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Introduction

Integro-differential equations (IDEs) are used to model many problems in science, engineering,
economics, medicine, control theory, micro-inhomogeneous media and viscoelasticity [1–9]. Very impor-
tant tools in solving of Boundary Value Problems (BVPs) with IDEs are the Parametrization Method
[10] and the Factorization (Decomposition) method, but the applicability of the last method is confined
to certain kinds of integro-differential operators, corresponding to BVPs and cannot be universal for
all problems. There are several types of decomposition methods for solving BVPs with IDEs. The most
popular is Adomyan decomposition method and its modifications, where the Adomyan polynomials
are used, and approximate solutions of given BVPs are obtained [11–19]. Other types of decomposition
method were considered in [4], [5], [20]. Factorization of tensor integro-differential wave equations of
the acoustics of dispersive viscoelastic anisotropic media is performed for the one-dimensional case in
[4]. The integro-differential one-dimensional tensor wave equations of the electrodynamics of dispersive
anisotropic media are factorized in [5]. The initial first order integro-differential operator with arbitrary
nonpositive parameters was decomposed on three factors in [20] and further the sufficient conditions
for the existence of a solution are obtained on half line.

We propose in this article another factorization method on two factors which successfully was
applied in the articles by the authors [6], [7], [21]–[26] and by another author in [27]. Here we generalize
the results of these papers and study a more complicated boundary value problem with an abstract
operator equation

B1u = A2u− V Φ(A0u)− Y Φ(A2
0u)− SΨ(AA0u)−

−GΨ(A2u) = f, D(B1) = D(A2)

on a Banach space X, where A, A0 are abstract linear differential operators, the functional vectors
Φ,Ψ are defined on Xm and vectors V, Y, S,G ∈ Xm. We obtained the conditions on the vectors
∗Corresponding author. E-mail: paras@uth.gr
Received: 22 June 2023; Accepted: 12 September 2023.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics series. No. 1(113)/2024 149



I.N. Parasidis, E. Providas

V, Y, S,G under which the operator B1 can be factorized in a product of two second degree operators,
i.e. B1 = BB0 with

B0u = A2
0u− S0Φ(A0u)−G0Φ(A2

0u) = f, D(B0) = D(A2
0),

Bu = A2u− SΨ(Au)−GΨ(A2u) = f, D(B) = D(A2)

and then found the exact solution in closed form of the given problem, using the exact solutions of
the above two simple problems. Using of the obtained formula for the exact solution of the equation
B1u = f makes it possible to easily obtain exact solutions of a class of Fredholm IDEs with ordinary
or partial differential operators. The decomposition method, applied to abstract operator equation

Tu = Au−Ku−GΨ(Au) = f, D(T ) = D(A) = {u ∈ Xn : Φ(u) = 0}

on a Banach space X for solving boundary value problems for n-th order linear Volterra-Fredholm
integro-differential equations of convolution type, was used in [6], [7], where were constructed the
closed-form solutions to the two-phase integral model of Euler-Bernoulli nanobeams in bending under
transverse distributed load and various types of boundary conditions. In [21] the operator B1 corres-
ponding to the abstract operator equation

B1u = AA0u− S〈A0u,Φ
t〉Hm −G〈AA0u, F

t〉Hm = f

on a Hilbert space H was factorized in two operators, i.e. B1 = BGBG0 , where

BG0u = A0u−G0〈A0u,Φ
t〉Hm = f, D(BG0) = D(A0),

BGu = Au−G〈Au, F t〉Hm = f, D(BG) = D(A).

Further, using the exact solutions of these two simple equations, the exact solution of B1u = f was
obtained. An exact solution to the abstract operator equation

B1u = Au− SΦ(A0u)−GΨ(Au) = f, D(B1) = D(A)

on a Banach space was found in [22] by factorization of B1 in two simple operators, and then the
corresponding theory was applied for solving of Hyperbolic integro-differential equations with integral
boundary conditions. The exact solution to the abstract operator equation

B1u = A2u− SΦ(Au)−GΨ(A2u) = f, D(B1) = D(A2)

on a Banach space was obtained in [23]. The operator B1 corresponding to the abstract operator
equations

