
Bulletin of the Karaganda University. Mathematics series, No. 1(113), 2024, pp. 60–72

https://doi.org/10.31489/2024M1/60-72 Research article

On solvability of the inverse problem for a fourth-order parabolic
equation with a complex-valued coefficient

A.B. Imanbetova1, A.A. Sarsenbi2,3, B. Seilbekov2,4,∗

1South Kazakhstan University of the name of M. Auezov, Shymkent, Kazakhstan;
2 Scientific Institute “Theoretical and Applied Mathematics”, South Kazakhstan University of the name of M. Auezov,

Shymkent, Kazakhstan;
3Tashenev University, Shymkent, Kazakhstan;

4South Kazakhstan State Pedagogical University, Shymkent, Kazakhstan
(E-mail: aselek_enu@mail.ru, abdisalam.sarsenbi@auezov.edu.kz, bolat_3084@mail.ru)

In this paper, the inverse problem for a fourth-order parabolic equation with a variable complex-valued
coefficient is studied by the method of separation of variables. The properties of the eigenvalues of the
Dirichlet and Neumann boundary value problems for a non-self-conjugate fourth-order ordinary differential
equation with a complex-valued coefficient are established. Known results on the Riesz basis property
of eigenfunctions of boundary value problems for ordinary differential equations with strongly regular
boundary conditions in the space L2 (−1, 1) are used. On the basis of the Riesz basis property of eigenfunctions,
formal solutions of the problems under study are constructed and theorems on the existence and uniqueness
of solutions are proved. When proving theorems on the existence and uniqueness of solutions, the Bessel
inequality for the Fourier coefficients of expansions of functions from space L2 (−1, 1) into a Fourier series
in the Riesz basis is widely used. The representations of solutions in the form of Fourier series in terms
of eigenfunctions of boundary value problems for a fourth-order equation with involution are derived. The
convergence of the obtained solutions is discussed.
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Introduction

With the further development of the theory of solvability of differential equations, with the advent
of new mathematical models in various fields of natural sciences, it becomes more and more important
to formulate new mathematical problems and to study more general cases of classical differential
equations. These are direct and inverse problems for the fourth-order partial differential equations.
A lot of papers are devoted to the study of boundary value problems for the fourth-order partial
differential equations (see, for example, [1, 2], and references therein).

It should be noted that boundary value problems with complex-valued coefficients are of particular
interest. The existence and uniqueness of the solution of mixed problems for the heat equation with
a complex-valued coefficient was established in [3]. The solvability of mixed problems for a perturbed
wave equation with involution and with a variable complex-valued coefficient was studied in [4,5]. The
solvability of inverse problems for the perturbed heat equation with involution and with a variable
complex-valued coefficient was considered in [6–8].

The results on the existence of a unique solution to inverse problems for a fourth-order partial
differential equation with real coefficients depending on x and t can be found in [9, 10].
∗Corresponding author. E-mail: bolat_3084@mail.ru
This research is funded by the Committee of Science of the Ministry of Science and Higher Education of the Republic

of Kazakhstan (Grant No. AP13068539).
Received: 19 June 2023; Accepted: 10 November 2023.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

60 Bulletin of the Karaganda University



On solvability of the inverse problem ...

This article presents the results of studies of inverse problems for a fourth-order parabolic equation
with a variable complex-valued coefficient. The existence and uniqueness of the solution of mixed
inverse problems for a one-dimensional fourth-order equation is established

ut (x, t) +
∂4

∂x4
u (x, t) + q (x)u (x, t) = f (x) , (1)

where q (x) = q1 (x) + iq2 (x). We will use Ω = {−1 < x < 1, 0 < t < T} to denote an open domain,
and Ω̄ = {−1 ≤ x ≤ 1, 0 ≤ t ≤ T} to denote a closed domain.

The space Ck,lx,t (Ω) consists of all functions u (x, t) having continuous derivatives with respect to t
and x of the order l, k respectively, in the domain Ω.

