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On outer elements of the noncommutative pH  spaces 

In the article let M  be a von Neumann algebra equipped with a faithful normal normalized tracial state , A

be subdiagonal subalgebra of .M  We transfer the results of [4] to the case 1.p   
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Let M  be a finite von Neumann algebra with a faithful normal tracial state .  In [1], Arveson intro-
duced the notion of finite, maximal, subdiagonal algebras A of ,M  as non-commutative analogues of weak-

*Dirichlet algebras. Subsequently several authors studied the (non-commutative) pH  spaces associated with 

such algebras. Blecher and Labuschagne [2] studied outer operators in ( )(1 )pH A p    (for the case 
1,p   see [3]). In [4] the authors extend their generalized inner-outer factorization theorem in [2] and estab-

lish characterizations of outers that are valid even in the case of elements with zero determinant. 
In this paper, we will consider extend some results on outer operators in [4] to the case 1,p   this can 

be considered as a complement to the work in [4]. 
This paper is organized as follows. Section 1 contains some preliminary definitions. In section 2, we ex-

tend the main results of [4] to the case 0 1.p   
Preliminaries. Throughout this paper, we denote by M  a finite von Neumann algebra on a Hilbert 

space H  with a faithful normal tracial state .  The closed densely defined linear operator x  in H  with do-
main ( )D x  is said to be affiliated with M  if and only if *u xu x  for all unitary operators u  which belong 

to the commutant M of .M  If x  is affiliated with ,M  then x  is said to be  -measurable if for every 0   

there exists a projection e M such that ( ) ( )e H D x  and ( )e    (where for any projection e  we let 

1e e   ). The set of all  -measurable operators will be denoted by 0 ( ; )L M   or simply by 0 ( ).L M  The set 
0 ( )L M  is a *-algebra with sum and product to be the respective closure of the algebraic sum and product. 

The measure topology in 0 ( )L M is given by the system ( , )V     0 ( ) :x L M xe


    for some pro-

jection e M with ( ) ,e   0,  0   of neighborhoods of zero.

Given 0 ,p    we define 1/( ) ,
p p

p
x x  ,x M  where 

1
* 2( ) .x x x  Then ( , )

p
M   is a normed 

(or quasi-normed for 1p  ) space, whose completion is the noncommutative pL — space associated with 

( , ),M   satisfying all the expected properties such as duality (see [5, 6]), denoted by ( , )pL M   or simply by 

( ).pL M  As usual, we set ( , )L M M    and denote by ( )

    the usual operator norm. 

Given a von Neumann subalgebra N  of ,M  an expectation E : M N  is defined to be a positive lin-
ear map which preserves the identity and satisfies ( ) ( )E xy xE y  for all x N  and .y M  Since E  is posi-

tive it is hermitian, i.e. * *( ) ( )E x E x  for all .x M  Hence ( ) ( )E yx E y x  for all x N  and y M . For 
a complete study of ,E  we refer to [1, 7]. 

Definition 1.1. Let A be a w*-closed unital subalgebra of ,M  and let E  be a faithful, normal expecta-
tion from M  onto the diagonal von Neumann algebra ( ).D A J A   Then A is a finite subdiagonal 
subalgebra of M  with respect to E  if:  

( )i  ( )A J A  is w*-dense in ;M  
( )ii  ( ) ( ) ( ),E xy E x E y , ;x y A 
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( )iii  .E    
It is proved by Exel [8] that a finite subdiagonal algebra A is automatically maximal in the sense that if 

B  is another subdiagonal algebra with respect to E  containing ,A  then .B A  This maximality yields the 
following useful characterization of :A  

0{ : ( ) 0, },A x M xa a A       

where 0 kerA A E   (see [1]). 

For p    we define ( )pH A  to be the closure of A in ( ),pL M  and for p    we simply set 

( )H A A   for convenience. These are the so-called Hardy spaces associated with .A  Let K  be a subset of 

( ).pL M  We set *( ) { : }J K x x K   and denote the closed linear span of K  in ( )pL M  by [ ] .pK  We will 

keep this notation throughout the paper. 
Definition 1.2. Let 0 .p    An operator ( )ph H A  is called left outer, right outer or bilaterally outer 

according to [ ] ( ),p
phA H A [ ] ( )p

pAh H A  or [ ] ( ).p
pAhA H A  

Recall that the Fuglede-Kadison determinant ( )x  of an operator ( )px L M  (0 )p   can be de-

fined by 
0

( ) exp( (log )) exp( log ( )),xx x tdv t


      where xdv  denotes the probability measure on R  

which is obtained by composing the spectral measure of x  with the trace .  It is easy to check that 

0
( ) lim .

pp
x x


   

As the usual determinant of matrices,   is also multiplicative: ( )xy   ( ) ( ).x y   We refer the reader 
for information on determinant to [1, 2, 9–20]. 

Outers 

Definition 2.1. Let 0 ( )H A  be the closure of A in the topology of convergence in measure. We say that 
0 ( )h H A  is outer in 0 ( )H A  if hA  is dense in 0 ( )H A  with respect to the topology of convergence in meas-

ure. 
We say that an element 0 ( )h H A  is uniform outer in 0 ( )H A  if there is a sequence na A  such that 

{ }nha  is a uniformly bounded sequence in A in operator norm, which converges to 1 in measure. 
The following is the extension to the case 1p   of [4] Proposition 2.3. 

