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Statistical convergence in vector lattices

The statistical convergence is defined for sequences with the asymptotic density on the natural numbers, in
general. In this paper, we introduce the statistical convergence in vector lattices by using the finite additive
measures on directed sets. Moreover, we give some relations between the statistical convergence and the
lattice properties such as the order convergence and lattice operators.
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Introduction

The statistical convergence of sequences is handled together with the asymptotic (or, natural)
density of subsets on the natural numbers N. On the other hand, Connor introduced the notion of
statistical convergence of sequences with finitely additive set functions [1, 2]. After then, some similar
works have been done [3–5]. Also, several applications and generalizations of the statistical convergence
of sequences have been investigated by several authors [6–13]. However, as far as we know, the concept
of statistical convergence related to nets has not been done except for the paper [14], in which the
asymptotic density of a directed set (D,≤) was introduced by putting a special and strong rule on the
directed sets such that the set {α ∈ D : α ≤ β} is finite and the set {α ∈ D : α ≥ β} is infinite for each
element β in (D,≤). We aim to introduce a general concept of statistical convergence for nets with a
new notion called a directed set measure.

Recall that a binary relation “≤” on a set A is called a preorder if it is reflexive and transitive. A
non-empty set A with a preorder binary relation “≤” is said to be a directed upwards (or, for short,
directed set) if for each pair x, y ∈ A there exists z ∈ A such that x ≤ z and y ≤ z. Unless otherwise
stated, we consider all directed sets as infinite. For given elements a and b in a preorder set A such
that a ≤ b, the set {x ∈ A : a ≤ x ≤ b} is called an order interval in A. A subset I of A is called an
order bounded set whenever I is contained in an order interval.

A function domain of which is a directed set is said to be a net. A net is briefly abbreviated as
(xα)α∈A with its directed domain set A. Let (A,≤A) and (B,≤B) be directed sets. Then a net (yβ)β∈B
is said to be a subnet of a net (xα)α∈A in a non empty set X if there exists a function φ : B → A such
that yβ = xφ(β) for all β ∈ B, and also, for each α ∈ A there exists βα ∈ B such that α ≤ φ(β) for all
β ≥ βα (Definition 3.3.14 [15]). It can be seen that {φ(β) ∈ A : βα ≤ β} ⊆ {α′ ∈ A : α ≤ α′} holds for
subnets.

A real vector space E with an order relation “≤” is called an ordered vector space if, for each
x, y ∈ E with x ≤ y, x + z ≤ y + z and αx ≤ αy hold for all z ∈ E and α ∈ R+. An ordered vector
space E is called a Riesz space or vector lattice if, for any two vectors x, y ∈ E, the infimum and the
supremum

x ∧ y = inf{x, y} and x ∨ y = sup{x, y}
∗Corresponding author.
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exist in E, respectively. A vector lattice is called Dedekind complete if every nonempty bounded from
the above set has a supremum (or, equivalently, whenever every nonempty bounded below subset has
an infimum). A subset I of a vector lattice E is said to be a solid if, for each x ∈ E and y ∈ I with
|x| ≤ |y|, it follows that x ∈ I. A solid vector subspace is called an order ideal. A vector lattice E
has the Archimedean property provided that 1

nx ↓ 0 holds in E for each x ∈ E+. In this paper, unless
otherwise stated, all vector lattices are assumed to be real and Archimedean. We remind the following
crucial notion of vector lattices [16–20].

Definition 1. A net (xα)α∈A in a vector lattice E is called order convergent to x ∈ E if there exists
another net (yα)α∈A ↓ 0 (i.e., inf yα = 0 and yα ↓) such that |xα − x| ≤ yα holds for all α ∈ A.

We refer the reader to some different types of order convergence and some relations among them [21].
Throughout this paper, the vertical bar of a set will stand for the cardinality of the given set and P(A)
is the power set of A.

1 The µ-statistical convergence

We remind that a map from a fieldM (i.e.,M1,M2, · · · ∈ M implies ∪i=1Mn ∈M and Ac ∈M for
all A ∈M) to [0,∞] is called finitely additive measure whenever µ(∅) = 0 and µ(∪ni=1Ei) =

∑n
i=1 µ(Ei)

for all finite disjoint sets {Ei}ni=1 inM [22; 25]. Now, we introduce the notion of measuring on directed
sets.

