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Homogenization of Attractors to Ginzburg-Landau Equations in
Media with Locally Periodic Obstacles: Critical Case

In this paper the Ginzburg-Landau equation is considered in locally periodic porous medium, with rapidly
oscillating terms in the equation and boundary conditions. It is proved that the trajectory attractors of
this equation converge in a weak sense to the trajectory attractors of the limit Ginzburg-Landau equation
with an additional potential term. For this aim we use an approach from the papers and monographs of
V.V. Chepyzhov and M.I. Vishik concerning trajectory attractors of evolution equations. Also we apply
homogenization methods appeared at the end of the XX-th century. First, we apply the asymptotic methods
for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means
of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional
spaces with weak topology, we derive the limit (homogenized) equation and prove the existence of trajectory
attractors for this equation. Then we formulate the main theorem and prove it with the help of axillary
lemmas.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, strange term, porous medium.

Introduction

This work is connected with modelling of processes in perforated materials and porous media.
Asymptotic analysis of solutions to problems in porous media is sufficiently complicated, especially in
the case of a threshold value of sizes and a number of cavities with nontrivial Robin (Fourier) conditions
on their boundaries, i.e. in the case of a singular perturbation of problems. In this situation the limit
equation describing the effective behavior of the model, has a different structure if one compares it
with the given one. We investigate the situation when an additional potential term appears in the limit
Ginzburg-Landau equation and prove the Hausdorff convergence of attractors as the small parameter
tends to zero. Thus, we construct the limit attractor and prove the convergence of the attractors of the
given problem, to the attractor of the limit problem with an additional potential in the equation. Here
we investigate the asymptotic behavior of attractors to an initial boundary value problem for complex
Ginzburg-Landau equations in porous media. In many pure mathematical papers one can find the
asymptotic analysis of problems in porous media (see, for example, [1-7]). Interesting homogenization
results have been obtained for periodic, almost periodic and random structures. We want to mention
here the basic frameworks [8-11|, where one can find the detail bibliography.

About attractors see, for instance, [12-14| and the references in these monographs. Homogenization
of attractors were studied in [14-17] (see also [18-21]).

*Corresponding author.
E-mail: abylaikhan9407Q@gmail.com
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In this paper we present the proofs of weak convergence of the trajectory attractor 2. to the
Ginzburg-Landau equation in a perforated domain, as € — 0, to the trajectory attractor 2 of the
homogenized equation in some natural functional space. Here, the small parameter € characterizes the
linear size of cavities and the distance between them in porous medium. We prove the appearance of
a so called “strange term” (the potential term) in the limit equation (for example see works [1,2]).

1 Statement of the problem

We start by the definition of a perforated domain. Suppose Q C R% d > 2, is a smooth bounded
domain. Denote

1 1
Y. ={j €z : dist (ef, 00) > eVd}, O={¢:—5<g <5 i=1....d}

Considering a smooth function F(z,{) 1-periodic in &, which satisfies F(z,§) ccon > const > 0,
€

F(z,0) = =1, V¢F # 0 as £ € O\{0}, we define D = {z € ¢ (O +j) | F(z,¥) < 0}. The perforated
domain now is defined in the following way:

Q. =0\ | J D5

JEY,

Denote by w the set {¢ € R? | F(x,€) < 0}, and by S the set {¢ € R? | F(x,&) = 0}. The boundary
00 consists of 9 and the boundary of the holes S, C 2, S. = (9Q,) N Q.
We study the asymptotic behavior of attractors to the problem

Oue . :
= L+ ai)Au, + Rz, D) ue— (14 Bz, D) fucluc + g(a), @ € 0,
Oue
(1+ ai)a—i + eq(z, %)uE =0, x € Se,t>0, (1)
Uue = 0, x € 01,
ue = U(x), € Q,t=0,

where « is a real constant, the vector v is the outer unit vector to the boundary, u = uy + iug € C,
g(x) € CY(Q;C), a nonnegative 1-periodic in ¢ function g(x, &) belongs to C(; R?). Suppose that

—p1 < B(x,8) < B2, —R1 < R(x,£) < Ry (where Ry, Ry, 1,52 > 0), (2)

for z € Q, ¢ € R? and the functions R (z,¢) and B (x, &) can be averaged in Lo 4, (). The averages
are R(z) and B(z) respectively, i.e.,