Proposition 2.2. Let 0 p    and ( ).ph H A  Then h  is outer in 0 ( )H A  in the sense above if h  is 

outer in ( ).pH A  
Proof.  The proof is the same as that of [4] Proposition 2.3. 
By [3] Theorem 2.1, an argument similar to that of [4] Proposition 2.4 and 2.5, we have the following 

results. 
Proposition 2.3. Let 0 .p    Then ( )ph H A  is outer if and only if ( )E h  is outer in ( )pL D  and 

0 0[ ] ( ),p
phA H A  where 0 0( ) [ ] .p

pH A A  

Proposition 2.4. Let 0 .p    Then ( )ph H A  is outer if and only if ( )E h  is outer in ( )pL D  and 

0( ) [ ] .pE h h hA   

Definition 2.5. ( )i  We say that an element ( )ph H A  is uniform outer in ( )pH A  if there exists a se-

quence na A  such that { }nha  is a uniformly bounded sequence in A in operator norm, and 1nha   in p
-norm. 

( )ii  We say that 0 ( )h H A  is uniform outer in 0 ( )H A  if there is a sequence na A  such that { }nha  is 
a uniformly bounded sequence in A in operator norm, which converges to 1 in measure. 

Theorem 2.6. Let 0 .p    Suppose that h  is outer in ( )pH A  and ( ) 0.h   Then h  is uniform outer 

in ( ).pH A  
Proof. We will use the case 1p   already proved in [4]. Thus assume 1.p   Choose an integer m such 

that 1.np   By [3] Theorem 3.4, there exist 1,..., ( )np
nh h H A  such that 1 nh h h    and 
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1 , 2,3, , .kh A k n       Since 1( ) 0,h   by [4] Theorem 2.8, there exists a sequence Aam   such that  mah1  

is a uniformly bounded sequence in A in operator norm, and 11 mah  in p -norm. Set 1 1
2... .m n mb h h a   

Now Abm   such that  mhb  is a uniformly bounded sequence in A in operator norm, and 1mhb  in p

-norm. Consequently, h  is uniform outer. 
Lemma 2.7. Let 0 ,p   ( ).ph H A  If ( )E h  is outer in ( ),pL D  then h  is of the form h ug  where 

( )pg H A  is outer and u A  is a unitary. If ( ( )) 0,E h   then ( ) 0.g   

Proof. This result is proved in [4] for 1.p   Let 
1 1 1

p r q
   and 1 .r    By [3] Theorem 3.4, there 

exist 1 ( )rh H A  and 2 ( )qh H A  such that 1 2h h h  and 1
2 .h A   Then 1 2( ) ( ) ( )E h E h E h  and 

1 1
2 2( ) ( ).E h E h   Hence 1( )E h  is outer in ( ).pL D  By [4] Lemma 4.1, there are outer 1 ( )rg H A  and uni-

tary u A  such that 1 1.h ug  Set 1 2.g g h  Then ( )pg H A  is outer and .h ug  The second part is trivial. 
An argument similar to that of [4] Lemma 4.3, we have the following result. 
Lemma 2.8. Let ( )ph L M  be given, where 0 ,p    and suppose that 

p p
ah h  for a contraction 

.a M  Then * .h a ah  If in addition the left support of h  is 1,  then a  is a unitary.  
Using Lemma 2.8, [3] Theorem 2.1 and an argument to that of [4] Theorem 4.4, we obtain the following. 
Theorem 2.9. Let ( )ph L A  be given, where 0 ,p    and let P  be the canonical quotient map from 

[ ]phA  to 0[ ] [ ] .p phA hA  Then h  will be outer if and only if ( )E h  is outer in ( )pL D  and ( ) ( ) .
p

E h P h  

Theorem 2.10. Let ( )pf L M (0 ).P    Then the following conditions are equivalent: 

( )i  f  is of the form f uh  for some outer ( )ph H A  and a unitary .u M  

( )ii  The map 0[ ] / [ ] : ( )p pD fA fA d P fd   is injective, where P  is the quotient map 

0:[ ] [ ] / [ ] .p p pP fA fA fA  

( )iii  0[ ]pfe fA  for every nonzero projection e  in .D  

Proof. ( ) ( ).i ii  Let f  be of the form f uh  for some outer ( )ph H A  and a unitary .u M  Then 

[ ] [ ] ( )p
p pfA u hA uH A   and 0 0 0[ ] [ ] [ ] .p p pfA u hA u A   Thus the 0 0[ ] / [ ] ( [ ] ) / ( [ ] )p p p pfA fA u A u A = 

( ),puL D  which ensures the validity of ( ).ii  
( ) ( ).ii iii  It is trivial. 

( ) ( ).iii i  This result is proved in [4] for 1.p   Let 
1 1 1

p r q
   and 1 .r    Then there exist 

1 ( )rf L M  and 2 ( )qf L M  such that * * *
1 2f f f  and 1

2 ,f M   so 2 1.f f f  It is clear that 1 1 0[ ] pf e f A  

for every nonzero projection e  in .D  Hence, by [4] Theorem 4.6, there are outer 1 ( )rh H A  and unitary 

v M  such that 1 1.f vh  Let 2 2 ,g f v  then 2 ( )qg L M  and 1
2 .g M   By [3] Theorem 3.1, there are 

2 ( )qh H A  and unitary u M such that 2 2g uh  and 1
2 .h A   Hence 2 1h h  is outer and .f uh  
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Коммутативті емес pH  кеңістігінің сыртқы элементтері 

Мақалада тура нормаланған кеңістіктегі жəне ішкі алгебраның ішкі диагоналі болатын фон Нейман 
алгебрасы қарастырылды. Авторлар алдыңғы жұмыстарда алынған нəтижелерді қолданды. 
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Внешние элементы некоммутативных pH  пространств  

В статье рассмотрена алгебра фон Неймана, оснащенная точным нормальным нормированным про-
странством и являющаяся поддиагональю подалгебры. Авторами были использованы ранее получен-
ные результаты. 




