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On the parallel surfaces of the non-developable surfaces

In the differential geometry of curves and surfaces, the curvatures of curves and surfaces are often calculated
and results are given. In particular, the results given by using the apparatus of the curve-surface pair are
important in terms of what kind of surface the surface indicates. In this study, some relationships between
curvatures of the parallel surface pair (X, X") via structure functions of non-developable ruled surface
X(u,v) = a(u) + vb(u) are established such that a(u) is striction curve of non-developable surface and
b(u) is a unit spherical curve in E*. Especially, it is examined whether the non-developable surface X" is
minimal surface, linear Weingarten surface and Weingarten surface. X and its parallel X" are expressed
on the Helicoid surface sample. It is indicated on the figure with the help of SWP. Moreover, curvatures of
curve-surface pairs (X, a) and (X", 3) are investigated and some conclusions are obtained.

Keywords: parallel surfaces, non-developable ruled surface, striction line, Gaussian curvature, mean curvature,
curvatures of curve-surface pair.

Introduction

The parallel surfaces have an important place in the theory of surfaces. A parallel surface can be
defined as the locus of points at a non-zero constant distance throughout normal of surface from a
regular surface [1].

A surface composed by a singly infinite system of straight lines is called a ruled surface. A developable
ruled surface is a special ruled surface with the property that it has the same tangent plane at all
points on one and the same straight line. We know that a ruled surface is a developable ruled surface
if and only if its Gaussian curvature K is zero [2; 89]. If K # 0, the ruled surface is non-developable
[3; 32]. In 3-dimensional Euclidean space, a regular curve is defined by its curvature x and torsion
7 and also a curve-surface pair is defined by its curvatures kg, K, and 74, where kg, K, and 7, are
geodesic curvature, asymptotic curvature and geodesic torsion, respectively. The relations between the
curvatures of a curve-surface pair and the curvatures of the curve can be seen in many papers [4-8§].

We denote a regular parameter surface with the parameters u and v in E3 by X(u,v) and a
non-developable ruled surface by

X (u,v) = a(u) + vb(u), (1)

where b?(u) = 1 and the parameter u is the arc length parameter of b(u) as a unit spherical curve in
E3. Here, if a/(u).b'(u) = 0, a(u) is striction line of ruled surface [9-10].

In this paper, firstly, we obtain the parallel surface X" (u,v) of the non-developable ruled surface
X (u,v). Then, we calculate Gaussian and mean curvature of the parallel surface X" (u,v). Later,
we determine relations between Gaussian and mean curvatures of parallel surface pair by means of
structure functions of non-developable surface. Furthermore, we show that X" (u,v) is a Weingarten
surface. Finally, we give some theorems and results by calculating geodesic curvature, asymptotic
curvature and geodesic torsion of curve-surface pairs (X, a) and(X", 3).
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Preliminaries

Let a : I — X be a unit speed curve lying on X such that X is a regular surface in Euclidean
3-space. We know that the Frenet frame {T', N, B} correspond at each point of the curve a(u) because
a(u) is a space curve, where u is arc length parameter. Other than this frame, we can talk about frame
called Darboux frame of a(u) in E3. The Darboux frame is denoted by {T',Y,n} under the conditions
that 7' is the unit tangent vector of a(u), n is the unit normal of X and Y =n x T

Definition 2.1. The Darboux derivative formulas can be defined using the following matrix:

T 0 Kg Knp T
Yi|=|-ky 0 74 Y|,
n —kn —Tg 0 n

where £ is defined as geodesic curvature, &, is defined as normal curvature and 7 is defined as geodesic
torsion. Furthermore, it is known that [11; 248|

Kg = <a”(u)’ Y> ’ (2)
ki = (a"(u),n), (3)
Tg:—<n',Y>, (4)

and also

a) a(u) is a geodesic curve < k4 = 0.

b) a(u) is a asymptotic curve < &k, = 0.

c) a(u) is a line of curvature < 7, = 0.

Definition 2.2. Let X be a surface in E® with unit normal n. Parallel surface X" of X is
given by X" = {P+rnp: P € X,r € R and r = constant}, where for r € R, f(P) = P+rnp defines
a new surface X”. For all P on X, nf(®) = nP [1] Theorem 2.3. Let (X, X") be a parallel surface pair.
Suppose that the Gauss curvatures of X and X" be denoted by K and K" and the mean curvature of
X and X" be denoted by H and H", respectively. Then, we can write [12; 212]

K
K" =
1—2rH +1r2K’ (5)
H—-rK
H" = . 6
1—2rH +r2K (6)

Definition 2.4. A ruled surface in E3 may therefore be represented in the form
X(a,b): I x E — E3,

(u,v) = X(a,b)(u,v) = a(u) + vb(u)

such that a : I — E3, b: I — E? are differentiable transformations. Here, a(u) is called base curve
and b(u) is called the director curve [13; 190]

As stated previously, Gauss curvature is zero, the ruled surface is developable ruled surface.
Otherwise, the surface is non-developable [14].

