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This work investigates the structure of punctual numberings for families of punctually enumerable sets
with respect to primitive recursively reducibility. We say that a numbering of a certain family is primi-
tive recursively reducible to another numeration of the same family if there exists a primitive recursively
procedure (an algorithm not employing unbounded search) mapping the numbers of objects in the first
numbering to the numbers of the same objects in the second numbering. This study was motivated by
the work of Bazhenov, Mustafa, and Ospichev on punctual Rogers semilattices for families of primitive
recursively enumerable functions. The concept of punctually enumerable sets was introduced in the paper,
and it was proven that not all recursively enumerable sets are punctually enumerable, but in all m-degrees,
recursively enumerable sets include punctually enumerable sets. For two-element families of punctual sets,
it was demonstrated that punctual Rogers semilattices can be of at least three types: (1) one-element
family, (2) isomorphic to the upper semilattice of recursively enumerable sets with respect to primitive re-
cursively m-reducibility, (3) without the greatest element. It was also proven that the set of all punctually
enumerable sets does not have a punctual numbering, and punctual families with a Friedberg numbering
do not have the least numbering.
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Introduction

Theory of computable numberings is one of the actively developing areas in the computability
theory. Numbering of a countable set S is any surjective mapping ν : ω → S (Here and further as ω
we denote the set of natural numbers). A numbering ν is called computable if the set

{〈n, x〉 : n ∈ ω, x ∈ ν(n)}

is computably enumerable (c.e.) set.
The set of all computable numberings for family S denotes as Com(S). Let ν and µ are numberings

for family S. Numbering ν is reducible to µ if there is computable function f such that ν = µ ◦ f
(denotes ν ≤ µ). This reducibility induces a partially preordered set structure, which factor structure
is called Rogers semilattice for family S and denoted as R(S).

There are several interesting results known about Rogers semilattice. For example, if S is a family of
c.e. sets, then either |R(S)| = 1 or |R(S)| =∞ [1]. In the case when |R(S)| =∞ the semilattice is not
∗Corresponding author. E-mail: nurlanbek.dias21@gmail.com
The work of A. Askarbekkyzy, B. Kalmurayev, D. Nurlanbek, F. Rakymzhankyzy was supported by the Ministry of Sci-

ence and Higher Education of the Republic of Kazakhstan, grant AP19576325 “Algorithmic complexities of presentations
for algebraic structures”.
Received: 16 January 2024; Accepted: 10 July 2024.
c© 2024 The Authors. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Mathematics Series. No. 4(116)/2024 31



A. Askarbekkyzy et al.

a lattice [2]. There is a universal numbering of all partial computable functions [3] and a computable
numbering of all c.e. sets without repetitions [4] (these numberings are called friedberg numbering).
For more information about the properties of the classical Rogers semilattice, refer to the following
articles: [5–8].

In recent years, under the influence of the work [9], interest in primitive recursive (or punctual)
properties of algebraic structures has increased. The next articles will help you to find more infor-
mation about punctual structures [10–27]. In connection with this, studying the punctual properties
of numberings is also relevant. Bazhenov, Mustafa, and Ospichev considered punctual numberings
of families of functions in their article [28]. The authors established punctual reducibility between
numberings, induced by primitive recursive functions, leading to the creation of upper semilattices of
degrees known as Rogers pr-semilattices. They demonstrated that any infinite, uniformly primitive
recursive family S induces an infinite Rogers pr-semilattice R. It was proven that the semilattice R
is downwards dense, with every nontrivial interval within R containing an infinite antichain. Addi-
tionally, every non-greatest element in R is a part of an infinite antichain. The authors showed that
the Σ1-fragment of the theory Th(R) is decidable. Several examples were provided to emphasize the
contrasts between the punctual framework and the classical theory of computable numberings. No-
tably, it was demonstrated that some infinite Rogers pr-semilattices R are lattices, while others are
not. The authors obtained a series of results concerning special classes of punctual numberings, includ-
ing Friedberg numberings and decidable numberings with primitive recursive numeration equivalence.
This paper is a logical continuation of the article [28] and aims to investigate punctual numberings for
families of sets.

