
DOI 10.31489/2021M1/65-77

UDC 517.95

M.T. Kosmakova1, S.A. Iskakov1,*, L.Zh. Kasymova1,2

1Buketov Karaganda university, Karaganda, Kazakhstan;
2Karaganda technical university, Karaganda, Kazakhstan

(E-mail: svetlanamir578@gmail.com, isagyndyk@mail.ru, l.kasymova2017@mail.ru)

To solving the fractionally loaded heat equation
In this paper we consider a boundary value problem for a fractionally loaded heat equation in the class of
continuous functions. Research methods are based on an approach to the study of boundary value problems,
based on their reduction to integral equations. The problem is reduced to a Volterra integral equation of the
second kind by inverting the differential part. We also carried out a study the limit cases for the fractional
derivative order of the term with a load in the heat equation of the boundary value problem. It is shown
that the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.

Keywords: loaded equation, fractional derivative, heat equation, Volterra integral equation, special function.

Introduction

The study of fractional differential equations was actively carried out as in previous decades [1–4], and now
interest in this area continues to grow [5–7]. This is due both to the development of the fractional integration
and differentiation theory, as well as applications of the apparatus of fractional integration and differentiation
in various fields of science. The physical interpretation for fractional differential equations was considered in [3]
from the point of view of the Riemann-Liouville’s derivatives, as well as in [4]. In [6] a boundary value problem
with integral conditions is considered for one class of fractional differential equations involving impulses. Some
results of the existence of a solution for higher order differential equations with integral conditions can be
found in [5]. Also an important section in the theory of differential equations is the class of loaded equations:
Ku = Lu(x)+Mu(x) = f(x) in a domain Q from Rn, where L is a differential operator, and М is a differential or
integro-differential operator, including the operation of taking the trace of the function u(x) on manifolds from
the closure Q of dimension strictly less than n. Solving many important problems, for example, on the optimal
management of the agroecosystem, is reduced to the study of such equations. In [8] on numerous examples
A.M. Nakhushev showed the practical and theoretical importance of studies on loaded equations. In the papers
of M.T. Jenaliev and students of his scientific school, the theory of loaded equations was further developed
[9–12]. In [11], [12] loaded differential equations are interpreted as weak or strong perturbations of differential
equations.

Of interest are boundary value problems for the fractionally loaded heat equation when the loaded term is
presented in the form of a fractional derivative. The goal of papers [13—14] is to clarify the character of the
fractional load on the solvability issues of the first boundary value problem for the heat equation, the load moves
with a constant velocity. The loaded term is the trace of the fractional order derivative on the manifold x = t,
namely, the loaded term is represented as a Riemann-Liouville fractional derivative. The resulting Volterra
singular integral equation has a nonempty spectrum for certain values of the fractional derivative order. In the
papers [15–16] the loaded term is represented in the form of the Caputo fractional derivative with respect to
the time variable and the spatial variable, and the order of the derivative in the loaded term is less than the
order of the differential part.

In this paper, we study a boundary value problem for a fractionally loaded heat equation (the loaded term
of the equation is represented as a Riemann-Liouville fractional derivative, the load moves according to an
arbitrary law). The boundary value problem is reduced to a Volterra integral equation of the second kind with
a kernel containing a special function, namely, the degenerated hypergeometric Tricomi function. The limiting
cases of the order of the fractional derivative in the term with the equation load are also investigated, and
continuity in the order of the fractional derivative is shown. The solvability of the integral equation in the class
of continuous functions is established depending on the nature of the load for small values of time.
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1 Basic definitions and some background

Let us first recall some previously known concepts and results. The first one is the definition of the Ri-
emann–Liouville fractional derivative.

Definition 1 ([1]). Let f(t) ∈ L1[a, b]. Then, the Riemann-Liouville derivative of the order β is defined as
follows

rD
β
a,tf(t) =

1

Γ (n− β)

dn

dtn

∫ t

a

f (τ)

(t− τ)
β−n+1

dτ, β, a ∈ R, n− 1 < β < n. (1)

When a = 0, n = 1 we have:

rD
β
0,tf(t) =

1

Γ (1− β)

d

dt

∫ t

0

f(t)

(t− τ)
β
dτ. (2)

From formula (1) it follows that

rD
0
a,tf(t) = f(t), rD

n
a,tf(t) = f (n)(t), n ∈ N. (3)

We also give definitions and some properties of special functions that arise in the study of boundary value
problem posed in the work.

erf z =
2√
π

z∫
0

exp
(
−ζ2

)
dζ is the integral of probabilities;

erfc z =
2√
π

∞∫
z

exp
(
−ζ2

)
dζ is the additional integral of probabilities.

