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Kelvin-Voigt equations with memory: existence, uniqueness and
regularity of solutions

In general, the study of inverse problems is realizable only in the case when the corresponding direct
problems have the unique solution with some necessary properties such as continuity and regularity. In this
paper, we study initial-boundary value problems for the system of 2D-3D nonlinear Kelvin-Voigt equations
with memory, which describes a motion of an incompressible homogeneous non-Newtonian fluids with
viscoelastic and relaxation properties. The investigation of these direct problems is related to the study of
inverse problems for this system, which requires the continuity and regularity of solutions to these direct
problems and their derivatives. The system, in addition to the initial condition, is supplemented with one
of the boundary conditions: stick and slip boundary conditions. In both cases of these boundary conditions,
the global in time existence and uniqueness of strong solutions to these initial-boundary value problems were
proved. Moreover, under suitable assumptions on the data, the regularity of solutions and their derivatives
were established.

Keywords: Kelvin-Voigt system, slip and stick boundary conditions, strong solutions, global existence and
uniqueness, smoothness.

Introduction

Let Q € R, d = 2,3, be a bounded domain with a smooth boundary 89, and Q7 = Q x (0,T) be
a cylinder with a lateral I'r = 9€Q x [0, T]. Let us consider the following initial-boundary value problem
for the system of nonlinear Kelvin-Voigt (Navier-Stokes-Voigt) equations with memory

¢

vi+ (v V)V —xAv, — vAvV — /K(t —1)Av(x,7)dT+ Vp=f, (z,t) € Qr, (1)
0

divv(x,t) =0, (x,t) € Qr, (2)

supplemented with the initial condition
v(x,0) =vp(x), x€ (3)
and one of the following boundary conditions: stick boundary condition
v(x,t) =0, (x,t)elp (4)
or slip boundary condition
va(X,t) =v-n=0, rotvxn=0, (x,t) € I'r. (5)

System (1)-(2) is called a Kelvin-Voigt (also called Navier-Stokes-Voigt) system with memory
or an integro-differential Kelvin-Voigt system, and models a motion of viscoelastic incompressible
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non-Newtonian fluids [1-5]. Most of hydrodynamics problems were considered with stick-boundary
condition (4), however, in recent years works have appeared on initial-boundary value problems with
a slip-boundary condition like (5), see for instance [6-8] et al. Because this is related to the fact that
these boundary conditions have an important meaning for non-Newtonian fluids [9,10]. In the case of
slip boundary condition (5), we assume that € is a simply connected bounded domain [11]. System
(1)-(2), in some particular cases, can be considered as a nonlinear pseudoparabolic equation due to
the term Avwvy, therefore all established below results will be hold true also for initial-boundary value
problems for such type PDEs.

The issue of study of problems (1)—(4) and (1)—(3), (5) is aroused due to the investigation of inverse
problems for system (1)-(2) that is supplemented with some additional conditions on solutions of the
corresponding direct problem. In generally, the study of inverse problems are realizable only there is
information such as unique solvability of the corresponding direct problems and smoothness of their
solutions [12-14]. The direct problems for (1)-(2) with various statements have been studied before in
some works as [5,7,15,16], where the existence and uniqueness of weak solutions were established. The
existence, uniqueness, and the regularities of smooth solutions of the initial-boundary value problems
for system (1)-(2) without the memory term have been investigated in [17] for homogeneous fluids,
and in [18], in the case for non-homogeneous fluids. However, by our knowledge, there is not work for
smooth solutions for problems (1)—(4) and (1)—(3), (5). By this purpose, in this paper, we investigate the
existence and uniqueness of strong solutions of problems (1)—(4) and (1)—(3), (5), and their regularities.
First we work on problem (1)—(4) and the study problem (1)—(3), (5) is similar to the first one, therefore,
we omit some details of proofs.

1 Preliminaries

In this section, we introduce the main functional spaces and some useful inequalities related to
boundary conditions (4) and (5) from [8]. We distinguish vectors from scalars by using boldface letters.
The symbol C will denote a generic constant — generally a positive one, value of which will not be
specified; it can change from one inequality to another. We denote by L?(Q) the usual Lebesgue space
of square integrable vector-valued functions on Q, and by W™2(Q) the Sobolev space of functions
in L2(Q) whose weak derivatives of an order not greater than m are in L?(2). The norm and inner
product in L2(€2) denoted by || - ||2.0 and (, ), o, respectively.

