7)2(p, 7)dB] = 227 (p,T) + 7 (p, JZxale = p)2(p, T)dé>

. <p, J2 e = Ao, T>dW<c>>a (7)

z(p,0) = z(p,m) =0, p€ D,

Iéi_g)(l_C)z(O,T) + [y N(B,7)z(p, 7)df = 2(0,7), T €[0,7], p € (—00,0),

where D§ J’f denoted the HFD of order n = 2/3, type ¢ and x, X1, p and A are the necessary functions.
Consider, W (p) is the one-dimensional Brownian movements in Y represented on the filtered probability
space (A, .7, P) and with || - ||y to write the system (7) in the abstract form of (1)-(2). Let Y = L?[0, 7],
to transform this structure into an abstract structure, and A: D(ﬁ) C Y — Y is classified as Az = 2/
with

D(A) = {z € Y:z,2" are absolutely continuous, z” € Y, z(0) = z(x) = 0}

and

Az =Y K (x, ar)on, 0 € D(A),
k=1

where the orthogonal set of eigen vectors of A is or(z) = \/gsin(k:x), ke N.

Here, A is the almost sectorial operator of the analytic semigroup {T'(p), p > 0} in Y, T'(p)
is noncompact semigroup on Y with ((T'(p)B) < ((B), where ¢ denoted the Hausdorff measure of
noncompactness and there exists a constant Ky > 1, satisfy sup,cp [|T(p)| < K.

Specify, F : D x By = Y, H: D x B, —» LY(J,Y), 0: D x B, — Y and X : B, — Y are the
suitable functions, which fulfils the assumptions (Hy) — (Hs),

F(p 20)(r), = v(p, JE T>db>7

o

1oz 0= x(r [ xale= (o).

o0

2, 20)(7) = /0 " p(B. )2, ),
R(z,)(r) = /0 " N(B.7)2(p. 7)dB.

We also establish some acceptable requirements for the above-mentioned functions in order to validate
all of the Theorem 4’s hypotheses, and we confirm that the HF stochastic system (1)-(2) has a mild
solution.

Conclusion

The existence of a mild solution to HF neutral stochastic differential systems was the main emphasis
of this research. Almost sectorial operators, fractional calculus, MNC, and the fixed point approach
are used to establish the key conclusions. We offered an example to further illustrate the idea. In the
following years, we’ll use the fixed point approach to examine the exact controllability of HF stochastic
differential systems with delay.
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IMTekci3 kemiryi 6ap 6eJIek-HeHTPaJIaAbl CTOXaCTUKAJBIK XUJIbdep
anddepeHIInaAIbIK >KylieJepiHiH 00JIybI

C. Cupacankap', P. ¥Vaxaaxymap!, B. Myrxymapan?, I'. Toxyn!, I1I. Anp-Omapu®

L XK emindipineen evivmdap mexmebi, Bearypy mexnonozuanvs uremumymuo, Beaaypy, Yndicman;
2 Mnocenepair orcone mernoroezusap koaredsnci, SRM Fouavim scone mernorozus uncmumymon, Kammankyaamyp,
Ynoicman;
3 Fowvim axyavmemi, Oa-Baaka xordanbars yrnueepcumemi, Amman, Hopdarus

3eprreyain MakcaTsl oirii Puman-Jluysunn Gestimek TyBIHIBICHIH KaINbLIANTBIH [ MasbepT KeHicTiriHme-
ri Xunabdep OOIIeK TYyBIHIBICH KATHICATHIH JEPJIK CEKTODJIBIK OINEPATOpJapbl 0ap KeImireTin Oesrnex-
HENTPaJIbl CTOXaCTUKAJIBIK, AU depeHINaJIbIK, Kyieaep YIMH »KYMCaK IMIeniMIep/ i O0oJIyblH YCBHIHY.
Herisri ogmicTep Gemrmiek ecenTeymiH, >KapTbLIail TPYIIa TEOPUSICHIHBIH, JIEPJIK CEKTOPJIBIK OMEpaTOpJIap-
IBbIH, CTOXaCTUKAJIBIK TAJIIayIbIH YKOHE KOMIAKTBIIBI eMeC OJIIIeMi apKbLTbl MEHXTIH KO3FAJIMANTHIH HYKTE
TeOpEeMaChIHbIH, HEri3r Karuaaaapbl MEH TYKBbIPhIMIaMaJiapblHa Heri3Jeared. Aram aiiTKaHa, TEHAEYIIH
Gap OOJIYBIHBIH HOTUKECI 9JICI3 KOMIIAKTHIIBIKTEIH, Oe/IrisTi 6ip KaFmaiblHIa aJIbHIRL. MaKaJlaHbIH COHBIHIA
aJIBIHFaH aOCTPAKTBLIBI HOTHKEJIEP/IiH, KOJIJIAHY asChIH KOPCETeTiH MbICaJ Oap.