Definition 2 ([17; 119]) Linearly independent solutions of the equation

[zD2 + (c− z)D − a]ω(z) = 0, D =
d

dz

are functions Φ(a, c; z) and Ψ(a, c; z), where Φ(a, c; z) is the degenerate hypergeometric function:

Φ(a, c; z) = 1 +
a

c

z

1 !
+
a (a+ 1)

c (c+ 1)

z2

2 !
+
a (a+ 1) (a+ 2)

c (c+ 1) (c+ 2)

z3

3 !
+ ...−

and Ψ(a, c; z) is Tricomi degenerate hypergeometric function [18; 1072]:

Ψ(a, c; z) =
Γ(1− c)

Γ(a− c+ 1)
Φ(a, c; z) +

Γ(c− 1)

Γ(a)
z1−cΦ(a− c+ 1, 2− c; z).

Tricomi degenerate hypergeometric function can be represented as an integral ([19; 365], formula 72.2 (7)):

Ψ(a, c; z) =
1

Γ (a)

∫ ∞
0

ξa−1 (1 + ξ)
c−a−1

e−zξ dξ, [Rea > 0]. (4)

For large values z, an asymptotic formula holds ([17; 127], formula 4.7 (1)):

Ψ (a, c; z) ∼ z−a2F0

(
a, 1 + a− c;−1

z

)
, (5)

|z| → ∞, |arg z| ≤ 3π

2
− ε, ε > 0,

where 2F0

(
a, 1 + a− c;− 1

z

)
is a generalized hypergeometric series defined by the formula [17; 136]

pF q (a1, a2, ..., ap; b1, b2, ..., bq; z) =

∞∑
k=0

(a1)k (a2)k ... (ap)k
(b1)k (b2)k ... (bq)k

zk

k!
,

where
(a)k =

Γ (a+ k)

Γ (a)

is the Pohammer symbol.
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Degenerate hypergeometric functions for some values of its arguments are related to a parabolic cylinder
function (Weber function) Dν(z) [17; 212]

Dν(z) = 2
ν−1

2 e−
z2

4 Ψ

(
1− ν

2
,

3

2
;
z2

2

)
=

= 2
ν
2 e−

z2

4

{ √
π

Γ
(

1−ν
2

) Φ

(
−ν

2
;

1

2
;
z2

2

)
−
√

2πz

Γ
(
−ν2
) Φ

(
1− ν

2
;

3

2
;
z2

2

)}
. (6)

Formula (6) is the definition of a parabolic cylinder function Dν(z).
There is also a representation of the Tricomi degenerate hypergeometric function in terms of the Whittaker

function Wλ,µ(z) ([19; 264] formula 2.20):

Ψ (a, b; z) = z−
b
2 e

z
2 W b

2−a,
b−1

2
(z) . (7)

For the function Wλ,µ(z) z = 0 is a branch point, a z = ∞ is an essentially singular point [18; 1074].
Therefore, we will consider this function only for | arg z| < π.

The natural development of fractional calculus is the theory of differential equations with fractional deri-
vatives. At the first stage of the study, we will use the method of integral equations, in which the boundary value
problem is reduced to solving the corresponding integral equation with further transformation of the kernel of
the obtained equation. Such methods make it possible to formulate boundary value problems more compactly
than differential equations, taking into account all the conditions of the problem.

The considered problem is reduced to an integral equation by inverting the differential part.
It’s known [20; 57] that in the domain Q = {(x, t) |x > 0, t > 0} the solution to the boundary value

problem of heat conduction
ut = a2uxx + F (x, t) ,

u |t=0 = f(x), u |x=0 = g(x),

is described by the formula

u (x, t) =

∫ ∞
0

G (x, ξ, t) f(ξ) dξ +

∫ t

0

H (x, t− τ) g(τ) dτ+

+

∫ t

0

∫ ∞
0

G (x, ξ, t− τ)F (ξ, τ) dξdτ, (8)

where

G(x, ξ, t) =
1

2
√
π a t

{
exp

(
− (x− ξ)2

4 a t

)
− exp

(
− (x+ ξ)

2

4 a t

)}
,

H(x, t) =
1

2
√
π a t3/2

exp

(
− x2

4 a t

)
.

The Green function G (x, ξ, t− τ) satisfies the relation∫ ∞
0

G (x, ξ, t− τ) dξ = erf

(
x

2
√
t− τ

)
. (9)

2 Statement of the fractionally loaded boundary value problem of heat conduction

In the domain Q = {(x, t) |x > 0, t > 0} we consider the problem

ut − uxx + λ {rD0,tu (x, t)}
∣∣
x=γ(t)

= f (x, t) , (10)

u |t=0 = 0, u |x=0 = 0, (11)

where λ is a complex parameter, rD
β
0, t u(x, t) is the Riemann- Liouville derivative (2) of an order β, 0 < β < 1,

γ(t) is a continuous increasing function, γ(0) = 0.
The problem is studied in the class of continuous functions.
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3 Reducing the boundary value problem to an integral equation

Lemma 1. The boundary value problem (10)–(11) is equivalently reduced to a Volterra integral equation of
the second kind with a kernel that contains a special function.