B1u = A2u− SF (Au)− SF (A2u) = f,

D(B1) = {u ∈ D(A2) : Φ(u) = NΨ(Au), Φ(Au) = DF (Au) +NΨ(A2u)}, and

B1u = A2u− SF (Au)− SF (A2u) = f,

D(B1) = {u ∈ D(A2) : Φ(u) = NΨ(u), Φ(Au) = DF (Au) +NΨ(Au)},

where D,N are matrices, S,G are vectors, by decomposition method for squared operators is factorized
in B1 = B2 and then the exact solution of B1u = f in closed form is easily obtained in [24], [25],
respectively. The exact solution to the abstract operator equation

B1u = Au− SΦ(u)−GΨ(A0u) = f, D(B1) = D(AA0)
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on a Banach space by factorization of B1 in two simple operators B,B0, was investigated in [26]. The
exact solution in closed analytical form to the abstract operator equation

B1u = Au− S0F (Au)−G0Φ(Au) = f, D(B1) = D(A)

was obtained by decomposition method in [27], and then was applied for solving some ordinary integro-
differential and partial integro-differential equations. Our decomposition method is simple to use and
can be easily incorporated into any Computer Algebra (CAS). The paper is organized as follows.
In Section 1 we give an introduction, terminology and notation. In Section 2 we develop the theory
for the solution of the problem B1x = f when B1 = BB0 with B and B0 being two linear second
degree abstract operators and give an example of boundary problem with integro-differential equation
demonstrating the power and usefulness of the methods presented.

Preliminaries

Throughout this paper by X we denote the complex Banach space and by X∗ the adjoint space of
X, i.e. the set of all complex-valued linear and bounded functionals f on X. We denote by f(x) the
value of f on x. We write D(A) and R(A) for the domain and the range of the operator A : X → Y ,
respectively. An operator A : X → Y is said to be injective or uniquelly solvable if for all u1, u2 ∈ D(A)
such that Au1 = Au2, follows that u1 = u2. Remind that a linear operator A is injective if and only
if kerA = {0}. An operator A : X → Y is called surjective or everywhere solvable if R(A) = Y. The
operator A : X → Y is said to be bijective if A is both injective and surjective. An operator A and the
corresponding problem Au = f are called correct if A is bijective and its inverse A−1 is bounded on
Y . Lastly, if for operator B1 : X → X there exist two operators B and B0 such that B1 = BB0 then
we say that BB0 is a decomposition (factorization) of B1. If gi ∈ X and ψi ∈ X∗, i = 1, . . . ,m, x ∈ X,
then we denote by G = (g1, . . . , gm), Ψ =col(ψ1, . . . , ψm) and Ψ(x) =col(ψ1(x), . . . , ψm(x)) and write
G ∈ Xm, Ψ ∈ X∗m. If G = (g1, ..., gm), g1, ..., gm ∈ D(A), then we write G ∈ [D(A)]m. We will denote
by Ψ(G) the m×m matrix whose i, j-th entry ψi(gj) is the value of functional ψi on element gj . Note
that Ψ(GC) = Ψ(G)C, where C is a m×k constant matrix. We will also denote by Im the identity
m×m matrix.

We will use the following Theorem, that have been shown in [20] and is recalled here but with a
different notation tailored to the needs of the present article.

Theorem 1. LetX be a complex Banach space, the vectors G0 = (g10, ..., gm0), G = (g1, ..., gm), S =
(s1, ..., sm) ∈ Xm, the components of the vectors Ψ = col(ψ1, ..., ψm) and Φ = col(φ1, ..., φm) belong
to X∗ and the operators B0, B,B1 : X → X defined by

B0u = A0u−G0Φ(A0u) = f, D(B0) = D(A0),

Bu = Au−GΨ(Au) = f, D(B) = D(A),

B1u = AA0u− SΦ(A0u)−GΨ(AA0u) = f, D(B1) = D(AA0), (1)

where A0, A : X → X are linear correct operators and G0 ∈ [D(A)]m. Then the following statements
are fulfilled:

(i) If
S ∈ [R(B)]m and S = BG0 = AG0 −GΨ(AG0), (2)

then the operator B1 can be factorized in B1 = BB0.
(ii) If the components of the vector Φ are linearly independent elements of X∗ and the operator

B1 can be factorized in B1 = BB0, then (2) is fulfilled.

