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About the new version of maximum principle of Navier-Stokes equations

The below shows the links of the extreme values of the velocity vector, the kinetic energy density and pres-
sure of nonlinear Navier-Stokes equations. The latter shows the validity of the maximum principle for nonlin-
ear Navier-Stokes equations that from a mathematical perspective is fundamentally-key.
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1. Introduction

Academician O.A. Ladyzhenskaya in [1] has formed one of the unsolved problems of the theory of the
Navier-Stokes’ equations (NSE) as following: «Do Navier-Stokes» equations with initial and boundary con-
ditions give deterministic description of the dynamics of an incompressible fluid, or do not give?

In solving problem 1. The choice of phase space and the class of generalized solutions are necessary to
provide to the researcher, but not prescribe him in advance an infinitely smooth-bone or somewhat smooth-
ness of solutions. It is necessary to require the only one? For a dedicated class of generalized solutions there
is a place for a uniqueness theorem. It is advisable to begin the research of any initial-boundary value prob-
lem (as well as Cauchy’s problem) with finding of classes of uniquenessy.

The object of this work is the research of the problem and, in the end to prove the uniqueness, and the
existence of solutions of Navier-Stokes’ equations, respectively, from the class of functions

C(0.7:C(Q) ", (Q)) and C(0,T:C(Q) N7, (Q)).

In a number of papers [2—4] et al. are shown the results of exploratory research in order to study the
maximum principle for NSE. The relation shows extreme knowledge of speed vector, kinetic energy density
(in particular, the localmaximum) and pressure field in some points. The latter shows equity of the maximum
principle for nonlinear system NSE that from a mathematical point of view, is the key. On the basis of which
on the selected area, the uniqueness of the weak and the existence of strong solutions of the problem for the
NSE for the whole time t is proven. Here the results are refined and details of the proof of some significant
allegations brought to the mathematical rigor.

We consider the initial-boundary value problem for the NSE [1] with respect to the velocity vector

1€[0,T],VT <.
We consider the initial-boundary value problem for the NSE [1] with respect to the velocity vector
U= (Ul, U,, U3) and the pressure P in domain Q =(0,T]xQ:

aa(t]—ﬂAU+(U,v)U+VP=f(z,x); (la)
divU =0; (1b)
U(0,x)=2(x); (1c)

U(t,x)] =0, (1d)

where xe Qc R,; Q — convex domain, filled with homogeneous fluid; 0Q — boundary of the domain,
t€[0,T], T <oo; u — dynamic viscosity; A, V — Laplace and Hamilton operators respectively; f and & —
vectors of functions of external forces and initial data respectively, that satisfy the following conditions.

0
Let J (Q)— the space of solenoidal vectors, and G(Q) consists of Vn, where n is a single-valued
function in €, locally square integrable and has first derivatives from L, (Q) It is known from [1] that the
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orthogonal resolution, L, (Q)=G(Q)® J (Q), where elements of J(Q) in V¢ belong to J(Q); / and ®—
vectors of functions of external forces and initial data respectively, that satisfy the following conditions:
D) f(tx)eC(0)NI(Q); D) @(x)eC(Q)NI,(Q)NI(Q).
On the relationship between the extreme values of the velocity, the kinetic energy density and pressure

Definition 1. We’ll say that the vector function U(t,x) at point M, in domain Q has a local extremum

when each component of the vector function {U“} at the same point M, reaches a local extremum.
Explanation to the definition. Let the vector function U (#,x) has at local M, (¢',x") extrema, then (as in
the case of a scalar function) all the partial derivative of its first in order to point M, (t',x') must be vanished, ie.
ou

i
Equality (2) has the place if and only if all the partial derivative of the first order of components of the

(M,)=0,B=13. )

vector function at the point M, (t',x') are vanished, i.e.
U,
8xﬁ

The presence of an extremum in vector function U(t,x) at M, (t',x') means that there are sufficient

(M,)=0, a, B=13; wm VU, (M,)=0, a=13. 3)

conditions for a local extremum for each U,. Thus, the matrix of the quadratic form (Hessian) corresponding
to each component is a fixed sign, i.e. if the Hessian

U N
6xﬁ8xy

G,(M,)= , a=13; B,y=1,3,

negative definite for some o, then U_ local maxi mum at M, (t’,x’) (positive definite - a local minimum).