Proof. We invert the differential part of problem (10)–(11) by formula (8):

u (x, t) = −λ
∫ t

0

∫ ∞
0

G (x, ξ, t− τ)

{
1

Γ (1− β)

d

dτ

∫ τ

0

u (ξ, θ)

(τ − θ)β
dθ

}∣∣∣∣∣
ξ=γ(τ)

dξdτ+

+

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξdτ.

Taking into account relation (9) and introducing the notation

f1 (x, t) =

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dτ (12)

we get the following representation of the solution to the problem (10)–(11):

u (x, t) = −λ
∫ t

0

erf

(
x

2
√
t− τ

)
µ (τ) dτ + f1 (x, t) , (13)

where

µ (t) = rD
β
0,tu (ξ, t)

∣∣
ξ=γ(t)

=

{
1

Γ (1− β)

d

dτ

∫ τ

0

u (ξ, θ)

(τ − θ)β
dθ

}∣∣∣∣∣
ξ=γ(τ)

. (14)

From (13) we take the derivative of the order β with respect to the variables t on both sides and put
x = γ (t). On the left side, we get the function µ (t). We also introduce the notation according to formula (14)

f2 (t) = rD
β
0,tf1 (x, t)

∣∣
x=γ(t)

=
1

Γ (1− β)

d

dt

∫ t

0

f1 (x, τ)

(t− τ)
β
dτ

∣∣∣∣∣
x=γ(t)

. (15)

We first calculate the derivative:

J (t, x, β) =
d

dt

∫ t

0

1

(t− τ)
β

(∫ τ

0

erf

(
x

2
√
τ − θ

)
µ (θ) dθ

)
dτ =

∥∥∥∥ 0 ≤ θ ≤ τ
0 ≤ τ ≤ t

∥∥∥∥ =

=
d

dt

∫ t

0

µ (θ)

(∫ t

0

1

(t− τ)
β
erf

(
x

2
√
τ − θ

)
dτ

)
dθ =

d

dt

∫ t

0

µ (θ) I (x, t, θ, β) dθ, (16)

where

I (x, t, θ, β) =

∫ t

0

1

(t− τ)
β
erf

(
x

2
√
τ − θ

)
dτ. (17)

We calculate I (x, t, θ, β).

I (x, t, θ, β) =

∫ t

θ

1

(t− τ)
β

2√
π

∫ x
2
√
t−θ

0

e−z
2

dzdτ =

=
2√
π

∫ x
2
√
t−θ

0

∫ t

0

1

(t− τ)
β
e−z

2

dτdz +
2√
π

∫ +∞

x
2
√
t−θ

∫ θ+ x2

4z2

θ

1

(t− τ)
β
e−z

2

dτdz =

=
2√

π (β − 1)

∫ x
2
√
t−θ

0

e−z
2
(

0− (t− θ)1−β
)
dz +

2√
π (β − 1)

∫ +∞

x
2
√
t−θ

e−z
2

×

×
((

t− θ − x2

4z2

)
− (t− θ)1−β

)
dz =

2 (t− θ)1−β
√
π (1− β)

∫ x
2
√
t−θ

0

e−z
2

dz+

68 Bulletin of the Karaganda University



To solving the fractionally loaded...

+
2 (t− θ)1−β
√
π (1− β)

∫ +∞

x
2
√
t−θ

e−z
2

dz +
2√

π (β − 1)

∫ +∞

x
2
√
t−θ

e−z
2

(
t− θ − x2

4z2

)1−β

dz =

=
(t− θ)1−β

1− β
+

2√
π (β − 1)

I1 (x, t, θ, β) , (18)

where

I1 (x, t, θ, β) =

∫ +∞

x
2
√
t−θ

e−z
2

(
t− θ − x2

4z2

)1−β

dz =

= (t− θ)1−β
∫ +∞

x
2
√
t−θ

e−z
2

z2β−2

(
z2 −

(
x

2
√
t− θ

)2
)1−β

dz =
∥∥ξ = z2

∥∥ =

=
(t− θ)1−β

2

∫ +∞

x2

4(t−θ)

e−ξ ξβ−
3
2

(
ξ − x2

4 (t− θ)

)1−β

dξ.