1 Problem Statement

Let us introduce a non-self-conjugate fourth-order differential operator Lq : D (Lq) ⊂ L2 (−1, 1)→
L2 (−1, 1) by the formula

Lqy = yIV (x) + q (x) y (x) , −1 ≤ x ≤ 1,

with the domain of definition

D (Lq) =
{
y (x) ∈W 4

2 [−1, 1] : Ui (y) = 0, i = 1, 2, 3, 4,
}
, (2)

where the linear forms Ui (y) are written as Ui (y)

Ui (y) = ai1y
′′′ (−1) + ai2y

′′′ (1) + ai3y
′′ (−1) + ai4y

′′ (1) + ai5y
′ (−1) + ai6y

′ (1) + ai7y (−1) + ai8y (1) ,

with given complex coefficients aij , W 4
2 [−1, 1] =

{
y (x) ∈ C3 [−1, 1] : yIV (x) ∈ L2 (−1, 1)

}
is the

Sobolev space. Assume that the linear forms U1 (y) , U2 (y) , U3 (y) , U4 (y) are linearly independent.
The order of the highest derivative of the form will be called the order of the form. Then the maximum
number of forms of order 3 will be not more than two. Boundary conditions (2) can easily be reduced
to the form

a11y
′′′ (−1) + a12y

′′′ (1) + a13y
′′ (−1) + a14y

′′ (1) + a15y
′ (−1) + a16y

′ (1) + a17y (−1) + a18y (1) = 0,

a21y
′′′ (−1) + a22y

′′′ (1) + a23y
′′ (−1) + a24y

′′ (1) + a25y
′ (−1) + a26y

′ (1) + a27y (−1) + a28y (1) = 0,

a33y
′′ (−1) + a34y

′′ (1) + a35y
′ (−1) + a36y

′ (1) + a37y (−1) + a38y (1) = 0,

a43y
′′ (−1) + a44y

′′ (1) + a45y
′ (−1) + a46y

′ (1) + a47y (−1) + a48y (1) = 0, (3)

called the normalized boundary conditions [11; 66]. For the sake of simplicity, we have not changed the
notation of the coefficients. We proceed similarly if the order of the highest derivative of the forms is
less than 3.

Let us rewrite equation (1) in the form

ut (x, t) + Lqu (x, t) = f (x) , (x, t) ∈ Ω, (4)

and then consider a differential operator Lq with domain generated by one of the following two boundary
conditions:

D: Dirichlet boundary conditions

U1 (u) = u (−1, t) = 0, U2 (u) = u (1, t) = 0, U3 (u) = uxx (−1, t) = 0,

U4 (u) = uxx (1, t) = 0, t ∈ (0, T ) . (5)
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N: Neumann boundary conditions

U1 (u) = ux (−1, t) = 0, U2 (u) = ux (1, t) = 0, U3 (u) = uxxx (−1, t) = 0,

U4 (u) = uxxx (1, t) = 0, t ∈ (0, T ) . (6)

We have to find a pair of functions u (x, t) and f (x) satisfying equation (4) in the domain Ω and
conditions

u (x, 0) = ϕ (x) , u (x, T ) = ψ (x) , x ∈ (−1, 1) , (7)

where ϕ(x) and ψ(x) are given sufficiently smooth functions.

Definition 1. A pair of functions u (x, t) and f (x) is called a solution to inverse problem (4), (5),
and (7) if the following three conditions are satisfied:

1) the function u (x, t) ∈ C
(
Ω̄
)⋂

C2,0
x,t

(
Ω̄
)
;

2) there are derivatives ut (x, t), uxxx (x, t) and uxxxx (x, t) continuous in the open domain Ω,
f (x) ∈ C [−1, 1];

3) functions u (x, t) and f (x) satisfy equation (4), and the functionu (x, t) satisfies conditions (5),
(7) in the usual sense.

The notion of a solution to inverse problem (4), (6) with boundary conditions (7) is defined similarly.
To prove the existence and uniqueness of a solution to the inverse problem posed, we use the

Fourier method. The advantage of this method is that we will have a representation of the solution
to the inverse problem in the form of Fourier series. A disadvantage of the Fourier method may be
increased requirements for initial data. However, the aim of this work is not to reduce the smoothness
of the initial data.