In Chapter 2, we introduce punctual analogs of concepts standard in the theory of computable
numberings and define the punctual Rogers semilattice for sets. Chapter 3 is devoted to the structural
properties of c.e. degrees induced by the restriction of m-reducibility by primitive recursive functions
(called prm-reducibility). Chapters 4 and 5 present some properties of the punctual Rogers semilattice
for finite and infinite families, including its connection with the structure of c.e. prm-degrees.

We adhere to the notations and terminology adopted in [29, 30]. We denote by {pe}e∈ω the com-
putable numbering of all primitive recursive functions. In this article we will consider restricted Church-
Turing thesis for primitive recursive functions. We can define this thesis as follows: a function is
primitive recursive if and only if it can be described by an algorithm that uses only bounded loops.
More about restricted Church-Turing thesis you can find in the work [31].

1 Punctually enumerable sets and numberings

In the paper [28], the numbering ν of a family of primitive recursive functions is called “punctual”
if the function gν(n, x) := (ν(n))(x) is primitive recursive. It seems natural to attempt to extend this
definition to a family of c.e. sets, but here we face some difficulties.

The thing is, such a definition of punctual numbering yields the same class of computable number-
ings for families of c.e. sets because any c.e. set can be represented as the range of a primitive recursive
function, which means that a family can be enumerated in a punctual way. On the other hand, even
with the presence of a punctual enumeration of a c.e. set, it is not always possible to use primitive
recursive constructions, for example, due to the unbounded repetition of elements in the enumeration.
In this regard, it makes sense to consider families of sets with stricter enumeration constraints than
c.e. sets.

Definition 1. A set A is called punctually enumerable, if there is a primitive recursive function p,
such that

1) A = range(p), and
2) If p(x) = p(y) for some x < y, then range(p) = {p(0), p(1), . . . , p(x)}.
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We will call the function p as a quick function for A.

Thus, the quick function p from the definition is injective for an infinite set A, and for a finite set
it eventually enumerates all of its elements and then starts repeating them.

Definition 2. A numbering ν of a family S of punctually enumerable sets is called punctual, if
there exists a primitive recursive function gν(n, x) such that λx.gν(n, x) is a quick function for ν(n)
for any n. The set of all punctual numberings for family S we will denote as Compr(S).

Reductions on numberings are defined analogously to [28].

Definition 3. We say that numbering ν is punctually reducible to numbering µ (denoted as ν ≤pr µ),
if there is primitive recursive function f such that ν = µ ◦ f .

Numberings ν and µ are punctually equivalent and denote as ν ≡pr µ, if ν ≤pr µ and µ ≤pr ν.
As in the computable case, the least upper bound of the numberings ν and µ is the numbering

ν ⊕ µ, which is defined as

(ν ⊕ µ)(2x) = ν(x), (ν ⊕ µ)(2x+ 1) = µ(x).

As punctual Rogers semilattice of the family of punctually enumerable sets S, we will call partially
ordered set Rpr(S) = (Compr(S)/≡pr

,≤pr,⊕).
The following theorem demonstrates the independence of the concepts of primitive recursive set

(having primitive recursive characteristic function) and punctually enumerable.

Theorem 1. There exist sets A and B such that A is punctually enumerable but not primitive
recursive, and B is primitive recursive but not punctually enumerable.

Proof. As a set A we can choose the set K ⊕ ω. For this set its quick function we can construct as
follows: we fix a primitive recursive approximation of the creative set K, denoted Ki, which at each
step enumerates at most one element. Then, we set f(0) = 1, and f(x) = 2s, where s ∈ Kx \Kx−1, if
such s exists. If there is no such s, then f(x) is defined as the smallest odd number that has not been
used before. It is clear that f is injective primitive recursive function and A is the range of f .

For set B we will construct its primitive recursive characteristic function φ such that for B there
is no quick function. We fix a computable numbering of all injective primitive recursive functions with
the following condition

ie(x)[t] ↓= a⇒ a < t.

We will define B as a infinite set. So, it is sufficient that there is no injective quick function for B.
At step s we will define φ(s) as follow: Assume that k is the cardinality of the set {t : φ(t) =

1 & t < s}. If there is more that k elements x ≤ s such that ik(x)[s] ↓, then define φ(s) = 1. Otherwise,
define φ(s) = 0.

It is not hard to see that B is infinite set and any ik can not enumerate B.