Mathematics series. No. 1(113)/2024 151



I.N. Parasidis, E. Providas

(iii) If there exists a vector G0 ∈ [D(A)]m, satisfying the equation AG0 −GΨ(AG0) = S, then B1

is bijective if and only if the operators B0 and B are bijective, which means that

detV = det[Im − Φ(G0)] 6= 0 and detL = det[Im −Ψ(G)] 6= 0.

In this case, the unique solution to the boundary value problem (1) for any f ∈ X, is given by

u = B−11 f = A−10 v +A−10 G0V
−1Φ(v), where v = A−1f +A−1GL−1Ψ(f). (3)

Lemma 2. Let X be a complex Banach space. Then a linear operator A : X → X is bijective if and
only if A2 is bijective.

Proof. Let A be bijective and u ∈ kerA2. Then A2u = 0. Applying twise the operator A−1 to this
equation we obtain u = 0 which proves that kerA2 = {0}. Consider the equation A2u = f, f ∈ X.
Applying twise the operator A−1 to this equation, we obtain u = A−1

(
A−1f

)
= A−2f for every f ∈ X,

which proves that R(A2) = X. Thus A2 is a bijective operator.
Conversely, let A2 be bijective. Then kerA2 = {0} and R(A2) = X, and from well-known relations

kerA ⊂ kerA2, R(A2) ⊂ R(A),

for a linear operator A : X → X, follows that kerA = {0} and R(A) = X. Hence A is a bijective
operator.

Bellow we prove the main theorem.
Theorem 3. Let X be a complex Banach space, A0, A

2
0, A,A

2 : X
on→ X linear operators and the

vectors V, Y,G, S ∈ Xm, Φ,Ψ ∈ [X∗]m, S0, G0 ∈ [D(A2)]m. Then for the operators B0,B,B1 : X →
X, defined by

B0u = A2
0u− S0Φ(A0u)−G0Φ(A2

0u) = f, D(B0) = D(A2
0), (4)

Bu = A2u− SΨ(Au)−GΨ(A2u) = f, D(B) = D(A2), (5)

B1u = A2A2
0u− V Φ(A0u)− Y Φ(A2

0u)− SΨ(AA2
0u)−GΨ(A2A2

0u) = f,

D(B1) = D(A2A2
0) = {u ∈ D(A2

0) : A2
0u ∈ D(A2)}, (6)

hold true the next statements:
(i) If the vectors G0 = (g10, ..., gm0) and S0 = (s10, ..., sm0) belong to [D(A2)]m and satisfy the

system of equations
V = BS0 = A2S0 − SΨ(AS0)−GΨ(A2S0), (7)

Y = BG0 = A2G0 − SΨ(AG0)−GΨ(A2G0), (8)

then the operator B1 can be factorized in B1 = BB0.
(ii) If G0 = (g10, ..., gm0), S0 = (s10, ..., sm0) ∈ [D(A2)]m and the operator B1 is factorized in

B1 = BB0, where A,A0 are bijective, and if the functional vectors

Φ̂(f) =
(
Φ ∗A−10 A−2

)
(f) = Φ(A−10 A−2f), Φ̌(f) =

(
Φ ∗A−2

)
(f) = Φ(A−2f)

are linearly independent on X, then (7), (8) hold true.
(iii) The operators B0,B are bijective if and only if, respectively,

det L0 = det

(
Im − Φ(A−1S0) −Φ(A−1G0)
−Φ(S0) Im − Φ(G0)

)
6= 0, (9)

det L = det

(
Im −Ψ(A−1S) −Ψ(A−1G)
−Ψ(S) Im −Ψ(G)

)
6= 0, (10)
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and in this case the unique solutions of (4), (5) for any f ∈ X are given by

u = B−10 f = A−20 f + (A−20 S0, A
−2
0 G0)L

−1
0

(
Φ(A−10 f)

Φ(f)

)
, (11)

u = B−1f = A−2f + (A−2S,A−2G)L−1
(

Ψ(A−1f)
Ψ(f)

)
, (12)

respectively.
(iv) If V, Y are defined by (7), (8) and A,A0 are bijective operators, then B1 is bijective if and only

if (9) and (10) are fulfilled, and the unique solution of (6) in this case for every f ∈ X is given by

u = A−20 v + (A−20 S0, A
−2
0 G0)L

−1
0

(
Φ(A−10 v)

Φ(v)

)
, where (13)

v = A−2f + (A−2S,A−2G)L−1
(

Ψ(A−1f)
Ψ(f)

)
. (14)

Proof (i). Taking into account that G0, S0 ∈ [D(A2)]m we obtain

D(BB0) = {u ∈ D(B0) : B0u ∈ D(B)} =

= {u ∈ D(A2
0) : A2

0u− S0Φ(A0u)−G0Φ(A2
0u) ∈ D(A2)} =

= {u ∈ D(A2
0) : A2

0u ∈ D(A2)} = D(A2A2
0) = D(B1).