In this regard, it is necessary to solve the inverse problem of convergence of expansions of functions
from a certain class in terms of eigenfunctions of the following spectral problem:

LqX (x) = λX (x) , −1 ≤ x ≤ 1. (8)

2 Properties of eigenfunctions of spectral problems

It is easier to prove the convergence of expansions of operator Lq in eigenfunctions if the system of
eigenfunctions {Xk (x)} forms a Riesz basis in the class L2 (−1, 1). Therefore, in this section, we study
the basis property of the eigenfunctions of a differential operator Lq. The differential operator Lq is
not a self-conjugate operator. The conjugate spectral problem is written as

L∗qZ (x) = λZ (x) , (9)

where L∗qZ (x) = ZIV (x) + q (x)Z (x) is the operator conjugate to the operator Lq. The domain
of definition of the conjugate operator L∗q is given by one of the boundary conditions (D) or (N)
so that D (Lq) = D

(
L∗q
)
. Suppose that all eigenvalues of the operators Lq are simple and zero is

not an eigenvalue. The systems of eigenfunctions {Xk (x)} and {Zk (x)} satisfy the biorthogonality
condition [11; 30]

(Xk, Zn) =

1∫
−1

Xk (x) Z̄n (x) dx = δkn,

where δkn is the Kronecker symbol. In the case of positive self-conjugate operators, the eigenvalues are
real and positive. In the case of nonself-conjugate operators, the eigenvalues can be complex numbers.
Therefore, it is necessary to study the condition of non-negativity of their real parts.
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Lemma 1. Let q (x) ∈ C [−1, 1]. Then the inequality |Im λk| ≤ max |q2 (x)| holds for all eigenvalues
λk of the operator Lq. Under an additional condition Re q (x) = q1 (x) ≥ 0 in the interval −1 ≤ x ≤ 1,
all eigenvalues λk of the operator Lq satisfy the inequality Re λk > 0.

Proof. Consider equation (8) with boundary conditions (5) or (6). We multiply both parts of
equation (8) by the complex conjugate function X̄k (x) and integrate the resulting equality twice by
parts over the interval (−1, 1). After this, the non-integral terms that arise disappear, and we obtain
the equality

1∫
−1

∣∣X ′′k (x)
∣∣2dx+

1∫
−1

q (x) |Xk (x)|2dx = λk

1∫
−1

|Xk (x)|2dx.

Writing out the real and imaginary parts of the last equality separately, we get the following two
relations:

1∫
−1

q2 (x) |Xk (x)|2dx = Imλk

1∫
−1

|Xk (x)|2dx,

1∫
−1

∣∣X ′′k (x)
∣∣2dx+

1∫
−1

q1 (x) |Xk (x)|2dx = Reλk

1∫
−1

|Xk (x)|2dx.

From the first equality we obtain the first assertion of the lemma

max
x∈[−1,1]

|q2 (x)| ≥ |Imλk| , k ∈ N.

To prove the second assertion of the lemma, we assume the contrary. Let there be a subsequence
{λnk

} satisfying the condition Reλnk
< 0. Then the second relation implies the inequality

1∫
−1

∣∣X ′′nk
(x)
∣∣2dx+

1∫
−1

q1 (x) |Xnk
(x)|2dx = Reλnk

1∫
−1

|Xnk
(x)|2dx < 0,

whence, by virtue of q1 (x) ≥ 0, we get a contradiction, which proves the lemma.
Note that this lemma is valid for continuous q (x) ∈ C [−1, 1]. In this case Reλk > 0, starting from

some number k0, as Reλk ≥ |min q1 (x)| for k ≥ k0, if min q1 (x) < 0.
For further presentation, let us dwell on some well-known facts. Let λ = ρ4. In the complex ρ-

plane, consider a fixed region Sν , ν = 0, 1, 2, ..., 7, defined by the inequality νπ
4 ≤ arg ρ ≤ (ν+1)π

4 . We
enumerate ω1, ω2, ω3, ω4 different roots of the number 4

√
−1 so that for ρ ∈ Sν , Re (ρω1) ≤ Re (ρω2) ≤

Re (ρω3) ≤ Re (ρω4).
It is well known that the normalized boundary conditions (3) are called regular (see, for example,