Let us introduce the function spaces regarding to the slip and stick boundary conditions (5) and
(4), respectively (see [3,6]):

Hy(Q)={veL*Q):divv =0, vnlygg =0}; H(Q)={veL*(Q):divv =0, v|y, =0};
HL(Q) = {v e W(Q) :divv =0, vp|yg = 0}; HY(Q) ={ve W3(Q) :divv =0, v|yq = 0};
HZ(Q) = {v € HL(Q) N W?%(Q) : (rot v x n)|,o = 0}; H*(Q) = {ve H(Q) NnW»?(Q)}

and for the simplicity, we use the following common notation for both cases

Voo H(Q), in the case (4); Vi H!(2), in the case (4);
| Hu(9), in the case (5), H, (), in the case (5), i = 1,2.

The scalar product and the norm in V() we define by (rot v, rot u), o and [[v|[y1(g) = [[rot vy,
respectively. According to [3,6,8,11] and the references cited in them (see for example [9,19]), the
following inequalities are hold:
Poincare’s inequality

Va0 < C1(®) [V¥]50, v € VHQ) (©)

N1(Q) [Vliwag) < 1ot vlipg < Na(2) [Vliwrag ¥V € VH(Q);
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N3(Q) [IVllwzz2(0) < AVl 0 = [[rotrot vlly o < Na(Q) [VIlwyzzq), ¥V € VZ(Q); (7)

and Ladyzhenskaya inequalities [6].
Let us introduce a bilinear and continuous form a on V!, associated with the operator A:

a(v,u) = (Vv,Vu)y o, Vv,ue ViQ) (8)

in case (4), and
a(v,u) = (rotv,rotu)y g, Vv,ue viQ) (9)

in case (5). It is clear that a(v,v) is a norm on V!(Q), which is equivalent to W12(Q)-norm. In
particular, due to (6), in V! the norm || rot v||2,0 is equivalent to the norm ||v|lwu1.2(q), and therefore
equivalent to the norm [|Vv||2q.

Thus, a defines an isomorphism A from V1(Q) to V=1(Q),

(Av,u) = a(v,u), Vv,ue V(Q),
where (-, -) denotes the pairing of V! and V1. There hold the following continuous inclusions
ViQ) = L}(Q) = V1),

where each of the first two spaces is dense in the next one.

It follows from (7) also that in V? the norm ||Av||, o = [[rotrot v|, o is equivalent to the norm
IVIlwz2(0)-

Regarding to sliding condition (5), we have the Green formulas (see [6] and [8,9]):

(—Av,u)y g =—(Vdivv,u)y g + (1?0‘52 v, u)2 0= —/ divv - u, dS+
+ (divv,divu), o + / u- (rotv x n) dS + (rot v,rotu), o = (rot v,rotu), ¢,
) 8Q k) )

in case d = 3, and

(—Av,u)y g = (divv,divu), o + (rot(rot v),u), o, =

(11)

= /asz (rot v x m) udS + (rot v,rot u), o = (rot v,rot u), o,

in case d = 2, where roty is the vector (¢g,, —goxl)Q’Q for the scalar function .

The regularity properties of solutions will be proved under the following lemma, which the proof is
given in [20].

Lemma 1. If f € LP(0,T;X) and % € LP(0,T;X) (1 < p < ), then f, after, which can be
changing on a set of measure zero (from segment (0,7")) be a continuous mapping [0, 7] — X.

Definition 1. A vector function v(x,t) is a strong solution to problem (1)—(4) ((1)-(3), (5)) if:

1 v(x,t) € C(0,T; VL) N V() N W1(0,T; VI{Q) N VZ(Q));

2 Each equation in (1)-(4) ((1)-(3), (5)) holds in the distribution sense in the their corresponding

domain.
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2 Main results
Throughout the work, we assume that
K(t) € L*([0,T)) and || K|l 2(0,77) = Ko < o0. (12)

For the problems (1)-(4) and (1)—(3), (5) the following results are hold.
Theorem 1. Suppose that

f e L2(0,T;L3(Q)), voe VH(Q)NVZQ),

and (12) are hold. Then problems (1)—(4) and (1)—(3),(5) have a unique strong solution and the
following estimate is valid

2 2 2
VI 0m:vi@nve) T Vil omvi@nve) T IVILzorvi @) < € < oo,
where C' is a positive constant depending on data of the problem.

Proof. The proof consists of following steps: by Gelerkin’s method constructing a sequence of
approximated solutions; obtaining a priori estimates and passage to limit.