We put y = B0u. Then for each u ∈ D(A2A2
0) since (5) and (4) we have

BB0u = By = A2y − SΨ(Ay)−GΨ(A2y) =

= A2B0u− SΨ(AB0u)−GΨ(A2B0u) =

= A2[A2
0u− S0Φ(A0u)−G0Φ(A2

0u)]−

−SΨ
(
A[A2

0u− S0Φ(A0u)−G0Φ(A2
0u)]

)
−

−GΨ
(
A2[A2

0u− S0Φ(A0u)−G0Φ(A2
0u)]

)
=

= A2A2
0u−A2S0Φ(A0u)−A2G0Φ(A2

0u)−

−SΨ
(
AA2

0u−AS0Φ(A0u)−AG0Φ(A2
0u)
)
−

−GΨ
(
A2A2

0u−A2S0Φ(A0u)−A2G0Φ(A2
0u)
)

=

= A2A2
0u−A2S0Φ(A0u)−A2G0Φ(A2

0u)−

−SΨ(AA2
0u) + SΨ(AS0)Φ(A0u)+

+SΨ(AG0)Φ(A2
0u)−GΨ(A2A2

0u)+

+GΨ(A2S0)Φ(A0u) +GΨ(A2G0)Φ(A2
0u).

So we obtain
BB0u = A2A2

0u− [A2S0 − SΨ(AS0)−GΨ(A2S0)]Φ(A0u)−

−[A2G0 − SΨ(AG0)−GΨ(A2G0)]Φ(A2
0u)−

−SΨ(AA2
0u)−GΨ(A2A2

0u), or

BB0u = A2A2
0u−BS0Φ(A0u)−BG0Φ(A2

0u)− SΨ(AA2
0u)−GΨ(A2A2

0u), (15)
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where the relations
BS0 = A2S0 − SΨ(AS0)−GΨ(A2S0),

BG0 = A2G0 − SΨ(AG0)−GΨ(A2G0)

follow by substituting u = S0 and u = G0 in (5). By comparing (6) with (15), it is easy to verify that
BB0u = B1u for each u ∈ D(A2A2

0) if (7), (8) hold true.
(ii) Let now BB0u = B1u for each u ∈ D(A2A2

0). Then by subtraction for each u ∈ D(A2A2
0), we

get BB0u−B1u = 0, which implies

(BS0 − V )Φ(A0u) + (BG0 − Y )Φ(A2
0u) = 0,

or, since the operators A,A0 are bijective and, by Lemma 2, the operators A2, A2
0 are bijective too, we

have
(BS0 − V )Φ(A−10 A−2A2A2

0u) + (BG0 − Y )Φ(A−2A2A2
0u) = 0,

or denoting f = A2A2
0u, for each f ∈ X we get

(BS0 − V )Φ(A−10 A−2f) + (BG0 − Y )Φ(A−2f) = 0,

which is
(BS0 − V )Φ̂(f) + (BG0 − Y )Φ̌(f) = 0, ∀f ∈ X.

The last equation, because of the vectors Φ̂, Φ̌ are linear independent on X, gives V = BS0, Y = BG0.
(iii)-(iv) Let the operator B1 and the vectors V, Y be defined by (6), (7) and (8), respectively.