[11; 67] if the numbers θ−1 , θ1 defined by the equality

θ−1
s

+ θ0 + θ1s =

∣∣∣∣∣∣∣∣
a11ω

3
1 (a11 + sa12)ω

3
2

(
a11 + 1

sa12
)
ω3
3 a12ω

3
4

a21ω
3
1 (a21 + sa22)ω

3
2

(
a21 + 1

sa22
)
ω3
3 a22ω

3
4

a33ω
2
1 (a33 + sa34)ω

2
2

(
a33 + 1

sa34
)
ω2
3 a34ω

2
4

a43ω
2
1 (a43 + sa44)ω

2
2

(
a43 + 1

sa44
)
ω2
3 a44ω

2
4

∣∣∣∣∣∣∣∣
are different from zero. Here the power of the number ωj is equal to the order of the highest derivative
of the corresponding boundary condition. We proceed similarly if the order of the highest derivative of
the forms is less than 3.

If the additional condition θ20 − 4θ−1θ1 6= 0 is satisfied, then the boundary conditions (3) are called
strongly regular.

Mathematics series. No. 1(113)/2024 63



A.B. Imanbetova, A.A. Sarsenbi, B. Seilbekov

Note that the differential operator Lq generated by strongly regular boundary conditions can have
only a finite number of multiple eigenvalues.

The papers [12], [13] imply the following important theorem.
Theorem 1. [12], [13]. If the operator Lq is generated by strongly regular boundary conditions, then

the eigenfunctions and associated functions of this operator form a Riesz basis in the space L2 (−1, 1).
It is easy to check that the boundary conditions (5) (and (6)) are strongly regular, so the system

of eigenfunctions {Xk (x)} of the operator Lq forms a Riesz basis in the space L2 (−1, 1). This is also
valid for the system of eigenfunctions {Zk (x)} of the operator L∗q .

Everywhere below we will assume that all eigenvalues of the operator Lq are single.
Lemma 2. For any function ϕ ∈ D (Lq) each of the Fourier series

ϕ (x) =
∞∑
k=1

(ϕ,Zk)Xk (x), ϕ (x) =
∞∑
k=1

(ϕ,Xk)Zk (x), (10)

by eigenfunctions {Xk (x)}, {Zk (x)} converges uniformly for −1 ≤ x ≤ 1.
Proof. Let us rewrite equation (8) in the form (the number λ = 0 is not an eigenvalue)

Xk (x) =
XIV
k (x) + q (x)Xk (x)

λk
.

Then

(ϕ,Xk) =

1∫
−1

ϕ (x) X̄k (x) dx =

1∫
−1

ϕ (x)
X̄IV
k (x) + q (x) X̄k (x)

λk
dx =

=
1

λk

1∫
−1

[
ϕIV (x) + q (x)ϕ (x)

]
X̄k (x) dx =

1

λk

(
Lqϕ, X̄k

)
.

Using this relation, the second series in (10) can be written as

ϕ (x) =

∞∑
k=1

Ak

λk
Zk (x), (11)

where

Ak =

1∫
−1

[
ϕIV (x) + q (x)ϕ (x)

]
X̄k (x) dx.

On the other hand, it is well known that the conjugate spectral problem is equivalent to the integral
equation

Zk (x) = λk

1∫
−1

G∗ (x, t) Z̄k (t) dt,

where G∗ (x, t) is the Green’s function of the conjugate boundary value problem for λ = 0. By definition
[11; 45], the Green’s function G∗ (x, t) is continuous for x ∈ [−1, 1] and t ∈ [−1, 1] and therefore it is

bounded. Let’s denote Ck (x) =
1∫
−1
G∗ (x, t) Z̄k (t) dt. Then equality (11) takes the form

∞∑
k=1

Ak

λk
Zk (x) =

∞∑
k=1

AkCk (x).
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Further, using the inequality ab ≤ 1
2

(
a2 + b2

)
, we obtain the following estimate

∞∑
k=1

∣∣∣∣Akλk Zk (x)

∣∣∣∣ =
∞∑
k=1

|AkCk (x)| ≤
∞∑
k=1

|Ak|2 +
∞∑
k=1

|Ck (x)|2. (12)

As the quantities Ak are the Fourier coefficients of the expansion in the Riesz basis Zk (x), k =
1, 2, 3, ..., and Ck (x) are the Fourier coefficients of the expansion of the Green’s function G (x, t) in the
Riesz basis {Xk (x)}, due to the Bessel inequality for the Riesz bases, both series on the right side of
inequality (12) converge and

∞∑
k=1

|Ck (x)|2 ≤
1∫
−1

|G∗ (x, t)|2dt ≤M0, ∀x ∈ [−1, 1] .

