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About the new version of maximum principle of Navier-Stokes equations 

The below shows the links of the extreme values of the velocity vector, the kinetic energy density and pres-
sure of nonlinear Navier-Stokes equations. The latter shows the validity of the maximum principle for nonlin-
ear Navier-Stokes equations that from a mathematical perspective is fundamentally-key. 
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1. Introduction

Academician O.A. Ladyzhenskaya in [1] has formed one of the unsolved problems of the theory of the 
Navier-Stokes’ equations (NSE) as following: «Do Navier-Stokes» equations with initial and boundary con-
ditions give deterministic description of the dynamics of an incompressible fluid, or do not give? 

In solving problem 1. The choice of phase space and the class of generalized solutions are necessary to 
provide to the researcher, but not prescribe him in advance an infinitely smooth-bone or somewhat smooth-
ness of solutions. It is necessary to require the only one? For a dedicated class of generalized solutions there 
is a place for a uniqueness theorem. It is advisable to begin the research of any initial-boundary value prob-
lem (as well as Cauchy’s problem) with finding of classes of uniqueness». 

The object of this work is the research of the problem and, in the end to prove the uniqueness, and the 
existence of solutions of Navier-Stokes’ equations, respectively, from the class of functions 

    1
20, ;C T C W    and     2,1

2,00, ; .C T C W    

In a number of papers [2–4] et al. are shown the results of exploratory research in order to study the 
maximum principle for NSE. The relation shows extreme knowledge of speed vector, kinetic energy density 
(in particular, the localmaximum) and pressure field in some points. The latter shows equity of the maximum 
principle for nonlinear system NSE that from a mathematical point of view, is the key. On the basis of which 
on the selected area, the uniqueness of the weak and the existence of strong solutions of the problem for the 
NSE for the whole time t is proven. Here the results are refined and details of the proof of some significant 
allegations brought to the mathematical rigor. 

We consider the initial-boundary value problem for the NSE [1] with respect to the velocity vector 

 0, , .t T T  
We consider the initial-boundary value problem for the NSE [1] with respect to the velocity vector 

 1 2 3U U ,U ,U  and the pressure P  in domain (0, ] :Q T   

   ;U
μΔU U, U P f t,x

t


    


(1a)

0;divU  (1b)

   0 ;U ,x Φ x (1c)

  0,ΩU t,x   (1d)

where 3;x R   — convex domain, filled with homogeneous fluid;  — boundary of the domain, 
[0, ], ;t T T     — dynamic viscosity; ,   — Laplace and Hamilton operators respectively; f  and Φ— 

vectors of functions of external forces and initial data respectively, that satisfy the following conditions. 

Let  J 
0

— the space of solenoidal vectors, and  G   consists of ,  where   is a single-valued 

function in ,  locally square integrable and has first derivatives from  2 .L   It is known from [1] that the 
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orthogonal resolution,      
0

2 J ,L Q G Q Q   where elements of  J Q
0

 in t  belong to  J ;
0

f  and — 

vectors of functions of external forces and initial data respectively, that satisfy the following conditions:  

     ) J ;f t,x C Q Q
0

i          1

2,0
) J .x C W    

0

ii    

On the relationship between the extreme values of the velocity, the kinetic energy density and pressure 

Definition 1. We’ll say that the vector function  ,U t x  at point 1M  in domain Q  has a local extremum 

when each component of the vector function  U  at the same point 1M  reaches a local extremum. 

Explanation to the definition. Let the vector function  U t,x  has at local  1M t ,x   extrema, then (as in 

the case of a scalar function) all the partial derivative of its first in order to point  1M t ,x   must be vanished, ie. 

  1 0,
U

M
x





1,3.   (2) 

Equality (2) has the place if and only if all the partial derivative of the first order of components of the 
vector function at the point  1M t ,x   are vanished, i.e. 

  1 0,
U

M
x








α, 1,3;β   или  1 0, 1,3.U M     (3) 

The presence of an extremum in vector function (t, )U x  at  1M t ,x   means that there are sufficient 

conditions for a local extremum for each .αU  Thus, the matrix of the quadratic form (Hessian) corresponding 
to each component is a fixed sign, i.e. if the Hessian 

2

1( ) , 1,3; , 1,3,
U

G M
x x




 


     

 
 

negative definite for some ,  then αU  local maxi mum at  1M t ,x   (positive definite - a local minimum). 