To calculate the last integral, we use the formula 2.3.4 (6) from [21; 261]. Then we obtain

I1 (x, t, θ, β) =
(t− θ)1−β

2
Γ (2− β)

x

2
√
t− θ

exp

(
− x2

4 (t− θ)

)
Ψ

(
2− β;

3

2
;

x2

4 (t− θ)

)
, (19)

where Ψ(a, c; z) is Tricomi degenerate hypergeometric function [18; 1072].
Substituting (19) into (18), we get an expression for (17)

I (x, t, θ, β) =
(t− θ)1−β

1− β
− xΓ (1− β) (t− θ)

1
2−β

2
√
π

exp

(
− x2

4 (t− θ)

)
Ψ

(
2− β;

3

2
;

x2

4 (t− θ)

)
.

By virtue of the asymptotic formula (5) (as t→ τ) and

lim
t→τ

(t− τ)
1
2−β exp

(
− x2

4 (t− τ)

)
= 0

after differentiation operation equality (16) can be rewritten as:

J (t;x;β) =

∫ t

0

µ (t)
d

dt

[
(t− τ)

1−β

1− β
− xΓ (1− β) (t− τ)

1
2−β

2
√
π

×

× exp

(
− x2

4 (t− τ)

)
Ψ

(
2− β;

3

2
;

x2

4 (t− τ)

)]
dτ. (20)

Let us introduce the notation z = x2

4(t−τ) ⇒ t− τ = x2

4z .
Then

(t− τ)
1
2−β exp

(
− x2

4 (t− τ)

)
Ψ

(
2− β;

3

2
;

x2

4 (t− τ)

)
=
x1−2β

21−2β
zβ−

1
2 exp (−z) Ψ

(
2− β;

3

2
; z

)
.

To calculate the derivative in the second term of equality (20), we use formula (41) from [19; 368] when
n = 1:

d

dt

(
(t− τ)

1
2−β exp

(
− x2

4 (t− τ)

)
Ψ

(
2− β;

3

2
;

x2

4 (t− τ)

))
=

=
x1−2β

21−2β

d

dz

(
zβ−

1
2 exp (−z) Ψ

(
2− β;

3

2
; z

))
dz

dt
=

= −x
1−2β

21−2β
zβ−

3
2 exp (−z) Ψ

(
1− β;

3

2
; z

) (
− x

4 (t− τ)
2

)
=

=
1

(t− τ)
β+ 1

2

exp

(
− x2

4 (t− τ)

)
Ψ

(
1− β;

3

2
;

x2

4 (t− τ)

)
.
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Then expression (20) can be rewritten as:

J (t;x;β) =

∫ t

0

µ (τ)

[
1

(t− τ)
β
− xΓ (1− β)

2
√
π (t− τ)

β+ 1
2

exp

(
− x2

4 (t− τ)

)
Ψ

(
1− β;

3

2
;

x2

4 (t− τ)

)]
dτ. (21)

Now from (13) after taking the fractional derivative of order β and substituting x = γ(t) taking into account
the notation (14) and (21) we obtain the integral equation:

µ (t) +
λ

Γ (1− β)

∫ t

0

µ (τ)

(t− τ)
β
dτ − λ

2
√
π

∫ t

0

γ (t)

(t− τ)
β+ 1

2

exp

(
− γ2 (t)

4 (t− τ)

)
×

×Ψ

(
1− β, 3

2
;
γ2 (t)

4 (t− τ)

)
µ (τ) dτ = f2 (t) .

So, the boundary value problem (10)–(11) has been reduced to the Volterra integral equation of the second
kind:

µ (t) + λ

∫ t

0

Kβ (t, τ)µ (τ) dτ = f2 (t) , (22)

with the right-hand side f2(t), defined by formula (15), and the kernel

Kβ (t, τ) =
1

Γ (1− β) (t− τ)
β
− γ (t)

2
√
π (t− τ)

β+ 1
2

exp

(
− γ2 (t)

4 (t− τ)

)
Ψ

(
1− β, 3

2
;
γ2 (t)

4 (t− τ)

)
, (23)

where Ψ (a, b, y) is the Tricomi degenerate hypergeometric function that can be represented as an integral (4).

4 Continuity in the order of the derivative in the loaded term of the problem

Lemma 2. For boundary value problem (10)–(11) there is continuity in the order β of the derivative in the
loaded term of equation (10).

Proof. We consider the limiting cases for the fractional derivative order of the term with the load in the
equation (10).

I. β = 0. Then from (2) and (3) we have

D0
0,tu (x, t)

∣∣
x=γ(t) = u (x, t)

∣∣
x=γ(t) = u (γ (t) , t) .

From (10)–(11) we get a boundary value problem when β = 0:{
ut − uxx + λµ (t) = f (x, t) ,
u (x, 0) = 0; u (0, t) = 0,

,

where µ (t) = u (γ (t) , t).
We write down its solution inverting the differential part by formula (8):

u (x, t) = −λ
∫ t

0

erf

(
x

2
√
t− τ

)
µ (τ) dτ + f1 (x, t) , (24)

where

f1 (x, t) =

∫ t

0

∫ ∞
0

G (x, ξ, t− τ) f (ξ, τ) dξdτ.