2.1 Galerkin’s approzimations

To prove the existence of a strong solution to problem (1)—(5), we use the Faedo-Galerkin method
with a special basis of eigenfunctions of the spectral problem

—Apj + Vg =\, pj € V(Q)

is closely connected with problems (1)—(4) and (1)—(3), (5). In case (5), it is equivalent to the problem
[6, 8]
Ap; = —Ap; = Njpj, ¢ € VA(Q)

since Vg = 0 due to the fact
(A, Vp) =0, for any ¢ € V*(Q) and any p € Wy (Q).

For the problem (1)-(3), (4), Ap; = Ap; [21]. Given m € N, let us consider the m-dimensional spaces
X" gpanned by the first m eigenfunctions @1, ..., om. For each m € N, we search for approximate
solutions in the form

m

Ve ) =Y (tpslx), g5 e X
j=1

where unknown coefficients c;-”(t), j = 1,...,m are defined as solutions of the following system of
ordinary differential equations derived from

d m m m m m
2 (™ @R)a0 = # AV, 1)a0 ) + (V™ V)V™, 0r)y 0 = v (AV™, 1)y g —

t (13)
_ /K(t — ) (AV™, pp)nq d7 = (£, 01)50
0

Mathematics series. No.4(112)/2023 69



Kh. Khompysh, N.K. Nugymanova

for k=1, 2, ..., m. System (13) is supplemented with the Cauchy data
v™(0) = vy, (14)
where

m
Z (Vo, ©j)2.0 i
J=1

is a sequence in L2(Q) N V1(Q) such that
vl — vo(x) strong as m — oo in V1(Q)NVZ(Q). (15)
According to a general theory of ordinary differential equations, Cauchy problem (13)—(14) has a

solution ¢}'(t) in [0, 7%]. By a priori estimates which we shall establish below, [0, %] can be extended

to [0, 7.

2.2 A priori estimates

Lemma 2. Assume that
f € L%(0,T;L3(Q)), vo(z) € VI(Q),

and the conditions (12) and (15) are fulfilled. Then, for all ¢ € [0, T}, the following a priori estimate is
valid
2 2
V™ [Lee 0, v vy + IV 20, mvi ) < Mo < oo, (16)
where M is a positive constant depending only on data of the problem.
Proof. Multiply k-th equation of (13) by ¢}*(t) and summing up from 1 to m, then using Green’s
formulas (10)-(11), we obtain

d
= (V" + ™ B ) + v IV s gy =

_ /K(t — ) (v (1), V(7)) dr -+ (E,v™)y 0 = I, (17)

where a is defined by (8) and (9), regarding to the boundary conditions. Next, we estimate the terms
on the right-hand side of (17) by Hélder’s and Young’s inequalities

t

L S/!K(t—T)! V" (Dlvi@) V" Ollvig) dm + V7 o0 [[Ell0 <
0

14 2 K2 2 1 2 1
< IV By + 58 [ IV dm+ 5 V"B +

Substituting last inequality into (17), and integrating by s from 0 to ¢, we obtain

2 2 2 2 2 2
V" + v iy + v [ V" Ry ds < Ivo(@E + #lIvala) sy + [ IV I3adst

t (18)

t s
K2 m m m
+20 [ / V™) oy drds + €13, < Cr [ (Iv" [+ l1v" ey ds + Co,
0 0
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where

Ch =

2 2 2
= [IVo(@)ll2,0 + > [IVo(@) 51 o) + Ifll2.5 -

Omitting the third term on the left hand side of (18) and applying Gronwall’s lemma and taking
supremum, we get

m||2 m||2
sup A% + ||V < (3 < 0,
sel0, ](H HQ,Q | HVl(Q)) 3 (19)

where Cs = C3(v, 5, T, Cq,C2). Plugging (19) with (18), we obtain the first energy estimate (16).
Lemma 8. Assume that all conditions of Lemma 2 are fulfilled. Then the following estimate is valid
2 2
V™ Lo 0, 7v@nvi @) + IV L2 0, rv@)nvi @) < Mr < oo, Vi e [0,T], (20)
where M is a positive constant depending on data of the problem.