Next we will prove some statements in the class of smooth functions, which are related to the following
question:
Are there any direct link between extreme values of the vector function U at M, with extreme values of

the kinetic energy (k. e.) density E(7,x)= O.S(Ul2 +U; +U; ) (in particular, local maximum) and the pres-

sure P at the same point M, ?
A positive answer are stated in Theorem 1, 2.
Theorem 1. If the vector function U (t,x) reaches an extremum at some point M, (t',x') €0, and at

least one of the components reaches its maximum positive (minimum negative), then at the same point k. e.
density to E takes the local maximum.
Proof. Let the vector function U reach an extremum at the point M,. We verify that the necessary and
sufficient conditions for a local maximum of k. e. density £ point M.
We write the necessary conditions for a local maximum k. e. density E at:
OF 2 ou,, —
—(M,)=> U, —%(M,)=0, p=1,3. 4)
8xﬁ ~ axB

These conditions at point M, are performed at certain conditions (3), where vector-function U (t,x)
has at point M, local extremum.

We introduce the Hessian matrix to ensure sufficient conditions for the implementation of local maxi-
mum k. e. density £ at point M, :

0°E

Gxﬁ axy

, By=13.

B(M,)=
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Differentiating k. e. density toE we ﬁnd elements of the matrix B
3 3
-S>, U, OUs 6 13 y=13. 5)
Gx 8x ~ 8x 8x = Ox, Ox,

Sufficient conditions for a local maximum of k. e. density at point M,, with respect to the principal mi-
nor of the matrix B can be written: B,(M,)<0; B, (M,)>0; B;(M,)<0.
For the first minor B, taking account of (5), (3) we obtain the inequality
o°U,

B,(M,)= ZU <0. (6)
ox;
Consider the inequality for the principal minor of the second order at M,
O’E
: 0Ox,0x,
B,M,)= >0
o5 0
ox,0x,  ox;
OE Y
Where from, taking into account (5) and (3), we have B =B ZU >0.
o axz 6x16x2
Hence, using (6), we conclude that B, (M 1) is positive if and only if
50U
U,—*(M,)<0. 7
; o axj ( 1) ( )
Now for the minor third order and the inequality of B; can be written as
O’E O’E
L adx,  oxow, O’ s OE ’
’E ’E ) ' oxex ' oxox
B3(M1): a a . a EL 19v3 B2 _i 17713 <O (8)
0Ox,0x, ox, ox,0x,| B/| 0°E 0’E B/ | O’°E O’E
0’E 0’E 0*E 0Ox,0x, ox; Ox,0x,  Ox,0x,
0x;0x, Ox;0x, ox?

The validity of (8) can be verified by direct computation of determinants. Taking into account signs B,
and B, from (8) we conclude that B, will be negative if and only if, when

2
B O°E
Ox,0x,
O’E O’E
| 0x,0x, ox; |

Where, taking into account (5), (6) and (3), we have

) 2
B Z 7u, [ E ] > 0.
ot 6x3 0Ox,0x;4
This inequality will be positive if and only if, when
L oU,

;Ua axfa (M,)<0. Q)

As a result, the sufficient conditions for the implementation of the local maximum k. e. density to E at
the point M, have a system of inequalities (6), (7) and (9) in the components of the vector function U :

S oU =
ZUQK;(MIVO. B=1,3. (10)

a=1 g
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System of inequalities (10) is possible if and only if the vector function U has an extremum at the point
M, wherein at least one of the components of the vector function satisfies the sufficient conditions for a pos-

itive maximum or a negative minimum at the point ,, and the rest — a local extremum.
Indeed, let’s at some o component U, satisfies the sufficient conditions for maximum positive (min-
imum negative) at M|, then

2 2

U ,(M1)>0AM(M1)<0, (Ua,(M1)<0Aa—Uj(M1)>0J, B=13,

o 2
ﬁxB ﬁxB

thus

2 ES—
U, (M) (a,) <0, vp=13. (11)
B

When the system of inequalities (11) holds for Vo, then all of the components of the vector function
U, satisfy the sufficient conditions for positive maximum (negative minimum) at M, u and takes place
(10).

However, this can’t be in a the best accident only one of the components can be satisfied the sufficient
condition for of maximum positive (minimum negative), but the rest components can be satisfied the suffi-
cient condition of maximum negative or minimum positive and inequality (10) be fulfilled, there is a system
of inequality

o’U ouU. —
Ve (M) > YU (M), wp=13,
ﬁ O£ [}
i.e. the module of left-hand side of inequality (11) must exceed the sum of the remaining two terms in (10).

If this requirement does not take place, then together with this an inequality too (10). Then there re-
mains the case that any two velocity components satisfy the sufficient condition for a maximum positive or
minimum negative, and the last component satisfies the sufficient condition for the maximum negative (posi-

tive low) and probably the system of inequality (10). As a result you showed the necessary and sufficient
conditions of a local maximum for k. e. density to E at M|, where it reaches the vector function U (t,x) of

local extremum. Theorem 1 is proved.
For a function of pressure P holds a similar statement.