When x = γ (t) taking into account the notation u (γ (t) , t) = µ (t) from (24) we obtain the Volterra integral
equation of the second kind:

µ (t) + λ

∫ t

0

erf

(
γ (t)

2
√
t− τ

)
µ (τ) dτ = f1 (t) , (25)

where f2 (t) = f1 (γ (t) , t).
Now we find lim

β→0+0
from (23).
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The function under the limit sign is definite and continuous for β = 0, therefore, we can make the passage
to the limit taking into account formula (4) and formula 2.3.4 (5) [21; 260]:

lim
β→0+0

Kβ (t, τ) = 1− γ (t)

2
√
π
√
t− τ

exp

(
− γ2 (t)

4 (t− τ)

)
Ψ

(
1;

3

2
;
γ2 (t)

4 (t− τ)

)
=

= 1− γ (t)

2
√
π
√
t− τ

exp

(
− γ2 (t)

4 (t− τ)

) ∫ ∞
0

(1 + ξ)
− 1

2 exp

(
− γ2 (t)

4 (t− τ)
ξ

)
dξ =

= 1− erfc
(

γ (t)

2
√
t− τ

)
= erf

(
γ (t)

2
√
t− τ

)
.

So, lim
β→0+0

Kβ (t, τ) = erf
(

γ(t)

2
√
t−τ

)
. Then equation (22) coincides with equation (25) for β = 0.

II. β = 1. Then from (2) and (3) we have

D1
0,tu (x, t)

∣∣
x=γ(t) =

du (x, t)

dt

∣∣
x=γ(τ) = ut (x, t)

∣∣
x=γ(t) .

From (10)–(11) we get a boundary value problem when β = 1:{
ut − uxx + λµ (t) = f (x, t) ,
u (x, 0) = 0; u (0, t) = 0.

where µ (t) = ut (x, t)
∣∣
x=γ(t) .

We write down its solution inverting the differential part by formula (8):

u (x, t) = −λ
∫ t

0

erf

(
x

2
√
t− τ

)
µ (τ) dτ + f1 (x, t) , (26)

where the function f1 (x, t) is defined by formula (12).
We calculate the derivative with respect to t of (26):

ut (x, t) = −λ

{
µ (t) +

∫ t

0

2√
π

exp

(
− x2

4 (t− τ)

) (
− x

4 (t− τ)
3/2

)
µ (τ) dτ

}
+ f1t (x, t) .

Substituting x = γ (t) and taking into account the notation ut (x, t)
∣∣
x=γ(t) = µ (t) we obtain the Volterra

integral equation of the second kind:

µ (t)− λ

1 + λ

∫ t

0

γ (t)

2
√
π (t− τ)

3/2
exp

(
− γ2 (t)

4 (t− τ)

)
µ (τ) dτ = f2 (t) , (27)

where f2 (t) = 1
1+λf1t (γ (t) , t).

Taking into account formula (4) and the well-known relation lim
α→0

Γ(α) = ∞ when taking the limit at
β → 1− 0 from (23) we get:

lim
β→1−0

Kβ (t, τ) = − γ (t)

2

√
π (t− τ)

3
exp

(
− γ2 (t)

4 (t− τ)

)
×

× lim
β→1−0

1

Γ (1− β)

∫ ∞
0

ξ−β (1 + ξ)
β− 1

2 exp

(
− γ2 (t)

4 (t− τ)
ξ

)
dξ. (28)

To calculate the last integral, we use the formula (12) from [21; 262].
Then the limit relation (28) can be rewritten as:

lim
β→1−0

Kβ (t, τ) = − 1√
π (t− τ)

exp

(
− γ2 (t)

8 (t− τ)

)
lim

β→1−0

21/2−β Γ (1− β)

Γ (1− β)
D2β−1

(
γ (t)√

2 (t− τ)

)
=

= − 2−
1
2

√
π (t− τ)

exp

(
− γ2 (t)

8 (t− τ)

)
D1

(
γ (t)√

2 (t− τ)

)
= − γ (t)

2
√
π (t− τ)

3/2
exp

(
− γ2 (t)

4 (t− τ)

)
.
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Here, for the parabolic cylinder function D2β−1(z), we used formula 9.251 from [18; 1080] when β = 1:

D1 (z) = −e z
2

4
d

dz

(
e−

z2

2

)
= z e−

z2

4 .

So for equation (22)

lim
β→1

Kβ (t, τ) = − γ (t)

2
√
π (t− τ)

3/2
exp

(
− γ2 (t)

4 (t− τ)

)
.

The obtained result coincides with the kernel of integral equation (27).
Lemma 2 is completely proved.

5 Connection of the singularities of the integral equation kernel with the fractional derivative order in the
problem loaded term and with the load behavior. Main result

To establish the main result of the paper we investigate kernel (23) of integral equation (22), which has
singularities for τ = t and t = 0.