This implies absolute and uniform convergence of the second series (10) . The absolute and uniform
convergence of the first series (10) is proved similarly. The lemma is proved.

3 Formal solution to the inverse problem

In this section, we construct a formal solution to the inverse problem for equation (4) with Dirichlet
boundary conditions (5) and conditions (8). Recall that if the domain D (Lq) of the operator Lq is
generated by one of the boundary conditions (D), (N), then each of the systems {Xk (x)} and {Zk (x)},
consisting of the eigenfunctions of the operators Lq and L∗q , respectively, forms a Riesz basis in the
space L2 (−1, 1). The functions u (x, t) and f (x) can be represented as Fourier series

u(x, t) =
∞∑
k=0

Ck (t)Xk (x), (13)

f(x) =
∞∑
k=0

fkXk (x), (14)

Ck (t) =

1∫
−1

u (x, t) Z̄k (x) dx, fk =

1∫
−1

f (x) Z̄k (x) dx, (15)

where Ck (t) are unknown functions and fk are unknown constants. Substituting (13) and (14) into
equation (4), we obtain the equation

C ′k (t) + λkCk (t) = fk,

whose solution will be written in the form

Ck (t) = Dk · e−λkt +
fk
λk
. (16)

As, according to condition (7) and formula (15),

Ck (0) =

1∫
−1

u (x, 0) Z̄k (x) dx =

1∫
−1

ϕ (x) Z̄k (x) dx = ϕk,
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Ck (T ) =

1∫
−1

u (x, T ) Z̄k (x) dx =

1∫
−1

ψ (x) Z̄k (x) dx =ψk,

from equality (16) we get {
Dk + fk

λk
= ϕk,

Dke
−λkT + fk

λk
= ψk.

Solving this system of equations, we find the unknown quantities

Dk =
ϕk − ψk

1− e−λkT
, fk = (ϕk −Dk)λk,

using which from relation (16) we find

Ck (t) = ϕk −
1− e−λkt

1− e−λkT
[ϕk − ψk] .

Substituting the found values of the unknowns Ck (t) and fk into (13) and (14), we find the formal
solution to the inverse problem in the form of the following series

u(x, t) = ϕ (x) +
∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
Xk (x), (17)

and

f (x) = Lqϕ (x)−
∞∑
k=0

ϕk − ψk
1− e−λkT

λkXk (x) . (18)

Now we have to prove that the functions (17) and (18) will be the classical solution to the studied
inverse problems.

4 Main results

In [9], the authors of this work proposed a new approach to prove the uniform convergence
of formally differentiated series, which represent a formal solution to the inverse problem for the
equation of a fourth-order hyperbolic equation with complex-valued coefficients. This approach has
two advantages: 1) the first advantage is the use of estimates of the norms of eigenfunctions derivatives
through the norm of eigenfunctions [14]; the second advantage is the use of the properties of uniform
boundedness of Riesz bases consisting of eigenfunctions of the differential operator [15]. In this section,
this approach is developed for the case of inverse problems for a fourth-order parabolic equation with
complex-valued coefficients. It is clear that the formal solutions to hyperbolic and parabolic equations
have completely different structures. The conditions for the existence of solutions are also different.

Let us formulate the main result of the present work. The solvability of the inverse problem (4),
(7) with the Dirichlet boundary conditions (5) is formulated as the following theorem.

Theorem 2. Let q (x) ∈ C4 [−1, 1], and functions ϕ, ψ are such that ϕ, ψ, Lqϕ, Lqψ ∈ D (Lq).
Then inverse problem (4), (5), (7) has a unique solution, which can be represented as Fourier series
(17), (18).