Definition 2. Let A be a directed set andM be a subfield of P(A) (i.e., it satisfies the properties
of field). Then

(1) an order interval [a, b] of A is said to be a finite order interval if it is a finite subset of A;
(2)M is called an interval field on A whenever it includes all finite order intervals of A;
(3) a finitely additive measure µ :M→ [0, 1] is said to be a directed set measure ifM is an interval

field and µ satisfies the following facts: µ(I) = 0 for each finite order interval I ∈M and µ(A) = 1.
It is clear that µ(C) = 0 whenever C ⊆ B and µ(B) = 0 holds for B,C ∈ M because µ is finitely

additive.
Example 1. Consider the directed set N and define a measure µ from 2N to [0, 1] denoted by µ(A)

as the Banach limit of 1
k |A ∩ {1, 2, . . . , k}| for all A ∈ 2N. Then one can see that µ(I) = 0 for all finite

order interval sets because of 1
k |I∩{1, 2, . . . , k}| → 0. Also, it follows from the properties of the Banach

limit that µ(N) = 1 and µ(A∪B) = µ(A)+µ(B) for disjoint sets A and B. Thus, µ is finitely additive,
and so, it is a directed set measure.

Let’s give an example of a directed set measure for an arbitrary uncountable set.
Example 2. Let A be an uncountable directed set. Consider a field M consisting of countable or

co-countable (i.e., the complement of set is countable) subsets of A. ThenM is an interval field. Thus,
a map µ fromM to [0, 1] defined by µ(C) := 0 if C is a countable set, otherwise µ(C) = 1. Hence, µ
is a directed set measure.

In this paper, unless otherwise stated, we consider all nets with a directed set measure on interval
fields of the power set of the index sets. Moreover, in order to simplify the presentation, a directed set
measure on an interval fieldM of directed set A will be expressed briefly as a measure on the directed
set A. Motivated from [23; 302], we give the following notion.

Recall that the asymptotic density of a subset K of natural numbers N is defined by

δ(K) := lim
n→∞

1

n
|{k ≤ n : k ∈ A}| .

We refer the reader for an exposition on the asymptotic density of sets in N to [24, 25]. We give the
following observation.
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Remark 1. It is clear that the asymptotic density of subsets on N satisfies the conditions of a
directed set measure when P(N) is considered as an interval field on the directed set N. Thus, it can
be seen that the directed set measure is an extension of the asymptotic density.

Remind that a sequence (xn) in a vector lattice E is called statistically monotone decreasing to
x ∈ E if there exists a subset K of N such that δ(K) = 1 and the subsequence (xk)k∈K is decreasing to
x, i.e., xk ↓ and inf

k∈K
xk = x (see for example [8]). Now, by using the notions of measure on directed sets

and the statistical monotone decreasing which was introduced in [25] for real sequences, we introduce
the concept of statistical convergence of nets on vector lattices.

Definition 3. Let E be a vector lattice and (pα)α∈A be a net in E with a measure µ on the index
set A. Then (pα)α∈A is said to be µ-statistical decreasing to x ∈ E whenever there exists a subnet
qδ = (pφ(δ))β∈∆ such that µ(∆) = 1 and (qδ)δ∈∆ ↓ x. Then it is abbreviated as (pα)α∈A ↓stµ x.

We denote the class of all µ-statistical decreasing nets on a vector lattice E by Estµ↓, and also, the
set Estµ↓{0} denotes the class of all µ-statistical decreasing null nets on E. It is clear that µ(∆c) =
µ(A−∆) = 0 whenever µ(∆) = 1 because of µ(A) = µ(∆∪∆c) = µ(∆)+µ(∆c). We consider Example
2 for the following example.

Example 3. Let E be a vector lattice and (pα)α∈A be a net in E. TakeM and µ from Example 2.
Thus, if (pα)α∈A ↓ x then (pα)α∈A ↓stµ x for some x ∈ E.

For the general case of Example 3, we give the following work proof of which follows directly from
the basic definitions and results.

Proposition 1. If (pα)α∈A is an order decreasing null net in a vector lattice then (pα)α∈A ↓stµ 0.

Now, we introduce the crucial notion of this paper.

Definition 4. A net (xα)α∈A in a vector lattice E is said to be µ-statistical convergent to x ∈ E if
there exists a net (pα)α∈A ↓stµ 0 with a subnet qδ = (pφ(δ))β∈∆ such that µ(∆) = 1 and (qδ)δ∈∆ ↓ 0

and |xφ(δ) − x| ≤ qδ for every δ ∈ ∆. Then it is abbreviated as xα
stµ−−→x.