Direct investigation of kernel (23) is difficult, since the kernel contains the degenerate hypergeometric Tricomi
function. Therefore we find

lim
t→0+0

∫ t

0

Kβ (t, τ) dτ.

Theorem. Integral equation (22) with kernel (23) for 0 ≤ β < 1 and with γ(t) ∼ tω in the neighborhood of
t = 0 is uniquely solvable in the class of continuous functions for any continuous right-hand side f2(t) defined
by formula (15), if 1

2 ≤ ω < 1− 2β or 0 ≤ ω < 1
2 , 0 ≤ β ≤ 1.

Proof. We have ∫ t

0

Kβ (t, τ) dτ =
1

Γ (1− β)

∫ t

0

dτ

(t− τ)
β
−

−γ (t)

2
√
π

∫ t

0

1

(t− τ)
β+ 1

2

exp

(
− γ2 (t)

4 (t− τ)

)
Ψ

(
1− β;

3

2
;
γ2 (t)

4 (t− τ)

)
dτ (29)

and when 0 ≤ β < 1: ∫ t

0

dτ

(t− τ)
β

=
1

1− β
t1−β . (30)

To calculate the integral in the 2nd term of expression (29), we use the representation of the Tricomi function
in terms of the Whittaker function by formula (7):

Ψ

(
1− β;

3

2
;
γ2 (t)

4 (t− τ)

)
=

(
γ2 (t)

4 (t− τ)

)− 3
4

exp

(
γ2 (t)

8 (t− τ)

)
Wβ− 1

4 ; 1
4

(
γ2 (t)

4 (t− τ)

)
.

Then the integral in the 2nd term of the expression (29) takes the form

I (t, β) =

∫ t

0

1

(t− τ)
β+ 1

2

exp

(
− γ2 (t)

4 (t− τ)

)
Ψ

(
1− β;

3

2
;
γ2 (t)

4 (t− τ)

)
dτ =

=
23/2

(γ (t))
3/2

∫ t

0

(t− τ)
1
4−β exp

(
− γ2 (t)

8 (t− τ)

)
Wβ− 1

4 ; 1
4

(
γ2 (t)

4 (t− τ)

)
dτ =

=
22β−1

(γ (t))
2β−1

∫ +∞

γ2(t)
4t

zβ−
9
4 e−

z
2 Wβ− 1

4 ; 1
4

(z) dz =
23/2 t

5
4−β

(γ (t))
3/2

exp

(
−γ

2 (t)

8t

)
Wβ− 5

4 ; 1
4

(
γ2 (t)

4t

)
. (31)

In the calculation, we have introduced the replacement z = γ2(t)
4(t−τ) and used formula 2.19.5 (13) from [19;

217].
Let γ(t) ∼ tω when t→ 0 + 0. Then (31) can be rewritten as (in the neighborhood of the point t = 0):

I (t;β) = 2
3
2 t

5
4−β−

3
2ω exp

(
−1

8
t2ω−1

)
Wβ− 5

4 ; 1
4

(
1

4
t2ω−1

)
.
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For Whittaker function, we use formula 7.2.2 (5) from [19; 366]:

Wβ− 5
4 ; 1

4

(
1

4
t2ω−1

)
= 2−

3
2 t

1
2ω−

3
4 exp

(
−1

8
t2ω−1

)
Ψ

(
2− β;

3

2
;

1

4
t2ω−1

)
.

Then

I (t;β) = t
1
2−β−ω exp

(
−1

4
t2ω−1

)
Ψ

(
2− β;

3

2
;

1

4
t2ω−1

)
.

For Tricomi function Ψ (a, b, z), we use representation (4) and then we apply formula (12) from [21; 262]:

I (t;β) =
t

1
2−β−ω

Γ (2− β)
exp

(
−1

4
t2ω−1

) ∫ ∞
0

ξ1−β (1 + ξ)
β− 3

2 exp

(
−1

4
t2ω−1ξ

)
dξ =

= 2
5
2−β t1−2β−2ω exp

(
−1

8
t2ω−1

)
D2β−3

(
1√
2
tω−

1
2

)
. (32)

So, substituting (30) and (32) into (29), we get 0 ≤ β < 1 when t→ 0:∫ t

0

Kβ (t, τ) dτ =
t1−β

Γ (2− β)
− 2

3
2−β
√
π
t1−2β−ω exp

(
−1

8
t2ω−1

)
D2β−3

(
1√
2
tω−

1
2

)
. (33)

Cases are possible (when 0 ≤ β < 1):
1) 2ω − 1 > 0. If 0 ≤ β < 1, then −1− 2β − ω < 1

2 .
We first calculate D2β−3 (0) using formula 8.3 (1) from [22; 125] and formula 194 (3) from [18; 299].