Next we will prove some statements in the class of smooth functions, which are related to the following 
question: 

Are there any direct link between extreme values of the vector function U at 1M  with extreme values of 

the kinetic energy (k. e.) density    2 2 2
1 2 3, 0.5E t x U U U    (in particular, local maximum) and the pres-

sure P  at the same point 1M ? 
A positive answer are stated in Theorem 1, 2. 
Theorem 1. If the vector function  ,U t x  reaches an extremum at some point  1 , ,M t x Q    and at 

least one of the components reaches its maximum positive (minimum negative), then at the same point k. e. 
density to E  takes the local maximum. 

Proof. Let the vector function U  reach an extremum at the point 1.M  We verify that the necessary and 

sufficient conditions for a local maximum of k. e. density E  point 1.M  
We write the necessary conditions for a local maximum k. e. density E  at: 

    
3

1 1
1

0, 1,3.
UE

M U M
x x




 


   

   (4) 

These conditions at point 1M  are performed at certain conditions (3), where vector-function  ,U t x  

has at point 1M  local extremum. 
We introduce the Hessian matrix to ensure sufficient conditions for the implementation of local maxi-

mum k. e. density E  at point 1 :M  
2

1( ) , , 1,3.
E

M
x x 


    

 
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Differentiating k. e. density to E  we find elements of the matrix B  

 
22 3 3

1 1

, 1,3; 1,3.
U U UE

U
x x x x x x

  


      

  
     

        (5) 

Sufficient conditions for a local maximum of k. e. density at point 1,M  with respect to the principal mi-

nor of the matrix B  can be written:  1 1 0;B M   2 1 0;B M   3 1 0.M   

For the first minor 1B  taking account of (5), (3) we obtain the inequality 

 
23

1 1 2
1 1

( ) 0.
U

B M U
x







 

  (6) 

Consider the inequality for the principal minor of the second order at 1,M  
2

1
1 2

2 1 2 2

2
2 1 2

0

E
B

x x
B (M ) .

E E

x x x


 

 
 
  

 

Where from, taking into account (5) and (3), we have  
22 23

2 1 1 2
1 2 1 2

0α
α

α

U E
B M U .

x x x

  
       

  

Hence, using (6), we conclude that  2 1B M  is positive if and only if 

  
23

12
1 2

0.
U

U M
x









  (7) 

Now for the minor third order and the inequality of 3B  can be written as 

  

2 2

1
1 2 1 3

2 2 2

3 1 2
2 1 2 2 3

2 2 2

2
3 1 3 2 3

E E
B

x x x x

E E E
B M

x x x x x

E E E

x x x x x

 
   

  
 
    

  
    

2

1
1 3

22 2
1

2
3 1 3

1

E
B

x x
B

B E E

x x x


 

 
  

22

1
1 3

2 2
1

2 1 2 3

1
0.

E
B

x x

B E E

x x x x


 

 
 
   

 (8) 

The validity of (8) can be verified by direct computation of determinants. Taking into account signs 1B  

and 2B  from (8) we conclude that 3B  will be negative if and only if, when 
2

1
1 3

2 2

2
3 1 3

0.

E
B

x x

E E

x x x


 


 
  

 

Where, taking into account (5), (6) and (3), we have 
22 23

1 2
1 3 1 3

0.α
α

α

U E
B U

x x x

  
     

  

This inequality will be positive if and only if, when 

  
23

12
1 3

0α
α

α

U
U M .

x




  (9) 

As a result, the sufficient conditions for the implementation of the local maximum k. e. density to E  at 
the point 1M  have a system of inequalities (6), (7) and (9) in the components of the vector function :U  

  
23

12
1

0. 1,3.
U

U M
x




 


  

  (10) 
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System of inequalities (10) is possible if and only if the vector function U  has an extremum at the point 

1M  wherein at least one of the components of the vector function satisfies the sufficient conditions for a pos-

itive maximum or a negative minimum at the point 1,M  and the rest — a local extremum. 

Indeed, let’s at some   component U   satisfies the sufficient conditions for maximum positive (min-

imum negative) at 1,M  then 

       
2 2

1 1 1 12 2
0 0, 0 0 , 1,3,α α

α α

U U
U M M U M M

x x
 

 
 

  
           

 

thus 

    
2

1 12
0, 1,3.α

α

U
U M M

x






  


 (11) 

When the system of inequalities (11) holds for ,  then all of the components of the vector function 
U  satisfy the sufficient conditions for positive maximum (negative minimum) at 1M  и and takes place 
(10). 