It can be seen that xα
stµ−−→x in a vector lattice means that there exists another sequence (pα)α∈A ↓stµ 0

such that µ
(
{α ∈ A : |xα − x| � pα}

)
= 0. It follows from Remark 1 that the notion of statistical

convergence of sequence coincides with the notion of µ-statistical convergence in the reel line. We
denote the set Estµ as the family of all stµ-convergent nets in E, and Estµ{0} is the family of all
µ-statistical null nets in E.

Lemma 1. Every µ-statistical decreasing net is µ-statistical convergent.

Remark 2. Recall that a net (xα)α∈A in a vector lattice E relatively uniform converges to x ∈ E if
there exists u ∈ E+ such that, for any n ∈ N, there is an index αn ∈ A so that |xα − x| ≤ 1

nu for all
α ≥ αn (Lemma 16.2 [18]). It is well known that the relatively uniform convergence implies the order
convergence on Archimedean vector lattices (Lemma 2.2 [20]). Hence, it follows from Proposition 1 and
Lemma 1 that every decreasing relatively uniform null net is µ-statistical convergent in vector lattices.

2 Main Results

Let µ be a measure on a directed set A. Following from Exercise 9. in [22; 27], it is clear that
µ(∆ ∩ Σ) = 1 for any ∆,Σ ⊆ A whenever µ(∆) = µ(Σ) = 1. We begin the section with the following
proposition and skip its simple proof.

Proposition 2. Assume xα ≤ yα ≤ zα satisfies in a vector lattices for each index α. Then yα
stµ−−→x

whenever xα
stµ−−→x and zα

stµ−−→x.
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It can be seen from Proposition 2 that if 0 ≤ xα ≤ zα satisfies for each index α and (zα)α∈A ∈ Estµ{0}
then (xα)α∈A ∈ Estµ{0}. We give a relation between the order and the µ-statistical convergences in
the next result.

Theorem 1. Every order convergent net is µ-statistical convergent to its order limit.
Proof. Suppose that a net (xα)α∈A is order convergent to x in a vector lattice E. Then there exists

another net (yα)α∈A ↓ 0 such that |xα−x| ≤ yα holds for all α ∈ A. It follows from Proposition 1 that
(yα)α∈A ↓stµ 0. So, we obtain the desired result, (xα)α∈A

stµ−−→x.

The converse of Theorem 1 need not to be true. To see this, we consider Example 3. [26].

Example 4. Let us consider the set of all real numbers R with the usual order. Define a sequence
(xn) in R as n2 whenever n = k2 for some k ∈ N and 1

n+1 otherwise. It is clear that (xn) is not an
order convergent sequence. However, if we choose another sequence (pn) as n whenever n = k2 for
some k ∈ N and 1

1 otherwise. Then we have pn ↓stµ 0. Setting K = {n ∈ N : n is not a square} ∪ {1}.
Then we get µ(K) = 1 and |xk| ≤ pk for each k ∈ K. Thus we have xn

stµ−−→ 0.

Moreover, following from Theorem 23.2 [18], we observe the following result.

Corollary 1. Every order bounded monotone net in a Dedekind complete vector lattice is µ-
statistical convergent.

By the definition of subnet given at the beginning of the paper, a subnet is based on some other
set B, where the measure µ is not defined. However, for a subnet yβ = xφ(β) of a net (xα)α∈A with
a measure µ on the index set A, we can consider the measure of a subset ∆ of B as the measure of
µ(φ(∆)) in A.

Proposition 3. The stµ-convergence of subnets implies the stµ-convergence of nets.
Proof. Let (xα)α∈A be a net in a vector lattice E. Assume that a subnet (xφ(δ))δ∈∆ of (xα)α∈A µ-

statistical converges to x ∈ E. Then there exists a net (pα)α∈A ∈ Estµ↓{0} such that |xφ(σ)−x| ≤ pφ(σ)

for all some σ ∈ Σ ⊆ ∆, (pφ(σ))σ∈Σ ↓ 0 and µ(Σ) = 1. Since Σ ⊆ A and (xφ(σ))σ∈Σ is also a subnet of
(xα)α∈A, we can obtain the desired result.

Since every order bounded net has an order convergent subnet in atomic KB-spaces (Remark 6.
[27]), we give the following result by considering Theorem 1 and Proposition 3.