/ R(z,&) p1(x)dx — / R(x)p1 (v)dz,
Q Q
| peo@@ar + [ Bayea
for any ¢i(x) € L1(Q2), where £ = L ase— 0+ .
€
We define the following spaces: H := Ly (2; C), He := Lo(Q; C), V := H}(;C), V. := H(Q; C; 09)

is a set of functions from H'(Q; C) with a zero trace on 99, and L, := L,(€;C), Ly, := L,(2; C).
These spaces have, respectively, the next norms

Mﬁz/wmwa mm:/thm,|mﬁ=/mem,
Q Qe Q
nvui:::J/ V() d, anip:==jng<xnpdx, nvnipe:=:/£ o(a)Pda.

€
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Let us denote that dual spaces to V by V’ := H~1(Q;C) and, moreover, L, is the dual spaces of Ly,
where ¢ = 25, in analogous way V and L are the dual spaces of V¢ and Ly, .

As usually (see [14]) we investigate the behavior of weak solutions to initial boundary value problem
(1), i.e., the functions

ue(r,s) € LR H) N LY (R V) N LY (Ry; Ly)

which satisfy problem (1) in the sense of integral identity, i.e. for any function ¢ € C§°(R4; V. NLy,)
we have

//u dxdt+1+a1/ /vuewdxdt / / (( Ue—
<+,8(x ))\ue\2u6>)wdxdt+e/+oo/ a;— uewdadt / / x) dadt. (4)

Since uc(x,t) € Ly(0,M;Ly,), one can get R (2, L) ue(z,t) — (1+ B (2, L)1) |ue(a, t)Puc(z,t) €
Lyy3(0, M;Ly/3.). In addition, since uc(z,t) € La(0,M;Ve), we have (1 + ai)Auc(z,t) + g(z) €
L2(0, M;V!). Consequently, for any weak solution u.(x, s) to problem (1) we obtain

6”6(33’ t)
ot

Keeping in mind the Sobolev embedding theorem, we conclude Ly/3(0, M; Ly 3 ) + L2(0, M; Vi) c
Ly/3 (0, M;H_"). Here the space H." := H~"(2; C) and r = max {1, d/4}. Therefore, for an arbitrary
weak solution ue(x,t) of (1) we get %f’t) € Ly3(0, M;HZT).

Remark 1.1. Using the standard approach from [13], one can prove the existence of weak solution
u(z, ) to the problem (1) for every U € H, and fixed e, satisfying u(x,0) = U(z).

It is possible to prove the following basic Lemma similarly to Proposition 3 from [20].

Lemma 1.1. Suppose that uc(z,t) € LY*(Ry; V) N LY(Ry; Ly,) is a weak solution to (1). Then

(i) u € C(Ry; Ho);

(ii) the function ||ue(,t)||? is absolutely continuous on R and, moreover,

€ L4/3(07 M7 L4/3,6) + LQ(Oa Ma Vé)

1d 2 2 4 x 2
5370 + IV O+ 01, = | R () Jue )P+

+ e/SE q (x, %) |ue(x,t)|*do = /QE Re (g(x)ue(x,t)) dz,

for almost every t € R,.

We fix €. Bellow, where it is natural, we omit the index € in the notation of functional spaces. Now we
use the approach described in Section 2 to construct the trajectory attractor of (1), which has the form
(7) if weset By =L,NV, Eg=H", E=Hand A(u) = (1+ai)Au+R(-)u— (1 + B8()i) |[ul*u+g(-).

To define the trajectory space KT for (1), we use the general approaches of Section 2 and for every
[t1,12] € R we have the Banach spaces

Fiy g = La(t,t2;Lg) N La(t1,t2; V) N Loo(t1, t2; H { ‘ € Lyjs (tr1,to; H™ )}

with the following norm

ov
HUHftl,zz = HUHL4(t17t2;L4) + HUHLQ(tLtQ;V) + HUHLOO(QM;H) + E

Lysz(tyte;HT)
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Setting Dy, 1, = Lq (t1,t2; H™") we obtain Fy, 1, € Dy, 4, and for u(s) € Fy, 4, we have A(u(s)) €
Dy, t,- One considers now weak solutions to (1) as solutions of an equation in the general scheme of
Section 2.