Definition 2.5. Suppose that the non-developable ruled surface X (u,v) is given by the equation (1)
in E3. Let a(u) be the striction line of the X (u,v) and b(u) be a unit spherical curve, where u is the
arc length parameter of b(u). Then, if we write as z(u) = b(u), z'(u) = a(u), and y(u) = a(u) X x(u),
the spherical Frenet formulas of the curve b(u) can be given by
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o (u) = —2(u) + kg(u)y(u),
Y (u) = —kg(u)a(u),

where kq(u) is called the spherical curvature function and {x(u),(u),y(u)} is called the spherical
Frenet frame of b(u) [9-10].

Definition 2.6. Suppose that X (u,v) is given by the equation (1) in E® and a(u) is the striction line
of X (u,v) under the condition a'(u) = A(u)x(u) + p(u)y(u). Then, the surface X (u,v) can be given
by the triple {kq(u), A(w), u(u)} in E3. Here, kg(u), A(u) and p(u) are defined as structure functions
of the surface X (u,v) in E3 [9-10].

Definition 2.7. Suppose that X (u,v) is given by the equation (1) in E® and a (u) is the striction
line of X (u,v) under the condition a’(u) = Mw)z(u) + p(u)y(u). Here, {a(u), z(u) = b(u),y(u)} is the
spherical Frenet frame of b(u). If A(u) # 0, X (u,v) is described as pitched ruled surface [9-10].

Let X (u,v) be given by equation (1). In this case, the coefficients of the first fundamental form of
X (u,v)

E = ) (u) + p?(u) + %,

F = X\u)
G=1.

The unit normal of the surface X (u,v) is

w? (u) + v?
—p(u
. p(u) ’
w2 (u) + v?
g=0.
As a result of these calculations,
2
—p(u)
K (u,v) = 5 (7)

and

H(u,v) = kg(u)v2 + ¢/ (u)v + kg(U)LLQ(u) + )\(u),u(u)’ ®

24/ (u2(u) + v2)°

where K and H are the Gauss and mean curvature of X (u,v), respectively [9-10].

Proposition 2.8. Suppose that the surface X (u,v) is given by (1) such that A(u), p(u) and k4(u)
are the structure functions of X (u,v). If A\, i and kg are constants, the surface X (u,v) is a Weingarten
surface [10]

The curvatures of the parallel surface pairs

Suppose that X (u,v) is given by (1) in E3. By definition of parallel surface, we obtain

X" (u,v) = X (u,v) + rn(u,v),
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—p () a(u) + vy (u)

X7 (u,0) = a(w) + vb (u) + W2 (w) + 0

Theorem 3.1. Suppose that X (u,v) is given by (1) in E% and X" (u,v) is parallel surface of the surface
X (u,v). Then, the relationships between Gauss and mean curvature of X (u,v) and X" (u,v) are given,
respectively, by

K= 2 L )
(12 + v2)" = ry/p? 4+ 02 (kgv? + v + kgp® + M) — r2p?

and
V2 4 v? (kgv? + W'v + kgu? + M) + 2rp?

kgv? 4 p'v .
2012 4 v2)? — 2r/p2 + 02 ( I a — 2722

+ k:gu2 + Ap

H" — (10)

Proof. Combining the equations (5)-(8), we can easily obtain the equations (9)-(10).

Corollary 3.2. If ky = A = 0 and p is a constant, k,0? + /v + kgu® + A = 0. This mean that,
H = 0. In this case, X is minimal but X" is not minimal surface. Because, H" # 0 under the conditions
that k; = A = 0 and p is a constant.

Corollary 3.3. X is not a linear Weingarten surface. Because, a # 0 and b # 0 are not constants
satisfying e H + bK = 1. Similarly, X" is also not linear Weingarten surface.