Equation (6) can also be written in matrix notation as

B1u = A2A2
0u−

(
BS0,BG0

)(Φ(A0u)
Φ(A2

0u)

)
− (S,G)

(
Ψ(AA2

0u)
Ψ(A2A2

0u)

)
= f,

or

B1u = A2A2
0u−

(
BS0,BG0

)(Φ(A−10 A2
0u)

Φ(A2
0u)

)
− (S,G)

(
Ψ(A−1A2A2

0u)
Ψ(A2A2

0u)

)
= f,

or
B1u = AA0u− S̃Φ̃(A0u)− G̃Ψ̃(AA0u) = f, D(B1) = D(AA0), (16)

where
A = A2, A0 = A2

0, S̃ = BG̃0, G̃ = (S,G), G̃0 = (S0, G0), (17)

Φ̃ = col
(
Φ ∗A−10 ,Φ

)
, Ψ̃ = col

(
Ψ ∗A−1,Ψ

)
(18)

and (Φ ∗ A−10 )(v) = Φ(A−10 v), (Ψ ∗ A−1)(v) = Ψ(A−1v). Remind that by Lemma 2, the operators
A = A2 and A0 = A2

0 are bijective, because of A and A0 are bijective. Notice that the components of
the vectors Φ̃ and Ψ̃ are bounded on X, since the operators A−10 , A−1 are bounded, the components of
the vectors Φ and Ψ belong to X∗ and for any f ∈ X the elements A−10 A−2f , A−2f ∈ X. It is easy
to verify that Equations (4) and (5) can be equivalently represented in matrix form:

B0u = A0u− G̃0Φ̃(A0u) = f, D(B0) = D(A0),

Bu = Au− G̃Ψ̃(Au) = f, D(B) = D(A).

Now by Theorem 1, where instead of B,B0, B1, S,G,Φ,Ψ, A,A0, L, V andm we have B,B0,B1, S̃, G̃,
Φ̃, Ψ̃,A,A0,L,V and 2m, respectively, we conclude that the operator B1 can be factorized in B1 =
BB0 if

AG̃0 − G̃Ψ̃(AG̃0) = G̃. (19)
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It is easy to verify that Equation (19) is equivalent to System (7), (8). Also by Theorem 1, the operator
B1 is bijective if and only if

det V = det[I2m − Φ̃(G̃0)] 6= 0 and det L = det[I2m − Ψ̃(G̃)] 6= 0,

respectively. The last inequalities, since

Φ̃(G̃0) =

(
(Φ ∗A−10 )(S0) (Φ ∗A−10 )(G0)

Φ(S0) Φ(G0)

)
=

(
Φ(A−10 S0) Φ(A−10 G0)

Φ(S0) Φ(G0)

)
,

Ψ̃(G̃) =

(
(Ψ ∗A−1)(S) (Ψ ∗A−1)(G)

Ψ(S) Ψ(G)

)
=

(
Ψ(A−1S) Ψ(A−1G)

Ψ(S) Ψ(G)

)
,

give (9) and (10). Let B1u = BB0u = f, f ∈ X. By Theorem 1 using (3), since B,B0 are bijective
operators, we obtain the unique solution of (16) or (6)

u = B−10 v = A−10 v +A−10 G̃0L
−1
0 Φ̃(v), where

v = B−1f = A−1f +A−1G̃L−1Ψ̃(f),

which since (17), (18) gives

u = B−10 v = A−20 v + (A−20 S0, A
−2
0 G0)L

−1
0

(
Φ(A−10 v)

Φ(v)

)
, where (20)

v = B−1f = A−2f + (A−2S,A−2G)L−1
(

Ψ(A−1f)
Ψ(f)

)
. (21)

So we proved (13), (14). From (20), (21) we immediately obtain (11), (12). The theorem is proved.
The next theorem follows from Theorem 3 and is useful in applications and gives the decomposition

B1 = BB0, where B,B0 beforehand we do not know. Also this theorem gives a criterion for the
bijectivity of B1 and the solution of B1u = f in an elegant way.

Theorem 4. Let the space X and the vectors V, Y, S,G,Φ,Ψ be defined as in Theorem 3 and the
operator B1 : X → X by

B1u = A2u− V Φ(A0u)− Y Φ(A2
0u)− SΨ(AA0u)−GΨ(A2u) = f, D(B1) = D(A2), (22)

where A0 : X → X is a bijective n1-order differential operator and A : X → X is a n-order differential
operator, n1 < n. Suppose that there exists a bijective linear differential n − n1 order operator
A : X → X such that

A = AA0, D(B1) = D(A2A2
0) (23)

and

det L = det

(
Im −Ψ(A−1S) −Ψ(A−1G)
−Ψ(S) Im −Ψ(G)

)
6= 0. (24)