D2β−3(0) =
2β−

3
2

Γ
(

3
2 − β

) ∫ ∞
0

t
1
2−β (1 + t)

β−2
dt =

2β−
3
2

Γ
(

3
2 − β

)B(3

2
− β;

1

2

)
=

2β−
3
2
√
π

Γ (2− β)
.

Then from (33) when ω > 1
2 and 1− 2β − ω ≥ 0 (0 ≤ β < 1) we have:

lim
t→0

∫ t

0

Kβ (t, τ) dτ =

{ 0; if 1− 2β − ω > 0, ω > 1
2 , 0 ≤ β < 1;

− 1
Γ(2−β) ; if 1− 2β − ω = 0, ω > 1

2 , 0 ≤ β < 1;

∞; if 1− 2β − ω < 0, ω > 1
2 , 0 ≤ β < 1.

(34)

We consider the case β = 1. It was shown above that

K1 (t, τ) = − γ(t)

2
√
π (t− τ)

3/2
exp

(
− γ2(t)

4 (t− τ)

)
.

If γ(t) ∼ tω at t→ 0 + 0 then∫ t

0

K1 (t, τ) dτ = −
∫ t

0

tω

2
√
π (t− τ)

3/2
exp

(
− t2ω

4 (t− τ)

)
dτ. (35)

After introducing the replacement

z =
√

t2ω

4(t−τ) ; t− τ = t2ω

4z2 ; dτ = t2ω

2z3 dz;

τ = 0⇒ z = 1
2 t

2ω−1
2 , τ = t⇒ z → +∞

integral (35) takes the form:∫ t

0

K1 (t, τ) dτ = − tω

2
√
π

∫ +∞

1
2 t

2ω−1
2

23 z3

t3ω
t2ω

2z3
exp

(
−z2

)
dz = −erfc

(
1

2
t

2ω−1
2

)
.

Then

lim
t→0+0

∫ t

0

K1 (t, τ) dτ =

{
−1; if ω > 1

2 ;
0; if 0 ≤ ω < 1

2 .
(36)
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By the condition stated, the function γ(t) increases in the domain
−
Q and γ (0) = 0. Therefore, the case

ω < 0 is not considered.
Consider the case 0 < ω < 1

2 and 0 ≤ β < 1. Then in (33) argument of the parabolic cylinder function
→ +∞ if t → 0 + 0. Since there is an asymptotic expansion of the function (see formula 9.246 (1) [18; 1079])
we obtain

lim
t→0+0

∫ t

0

Kβ (t, τ) dτ = lim
t→0+0

t1−β

Γ (2− β)
− 1√

π
lim

t→0+0
t

3
2−2ω(1−β)−3β exp

(
− 1

4t
1
2−ω

)
= 0. (37)

It remains to investigate the case ω =
1

2
for different values β.

Let be 0 ≤ β < 1. For x = γ (t) =
√
t equation (22) has the kernel:

Kβ (t, τ) =
1

Γ (1− β) (t− τ)
β
−

√
t

2
√
π (t− τ)

β+ 1
2

exp

(
− t

4 (t− τ)

)
Ψ

(
1− β;

3

2
;

t

4 (t− τ)

)
(38)

and the right side according to formula (15) when x =
√
t. Kernel (38) has singularities at τ = t and t = 0. We

find ∫ t

0

Kβ (t, τ) dτ =
t1−β

Γ (2− β)
−
√
t

2
√
π

∫ t

0

1

(t− τ)
β+ 1

2

exp

(
− t

4 (t− τ)

)
Ψ

(
1− β;

3

2
;

t

4 (t− τ)

)
dτ.

Repeating the above calculations, we get a formula similar to (33), when 0 ≤ β < 1∫ t

0

Kβ (t, τ) dτ =
t1−β

Γ (2− β)
− 2

1
2−β
√
π
t

1
2−2β exp

(
−1

8

)
D2β−3

(
1√
2

)
. (39)

We calculate D2β−3

(
1√
2

)
using formula 9.241 (1) from [18; 1078].

D2β−3

(
1√
2

)
=

1√
π

22β− 1
2 e−

π
2 (2β−1)i e

1
8

∫ +∞

−∞
x2β−1 e

−2x2+ x√
2
i
dx.

To calculate the integral

J (β) =

∫ +∞

−∞
x2β−1 e

−2x2+ x√
2
i
dx

we use the formula 3.462 (3) from [18; 352]

J (β) =
1

i2β−1

∫ +∞

−∞
(ix)2β−1 e

−2x2−i x√
2 dx =

2
1
2−2β

i2β−1

√
π e−

1
32 D2β−3

(
1

2
√

2

)
.

Then
D2β−3

(
1√
2

)
=

1

i2β−2
sin
(π

2
− πβ

)
D2β−3

(
1

2
√

2

)
.