Example 3.4. Let us consider that X (u,v) = a(u) 4+ vb(u) = (vcosu,vsinu,u) is a helicoid surface.
Here, we choose a(u) = (0,0, u),b(u) = (cosu,sinu,0) = z(u). Hence, we obtain

b (u) = 2’ (u) = (—sinu, cosu, 0) = a(u),

o' (u) = (= cosu, —sinu, 0) = —z(u) + kgy(u), (11)

Y (u) =0 = kya(u). (12)

From the equations (11)-(12), we find k; = 0. Moreover,

a'(u) = (0,0,1) = Az + py = A(cosu,sinwu, 0) + (0,0, —1) (13)
and from the equation (13), we find A = 0 and u = —1. Hence, we obtain unit surface normal as
follows:

1 .
n = ————(—sinu, cosu, —v)

V1402

In this case, we can write

r
V1+ 02

where X" (u,v) is parallel surface of X (u,v). For r = 1, the images of X (u,v) and X" (u,v) are shown
in Figure 1.

X" (u,v) = (vcosu,vsinu, u) + (— sin u, cos u, —v),
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Figure 1. X (u;v) and X" (u;v).

Theorem 8.5. Suppose that any non-developable ruled surface is given by (1) in E3 such
that a'(u) = AMu)z(u) + p(u)y(w), Then, X7 (u,v) is a Weingarten surface if and only if A, 1 and k,
are constants.

Proof. 1t is known that if X (u,v) is a Weingarten surface,

K,H,=K,H,, (14)

where K and H are Gauss and mean curvature of X (u, v), respectively. In this case, from the equations
(9)—(10), we find the following partial derivatives with respect to u and v:

(2114 _ 2,&4) M/ Iu2 + U2
(VP + o) + (—20% — vp?) (i)
— —2vtky — v2kypu? ,
o hgut — v2uA H
+ (12 + %) (B> +0°) k) + Np)

2 Y
V2 + 02 (r\/,u2 + v2w — pt 4 (r2 — 202) p? — 1)4)

2 ( 3kgp?v + 3k,v3 — 4p?\/p? + v )
K'r'

—4n/ 2 4 0203 4 20 + M

K] = (15)

v =

2
V2 +v? (\//AQ + 02w — pt 4 (r2 — 20%) p? —v4)
_ 2 1 24 _ _rwp
<\/M2+1;2w> TVRA VS
+2rp +4 (1% + 0%) p’ = 2r2

H, =~ / 1
U 2 <\/%+ /M2+U2t+4rﬂﬂl> ’ ( 7)

+ #2 +’U2

(2 +02)? = /2 ¥ 02w — 1242

wv 2 2 2
N (2 + %)

gr_t /12 4 02 (2kgv + 1) =/ + vt — 2

v 2 4(M2+7)2)1)— r;qu )

+ (\/,u2 —I—U2w+2r,u2) V24
/i 2y + )

where w = Ay + v2kg + plky +op/ t = pN + M + 2pkgp + v?ky + p?ky’ + vy, From the equation
(14), K] H) — K H], = 0. Here, if we use the equations (15)-(18) and make the necessary calculations,
we obtain that all the structure functions of X (u,v) are constants.

(18)
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Hence, from the Proposition 2.8. , we can write the following result:
Corollary 3.6. X" (u,v) is a Weingarten surface if and only if X (u,v) is a Weingarten surface.

The curvatures of the parallel curve-surface pairs

The striction line a(u) on X (u,v) generates a Darboux frame by the vector fields {T,n,Y}, the
unit tangent, the principal normal and their cross product, respectively. Hence, for n = =44

Vidro?
T = Az + py,

Y =nxT = pe — dva — \uy.

Using the equations (2)-(4) geodesic curvature of curve-surface pair (a, X)
kg =(a"Y) = (Na+ (\— pky) a+ 'y, plr — Ay,

kg =p(Np =), (19)

asymptotic curvature of curve-surface pair (a, X)

kn = (a",n) = (No+ (A= pkg)a + p'y, —a)
Kp = ng - A, (20)

and geodesic torsion of curve-surface pair (a, X)
7= —(nY) = = (z — kgy, i’z — Muy) ,

Ty = —p(p + Akyg). (21)

From the equations (19)-(21) and Definition 2.1, the following theorems can be written:

Theorem 4.1. Suppose that X (u,v) is given by (1) in E3 such that a'(u) = Az + py. a(u) is geodesic
curve if and only if % is a constant, where \ and p are the structure functions of X (u,v).

Proof. If the equation (19) equals to zero, a(u) is a geodesic curve. In this case, we get

Kg :u()\'u—)\//) = 0.

Here, since pu # 0, Ny — A/ = 0. If we solve this differential equation, we obtain that % is a constant.
This finishes the proof.
Theorem 4.2. Suppose that X (u,v) is given by (1) in E? such that a/(u) = Az + uy. a(u) is
asymptotic curve if and only if k; = %, where A, p and kg are the structure functions of X (u,v).
Proof. From the Definition 2.1., if the equation (20) equals to zero, a(u) is asymptotic curve. In
this case, we obtain
kp = pkg — X = 0.