Proof. Multiplying both sides of k-th equation of (13) by % and summing up from k = 1 to

k = m, we obtain

VP B+ IV sy + 5 3 IV gy = (67 - V)V v ™)y

t (21)
/K (t—m7)a(v™(r ),v{”(t))err(f,v;”)z’Q = Io + oo
0
Using Holder and Ladyzhenskaya together with Young inequalities, we have
Q)
Iy < (V™ - V) v, v < "ia < ||Vt 3710y + o, V™ v () » (22)
K 1
Ly <22 Hvt O + 5> /IIV iy dr + = Hvt ()Hg,QJrng I Iz - (23)

Plugging (22)-(23) with ¢; = §,i = 1,2,3 into (21), and integrating the result by s in [0,¢], t < T,
we have
2 2 2
vVl F2 IV O, + 2 IV (DllLz0r v @) <
304(Q)
»

3K?
2
< vvollvi M§ + OM T+— HfH2 Qr = C1 <0

which follows that (20).

Lemma 4. Assume that in addition to the conditions of Lemma 2 holds
vo € V(Q) N V(Q).
Then for all ¢ € [0,T], the estimate is valid

sup [[AV™5.q + 1AVY|l3,q, < M2 < o, (24)
t€(0,17]

where A = A for the problem with (4), and A = A for the problem with (5).
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Proof. Let us multiply the k" equation of (13) by —uy dcgt(t) and sum with respect to k, from 1 to

™ to obtain

VI Ry + # IV 3.0 + 5 VT3 g = (V™ - V) V™, AV"),  —

2 dt ‘
/ (25)

/K t — ’7' (T),Avln(t))zg dr + (f(t),AV%n)ZQ = I31 + I39.

0

Estimating the terms on right hand side (25) by using Hoélder, Ladyzhenskaya, Sobolev and Young
inequalities, we get the following inequalities

€1 2 C*(Q) 2 2
I3 < mH47Q ||va”4@ < b} HAVT”ZQ + %, ||VmHV1(Q) ||Ava2,Qa
€2 2 1 2
o2 2 AP Ol + 5 [ Il + 2 g + e LTSCO

where C'(Q2) is a constant from embeddlng inequalities.
Substituting (26) with ¢; = §,i = 1,2, 3 into (25) and integrating the result by 7 € (0,¢) and using
estimates (16), (20), we have

v lAvPI2 o + / IV ) B g -+ 2 / JAVP ()2 dr < Cs / |AVE () g dr +Cs,  (27)
0 0

where 3K
O =220 (CQ(Q) +KoT), Cs=vlvol32q +

By applying Granwall’s lemma and the standard techniques, we get from (27) estimate (24).

Along with the above estimates, one can establish the following more regular estimate assuming
an additional smoothness for data.

Lemma 5. Assume that in addition to the conditions of Lemma 5 holds
f € L®(0, T; L%(Q)).

Then for all ¢ € [0,T] the following estimate is valid

sup |[|vy' Hvl + sup [[Avy ”29 < M3 < oo. (28)
te[0,7] te[0,1]
Proof. Let us multiply the k" equation of (13) by —pug dcgt(t), and sum with respect to k, from 1

to m. Then we have
IVE R 0y + 2 AV 5.0 = (V™ V) V™ AV, o —
/ (29)
/K (t—71)(AvV™(1), szf/’”‘(t))zQ dr + (£(¢t), AV?)ZQ —v (Avm,Av;”)Z’Q = 141 + Iyo,
0

where

Iy = ((v™-V) Vm>AV?L)2,Q>
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lp = —/K(t —7) (AV™(7), Avi™(t))y g dT + (£(2), Av{")y o — v (AV™, Avi®), o

Estimating I4; and I4e by using Holder and Cauchy inequalities as above, we obtain the following
inequality

€1 2 | CHQY) 2 2
I < 1AV laq IVl IVv" g < 2 1AVP IR0 + SE2 IV 1AV Bg. (30)
€2
I < Z AP0+ 52 /IIA Badr+ 2 IAVFOBe + 5

v
+ en ||Ava27Q + - HAvt (t)HQQ

€4
Choosing ¢; = §,i=1,2,3,4 in (30) (31), and substituting into (29), we get
202(12)

2 x 2 2
HVTHVl(Q +5 ||AV?||2,Q = HVmﬂvl(Q) HAVm”zQJF
(32)

2K .
0/nA DB gdr+ 2 lElq + o |AvTEe.