However, this can’t be in a the best accident only one of the components can be satisfied the sufficient 
condition for of maximum positive (minimum negative), but the rest components can be satisfied the suffi-
cient condition of maximum negative or minimum positive and inequality (10) be fulfilled, there is a system 
of inequality 

   
2

12 21
, 1,3,α

α
α

U U
U M U M

x x
| | 

 
 

 
  

   

i.e. the module of left-hand side of inequality (11) must exceed the sum of the remaining two terms in (10). 
If this requirement does not take place, then together with this an inequality too (10). Then there re-

mains the case that any two velocity components satisfy the sufficient condition for a maximum positive or 
minimum negative, and the last component satisfies the sufficient condition for the maximum negative (posi-
tive low) and probably the system of inequality (10). As a result you showed the necessary and sufficient 
conditions of a local maximum for k. e. density to E  at 1,M  where it reaches the vector function  ,U t x  of 

local extremum. Theorem 1 is proved. 
For a function of pressure P holds a similar statement. 
Theorem 2. If the k. e. density to  E t,x  reaches a local maximum at a point  1

M t ,x   domain

(0, ] ,Q T   the point 1M  is a stationary point for a function of pressure ,P  that is the equality 

 1 0.P M   

Proof. We write the well-known formula of vector analysis 
    , , ,U U E U     (12) 

where [ , ]  — vector product, .ω rotU  

Let the vector function  ,I U   is continuous in a bounded domain   at  0, ,t T   thus 

   2 , 0, .I L t T     Then, following [1] the vector function I  we imagine as the orthogonal sum 

 
  ,JI R  V   where  ,R G      

0

JJV Q .  (13) 

Where, at the same time, we calculate the boundary values of R : 

 0,
Ω

R

n 





 (14) 

since   0J
ΩV n|   and [ ] | 0U,ω n    respectively, into force   0

JV J  and (1d), where n  is the unit outward 
normal vector at x  boundaries .  

Legality ratio (13) follows from the solvability of the Neumann’s problem for the following Poisson 
equation 
 ,R divI   (15) 
with the boundary condition (14). 
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Remark. The boundary condition (14) is discharged to mention in passing the solvability of the Neu-
mann problem, because for the maximum principle, this fact will not be used. 

Applying with the operator div  on the vector function  , ,U U  we find 

   
3

1

, .βα

α,β β α

UU
div U U

x x


 

   (16) 

Formula (12) taking into account the representation (13) can be rewritten 

    , - ,JU U E R V    (17) 

we apply to both sides of this relation operation div  and using (16), we obtain 

 

3

1

.α

α, α

UU
E R

x x


 


  

 
 (18) 

From this point of 1M  to a maximum of E  we find 

    ,MRME 011   

since the left side of the formula (18) vanishes at the point 1M  based on (3). 

From where  1 0,R M   since by hypothesis point 1M  is the maximum point E  and there is a nec-

essary condition for the local maximum  1 0.E M   Thus, for the function R  at the point QM 1  is also 

the necessary condition for a local maximum. 

We introduce an auxiliary function      



3

1

2

6 α
αα xx

K
tCt,xD  with properties: 

1 1) ( ) 0, ) ( ) ,a D M b D M K     

where     0,C t const t  }{ x — coordinates at the point 1M  and the constant 
( )

.
C Q

K divI  

Putting b) and (15), we write the Poisson’s equation 
 ,sR K divI x     где .sR D R   (19) 

We construct the ball 
1M

εΒ  with center at 1M  a radius ε  so small enough that the ball 1M
εΒ  together with its 

boundary εS — lies entirely inside .  From (19) we have 
1

0 .
M
εsR K divI , x Β       

Thus [5] the function sR  is sub harmonic in the ball 1 ,MB  since it satisfies ratio 

.0
1M

εs Βx,R   

If such a function sR  in the closed domain 
1M

εΒ  has a maximum point in 1 ,MB  then constRs   in the 1 .MB  

Where, taking into account the fact that      xRxDxRs   we have 

    constxRxD   или     10, .MD x R x x B      

From which it follows that   ,01  MR  because  1 0.D M   Thus, the point 1M  is a stationary point of 

the function  , .R t  x  

Next, equation (1a), we multiply the gradient of an arbitrary single-valued function 

η( ) (0, ;C ( )),t,x L T 
   satisfying condition 0.

n



  


 And then, using the orthogonality of sub-

spaces 
0

( ), ( ),G J   we integrate over the domain ,  and as a result we obtain 

  
Ω

, η 0, [0 ].P U U dx t ,T        
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Hence, by replacing the integrand  ,U U  corresponding value of formula (17) and given the 

orthogonality of subspaces 
0

( ), ( ),G Ω J Ω  we find 

 
Ω

P η 0, [0 ].E R dx t ,T        

Where, due to arbitrariness η,  we have 

       0P t,x E t,x R t,x , t,x Q.       