Theorem 2. If the k. e. density to E (t,x) reaches a local maximum at a point M (t',x') domain
0=(0,T]xQ, the point M, is a stationary point for a function of pressure P, that is the equality
VP(M,)=0.

Proof. We write the well-known formula of vector analysis

(U,V)U=VE—[U,(D], (12)
where [-,-] — vector product, @ = rotU.

Let the vector function [/ E[U,(D] is continuous in a bounded domain Q at Vte[O,T ], thus

lel, (Q), Vte [O,T ] Then, following [1] the vector function / we imagine as the orthogonal sum

0
[=VR+V"Y), where VRe G(Q), V") €J(0). (13)
Where, at the same time, we calculate the boundary values of VR :
R _ 0, (14)
On g

0
) eJ and (1d), where n is the unit outward

since V)n Lo=0 and [Uw]n|.,=0 respectively, into force V'
normal vector at x boundaries 0Q.
Legality ratio (13) follows from the solvability of the Neumann’s problem for the following Poisson
equation
AR =divl, (15)

with the boundary condition (14).
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Remark. The boundary condition (14) is discharged to mention in passing the solvability of the Neu-
mann problem, because for the maximum principle, this fact will not be used.

Applying with the operator div on the vector function (U , V) U, we find

. 3, 0U,0U,
div{(U,V)U} :;‘1 o (16)
Formula (12) taking into account the representation (13) can be rewritten
(U,V)U =VE-VR-V'), (17)
we apply to both sides of this relation operation div and using (16), we obtain
OV U ap_ar
ol 8xﬂ ox, (18)

From this point of M, to a maximum of £ we find
AE(M,)-AR(M,)=0,
since the left side of the formula (18) vanishes at the point M, based on (3).
From where AR(M 1) <0, since by hypothesis point M is the maximum point £ and there is a nec-
essary condition for the local maximum AE (M 1) < 0. Thus, for the function R at the point M, € Q is also

the necessary condition for a local maximum.

3
We introduce an auxiliary function D(z,x) =C (z) + %z (x(Z - X )2 with properties:
a=1

a) VD(M,)=0, b) AD(M,)=K,
where C(t)=const(t)>0, {x],} — coordinates at the point M, and the constant K = ||div[ || "
Putting b) and (15), we write the Poisson’s equation
AR =K +divl, xeQ rne R.=D+R. (19)

We construct the ball B with center at M, aradius ¢ so small enough that the ball B together with its
boundary S, — lies entirely inside Q. From (19) we have

AR =K +div[ >0, VxeB, .
Thus [5] the function R, is sub harmonic in the ball B, since it satisfies ratio

AR >0, VxeB. " .
If such a function R in the closed domain B." has a maximum pointin B!, then R, = const inthe B,
Where, taking into account the fact that R (x) = D(x)+ R(x) we have
D(x)+ R(x)=const wm VD(x)+VR(x)=0, Vxe B,

From which it follows that VR(M | ): 0, because VD(M | )= 0. Thus, the point M| is a stationary point of
the function R (l . x).

Next, equation (la), we multiply the gradient of an arbitrary single-valued function

nx)e L, (0,7;C*(QY)), satisfying condition n|(m :Z—n =0. And then, using the orthogonality of sub-

Mo
0
spaces G(L2), J(Q), we integrate over the domain €, and as a result we obtain
[(VP+(U.V)U)Vndx=0, Vie[0,T]

Q
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Hence, by replacing the integrand (U ,V)U corresponding value of formula (17) and given the

0

orthogonality of subspaces G(Q), J(£2), we find
[V(P+E-R)Vndx=0, Vre[0,T].
Q

Where, due to arbitrariness Vn, we have
VP(t,x)+VE(t.x)-VR(1,x)=0, V(1,x) Q.
This identity can be written the point M, € O maximum of the function E
VP(M,)+VE(M,)-VR(M,)=0.
Whence VP(M,)=0, since VE(M,)=0 and VR(M,)=0 at the point M, € Q of maximum of the

function E or extreme of vector of the velocity U. Theorem 2 is proved.
The following is after Theorem 2.
Corollary 1. If the vector function U reaches an extremum at some point M, and at least one of the

components reaches its maximum positive (minimum negative) the point M, is a stationary point of the func-
tion of the pressure P(t,x), i.e. the equality VP(MI) =0.

The maximum principle

The vector equation (1a) can be rewritten in the form of system of scalar equations:
ou oP —
« _pAU, +(UVU,)+—=f,, a=1,3, ld
o THAUH UYL+ o (a9

a

Theorem 3. Let Q be a closed bounded domain in R, with boundary 9Q and é =(0,T ]xﬁ cylindri-

Uec(o)nc? PeC?

cal domain in the space of variables LY We will assume that the functions © (Q) N (Q) nEe (Q)
and satisfy the equations (1a). Then, if for some o function f, (£x)<0(f, (tx)>0) in Q, the function
U

a

o« takes its maximum positive (minimum negative) in Q on the lower base {0} xQ or on its lateral surface
[0,T]x0Q, i.e.