Then the operator B1 is factorized into B1 = BB0, where B0, B are defined by (4), (5), respectively,
and

S0 = A−2V + (A−2S,A−2G)L−1
(

Ψ(A−1V )
Ψ(V )

)
, (25)

G0 = A−2Y + (A−2S,A−2G)L−1
(

Ψ(A−1Y )
Ψ(Y )

)
. (26)

Furtermore the operator B1 is bijective if (9) is fulfilled, and in this case a unique solution to the
boundary value problem (22), (23) for any f ∈ X is given by (13), (14).
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Proof. Substituting A = AA0 into (22) we obtain the operator B1 in the form (6). Construct the
operators B0 and B by using (4) and (5), respectively, where for B we take the elements G,S,Ψ and
A from (22) and (23), and for B0 the elements A0,Φ and S0, G0 from (22) and (25), (26).

Note that the operator B, by Theorem 3 (iii), since (24) and bijectivity of A, is bijective, and that
taking into account (12) the system of equations (25), (26) can be represented as S0 = B−1V and
G0 = B−1Y. The last system, because of bijectivity of B, is equivalent to the system V = BS0 and
Y = BG0, which is the system (7), (8). Then by Theorem 3 (i), the operator B1 can be factorized
in B1 = BB0. Furthermore by Theorem 3 (iv), since (24) and bijectivity of A0, the operator B1 is
bijective if (9) holds. The unique solution to (22), (23), by Theorem 3 (iv), is given by (13), (14). The
theorem is proved.

A reader can prove easily by Lemma 2 the next proposition.
Proposition 5. Let the operators A0, A : C[0, 1]→ C[0, 1] be defined by

A0u(t) = u′(t) = f, D(A0) = {u(t) ∈ C1[0, 1] : u(0) = 0}, (27)

Au(t) = u′(t) = f, D(A) = {u(t) ∈ C1[0, 1] : u(1) = 0}. (28)

Then:
(i) The operators A0, A are bijective and the unique solution of the problem (27) and (28) is given

by

u(t) = A−10 f(t) =

∫ t

0
f(x)dx, (29)

u(t) = A−1f(t) =

∫ t

0
f(x)dx−

∫ 1

0
f(x)dx, (30)

respectively.
(ii) The operators A2

0, A
2 : C[0, 1]→ C[0, 1] are defined by

A2
0u(t) = u′′(t) = f, D(A2

0) = {u(t) ∈ C2[0, 1] : u(0) = 0, u′(0) = 0}, (31)

A2u(t) = u′′(t) = f, D(A2) = {u(t) ∈ C2[0, 1] : u(1) = 0, u′(1) = 0}, (32)

and bijective. The unique solution of the problem (31), (32) is given by

u(t) = A−20 f(t) =

∫ t

0
(t− x)f(x)dx, (33)

u(t) = A−2f(t) =

∫ t

0
(t− x)f(x)dx−

∫ 1

0
(t− x)f(x)dx, (34)

respectively.

Example 6. Let the operator B1 : C[0, 1]→ C[0, 1] be defined by

B1u = u(4)(t)− (5− 2t)

∫ 1

0
x2 u′(x)dx− (6t− 3)

∫ 1

0
x2 u′′(x)dx−

−12

∫ 1

0
xu′′′(x)dx− (2t+ 1)

∫ 1

0
xu(4)(x)dx = 2− 3t, (35)

D(B1) = {u(x) ∈ C4[0, 1] : u(0) = u′(0) = u′′(1) = u′′′(1) = 0}. (36)

Then:
(i) B1 can be factorized as a product of two operators and is bijective.

156 Bulletin of the Karaganda University



Factorization of abstract operators ...

(ii) The unique solution of Problem (35)-(36) is given by

u(t) = − t
2(12271t3 − 46530t2 + 63410t− 33760)

531448
. (37)

Proof (i). If we compare equation (35) with equation (22), it is natural to take A0u = u′(x), A2
0u =

u′′(x), AA0u = u′′′(x), A2u = u(4), n1 = 1, V = 5 − 2t, Y = 6t − 3, S = 12, G = 2t + 1, f=2-
3t, Φ(A0u) =