Proof. We have to show that the resulting formal solution in the form of series (17), (18) satisfies
equation (4) and conditions (5), (7). Let us first show that series (17), (18), as well as the formal
derivative with respect to the variable t and formal derivatives up to the fourth order with respect to
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the variable x of series (17), converge uniformly in the open domain Ω, i.e. let us prove the uniform
convergence of the series (17), (18) and the uniform convergence of the formally differentiated series

ut(x, t) = −
∞∑
k=0

ϕk − ψk
1− e−λkT

λke
−λktXk (x), (19)

ux(x, t) = ϕ′ (x) +
∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
X ′k (x), (20)

uxx(x, t) = ϕ′′ (x) +

∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
X ′′k (x), (21)

uxxx(x, t) = ϕ′′′ (x) +

∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
X ′′′k (x), (22)

uxxxx(x, t) = ϕIV (x) +
∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
XIV
k (x). (23)

The uniform convergence of series (17) follows from the obvious inequality

|u(x, t)| ≤ |ϕ (x)|+

∣∣∣∣∣
∞∑
k=0

(ϕ,Zk)Xk (x)

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=0

(ψ,Zk)Xk (x)

∣∣∣∣∣ ,
and Lemma 2, taking into account Lemma 1 (Reλk > 0).

To prove series (18) in the expressions ϕk = (ϕ,Zk) , ψk = (ψ,Zk), the function Zk (x) is replaced
by the conjugate equation (9). Then

λkϕk = λk (ϕ,Zk) =
(
ϕ,L∗qZk

)
= (Lqϕ,Zk) , λkψk = (Lqψ,Zk) . (24)

Substituting them into (18), we obtain

f (x) = Lqϕ (x)−
∞∑
k=0

(Lqϕ,Zk)− (Lqψ,Zk)

1− e−λkT
·Xk (x) .

Hence we get the inequality

|f (x)| ≤ |Lqϕ (x)|+

∣∣∣∣∣
∞∑
k=0

(Lqϕ,Zk)Xk (x)

∣∣∣∣∣+

∣∣∣∣∣
∞∑
k=0

(Lqψ,Zk)Xk (x)

∣∣∣∣∣ .
As, by the condition of the theorem Lqϕ, Lqψ ∈ D (Lq), then, by virtue of Lemma 2, both series
on the right-hand side of the last inequality converge uniformly. The uniform convergence of the
series (17), (18) is proved. The uniform convergence of the series (19) is proved as well as the
convergence of the series (18), taking into account the boundedness of the quantities λke−λkτ → 0,
k →∞.

Let us prove the uniform convergence of series (20)–(23). Applying (24) to the series (20) we obtain
the relation

|ux(x, t)| ≤
∣∣ϕ′ (x)

∣∣+

∣∣∣∣∣
∞∑
k=0

(Lqϕ,Zk)− (Lqψ,Zk)

λk (1− e−λkT )

(
e−λkt − 1

)
X ′k (x)

∣∣∣∣∣ .
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In [14] the validity of the estimates

max
∣∣∣X(s)

k (x)
∣∣∣ ≤ c1( 4

√
|λk|

)s
max |Xk (x)| , s = 1, 2, 3, (25)

for the eigenfunctions of the fourth-order differential operator is shown. Using estimates (25), from the
last inequality we obtain the estimate

|ux(x, t)| ≤
∣∣ϕ′ (x)

∣∣+ c1

∞∑
k=0

|(Lqϕ,Zk)− (Lqψ,Zk)|(
4
√
|λk|

)3 max |Xk (x)| .

It follows from [15] that only uniformly bounded systems of eigenfunctions of ordinary differential
operators can be Riesz bases. Therefore, due to the conditions of the theorem Lqϕ, Lqψ ∈ D (Lq), the
Bessel inequality for the Riesz bases, and the asymptotics of the eigenvalues [11; 99], the series on the
right-hand side of the following inequality

|ux(x, t)| ≤
∣∣ϕ′ (x)

∣∣+ c1

∞∑
k=0

[
(Lqϕ,Zk)

2 + (Lqψ,Zk)
2 +

2(√
λk
)3
]

converges. The uniform convergence of series (20) is proved.
Using the estimates (25), the convergence of series (21), (22) in the open domain Ω is similarly

proved. Consider the uniform convergence of the series

uxxxx(x, t) = ϕIV (x) +

∞∑
k=0

(Lqϕ,Zk)− (Lqψ,Zk)

λk (1− e−λkT )

(
e−λkt − 1

)
XIV
k (x).