Note that the argument of the parabolic cylinder function decreases exponentially with the denominator
1

2
,

remaining positive. It was previously calculated that

D2β−3(0) =
2β−

3
2
√
π

Γ (2− β)
.

So we obtain that D2β−3

(
1√
2

)
is a finite constant depending on β.

Then from (39) we have (when 0 ≤ β < 1 and ω =
1

2
):

lim
t→0+0

∫ t

0

K1 (t, τ) dτ =

{ 0; if 0 ≤ β < 1
4 ;

const 6= 0; if β = 1
4 ;

∞; if 1
4 < β < 1.

(40)
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Now consider the case for γ (t) =
√
t and β = 1:

∫ t

0

K1 (t, τ) dτ = −
√
t

2
√
π

∫ t

0

dτ

(t− τ)
3
2

exp

(
− t

4 (t− τ)

)
dτ =

∥∥∥∥∥∥ z =
√
t− τ , τ = t− z2,

dτ = −2zdz

∥∥∥∥∥∥ =

= −
√
t√
π

∫ √t
0

1

z2
e−

t
4z2 dz = − 2√

π

∫ +∞

1
2

e−ξ
2

dξ = −erfc
(

1

2

)
.

Then

lim
t→0

∫ t

0

K1 (t, τ) dτ = −erfc
(

1

2

)
6= 0, (41)

if γ (t) =
√
t and β = 1.

Summarizing results (34)–(41), we get the main result. The theorem is completely proved.

Сonclusions

Under the conditions of the theorem, kernel (23) of the integral equation has a weak singularity. Therefore,
the method of successive approximations can be used to find a unique solution to the equation (22) in the class
of continuous functions. And the corresponding boundary value problems are well-posed in natural classes of
functions, i.e. loaded term is a weak perturbation.

If ω ≥ 1
2 and ω ≥ 1− 2β when 0 ≤ β ≤ 1 for γ (t) ∼ tω at t → 0 + 0 integral equation (22) is not solvable

by the method of successive approximations. It can be shown that the corresponding homogeneous equation
for some values of the parameter λ will have nonzero solutions. If the uniqueness of the solution to the first
boundary value problem is violated, then in this case the load can be interpreted as a strong perturbation.
So, the existence and uniqueness of solutions to the integral equation depends on the order of the fractional
derivative in the loaded term.
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М.Т. Космакова, С.А. Искаков, Л.Ж. Касымова

Жойылатын облыстағы жылуөткiзгiштiктiң
екiөлшемдi шекаралық есебiнiң шешуiне

Мақалада үзiлiссiз функциялар класындағы жылуөткiзгiштiктiң бөлшектi-жүктемелi теңдеуi үшiн
шеттiк есеп қарастырылған. Зерттеу әдiстерi шеттiк есептердi интегралдық теңдеулерге келтiру-
ге негiзделген зерттеу болып табылады. Қойылған шеттiк есеп дифференциалдық бөлiктi айнал-
дыру арқылы екiншi тектi Вольтерра интегралдық теңдеуiне келтiрiлген. Алынған теңдеудiң ядро-
сында арнайы функция бар. Сондай-ақ, жылуөткiзгiштiк теңдеуiнiң шеттiк есебiнiң жүктелген қо-
сылғышының бөлшек туындысы ретiнiң шектiк жағдайлары зерттелдi. Интегралдық теңдеудiң ше-
шуiнiң бар болуы мен жалғыздығы бастапқы шеттiк есептiң жүктелген қосылғышындағы бөлшек
туындының ретiне байланысты екендiгi көрсетiлген.

Кiлт сөздер: жүктелген теңдеу, бөлшек туынды, жылуөткiзгiштiк теңдеуi, Вольтерра интегралдық
теңдеуi, арнайы функция.
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М.Т. Космакова, С.А. Искаков, Л.Ж. Касымова

К решению двумерной граничной задачи
теплопроводности в вырождающейся области

В статье рассмотрена краевая задача для дробно-нагруженного уравнения теплопроводности в клас-
се непрерывных функций. Методы исследования базируются на подходе к исследованию краевых
задач, основанном на их сведении к интегральным уравнениям. Поставленная краевая задача сведе-
на к интегральному уравнению Вольтерра второго рода обращением дифференциальной части. Ядро
полученного уравнения содержит специальную функцию. Также проведено исследование предельных
случаев порядка дробной производной слагаемого с нагрузкой в уравнении теплопроводности краевой
задачи. Показано, что существование и единственность решения интегрального уравнения зависят от
порядка дробной производной в нагруженном слагаемом исходной краевой задачи.

Ключевые слова: нагруженное уравнение, дробная производная, уравнение теплопроводности, инте-
гральное уравнение Вольтерра, специальная функция.
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