∫ 1
0 x

2 u′(x)dx, Φ(A2
0u) =

∫ 1
0 x

2 u′′(x)dx, Ψ(AA0u) =
∫ 1
0 xu

′′′(x)dx, Ψ(A2u) =∫ 1
0 xu

(4)(x)dx.
Then

Φ(v) =

∫ 1

0
x2 v(x)dx, Ψ(v) =

∫ 1

0
x v(x)dx. (38)

It is evident that Φ,Ψ ∈ X∗. We chooce the operator A to satisfy (23), namely Au = AA0u, D(B1) =
D(A2A2

0). FromAu(x) = AA0u(x), AA0u = u′′′(x) andA0u(x) = u′(x) we getAA0u(x) = AA2
0u(x) =

Au′′(x) = u′′′(x). Denote v(x) = u′′(x), then Av(x) = v′(x). Let D(A0) = {u(x) ∈ C1[0, 1] : u(0) =
0}, D(A) = {v(x) ∈ C1[0, 1] : v(1) = 0}. So we proved that the operators A0, A are defined as in (27),
(28). Then the operators A2

0, A
2 are defined as in (31), (32), respectively. Further we find

D(A2A2
0) = {u(t) ∈ D(A2

0) : A2
0u(t) ∈ D(A2)} =

= {u(t) ∈ C2[0, 1] : u(0) = u′(0) = 0, u′′(t) ∈ C2[0, 1], u′′(1) = u′′′(1) = 0} =

= {u(t) ∈ C4[0, 1] : u(0) = u′(0) = 0, u′′(1) = u′′′(1) = 0} = D(B1).

This proves that the conditions (23) are satisfied and so we can apply Theorem 4. Using (30) and (38)
by simple calculations we find

A−1S =
∫ t
0 Sdx−

∫ 1
0 Sdx = 12t− 12,

A−1G =
∫ t
0 Gdx−

∫ 1
0 Gdx =

∫ t
0 (2x+ 1)dx−

∫ 1
0 (2x+ 1)dx = t2 + t− 2,

Ψ(A−1S) =
∫ 1
0 x(12x− 12)dx = −2, Ψ(A−1G) =

∫ 1
0 x(x2 + x− 2)dx = −5/12,

Ψ(S) =
∫ 1
0 12xdx = 6, Ψ(G) =

∫ 1
0 x(2x+ 1)dx = 7/6.

By (10), we obtain L =

(
3 5/12
−6 −1/6

)
. Then det L 6= 0 and L−1 =

(
−1/12 −5/24

3 3/2

)
. By Theorem 4,

the operator B1 is factorized in B1 = BB0, where B0, B and S0, G0 are defined by (4), (5) and (25),
(26), respectively. Using (34) for S = 12, G = 2x+ 1, we obtain

A−2S =
∫ t
0 (t− x)Sdx−

∫ 1
0 (t− x)Sdx = 6(t− 1)2,

A−2G = t3/3 + t2/2− 2t+ 7/6.
By (30), (34) for V = 5− 2x, Y = 6x− 3 we get

A−1V =
∫ t
0 V (x)dx−

∫ 1
0 V (x)dx = 5t− t2 − 4,

A−1Y =
∫ t
0 Y (x)dx−

∫ 1
0 Y (x)dx = 3t2 − 3t,

A−2V =
∫ t
0 (t− x)V (x)dx−

∫ 1
0 (t− x)V (x)dx = −t3/3 + 5t2/2− 4t+ 11/6,

A−2Y = t3 − 3t2/2 + 1/2, and further by (38) we have
Ψ(A−1V ) =

∫ 1
0 t(5t− t

2 − 4)dt = −7/12, Ψ(A−1Y ) = −1/4,

Ψ(V ) =
∫ 1
0 t(5− 2t)dt = 11/6, Ψ(Y ) = 1/2.

Applying (25), (26) and the above calculations we get
S0 = S0(t) = (t− 1)2, G0 = G0(t) = t(t− 1)2.

By (29) we find A−10 S0 =
∫ t
0 S0(x)dx = t(t2 − 3t+ 3)/3,

A−10 G0 =
∫ t
0 G0(x)dx = t2(3t2 − 8t+ 6)/12. Then

Φ(A−10 S0) =
∫ 1
0 t

2t(t2 − 3t+ 3)/3dt = 19/180,

Φ(A−10 G0) =
∫ 1
0 t

2t2(3t2 − 8t+ 6)/12dt = 31/1260,

Mathematics series. No. 1(113)/2024 157



I.N. Parasidis, E. Providas

Φ(S0) =
∫ 1
0 t

2(t− 1)2dt = 1/30,

Φ(G0) =
∫ 1
0 t

3(t− 1)2dt = 1/60.