From here, we can easily get k, = %
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Theorem 4.3. Suppose that X (u,v) is given by (1) in E? such that a/(u) = Az + uy. a(u) is line of
curvature if and only if k;, = —&, where A, p and k4 are the structure functions of X (u,v).
Proof. From the Definition 2.1., if the equation (21) equals to zero, a(u) is line of curvature. In this
case, we can write
Ty = —p(p+ Akg) = 0.

Since p1 # 0 in this last equation, we get ky = —£.
Now, the above calculations will be found for the parallel surface. By considering definition of
parallel surface, image on parallel surface of the striction line a(u) can be given by

B(u) = a(u) + rn.
In this case, we write Darboux frame elements 7", Y", n” of the parallel curve-surface pair
(L4 7N —pkg)) T+ r(p+ Akg)Y

VU= ko) + (74 kg)
=1+ Aeg) T + (L 4+ 17N — pky)) Y
VOO 1kg)? + (G + kN

n" =n,

T =

)

)2
o | )

and also we obtain geodesic curvature, asymptotic curvature and geodesic torsion, respectively as
following;:

— 12 (p+ kg A) [(N = kg = pk'g) = (N = 1A (1 + kg A)]
— (L4 r(h = phg)P(Np = \it)
—r(L+ (A — k) (i + K gA + kg N)

VU pikg))? 472+ kg ))?

K = —(A = pkg) (14 7(X = pkg)) = r(1 + k)%,
ro__ _(M + kg)‘)
Ty = - =.
VU7 (A= pkg))? 4+ 72+ kg)

Then, we have the following theorems:

Theorem 4.4. Suppose that X (u,v) is given by (1) in E® such that a/(u) = Az + puy. a(u) is line of
curvature if and only if the image on parallel surface of a(u) is line of curvature (Tg =0& 71, = 0) .

Theorem 4.5. Suppose that X (u,v) is given by (1) in E? such that a'(u) = Az + py. If a(u) is an
asymptotic curve, then

T _

g

N — ) (1 +72(p+ /\kg)2) — (W + MK g+ kgN)

Rg = )
\/1+7’2(,u—|—)\kg)2
Ky = —r(u+)\kg)2,
o —(p+ Akg)
g 5 5
\/1+'r (1 + Akg)

Theorem 4.6. Suppose that X (u,v) is given by (1) in E? such thata’(u) = Az + py. If a(u) is line
of curvature, then,

kg = £\ p— M) (147X — pikg))
Ky = (=A 4 pkg) (1 + 1A — rkgp),
Ty =Tg-
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Theorem 4.6. immediately gives the following results:

Corollary 4.7. Let a non-developable ruled surface be given by (1) such that A, u and kg4 are the
structure functions and the curve a(u) be both the striction line and the line of curvature. Then, the
image on parallel surface of a(u) is asymptotic curve if and only if ky = %(Kn =0< k), =0).

Corollary 4.8. Let a non-developable ruled surface be given by (1) such that A, p and k, are the
structure functions and the curve a(u) be both the striction line and the line of curvature. Then, the
image on parallel surface of a(u) is a geodesic curve if and only if a(u) is a geodesic curve
(% = constant).

Theorem 4.9. Suppose that X (u,v) is given by (1) in E® such that o’(u) = Az + py. If K, = 1,
then,

tg = FrNp— M) (1 + Mkg),

2
’%; = _T(M + )‘kg) ’
1
Corollary 4.10. Let a non-developable ruled surface be given by (1) and A, p and kg4 be the structure
functions of this surface. For k, = %, the image on parallel surface of a(u) is geodesic curve if and

A

only if a(u) is geodesic curve (ﬁ = constant).
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A. Cakwmak, FO. ditm