Now, taking the supremum by ¢ € [0, 7] on both sides of (32), and using (20) and (24), we obtain

2C%(Q 2K? 2v
) o, +=0 0y T2 I o7y T Me < K < oo

2 x 2
sup (V" Ry + 5 1AV I3.0) <
te[0,T]

2.8 Passage to the limit as m — oo

By means of reflexivity and up to some subsequences, estimates (16), (20), (28) imply that

v™ —~ v weakly-x in L®(0,T; V(Q) N V(Q)), asm — oo, (33)
v —~v weakly in L*(0,T; V(Q) N V(Q)), asm — oo, (34)
vt —~v; weakly in L*(0,T;V(Q) N V(Q)), asm — oo, (35)
v™ —~ v  weakly-x in L>(0,T;V?(Q)), asm — oo, (36)
v™ —~v weakly in L?(0,T; V3(Q)), as m — oo, (37)
vt —~v; weakly in L*(0,T;V3(Q)), asm — oo. (38)

On the other hand, due to the compact embedding Wé’2(Q) <3 L2(Q) and the Aubin-Lions
compactness lemma, it follows that

v™ — v strongly in L?(Qr) as m — cc. (39)

Let ¢(t) € C§° ([0,T7]) be an arbitrary function. Multiplying (13) by ¢(¢) and integrating the result by
t from 0 to T', we obtain

/ v - prpCdxdt + / (v V) v™ - ppCdxdt + v Av™ - o Cdxdt+
T T Qr
) (10)
+ AV - ppCdxdt = / / K(1 — s)Av™ - prpCdsdT + / f - ppldxdt
Qr Iy T
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for k € {1,...,m}. Then, fixing k, we can pass in equation (40) to the limit m — oo, by using the
convergence results (33)—(39). Then, we obtain

/ v - prCdxdt + / (v-V)v - ppldxdt + v Av - ppCdxdt+
T T Qr
. (41)
+ Avy - prldxdt = / / K(1 — s)Av - pi(dsdr + / f - ppldxdt.
Qr T J0 Qr

for k € {1,...,m}.

By linearity, equation (41) holds for any finite linear combination of {z; = ¢y, - ((¢)},, with ((¢) €
Cs° ([0,T)), and, by a continuity argument, it is still true for any z € L%(0,7; V(f2)). Hence, we can
see that v satisfies to

/ vy - zdxdt + / (v-V)v-zdxdt +v Av - z(dxdt+
T T Qr

+ Avy - zdxdt = / / K(1T — s)Av - zdsdT + / f - zdxdt,
Qr 70 Qr
i.e. v is a strong solution to problem (1)—(4).

3 Regularity of solutions
Theorem 2. Let all conditions of Theorem 1 be fulfilled. Then
v € C(0,T; V() NVEQ)), pe C0,T;G(N)).

If, in addition,
feC(0,T;L*Q))

holds, then for all ¢t € (0,7
v e CHO,T; V(Q) NV3(Q)), pe C0,T;G(Q)) (42)
holds.

Proof. Embedding (42) follows from Lemma 1, under estimates (16), (20), (24). The second assertion
follows from the embedding theorems under the estimates from |20, 22].
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Xaapl mynieci 6ap KeabBuH-PoiirT TeHaeyaepi: mienriMaepais, 6ap
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60J'Iy1:>1, 2KaJIFbISAbITBI 2KoHE pPeryJjidpJiblrbl

2Kanmer anranga Kepi ecenTepii 3epTTey oJiapra CoMKeC KeJETIH Typa eCenTepiH OGIpMOH/II IMIernmiM/IiTi-
ri JkoHe menriMaepiuiy y3imicci3miri MeH KOorapbl PeryJspbIFbl CHSIKTBI Keiibip KaxKeTTi KacueTrepre ue
OoJiraH Karjafifa raHa »Ky3ere achIpbliaanbl. Makastaa TYTKBIP CEPIIMl »KOHE PeJIaKCAIUAJIBIK KaCUEeT-
Tepi eCKepiireH ChIFbLAMANTHIH OipTeKTI HBIOTOHIBIK eMeC CYHbIKTap/IblH, KO3FAIBICHIH CUIATTARTBIH YKa b
wmytreci 6ap 2D-3D emmremai cer3pikThl emec Kenppuu-Doiirt Tenmeystep Kyiieci yImiu Koibuiran 6acTamKbi-
IIEKTIK ecemnTep 3eprTesnreH. Byi Typa ecentepmi 3epTTey OCHI 2XKyiie YIIH KONBLIFAH Kepi ecenrep/i 3epT-
TeymeH GaitanbicThl. Cebebi, OHMTa OCBI Typa eCelTep/IiH, MeITiM/IePiHiH, XKOHe OJIAP/IBIH TYbIHIBLIAPBIHBIH
y3isiccizmiri MeH peryssipJbIFbl CUSKTBI KacueTrTepi KaxKkeT erijeri. KapacThIPBLIbIIT OTBIPFaH ecenTepie
TeHJeysep 2Kyileci 6acTankpl IIApPTIIEH KATap KYFY *KOHE ChIPFaHAy CHSKTHI IIEKapPAJIbIK, MIapTTapPbIHBIH
OipiMeH TOJIBIKTBIPHLIAALI. OChI €Ki IMeKapaJIbIK, IapTTap KardalblH1a 6acTalKbl-IIeKapaJIbIK eCelTePIiH
QJIJIi mIenriMIepiniy yakbIT GONbIHIIA TIO6AIbIbl 6ap GOJIybl YKOHE YKAJIFBI3ILIFbL jpJieiaeHred. CoHbIMeH
KaTap, ecelnTiH Oepiireniepi yImiH KOJaiabl yirapbIMIap »Kacail OTBIPHII, IIEeIIiMIepMeH OJIap/IbIH TYbIH-
JIBLIAPBIHBIH, PETYJISIPJIBIFBI KOPCETLIII.