This identity can be written the point 1M Q  maximum of the function E  

     1 1 1 0P M E M R M .     

Whence  1 0,P M   since  1 0E M   and  1 0R M   at the point 1M Q  of maximum of the 

function E  or extreme of vector of the velocity .U  Theorem 2 is proved. 
The following is after Theorem 2. 
Corollary 1. If the vector function U  reaches an extremum at some point 1M and at least one of the 

components reaches its maximum positive (minimum negative) the point 1M  is a stationary point of the func-

tion of the pressure  , ,P t x  i.e. the equality  1 0.P M   

The maximum principle 
The vector equation (1a) can be rewritten in the form of system of scalar equations: 

   , 1 3,α
α α α

α

U P
U U, U f α ,

t x

 
     

 
 (1 a ) 

Theorem 3. Let   be a closed bounded domain in 3R  with boundary   and (0, ]Q T    cylindri-

cal domain in the space of variables , .t x  We will assume that the functions      2 2U C Q C Q P C Q  
 

and satisfy the equations (1a). Then, if for some   function     0 0f t,x f t,x     in ,Q  the function 

U   takes its maximum positive (minimum negative) in  on the lower base  0   or on its lateral surface 

[0 ] ,,T   i. e. 

      
[0, ]0

max{ sup , sup }, ( ) ;
t Tt

U t,x U t,x U t,x t,x Q    
    

 
xx

 (20a) 

      
[0, ]0

min{ inf , inf ( },( ).
t Tt

U t,x U t,x U t,x) t,x Q        
 

xx
 (20b) 

Proof. For this we use the well-known method [6; 510]. We will assume the contrary, i.e, vector func-
tion  ,U t x — is a solution of the Navier-Stokes equations (1) reaches an extremum in the domain 

(0, ] ,Q T   with one components of the solution U   reaches an extremum in the domain, with one com-

ponents of the solution reaches its maximum positive value at some point  0 0
0 , .M t x  

      0
[0, ]0

max sup , , sup , 0.
t T xt x

U M U t x U t x C    
    

    
 

 (21) 

We will designate  0 0m U M C    0 and introduce 

   , , 1 .
2

m t
H t x U t x

T
  

    
 

 

Hence, for all  ,t x  of [0, ]T  or  0   have  

   0 0, , .
2

m
H t x H t x    

The function  ,H t x  also takes its maximum value at some point  1 , M t ,x Q    and 

   1 0 .H M H M m      Also on the basis of Corollary 1 of Theorem 2  1 0.P M   

 

Q
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We write down all the necessary conditions maximum of function H   at the point 1 :M  

0;
H

t




0; 0; 0.

P
H H

x
  




    


(22)

From equation (1a ) taking in to account the conditions (22) we find for the points 1M  chain of ine-
qualities 

   1, 0.
2 2

H P m m
LH H H H M f

t x T T


      


 
        

 
 

This means that inequality (21) is incorrect. Consequently, the true (20a). Theorem 3 is proved 
From Theorem 3, following [6], it is easy to obtain a proof of the following proposition: 
Corollary 2. If the vector functions ,f   satisfy the conditions i) and ii), then the solution  ,U t x  of 

the problem (1) the following estimate holds: 

      1, ,
C Q C Q C Q

U T f T         где    
1 3
max sup , .

C Q
Q

U U t x
 (23)

The estimate (23) in the mathematical theory of the Navier-Stokes equations is fundamentally-key. 
As in [2–4], et al. on the basis of (23) in selected spaces to prove the uniqueness of the weak and the exist-
ence of strong solutions of the NSE for the whole time. 
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Ə.Ш.Ақыш 

Навье-Стокс теңдеулері үшін максимум қағидасының жаңа түрі туралы 

Навье-Стокс теңдеулеріндегі жылдамдық векторының, кинетикалық энергия тығыздығы мен қысым 
функцияларының облыс нүктелеріндегі экстремалдық мəндерінің жаңа байланысы айқындалған, 
осының негізінде бейсызықты Навье-Стокс теңдеулері үшін математикалық тұрғыдан іргелі де тиекті 
мəселе максимум қағидасының орындалатындығы көрсетілген. 

А.Ш.Акыш 

О новом варианте принципа максимума для уравнений Навье-Стокса 

Показаны новые связи экстремальных значений вектора скорости, плотности кинетической энергии 
(в частности, локального максимума) и давления уравнений Навье-Стокса. С помощью последнего 
показана справедливость принципа максимума для нелинейной системы уравнений Навье-Стокса, что 
с математической точки зрения является принципиально-ключевым. 