Corollary 2. If E is an atomic KB-space then every order bounded net is µ-statistical convergent
in E.

The lattice operations are µ-statistical continuous in the following sense.

Theorem 2. If xα
stµ−−→x and wα

stµ−−→w then xα ∨ wα
stµ−−→x ∨ w.

Proof. Assume that xα
stµ−−→x and wα

stµ−−→w hold in a vector latticeE. So, there are nets (pα)α∈A, (qα)α∈A ∈
Estµ↓{0} with ∆,Σ ∈M and µ(∆) = µ(Σ) = 1 such that

|xφ(δ) − x| ≤ pφ(δ) and |wρ(σ) − w| ≤ qρ(σ)

satisfy for all δ ∈ ∆ and σ ∈ Σ. On the other hand, it follows from Theorem 1.9(2) [17] that the
inequality |xα ∨ wα − x ∨ w| ≤ |xα − x|+ |wα − w| holds for all α ∈ A. Therefore, we have

|xφ(δ) ∨ wφ(σ) − x ∨ w| ≤ pφ(δ) + qφ(σ)

for each δ ∈ ∆ and σ ∈ Σ. Take Γ := ∆∩Σ ∈M. So, we have µ(Γ) = 1, and also, |xφ(γ)∨wφ(γ)−x∨w| ≤
pφ(γ) + qφ(γ) holds for all γ ∈ Γ. It follows from (pφ(γ) + qφ(γ))γ∈Γ ↓ 0 that xα ∨ wα

stµ−−→x ∨ w.
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Corollary 3. If xα
stµ−−→x and wα

stµ−−→w in a vector lattice then
(i) xα ∧ wα

stµ−−→x ∧ w;
(ii) |xα|

stµ−−→|x|;
(iii) x+

α

stµ−−→x+;

(iv) x−α
stµ−−→x−.

We continue with several basic results that are motivated by their analogies from vector lattice
theory.

Theorem 3. Let (xα)α∈A be a net in a vector lattice E. Then the following results hold:

(i) xα
stµ−−→x iff (xα − x)

stµ−−→ 0 iff |xα − x|
stµ−−→ 0;

(ii) the µ-statistical limit is linear;
(iii) the µ-statistical limit is uniquely determined;
(iv) the positive cone E+ is closed under the statistical µ-convergence;

(v) xφ(δ)
stµ−−→x for any subnet (xφ(δ))δ∈∆ of xα

stµ−−→x with µ(∆) = 1.

Proof. The properties (i), (ii) and (iii) are straightforward.

For (iv), take a non-negative µ-statistical convergent net xα
stµ−−→x in E. Then it follows from

Corollary 3 that xn = x+
n

stµ−−→x+. Moreover, by applying (ii), we have x = x+. So, we obtain the
desired result x ∈ E+.

For (v), suppose that xα
stµ−−→x. Then there is a net (pα)α∈A ∈ Estµ↓{0} with ∆ ∈M and µ(∆) = 1

such that |xφ(δ) − x| ≤ pφ(δ) for each δ ∈ ∆. Thus, it is clear that xφ(δ)
stµ−−→x. However, it should

be shown that it is provided for all arbitrary elements in field under the assumption. Thus, take an
arbitrary element Σ ∈M with Σ 6= ∆ and µ(Σ) = 1. We show (xφ(σ))σ∈Σ

stµ−−→x. Consider Γ := ∆∩Σ ∈
M. So, we have µ(Γ) = 1. Therefore, following from |xφ(γ) − x| ≤ pφ(γ) for each γ ∈ Γ, we get the
desired result.

Proposition 1 shows that a decreasing order convergent net is µ-statistical convergent. For the
converse of this fact, we give the following result.

Proposition 4. Every monotone µ-statistical convergent net is order convergent.

Proof. We show that xα ↓ and xα
stµ−−→x implies xα ↓ x in any vector lattice E. To see this,

choose an arbitrary index α0. Then xα0 − xα ∈ E+ for all α ≥ α0. It follows from Theorem 3 that
xα0 − xα

stµ−−→xα0 − x, and also, xα0 − x ∈ E+. Hence, we have xα0 ≥ x. Then x is a lower bound of
(xα)(α∈A) because α0 is arbitrary. Suppose that z is another lower bound of (xα)α∈A. So, we obtain

xα − y
stµ−−→x − y. It means that x − y ∈ E+, or equivalent to saying that x ≥ y. Therefore, we get

xα ↓ x.

