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The numerical solution of a system of differential equations with constraints can be unstable due to
the accumulation of rounding errors during the implementation of the difference scheme of numerical
integration. To limit the amount of accumulation, the Baumgarte constraint stabilization method is used. In
order to estimate the deviation of real solution from the numerical one the method of constraint stabilization
can be used to derive required formulas. The well-known technique of expansion the deviation function to
Taylor series is being used. The paper considers the estimation of the error of the numerical solution
obtained by the first-order Euler method.
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Introduction

The description of the dynamics of the system using Hamilton or Lagrange formalisms assumes the
solution of differential equations or a qualitative study of their properties [1]. It is not always possible
to obtain analytically the solution of systems of differential equations. Therefore, it is necessary to
resort to numerical integration methods [2] or to methods of investigating the properties of solutions
using methods of the qualitative theory of differential equations [3].

The use of numerical methods for solving differential equations is associated with the inevitable
accumulation of numerical integration errors. Therefore, the result of the numerical solution reflects the
real picture only with some degree of accuracy. The fact is that the implementation of one or another
difference scheme of numerical integration is accompanied by the accumulation of numerous errors, in
particular rounding errors.

Baumgarte showed [4] that the classical method of determining the reactions of contact constraints
used in mechanics leads to an inevitable accumulation of numerical integration errors associated with an
increase in the values of deviations from the constraints equations caused by errors in setting the initial
conditions. To reduce these deviations, Baumgarte proposed using linear combinations of constraints
equations together with their derivatives. The equations that establish the relationship between linear
combinations of constraints and their derivatives are called the equations of perturbations of constraints.
In essence, the Baumgarte method boils down to replacing the constraints equations with servo
constraints equations. The method of bond stabilization proposed by Baumgarte proved popular and
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caused the emergence of various modifications. Thus, Yu. Ascher proposed a method for stabilizing
systems of higher-order differential algebraic equations with constraints [5].

The conditions imposed on the behavior of solving a system of dynamic equations with deviations
from the constraints equations leads to additional requirements for determining the constraints reactions.
For these purposes, the concept of program constraints was introduced.

The first-order Euler difference scheme is the simplest scheme for numerical integration of systems
of first-order differential equations. When integrating, the area under the curve is searched for as an
area collections of rectangles. Any set of rectangles of finite length will not be able to completely cover
the area of a curved trapezoid, so the numerical solution of the integrable equation does not coincide
with the real one. The estimate of the maximum value of this error can be calculated by considering
the deviation of the numerical solution from the real one.

In theoretical mechanics there is a specific set of problems that define their goal as constructing
a system of ordinary differential equations based on the given properties. Such problems are being
called inverse ones. In some cases we need to find the specific constraints equations that provide the
system with its requested properties. These constraints are defined as program constraints. Methods
for solving systems of differential algebraic equations were investigated in work [6]. If a system contains
some ambiguity by its internal random parameters than it can be considered as stochastic. Some inverse
dynamical problems for the system with stochastic parameters are considered in papers [7–9]. In some
cases the system of motion equations is required to be constructed with regard for Baumgarte constraint
stabilization method implemented in it. In papers [10, 11] it was shown that perturbation parameters
are connected with dissipative function that pumps energy out of the system. New advanced numerical
methods were investigated for inverse-like problems in works [12,13].

1 Problem Statement

Let the state of a mechanical system be given by the set of generalized coordinates q =
(
q1, ..., qn

)
.

The change in the position of the mechanical system in time implies the dependence of the vector q on
time t: q = q(t). The rate of change in the position of the system is determined by the velocity vector:
v(t) = dq(t)/dt = q̇(t) = (q̇1, ..., q̇n). Let’s consider that the system of motion equations is presented
in form:

q̇ = ν;
ν̇ = a(q, t),

(1)

where a(q, t) is a given function. Let’s introduce a vector state x = (q, ν) and rewrite (1) in a matrix
form:

ẋ = F (x, t). (2)

Suppose that the motion is restricted and the kinematic state vector x(t) is limited by a set of
mechanical constraints described by the equations:

hi(q, t) = 0, i = 1, ...,m, m < n. (3)

Here and in the future, corresponding to Einstein’s notation, repeating indices imply summation
by the same indices.

In order to solve system (2) with constraints (3) the method of Lagrange multipliers is used.
But during the numerical integration with Euler first order scheme we will inevitably face with
solution’s instability. To solve this problem J. Baumgarte [1] suggested to consider an arbitrary linear
of constraints and its full time derivatives while solving the system of differential algebraic equations
with constraints. According to this stabilization method our system will take form:{

ẋ = F (x, t),

ḧ+Aḣ+Bh = 0,
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where A and B are matrices with arbitrary components that are called perturbation parameters. By
manipulating the values of these components, we can achieve a stable numerical solution. We can
algebraically solve obtained system and derive ẋ:

ẋ = X(x+ ℵ, t). (4)

Symbol ℵ here stands for the terms with perturbation parameters and provides numerical stability.