Using (9) we obtain L0 =

(
161/180 −31/1260
−1/30 59/60

)
. It is easy to verify that

det L0 6= 0, L−10 =
1

66431

(
74340 1860
2520 67620

)
.

Then, by the Theorem 4, the operator B1 is bijective.
(ii) Now we find the solution of (35)-(36). Using (29), (33), (30), (34), (38) we find

A−20 S0 =
t2

12
(t2 − 4t+ 6), A−20 G0 =

t3

60
(3t2 − 10t+ 10),

and for f = 2− 3t

A−1f =
1

2
(4t− 3t2 − 1), A−2f =

1

2
(−t3 + 2t2 − t),

Ψ(f) =

∫ 1

0
(2− 3t)tdt = 0, Ψ(A−1f) = 1/24.

Using (14) from the above we get

v = v(t) = −11t3 − 25t2 + 17t− 3

24
.

Then by (29), (33) and (38) we have

A−10 v(t) =

∫ t

0
v(x)dx = − t(33t3 − 100t2 + 102t− 36)

288
,

A−20 v(t) =

∫ t

0
(t− x)v(x)dx = − t

2(33t3 − 125t2 + 170t− 90)

1440
,

A−20 S0 =

∫ t

0
(t− x)S0(x)dx =

∫ t

0
(t− x)(x− 1)2dx =

t2(t2 − 4t+ 6)

12
,

A−20 G0 =

∫ t

0
(t− x)G0(x)dx =

∫ t

0
(t− x)x(x− 1)2dx =

t3(3t2 − 10t+ 10)

60
,

Φ(v) =

∫ 1

0
x2v(x)dx = − 1

288
,

Φ(A−10 v) = −
∫ 1

0
x2A−10 v(x)dx = −

∫ 1

0
x2
[
x(33x3 − 100x2 + 102x− 36)

288

]
dx =

29

15120
.

Substituting these values into (13) we obtain (37).
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Абстрактiлi операторларды екiншi дәрежелi екi операторға
факторизациялау және оны интегралдық дифференциалдық

теңдеулерге қолдану

И.Н. Парасидис, Е. Провидас

Фессалия университетi, Лариса, Греция

Мақалада дербес туындылы дифференциалдық оператормен немесе Фредгольм интегралдық-диффе-
ренциалдық теңдеуiне сәйкес келетiн қарапайым дифференциалдық операторы бар B1 абстрактылы
сызықтық операторымен B1x = f шекаралық есебi зерттелген. Биективтi оператор B1 түрiндегi
факторизацияны өткiзген жағдайда B1 = BB0, B1x = f есебiнiң дәл аналитикалық шешiмi алынды,
мұндағы B, B0 B1 қарағанда қарапайым, екiншi дәрежелi екi сызықтық абстрактылы оператор. B1

операторының факторизациялау шарттары және биективтiлiктiң критерийi табылды.

Кiлт сөздер: корректiлi оператор, биективтi оператор, сызықтық операторларды факторизациялау
(жiктеу), Фредгольм интегралдық-дифференциалдық теңдеулерi, шекаралық есептер, дәл шешiмдер.

Факторизация абстрактных операторов на два оператора второй
степени и ее приложения к интегро-дифференциальным

уравнениям

И.Н. Парасидис, Е. Провидас

Университет Фессалии, Лариса, Греция

Исследована краевая задача B1x = f с абстрактным линейным оператором B1, соответствующая
интегро-дифференциальному уравнению Фредгольма с обыкновенным дифференциальным операто-
ром или дифференциальным оператором в частных производных. Получено точное аналитическое
решение задачи B1x = f в случае, когда биективный оператор B1 допускает факторизацию вида
B1 = BB0, где B, B0 — два линейных абстрактных оператора второй степени, более простых, чем
B1. Найдены условия факторизации и критерий биективности оператора B1.

Ключевые слова: корректный оператор, биективный оператор, факторизация (разложение) линейных
операторов, интегро-дифференциальные уравнения Фредгольма, краевые задачи, точные решения.
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