Replacing the fourth derivative with the help of equation (8), we obtain the estimate

|uxxxx(x, t)| ≤
∣∣ϕIV (x)

∣∣+

∣∣∣∣∣
∞∑
k=0

q (x)

λk
[(Lqϕ,Zk)Xk (x)− (Lqψ,Zk)Xk (x)]

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k=0

[(Lqϕ,Zk)Xk (x)− (Lqψ,Zk)Xk (x)]

∣∣∣∣∣ . (26)

The second series on the right-hand side of (26) converges by virtue of the conditions of the
theorem Lqϕ, Lqψ ∈ D (Lq) and Lemma 2. The convergence of the first series in (26) follows from
the uniform boundedness of the system {Xk (x)} [15], the Bessel inequality for the Riesz bases, the
asymptotics of the eigenvalues [11; 99], and the boundedness of the function q (x). This proves the
uniform convergence of the series uxxxx (x, t) in the open domain Ω. Thus, we have shown that series
(17), (18) satisfy equation (4).

Obviously, the formal solution (17) satisfies conditions (7):

lim
t→0+0

u (x, t) = lim
t→0+0

[
ϕ (x) +

∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
Xk (x)

]
= ϕ (x) ,

lim
t→T−0

u (x, t) = lim
t→T−0

[
ϕ (x) +

∞∑
k=0

ϕk − ψk
1− e−λkT

(
e−λkt − 1

)
Xk (x)

]
= ψ (x) .

The boundary conditions are satisfied as each term of the series (17) satisfies them. The existence of a
classical solution to problem (4), (5), (7) has been completely proved. To prove the uniqueness of the
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solution, we assume the contrary. Suppose that there are two sets of solutions {u1 (x, t) , f1 (x)} and
{u2 (x, t) , f2 (x)} to the inverse problem (4), (5), (7). Denote

u (x, t) = u1 (x, t)− u2 (x, t)

and
f (x) = f1 (x)− f2 (x) .

Then the functions u (x, t) and f (x) satisfy equation (4), boundary conditions (5), and homogeneous
conditions

u(x, 0) = 0, u(x, T ) = 0, x ∈ [−1, 1]. (27)

Consider the Fourier coefficients:

uk (t) =

1∫
−1

u (x, t) X̄k (x) dx, k ∈ N, (28)

fk =

1∫
−1

f (x) X̄k (x) dx, k ∈ N, (29)

and note that the homogeneous conditions (27) lead to equalities

uk(x, 0) = uk (x, T ) = 0.

Differentiating equality (28) with respect to the variable t, we obtain

u′k (t) =

1∫
−1

u′t (x, t) X̄k (x) dx,

where the derivative ut (x, t) will be replaced using equation (4)

u′k (t) =

1∫
−1

[−uxxxx (x, t)− q (x)u (x, t)] X̄k (x) dx+

1∫
−1

f (x) X̄k (x) dx,

or

u′k (t) =

1∫
−1

[−uxxxx (x, t)− q (x)u (x, t)] X̄k (x) dx+ fk.

After integrating by parts four times, we get

u′k (t) =

1∫
−1

[
−X̄IV

k (x)− q (x) X̄k (x)
]
u (x, t) dx+ fk,

or

u′k (t) =

1∫
−1

−λkX̄k (x)u (x, t) dx+ fk.
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The last equality can be rewritten as

u′k (t) + λkuk (t) = fk.

As (29) is satisfied, i.e., uk (0) = uk (T ) = 0, the last relation implies

fk = 0, uk (t) ≡ 0.

The basis property of the system {Xk (x)} implies the equality

f (x) ≡ 0, u (x, t) ≡ 0, (x, t) ∈ Ω.

The uniqueness of the solution is proved. The theorem is completely proved. The assertion of the
theorem is fully applicable to the case of inverse problem (4), (6), (7).