Kiam cesdep: KenbBun-DoirT xKyiteci, XKyFy KoHe ChIPpFAHAYIbIH, [IIEKAPAJIBIK, IIaPTTAPBI, OJIJI MIEITiMIep,
r100aIBIbI 6ap GOJIYBI YKOHE KAJIFBI3IBIFBI, TETICTIK.

X. Xowmmnbrim, H.K. Hyrermanosa

Kaszazxcrul HOUUOHAADHIT YyHUBEpCUMeM umeny asv-Dapabu, Aamamo, Kaszaxcman

YpaBuennsa KeabBuna—®@oiirra ¢ mnamMsTbIO: CyIIIeCTBOBaHNE,
€JIMHCTBEHHOCTh U PEryJsIPHOCTb PeIleHuit

B obmem ciiydae nsydenue o6paTHBIX 33/a9 OCYIECTBUMO TOJILKO B TOM CJIydae, KOrJla COOTBETCTBYIOIINE
MpsiMbIe 33/Ia91 UMEIOT €IMHCTBEHHOE pelllenne, 00/1aao1ee HEKOTOPBIMEA HEOOXOUMBIMUA CBOMCTBAMU, Ta-
KMMU KaK HEIPEPHIBHOCTD U PETYASPHOCTD. B cTaThe ncciie10BaHbl HAYAJIbHO-KPaEeBbIe 3a1a49N JJTsI CHCTEMBbI
2D-3D nenuneiinbix ypaBuenuit Kenbuna—QPoiirra ¢ nmaMsaTbiO, ONUCHIBAIOIIEH JIBUXKEHUE HECKUMAEMOM
OHOPOJTHOM HEHBIOTOHOBCKOU >KUJKOCTHU C BA3KOYIPYTUMU U PEJIAKCAIMOHHBIMU cBoiicTBaMu. VccienoBa-
HH€ TAKNX IPSMBIX 33/1a9 CBA3AHO C U3YUYEHHEM COOTBETCTBYIONUX OOPATHBIX 332t /I JJAHHONW CHUCTEMBI,
KOTOpOe TpedyeT CBOMCTB KaK HEIPEPHIBHOCTH U PErYJISIPHOCTH PEIIeHUs] U UX TPOU3BOIHBIX ITUX HPIMbBIX
3agau pemrennit. CucrteMa ypaBHEHUI, MIOMUMO HAYAJIBLHOTO YCJIOBUS, JOMOJIHSIETCS OMHUM W3 TPAHUIHBIX
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yCJ'IOBPIfII ycaoBueM IpUJIUNIaHUA UJIN CKOJIb2KEHU . B oboux ClIy4dadX JOKa3aHbI ryiobajibHOE BO BpeEMEHU
CyIIeCTBOBaHUE U €JIUHCTBEHHOCTH CHJIBHBIX peH_IeHI/Iﬁ 9TUX HAYaJIbHO-KPaeBbIX 3a/1a4. Boitee TOTrO, IIpU
COOTBETCTBYIOUX IIPEAIIOJIOKEHUAX Ha JaHHBIE ObLIa YCTaHOBJICHA PETYJIdPHOCTDb peHleHI/Iﬁ n UxX 1Ipomu3-
BO/IHBIX.

Karouesvie caosa: cucrema Kenpuna—®oiirra, rpaHnYHbIE YCIOBUS CKOJIBYKEHUS U IPUINIIAHUS, CUIbHBIE
petieHust, r00aIbHOE CYIIECTBOBAHUE U €UHCTBEHHOCTD, VI IKOCTb.
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