2 The structure of prm-degrees

In recent work [32] considered a many-one reductions for computable sets under primitive recursive
functions, and have been proven that first-order theory of upper semilattice of degrees of computable
sets with respect to primitive recursive many-one reducibility is hereditarily undecidable.

Definition 4. [32] The set A is prm-reducible to the set B (written as A ≤prm B), if there exists a
primitive recursive function f such that A ≤m B via f .

Remark 1. The computable m-degree contains infinitely many prm-degrees.

Theorem 2. For any c.e., but not computable set A, there is c.e. set B such that A ≡m B and
A �pr

m B.
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Proof. Let’s define computable majorant for all primitive recursive functions:

f(0) = p0(0) + 1,

f(x+ 1) = max
i,j≤x+1

{pi(j), f(x)}+ 1.

Note that f is not primitive recursive but the set range(f) is primitive recursive.
Let B = f(A) = {f(x) : x ∈ A}.
It is clear, that A ≤fm B, since f is strongly increasing, then x ∈ B ⇔ ∃n 6 x (n ∈ A& f(n) = x),

which means that reverse reducibility is correct.
Let’s show that if A ≤prm B, then A is computable. We fix primitive recursive function pe, which

reduces A to B, and also step s such that A � e = As � e (here by A � e denotes the set {x : x ∈
A & x ≤ e}).

Let x be an arbitrary number. If x 6 e, then x ∈ A⇔ x ∈ As. Otherwise, we check the following
condition: pe(x) ∈ range(f)? If it is not, then x /∈ A. If it is, we effectively find zo such that
f(z0) = pe(x).

Repeat for z0 same procedure as we did for x, and, if z0 > e, then we find number z1 such that
f(z1) = pe(z0) and so on. As a result, we receive sequence (zk)k. Since f(z0) = pe(x) < f(x), by
definition of f , then z0 < x, consequently, the sequence (zk)k decreases and we find k, such that
pe(zk) /∈ range(f) or zk 6 e. Then x ∈ A ⇔ pe(x) = f(z0) ⇔ z0 ∈ A ⇔ pe(z0) = f(z1) ⇔
· · · ⇔ pe(zk−1) = f(zk) ⇔ zk ∈ A. If pe(zk) /∈ range(f), then zk /∈ A, otherwise zk 6 e and
zk ∈ A⇔ zk ∈ As.

Thus, we can effectively define that x belongs to A or not.

Corollary 1. Every non-computable c.e. m-degree contains infinitely many prm-degrees.

Proof. Let A0 be non-computable c.e. set. By using the previous theorem, we will build c.e. set A1

such that A0 ≡m A1 and A0 �pr
m A1, for A1 similarly build A2, and for A2 build A3 and so on. All sets

An, n ∈ ω are m-equivalent, and for i < j set Ai m-reduces to Aj by f j−i(x) ((j − i)-th composition
of function f from the previous theorem), consequently, Ai �pr

m Aj . Here, note that B = f(A) ≤prm A.
(Proof is similar).

3 Punctual semilattice of two-element families

In the work [28] it was shown that the punctual Rogers semilattice of a finite family of functions
always has exactly one element. However, it turns out that this is not the case for families of sets.

In this chapter we assume, that S = {A,B}, where A,B are different punctually enumerable sets.
Note that in this case Rpr(S) 6= ∅, since the function

α(n)(x) =

{
f(x), for n = 2k,

g(x), for n = 2k + 1,

where f and g are quick functions for A and B respectively, gives the punctual numbering of the
family S.

Proposition 1. Let S is punctual two-element family such that A or B is finite then |Rpr(S)| = 1.

Proof. Let |A| = N 6 |B|; f and g are quick functions of the sets A and B, respectively.
Let ν, µ ∈ Compr(S) are arbitrary and kν , kµ their quick functions. Let’s show that ν ≡pr µ.
Fix numbers a and b such that µ(a) = A and µ(b) = B. Then ν 6pr µ by primitive recursive

function h, which defines as:
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h(n) =

{
a, if |kν(n, ·) � N | 6 N,
b, otherwise.

Really, |kν(n, ·) � N | 6 N means that quick function kν on N -th argument starts to repeat the
values, consequently, |ν(n)| 6 N and that’s why ν(n) = A = µ(a).

Reverse reducibility is proved similarly.