KaiimasanbaiiTeIH OeTTepre mapaJjieab OeTTep KaiJibl

Kucwikrap men 6errepis, quddepeHunaiIblK TeOMETPUICHIHIA KUCHIKTAP MEH OETTEP/IiH, KUCAIObI KO Ka-
PACTBIPBLIFAH YKOHE HOTHXKEJED KeaTipiareH. Aramn afTKaHIa, KUCBIK 6€T »KYOBIHBIH AIlIapaThIH KOJIIAHY
apKBIJIbl AJBIHFAH HOTHKeJep GeTTiH KaHIail TYpiH HYCKAWTHLIHIBIFBIHA MaHLI3AEL. 3epTrTreyae X (u,v) =
= a(u) + vb(u) KEeHEHTINTeH CHIBBIKTHIK GETiHIH KypBUIBIMILIK, (byHKIUAIapsl apkplibl (X, X”) xymrap
GeTTepiHiH MapasuIesbiK KUCHIKTBIKTAPBIHBIH apachbIHIArbl Kanaail na 6ip e3apa Gadnansic a(u) xKaiima-
JaHGafTeIH GeTTiH yiikesy KUCHIFDI, aj b(u) E® B-reri GipJIiK chepasibIK KUCHIK, OOIATBIHIAN eTiln KONbI-
graH. depbec xarmaiima, X' kaliMmananbaiiTein GeTi MUHEMAJIILI OeT, BeHrapTeH CBISBLIKTBIK, O€Ti >KoHe
Beiturapren 6eri 6oJsia ana Ma, oChl Kargail 3eprresred. X »KoHe OHLIH X' mapaJjiesi reJukous, OeTiHix
obpasbiaga Kearipiaren. Cyperre 6y (SWP) GeTTik TOJKBIHIADABI KOJJAARTHIH [IIa3Ma KOMeriMeH Kejl-
ripinren. Conbiven Katap, (X, a) xone (X', 3) KUCHIK-6eT »KYOBIHLIH KHUCBHIKTBIKTAPHI 3€PTTEJITCH 2KOHE
HOTHKEJIEP AJIbIHFaH.

Kiam ceadep: napasiens Gerrep, kaiiMalaHOANTHIH CHI3BIKTHIK, O€T, YIIKeJly ChI3bIFbI, [aycc KUCBIFBI, Op-
Tama KACBIKTHIK, KUCBIK-06T »KYOBIHBIH, KIUCHIKTHIFEI.

A. Cakwmak, FO. ditm

O IIapaJijieJIbHBIX ITOBEPXHOCTAX
Hepa3BePThIBAIOIIIMNXCA HOBerHOCTeﬁ

B muddepeHnmanbHoli reOMeTpUN KPUBBIX U TOBEPXHOCTEH MCKPUBJIEHUS KPUBBIX U TOBEPXHOCTEH dYa-
CTO PACCYUTBIBAIOTCS U JAIOTCA PE3YJLTATBL. B 9acTHOCTH, PE3y/IbTaThl, MOJYIEHHBIE C MCIOJIb30BAHUEM
anmapara mapbl KpUBasi — MMOBEPXHOCTD, BaXKHBI C TOUKHU 3PEHHS TOTO, HA KAKOTO POJIA TIOBEPXHOCTH YKA3bI-
BaeT MOBEPXHOCTh. B 3TOM MCCJIe/I0BAaHUN HEKOTOPHIE B3aMMOCBS3U MeXK/y KPUBU3HON MapaJlIeIbHOM 1mo-
Bepxuoctu mapbl (X, X") wepes cTpyKTypHBIE (DYHKIIMM HEPA3BEPTHIBAIOMIECHCS JTMHEHIATON TTOBEPXHOCTH
X (u,v) = a(u) +vb(u) ycranapausaiorcs Takum 06pa3oM, 9To a(u) sABJISETCS KPUBON TPEHUsT HEPA3BEPThHI-
Baomeiics moBepxHocTH, a b(u) — eammumuanoil ccepudaeckoit kpusoi B E°. B wacTHOCTH, HCCIELYeTCs, AB-
JIIETCS T HEPA3BEPTHIBAIOMIASACSA TOBEPXHOCTL X MUHUMAJBHON IIOBEPXHOCTHIO, JIMHEHHON MTIOBEPXHOCTHIO
Beituraprena n nosepxuocrrio Beiinraprena. X u ee mapaJsuiess X' BbIparkeHbl Ha 00pasIe IMOBEPXHOCTH
resimkonsia. Ha prucyHKe 9TO TOKA3aHO C TOMOIIBIO IJIA3MbI, TO/JIEPXKUBAEMON TTOBEPXHOCTHBIMU BOJHAMEA
(SWP). Kpome Toro, mccieioBanbl KpUBU3HBI Aap KpubBas — nosepxHocTsb (X, a) u (X", 8) u nomxyvenst
HEKOTOPBIE PE3YJIBTATHI.

Karuesvie crosa: IHapaJijieJIbHbI€ IIOBEPXHOCTHU, HEPa3BE€PTHIBAIOIIAACA JuHelvaTast IIOBEPXHOCTD, JIMHUA
TpeHud, KPUBU3HA Faycca, CcpeaHdad KpUBU3HA, KPUBU3HA IMapbl KpUBad — IIOBEPXHOCTD.
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