2 Numerical Integration

In numerical integration, it is assumed that the differentials of the function and the independent
argument are represented in finite differences dx(t) ≈ ∆x(t), dt ≈ ∆t. Thus, the functions become
functions of a discrete argument.

Let equation (4) be determined on a set [t1, t2] . In the simplest difference schemes, this set can be
divided by points t1 = t(1), t(2), ..., t(2) = t(N) and (N − 1) equal length segments τ = t(α+1) − t(α),
corresponding to the integration step. Finite increment of a state vector x(t) can be represented as a
difference:

∆x
(
t(α)
)

= x
(
t(α+1)

)
− x

(
t(α)
)
, α = 1, ..., N − 1.

We use Euler first order difference scheme to solve equation (4) numerically:

x(α+1) = x(α) + τX(α), α = 1, ..., N − 1. (5)

To estimate the deviation error, the real solution will be denoted x̃(t). It satisfies the system (2)
with constraints (3). It does not include stabilization terms. Consider the deviation of a real solution
from a numerical one (5) at the moment t(α) : x̃(t(α)) − x(α). Let’s expend x̃(t(α)) at t(α) to Taylor
series:

x̃(t(α)) = x̃(t(α−1)) + τ˙̃x(t(α−1)) +
τ2

2
¨̃x(ζ),

where ζ : ζ ∈
[
t(α−1), t(α)

]
. Taking into account (2) deviation x̃(t(α))−x(α) will be written in the form:

x̃(t(α))− x(α) = x̃(t(α−1))− x(α−1) + τ
(
X̃
(
t(α−1)

)
−X(α−1)

)
+
τ2

2
¨̃x(ζ). (6)

If we apply mean value theorem to the term X̃
(
t(α−1)

)
−X(α−1) we will obtain the following

relation:

X̃
(
x̃(t(α−1)), t(α−1)

)
−X

(
x(α−1) + ℵ, t(α−1)

)
=
∂X

∂x

(
xζ , t(α−1)

) (
x̃(t(α−1))− x(α−1) − ℵ

)
,

where xζ ∈
[
x̃(t(α−1)), x(α−1)

]
or xζ ∈

[
x(α−1), x̃(t(α−1))

]
depending on which value is greater.

∂X
∂x

(
xζ , t(α−1)

)
− matrix [2n× 2n] .

Let’s denote the deviation x̃(t(α))− x(α) = ∆(α), then the ratio (6) can be rewritten as:

∆(α) =

(
I2n + τ

∂X

∂x

(
xζ , t(α−1)

))
∆(α−1) − τℵ

∂X

∂x

(
xζ , t(α−1)

)
+
τ2

2
¨̃x(ζ), (7)

where I2n is a unit matrix.
Denote = = max

t∈[t0,tk]

(
τ
2
¨̃x(ζ)− ℵ∂X∂x

(
xζ , t(α−1)

))
. Taking into account the triangle inequality, the

ratio (7) will take form: ∣∣∆(α)

∣∣ ≤ ∣∣∆(α−1)
∣∣ ∣∣∣∣I2n + τ

∂X

∂x

(
xζ , t(α−1)

)∣∣∣∣+ τ=.
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The norm of a vector or matrix by components is understood as the maximum value of the modulus
of its components:

∣∣∆(α)

∣∣ = max
k=1,...,2n

∣∣∆k(α)

∣∣. Solving this recursive inequality with respect to the first

element, we obtain:

∣∣∆(α)

∣∣ ≤ ∣∣∆(1)

∣∣ ∣∣∣∣I2n + τ
∂X

∂x

(
xζ , t(α−1)

)∣∣∣∣α−1 + τ=
∑α−2

l=1

∣∣∣∣I2n + τ
∂X

∂x

(
xζ , t(α−1)

)∣∣∣∣l.
Let’s assume that the integration step is small enough, so the expression 1 + τ ∂X∂x

(
xζ , t(α−1)

)
is

positive ∀t ∈ [t0, tk] even, if the derivative ∂X
∂x is negative. Also apply to the second term the formula

of the sum of a finite number of elements of geometric series, we get:

∣∣∆(α)

∣∣ ≤ ∣∣∆(1)

∣∣ ∣∣∣∣I2n + τ
∂X

∂x

(
xζ , t(α−1)

)∣∣∣∣α−1 + =
∣∣I2n + τ ∂X∂x (xζ , t(α−1))

∣∣α−1 − 1∣∣∂X
∂x (xζ , t(α−1))

∣∣ . (8)

As

I2n + τ
∂X

∂x

(
xζ , t(α−1)