Proposition 2. Let S be a two-element family such that A and B are infinite, A ∩ B is finite and
one of the sets is primitive recursive, then |Rpr(S)| = 1.

Proof. Let |A ∩B| = N and A is primitive recursive.
Let’s take two numberings ν and µ of the family S and fix numbers a and b such that µ(a) = A

and µ(b) = B.

We define

h(n) =

{
a, if ∃x ∈ (kν(n, ·) � N) ∩ (A \B),

b, otherwise.

Note, that |kν(n, ·) � N | > |A ∩ B| ⇒ ∃x ∈ (kν(n, ·) � N) \ (A ∩ B). We can check that x belongs
to A by primitive recursive procedure, and ν(n) = A⇔ x ∈ A. Consequently, ν 6pr µ by function h.
It is clear that reverse reducibility is true, then ν ≡pr µ.

Theorem 3. There exists family S = {A,B}, where |A ∩ B| < ∞, such that there is no universal
numbering for S.

Proof. We will build the sets A, B and numbering αe for family S = {A,B}, satisfying the following
requirements:

Pe,i : πe ∈ Compr(S)→ αe 6≤pr πe by function pi,

where πe is computable numbering of all primitive recursive numberings, pi is computable numbering
of all primitive recursive functions. Let ke be primitive recursive quick function for numbering πe.

Strategy for Pe,i:
1) Pick we,i – the least number, that we do not use before.
2) Wait until pi(we,i) ↓ and ke(pi(we,i), 0) ↓ on the step t. While we are waiting, list to αe(we,i)

new numbers.
3) We perform one of the following cases:
Case 1: If ke(pi(we,i), 0) ∈ B, then all elements that we listed to αe(we,i) until this step, we add to

A. Also, we add to α(we,i) all elements from A. After this, we add to αe(we,i) all elements
that we add to A.

Case 2: If ke(pi(we,i), 0) ∈ A, then all elements that we listed to αe(we,i) until this step, we add to
B. Also, we add to α(we,i) all elements from B. After this, we add to αe(we,i) all elements
that we add to B.

Case 3: If ke(pi(we,i), 0) 6∈ A ∪B, then ke(pi(we,i), 0) ∈ B and return to the Case 1.
Construction. Fix effective linear order of requirements:

P0,0 < P1,0 < P0,1 < P2,0 < P1,1 < P0,2 < ...

On step s of the construction we visit the first s strategies from the list. At every step, fresh
numbers are selected and thrown into the sets A or B.
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Let πe ∈ Compr(S), by this we build αe and let there is primitive recursive function pi, such that
αe ≤pr πe by function pi. So the following should be performed:

∀x[αe(x) = πe(pi(x))].

Let’s check the witness we,i in Pe,i. By construction, while pi(we,i) defines on step t, in αe(we,i) we
add new numbers. Suppose that on stage 3 the number ke(pi(we,i), 0) is in the set B, since A∩B = ∅,
the following performed πe(pi(we,i)) = B. But, by construction αe(ww,i) = A. This contradicts to
reducibility αe to πe.

For case, when the number ke(pi(we,i), 0) is in the set A, we do the same action. If number
ke(pi(we,i), 0) 6∈ A ∪B, then the action is performed as in the first case.

Proposition 3. Let S be two-elemented family, such that A ⊂ B, then |Rpr(S)| =∞ with universal
numbering.

Proof. Since the sets A and B are punctually enumerable, then there are functions p, q – quick
functions for A and B, respectively.

We will build the numberings for family S as follows:
Let W be arbitrary c.e. set, which is not empty and not ω, then numbering ν defines as:

νW (x) =

{
A, if x /∈W,
B, if x ∈W.

W = ∪sWs.
Quick function λx.h(x, y) of the numbering ν will add elements as:
On step 0. hν(x, 0) = p(0).
On step s.
1) hν(x, s) = p(s), if x /∈Ws,
2) hν(x, s) = q(µz≤s+1[q(z) /∈ hν(x, ·) � s]), if x ∈Ws.
It is easy to check, that for an arbitrary Wi, which is not empty and not ω, we can decide that

νWi ∈ Compr(S).
Wi reduces to Wj by primitive recursive function if and only if νWi reduces by primitive recursive

function to νWj .
Now, let α be an arbitrary punctual numbering of the family S. Then we can find c.e. set Wi such

that α = νWi . Since α is numbering of the family S, and Wi is not empty, then there is an element
b ∈ B \ A, then we can define the function ϕ(x) = µz[hα(x, z) = b], which is range of c.e. set Wi.
Which means that Rpr(S) is isomorphic to L0prm.