U, (tx)<max{ sup U, (tx), sup U, (tx)},(tx)€0; (20a)
1=0AxeQ te[0,TIAxedQ
(U, (tx)2min{ inf U, (tx). inf U@} (1x)€0). (20b)

Proof. For this we use the well-known method [6; 510]. We will assume the contrary, i.e, vector func-
tion U (t,x)— is a solution of the Navier-Stokes equations (1) reaches an extremum in the domain

0=(0,T] ><§_2, with one components of the solution U . reaches an extremum in the domain, with one com-
ponents of the solution reaches its maximum positive value at some point M (to,xo).

Ua,(M0)>max{ sup U, (t,x), sup Ua,(z,x)}=czo. (21)

t=0AxeQ) t=[0,T]AxedQ

We will designate m=U,, (M,)—C>0 0 and introduce

H,(1.%)=U, (t,x)+%[l—i}

T
Hence, for all (¢,x) of 6Qx[0,T] or {0} x Q) have
H (x> H (t,x)+ 2
0(( x ) o (t,x)+ 5

The function H, (t,x) also takes its maximum value at some point M, (t',x') €0, and
H,(M,)>H,(M,)>m. Also on the basis of Corollary 1 of Theorem 2 VP(M,)=0.

o
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We write down all the necessary conditions maximum of function /_ at the point M, :

LA 0; AH, <0; VH,, =0; o _
ot ox,,

o

0. (22)

From equation (1a") taking in to account the conditions (22) we find for the points M, chain of ine-
qualities

L, = —UAH,, +(H,VHQ,)+6—P
ot Ox,

m m
M)=f, +—>—>0.
(M) f“+2T g

This means that inequality (21) is incorrect. Consequently, the true (20a). Theorem 3 is proved
From Theorem 3, following [6], it is easy to obtain a proof of the following proposition:
Corollary 2. If the vector functions [, satisfy the conditions i) and ii), then the solution U (t,x) of
the problem (/) the following estimate holds:
"U”c(g) < "(D"c(g) +T||f||C(Q) =A,, VI <, rne "U”c@) = Mmax sup|Ua (t,x)|. (23)

1<a<3 @

o
o

The estimate (23) in the mathematical theory of the Navier-Stokes equations is fundamentally-key.
As in [2-4], et al. on the basis of (23) in selected spaces to prove the uniqueness of the weak and the exist-
ence of strong solutions of the NSE for the whole time.
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O.11. AKpImI

HaBbe-CTokc TeHaeyJiepi yIliH MAKCMMYM KAFUJIACBIHBIH KaHA TYPi TypaJibl

Hasbe-Crokc TeHueymepiHieri KbUIIaMABIK BEKTOPBIHBIH, KHHETHKAIBIK YHEPTUS THIFBI3ABIFEI MEH KBICHIM
(YHKIMSUTApBIHBIH  OOJBIC HYKTENEpiHJETri SKCTpeMAIIbIK MOHJAEpIHIH >kaHa OailJIaHBICH! AMKBIHJAIFaH,
OCBIHBIH HeTi3iHe 6eHch3bIKTE HaBbe-CToKe TeHaeynepi YIIiH MaTeMaTHKAIbIK TYPFBIIAH 1prelli Ae THeKTi
Macee MaKCUMYM KaFMAaChIHBIH OPBIH/ANAThIH/IbIFbI KOPCETIITCH.

A .. AxpImn

O HoBOM BapuaHTe NPUHIMIA MakcuMyMa i ypaBHeHuii HaBbe-CTokca

Iloxa3aHbl HOBBIC CBSI3M KCTPEMAalbHBIX 3HAUECHHUI BEKTOpA CKOPOCTHU, INIOTHOCTH KMHETUYECKOH dHEpruu
(B 9aCTHOCTH, JOKaJbHOTO MakcMMyMa) U naBieHust ypaBHeHHii HaBbe-Ctokca. C HOMOIIBIO HOCIIETHETO
MOKa3aHa CIIPaBEAIMBOCTD MIPUHIIMIIA MAKCUMYMa Ul HelMHeHHO! cucTeMbl ypaBHeHuil HaBbe-Ctokca, 4o
C MaTeMaTHYECKON TOUKH 3PEHHUS ABIAETCS MPUHLIUNNAIBHO-KITIOUEBBIM.

Cepusi «MaTtemaTuka». Ne 2(78)/2015 17