)
≤ exp

(
τ
∂X

∂x

(
xζ , t(α−1)

))
,

then: ∣∣∣∣I2n + τ
∂X

∂x

(
xζ , t(α−1)

)∣∣∣∣α−1 ≤ ∣∣∣∣exp

(
τ(α− 1)

∂X

∂x

(
xζ , t(α−1)

))∣∣∣∣
and tk = t0 + (N − 1)τ, α ≤ N, τ(α− 1) ≤ tk − t0. Then the ratio (8) will be written in the form:

∣∣∆(α)

∣∣ ≤ ∣∣∆(1)

∣∣ ∣∣∣∣exp (tk − t0)
∂X

∂x
(xζ , tζ)

∣∣∣∣+ =
∣∣exp (tk − t0) ∂X∂x (xζ , tζ)

∣∣− 1∣∣∂X
∂x (xζ , tζ)

∣∣ . (9)

The right side of this ratio does not include the node number, so you can also enter the norm for
nodes: α ||∆|| = max

α=1,...,N−1

∣∣∆(α)

∣∣ . Then the relation (9) allows you to set the ratio for the maximum

possible error in numerical integration using the Euler difference scheme:

||∆|| ≤
∣∣∆(1)

∣∣ ∣∣∣∣exp (tk − t0)
∂X

∂x
(xζ , tζ)

∣∣∣∣+ =
∣∣exp (tk − t0) ∂X∂x (xζ , tζ)

∣∣− 1∣∣∂X
∂x (xζ , tζ)

∣∣ .

Conclusion

It follows from this relation that the maximum possible error exponentially depends on the length
of the segment on which the integration takes place. Also, the second term of this relation contains
the stabilization term ℵ associated with the equations of perturbed constraints. Therefore, a change
in the values of the perturbation parameters affects the maximum deviation error during numerical
integration. However, due to the arbitrariness of the type of functions X(x, t), it is extremely difficult to
draw a conclusion about the direct relationship between the perturbation parameters and the maximum
deviation value. Only in some cases, discussed below, the estimates of the perturbation parameters can
be determined by the formula, while ensuring the stability of the numerical solution.
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Баумгарт байланысының тұрақтануын ескере отырып,
динамикалық теңдеулердiң нақты және сандық шешiмi
арасындағы ауытқулардың кейбiр бағалаулары туралы

М.И. Ақылбаев1, И.Е. Каспирович2

1Академик Ә. Қуатбеков атындағы Халықтар достығы университетi, Шымкент, Қазақстан;
2П. Лумумба атындағы Ресей халықтар достығы университетi, Мәскеу, Ресей

Сандық интегралдауда айырымдық схемасын жүзеге асыру кезiнде дөңгелектеу қателерiнiң жина-
луына байланысты байланысы бар дифференциалдық теңдеулер жүйесiнiң сандық шешiмi тұрақсыз
болуы мүмкiн. Жиналу мөлшерiн шектеу үшiн Баумгарт байланысын тұрақтандыру әдiсi қолда-
нылады. Нақты шешiмнiң сандық шешiмнен ауытқуын бағалауда қажеттi формулаларды алу үшiн
тұрақтандыру әдiсiн пайдалануға болады. Ауытқу функциясын Тейлор қатарына жiктеудiң белгiлi
әдiсi қолданылған. Мақалада бiрiншi реттi Эйлер әдiсiмен алынған сандық шешiмнiң қателiгiн баға-
лау қарастырылды.

Кiлт сөздер: байланыстарды тұрақтандыру, сандық интегралдау, тұрақтылық, динамика, дифферен-
циалдық теңдеулер жүйесi, сандық әдiстер, сандық шешiм, айырымдық схемасы, дөңгелектеу.

О некоторых оценках отклонений между реальным и численным
решениями динамических уравнений с учетом стабилизации связи

Баумгарта

М.И. Акылбаев1, И.Е. Каспирович2

1Университет дружбы народов имени академика А. Куатбекова, Шымкент, Казахстан;
2Российский университет дружбы народов имени П. Лумумбы, Москва, Россия

Численное решение систем дифференциальных уравнений со связями может быть нестабильным из-за
накопления ошибок округления при реализации разностной схемы численного интегрирования. Для
ограничения величины накопления использован метод стабилизации связей Баумгарта. Для оценки
отклонения реального решения от численного может быть применен метод стабилизации для полу-
чения требуемых формул. Использован хорошо известный метод разложения функции отклонения в
ряд Тейлора. В статье рассмотрена оценка погрешности численного решения, полученного методом
Эйлера первого порядка.

Ключевые слова: стабилизация связей, численное интегрирование, устойчивость, динамика, система
дифференциальных уровней, численные методы, численное решение, разностная схема, округление.
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