It is known, that the set K0 = {〈x, y〉|x ∈Wy} is universal in L0prm. Consequently, νK0 is universal
punctual numbering of the family S.

Note that Rpr(S) is isomorphic to the upper semilattice of all c.e. sets under pr-many-one re-
ducibility. By [32] we can say that first-order theory of Rpr(S) is undecidable.

Proposition 4. There exists the family S = {A,B} such that |A ∩ B| = ∞ and |Rpr(S)| = ∞
without universal numbering.

Proof. Let A = ω \ {0} and B = ω \ {1}. And let µ be an arbitrary numbering of the family S.
We will build the numbering ν ∈ Compr(S) so that ν �pr µ.

We will construct quick function qν for ν as follows:

qν(w, y) =


y + 2, {0, 1} ∩ hµ(pe(w) ↓, ·) � y = ∅;
0, hµ(pe(w), y) = 1;
1, hµ(pe(w), y) = 0;
y + 1, {0, 1} ∩ hµ(pe(w) ↓, ·) � y 6= ∅,
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where h is quick function of the numbering µ and pe is function that does not reduce ν to µ.
Let numbering ν reduces to numbering µ by primitive recursive function p, then there is w such

that ν(w) = 0 and µ(p(w)) = 1 or ν(w) = 1 and µ(p(w)) = 0. Contradiction.
Since µ is an arbitrary numbering from the Compr(S), then for any numbering from Compr(S) we

can construct ν, which does not reduce to µ, which means that there is no universal numbering in this
family.

4 Punctual semilattice of the infinite families

Theorem 4. There is no punctual numbering for the family of all punctually enumerable sets.

Proof. Suppose that there is the numbering ν for the family of all punctually enumerable sets. Let
g(x, y) be a quick function for ν. We construct punctually enumerable set A such that ν(e) 6= A for
all e ∈ ω; thus we will come to the contradiction.

Let q(0) = p(0, 0) + 1 and q(n+ 1) = max({p(n+ 1, z) : z ≤ n+ 1} ∪ {q(n)}) + 1.
It is clear that q is primitive recursive increasing function. Assume A = range(q).
By contradiction, assume ν(n) = A for some n ∈ ω. Since, A is infinite, the function λy.g(n, y) is

injective. It is clear that the set {p(n, z) : z ≤ n} has n+1 different elements, hence in {p(n, z) : z ≤ n}
there is a number greater than q(n). Contradiction.

Corollary 2. There is no punctual numbering for the family of all primitive recursive punctually
enumerable sets.

The proof of corollary is the same as the proof of the theorem.

Definition 5. The numbering ν ∈ Compr(S) is called friedberg, if it is injective.

Proposition 5. If the infinite family S has friedberg numbering, then
1) Rpr(S) does not have the least element,
2) |Rpr(S)| =∞.

Proof. 1) Let ν be friedberg numbering for the infinite family S. Suppose that α is the least
numbering of the family S. Then α ≤pr ν by primitive recursive function g, which means that alpha is
punctually decidable, since ∀n,mα(m) = α(n) ⇔ ν(g(m)) = ν(g(n)) ⇔ g(m) = g(n). Consequently
([28], Proposition 3.1(ii)), there is spd-numbering µ ≡pr α. By using the construction from the Theorem
4.1 of the same paper, we can construct the numbering µ0 <pr µ, which contradicts to choice of α.

2) Let ν be friedberg numbering of the infinite family S. Consider µ = ν ◦f , where f is a primitive
recursive bijective function such that f−1 is not primitive recursive (existence of such function is shown
in [33]). It is clear, that µ ≤pr ν and µ friedberg: µ(m) = µ(n) ⇔ ν(f(m)) = ν(f(n)) ⇔ f(m) =
f(n) ⇔ m = n. Wherein, ν = µ ◦ f−1 and f−1 is not primitive recursive, which means that ν 6≤pr µ.
Thus µ <pr ν. Continuing the process, you can build an endless-waning chain of friedberg numberings,
from where we get required.
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