Remark 3. Let x := (xα)α∈A be a net in a vector lattice. If xX∆
o−→ 0 holds for some ∆ ∈ M with

µ(∆) = 1 and characteristic function X∆ on ∆ then x
stµ−−→ 0. Indeed, suppose that there exists ∆ ∈M

with µ(∆) = 1 and xX∆
o−→ 0 satisfies in a vector lattice E for the characteristic function X∆ of ∆. Thus,

there is another net (pα)α∈A ↓ 0 such that |xX∆| ≤ pα for all α ∈ A. So, it follows from Proposition
1 that (pα)α∈A ↓stµ 0. Then there exists a subset Σ ∈ M such that µ(Σ) = 1 and (pφ(σ))σ∈Σ ↓ 0.
Take Γ := ∆ ∩ Σ. Hence, we have µ(Γ) = 1. Following from |xXΓ| ≤ pφ(γ) for each γ ∈ Γ, we obtain

xX∆
stµ−−→ 0. Therefore, by applying Theorem 3 (v) and Remark 3, we obtain (xα)α∈A

stµ−−→ 0.

Proposition 5. The family of all stµ-convergent nets Estµ is a vector lattice.
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Proof. Let (xα)α∈A
stµ−−→x and (yβ)β∈B

stµ−−→ y in E. Then it follows from Theorem 3(ii) that (xα +

yβ)(α,β)∈A×B
stµ−−→x+y. So Estµ is a vector space. Take an element x := (xα)α∈A in Estµ . Then we have

x
stµ−−→ z for some z ∈ E. Thus, it follows from Corollary 3 that |x| stµ−−→|z|. It means that |x| ∈ Estµ ,

i.e., Estµ is a vector lattice subspace Theorem 1.3 and Theorem 1.7 [16].

Proposition 6. The set of all order bounded nets in a vector lattice E is an order ideal in Estµ{0}.

Proof. By the linearity of µ-statistical convergence, Estµ{0} is a vector space. Now, assume that
|y| ≤ |x| hold for arbitrary x := (xα)α∈A ∈ Estµ{0} and for an order bounded net y := (yα)α∈A. Since

x
stµ−−→ 0, we have |x| stµ−−→ 0. Then it follows from Proposition 2 that |y| stµ−−→ 0, and so, it follows from

Theorem 3(i) that y
stµ−−→ 0. (Therefore, we get the desired result, y ∈ Estµ{0}).
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6 Akbaş, K.E., & Işık, M. (2020). On asymptotically λ-statistical equivalent sequences of order α

in probability. Filomat, 34 (13), 4359–4365.
7 Aydın, A. (2020). The statistically unbounded τ -convergence on locally solid vector lattices.
Turkish Journal of Mathematics, 44 (3), 949–956.

8 Aydın, A. (2021). The statistical multiplicative order convergence in vector lattice algebras. Facta
Universitatis. Series: Mathematics and Informatics, 36 (2), 409–417.

9 Aydın, A.& Et, M. (2021). Statistically multiplicative convergence on locally solid vector lattice
algebras.Turkish Journal of Mathematics, 45 (4), 1506–1516.

10 Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicum, 2 (1), 241–244.
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Векторлық торлардағы статистикалық жинақталу

Статистикалық жинақталу, жалпы жағдайда, натурал сандардағы асимптотикалық тығыздығы бар
тiзбектер үшiн анықталады. Мақалада бағытталған жиындардағы ақырлы аддитивтi өлшемдердi
қолдана отырып, векторлық торларға статистикалық жинақталу енгiзiлген. Сонымен қатар, стати-
стикалық жинақталу мен тордың қасиеттерi арасындағы кейбiр қатынастар келтiрiлген, мысалы,
реттiк жинақталу және тор операторлары.

Кiлт сөздер: желiлердiң статистикалық жинақталуы, реттiк жинақталу, векторлық тор, бағытталған
жиынның өлшемi.
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Статистическая сходимость в векторных решетках

Статистическая сходимость, в общем случае, определена для последовательностей с асимптотической
плотностью на натуральных числах. В статье мы вводим статистическую сходимость в векторных ре-
шетках, используя конечные аддитивные меры на направленных множествах. Кроме того, приводим
некоторые соотношения между статистической сходимостью и свойствами решетки, такими как схо-
димость порядка и операторы решетки.

Ключевые слова: статистическая сходимость сетей, порядковая сходимость, векторная решетка, мера
направленного множества.
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