Kiam cesdep: Xunbdepais 66IIIeK 3BOMIOMUSIBLIK, >Kyieci, HeATpaaabl Kyiie, KOMIAKTBHIIbI €MEC ©JIIIEM,
KO3FaJIMafiThIH HYKTE TEOPEMACHI.

CyecTBoBaHue JAPOOHO-HENTPAJIBHBIX CTOXACTUYIECKNX
anddepeHInaJIbHBIX cucTeM XmiIbdepa ¢ 6eCKOHEeYHBIM
3ana3AbIBAHNEM

C. Cupacanxap!, P. ¥Vaxaaxymap!, B. Myrxymapan?, I'. Toxyx!, I1I. Anb-Omapu®

ITkona nepedoswx nayk, Texnoroeuveckud unemumym Beaaypy, Beaypy, Hrndus;
2 . o
Hnotcenepro-mexHosozuveckutl xKoanedatc; Unemumym Hayrxu u mexnoroeutit SRM, Kammanxyaramyp, Unous;
3 [Tpurradnoti yrnusepcumem Aav-Banka, Amman, Hopdarus

Ilens qaHHOTO UCCIIE0OBAHNST — MPEJJIOXKUTD CyIIECTBOBAHUE MATKUX PEIIEHUI JIJTsT 3aI1a3/IbIBAIOIIIX IPOOHO-
HEUTPAJIBHBIX CTOXACTUIECKUX AP DEPEHITNATBHBIX CUCTEM C IOYTH CEKTOPUATHLHBIMA OTIEPATOPAME, BKJTIO-
JaOIIMMHK JIPOOHYIO TTPOU3BOIHYI0 Xuibdepa B I'HJILOEPTOBOM IIPOCTPAHCTBE, KOTOPas 0000IIaeT 3HaMe-
HUTYIO JIpOOHYI0 Tpon3Bouyo Pumana-JIuysuiisi. OCHOBHBIE METO/BI TOCTPOEHBI HA 6A30BBIX ITPUHITUIIAX
¥ KOHIIEMIUAX JIPOOHOTO MCUUC/IEHUSI, TEOPUHU MOTYTPYII, TOYTH CEKTOPUAIBHBIX OIIEPATOPax, CTOXACTU-
YeCKOM aHajim3e U TeopemMe MEHXa O HENOJBMXKHOIM TOUYKE Yepe3 Mepy HEeKOMIIaKTHOCTH. B uacrHOCTH,
pe3yJIbTaT CyIeCTBOBaHUs YPABHEHUS TIOJIYUEH IIPU HEKOTOPBIX YCIOBUSAX CJIabOil KOMIAKTHOCTH. B KoHIEe
CTaTbU IIPUBEJIEH IIPUMEDP, JTEMOHCTPUPYIOMIMI MPUMEHEHNE IOy I€HHBIX aOCTPAKTHBIX PE3Y/IHTATOB.

Kmouesvie caosa: npobHasi IBOTIONMMOHHAS CUCTeMa XMibdepa, HeTpaabHasi CHCTEMA, MePa HEKOMIIAKT-
HOCTH, TEOPEMa O HEIIOJ[BUXKHOM TOYKE.

192 Bulletin of the Karaganda University



Existence of Hilfer fractional ...

Author Information™

Sivajiganesan Sivasankar — Master of science, Research Scholar, Department of Mathematics,
Vellore Institute of Technology, Vellore- 632014, Tamilnadu, India; e-mail: sivajisivasankar@gmail.com;
https://orcid.org/0000-0003-2422-9670.

Ramalingam Udhayakumar (corresponding author) — Doctor of philosophy, Assistant Professor
Senior Gradel, Department of Mathematics, Vellore Institute of Technology, Vellore- 632014, Tamilnadu,
India; e-mail: udhayaram.v@gmail.com; https:/ /orcid.org/0000-0002-7020-3466.

Venkatesan Muthukumaran — Doctor of Philosophy, Assistant professor, Department of Mathe-
matics, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur-
603203, India; e-mail: muthu.v2404@gmail.com; https://orcid.org/0000-0002-3393-5596.

Gunasekaran Gokul — Master of science, Research Scholar, Department of Mathematics, Vellore
Institute of Technology, Vellore- 632014, Tamilnadu, India; e-mail: gokulg2110@gmail.com.

Shrideh Al-Omari — Doctor of philosophy, Professor, Department of Mathematics, Faculty
of Science, Al-Balga Applied University, Amman 11134, Jordan; e-mail: shridehalomari@bau.edu.jo;
https://orcid.org/0000-0001-8955-5552.

*The author’s name is presented in the order: First, Middle and Last Names.

Mathematics series. No.1(113)/2024 193