Conclusion

The inverse problem of determining the right side for a fourth-order parabolic equation with a
complex-valued variable coefficient is studied. The existence of a unique solution to the inverse problem
with Dirichlet and Neumann boundary conditions is established
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Комплекс мәндi коэффициентi бар төртiншi реттi параболалық
теңдеу үшiн керi есептiң шешiмдiлiгi туралы

А.Б. Иманбетова1, А.А. Сәрсенбi2,3, Б.Н. Сейлбеков2,4

1М. Әуезов атындағы Оңтүстiк Қазақстан университетi, Шымкент, Қазақстан;
2М. Әуезов атындағы Оңтүстiк Қазақстан университетi, Теориялық және қолданбалы математика

ғылыми институты, Қазақстан;
3Ж.А. Тәшенов атындағы университет, Шымкент, Қазақстан;

4Оңтүстiк Қазақстан мемлекеттiк педагогикалық университетi, Шымкент, Қазақстан

Мақалада айнымалыларды ажырату әдiсiмен айнымалы комплекстi коэффициентi бар төртiншi реттi
параболалық теңдеу үшiн керi есеп зерттелген. Комплекс мәндi коэффицентi бар өзiне-өзi түйiндес
емес төртiншi реттi бiртектi дифференциалдық теңдеу үшiн Дирихле және Нейман шекаралық есеп-
терiнiң меншiктi мәндерiнiң қасиеттерi белгiленген. Күштi регулярлы шекаралық шарттары бар бiр-
тектi дифференциалдық теңдеулер үшiн шекаралық есептердiң меншiктi функцияларының L2 (−1, 1)
кеңiстiгiндегi Рис базистiк қасиетi бойынша белгiлi нәтижелер пайдаланылады. Меншiктi функция-
лардың Рис базистiк қасиетiнiң негiзiнде зерттелетiн есептердiң формальды шешiмдерi құрастыры-
лып, шешiмдердiң бар болуы мен жалғыздығы туралы теоремалар дәлелденген. Шешiмдердiң бар
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екендiгi мен жалғыздығы туралы теореманы дәлелдеу кезiнде Бессель теңсiздiгi Фурье коэффици-
енттерi L2 (−1, 1) кеңiстiгiнен Рис базисi бойынша Фурье қатарына функциялардың жiктелiнуi үшiн
кеңiнен қолданылады. Инволюциялы төртiншi реттi теңдеу үшiн шеттiк есептердiң меншiктi функци-
ялары бойынша Фурье қатарлары түрiнде шешiмдердiң түр сипаты жазылды. Алынған шешiмдердiң
жинақтылығы да талқыланған.

Кiлт сөздер: параболалық теңдеу, керi есеп, классикалық шешiм, Фурье әдiсi, күштi регулярлы ше-
каралық шарттар, Рис базисi.

О разрешимости обратной задачи для параболического уравнения
четвертого порядка с комплекснозначным коэффициентом

А.Б. Иманбетова1, А.А. Сарсенби2,3, Б.Н. Сейлбеков2,4

1Южно-Казахстанский университет имени М. Ауэзова, Шымкент, Казахстан;
2Научный институт «Теоретическая и прикладная математика» Южно-Казахстанского университета

имени М. Ауэзова, Шымкент, Казахстан;
3Университет имени Ж.А. Ташенова, Шымкент, Казахстан;

4Южно-Казахстанский государственный педагогический университет, Шымкент, Казахстан

В настоящей работе методом разделения переменных изучена обратная задача для параболическо-
го уравнения четвертого порядка с переменным комплекснозначным коэффициентом. Установлены
свойства собственных значений краевых задач Дирихле и Неймана для несамосопряженного обык-
новенного дифференциального уравнения четвертого порядка с комплекснозначным коэффициен-
том. Использованы известные результаты о базисности Рисса в пространстве L2 (−1, 1) собственных
функций краевых задач для обыкновенных дифференциальных уравнений с усиленно регулярными
краевыми условиями. На основании базисности Рисса собственных функций построены формальные
решения изучаемых задач и доказаны теоремы о существовании и единственности решения. При до-
казательстве теорем о существовании и единственности решений применено неравенство Бесселя для
коэффициентов Фурье разложений функций из пространства L2 (−1, 1) в ряд Фурье по базису Рисса.
Выписаны представления решений в виде рядов Фурье по собственным функциям краевых задач для
уравнения четвертого порядка с инволюцией. Также обсуждена сходимость полученных решений.

Ключевые слова: параболическое уравнение, обратная задача, классическое решение, метод Фурье,
усиленно регулярные краевые условия, базис Рисса.
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