Consider the spaces

0
Pt = LRy L) LRy V) B Ry N {0 | 5 € L) )

0
FI% = LRy L) 5 RV 1 SR HO N {0 | 5 € L@ |

We introduce the following notation. Let K be the set of all weak solutions to (1). For any U € H
there exists at least one trajectory u(-) € K} such that u(0) = U(z). Consequently, the space K to
(1) is not empty and is sufficiently large.

It is easy to see that K C F!°¢ and the space K is translation invariant, i.e., if u(s) € K}, then
u(h +s) € K for all h > 0. Hence, S(h)KT C K} for all h > 0.

We define metrics py, ¢, (-, -) in the spaces F;, 1, by means of the norms from Lo(t1,t2; H). We get

1/2

M
poar(u, v) = ( [ ute) - v(s)l!%ds> Vu(), () € For.

The topology @{fc in F ﬂfc (respectively G)le"i in }"éojﬁ) is generated by these metrics. Let us recall that
{op} C F© converges to v € FP¢ as k — oo in O if [jug(:) — V()M 20,0581y — 0 (K — o00) for
each M > 0. Bearing in mind (8), we conclude that the topology @lfr’c is metrizable. We consider this
topology in the trajectory space K of (1). Also it can be seen that the translation semigroup {S(t)}
acting on K, is continuous in this topology.

Using the scheme of Section 2, one can define bounded sets in the space K by means of the Banach
space fi. We naturally get

v

Fo = Li(Ry;Ly) N L5 (R4 ; V) N Lo (R4 H) N {v ) o € Lg/g(R+;Hr)}

and the set .7-"3 is a subspace of F lfc.

Consider the translation semigroup {S(¢)} on K, S(¢) : KF — KF, t > 0.

Suppose that K. is the kernel to (1), that consists of all weak complete solutions u(s), € R, to our
system of equations, bounded in

v

FO = L(R;Ly) N L5(R; V) N Loo (R; H) N {v o7 € L} 5(R; Hr)} :

Proposition 1.1. Problem (1) has the trajectory attractors 2l in the topological space @lfc. The
set 2, is uniformly (w.r.t. € € (0,1)) bounded in F2 and compact in ©'°¢. Moreover, 2, = I K, the
kernel K. is non-empty and uniformly (w.r.t. € € (0,1)) bounded in F°. Recall that the spaces % and
@lfr’c depend on e.

To prove this proposition we use the approach of the proof from [14]. To prove the existence of an
absorbing set (bounded in 7% and compact in ©%¢) one can use Lemma 1.1 similar to [14].

It is easy to verify, that 2. C By(R) for all € € (0,1). Here By(R) is a ball in F% with a sufficiently
large radius R. By means of Lemma 2.1 we have

Bo(R) € L¥“(Ry; H' ™), (5)
Bo(R) € C*“(R.;H ™), 0<d<1. (6)
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Formula (5) immediately follows, if we take By = H™", E = H'™9 E; = H' = V, and p; = 2,
po = 4/3, keeping in mind the compact embedding V € H'~°. Formula (6) follows from the compact
embedding H € H, if we take Eg = H*(D), E=H"% E; =H' =V, and py = 4/3.
Bearing in mind (5) and (6), the attraction to the constructed trajectory attractor can be strengthen.
Corollary 1.1. For any bounded in .Fﬂ’r set B C KT we get

diStL2(0’M;H1—5) (H(),MS(t)B, H07MICE) — 0 (t = o0),
diStC([QM];Hf&) (H()’MS(t)B, H07MICE) —0 (t — OO),

where M is a positive constant.
2 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution equations.
Consider an autonomous evolution equation of the form

Frin A(u), t>0. (7)
Here A(-) : E1 — Ey is a nonlinear operator, Ey, Fy are Banach spaces and E; C Fy. As an example
one can consider A(u) = (1 + ai)Au+ R(-)u — (1 + B()i) [ul?u + g(-).

We study weak solutions u(s) to (7) as functions of parameter s € Ry as a whole. To be precise
we say that s =t denotes the time. The set of solutions of (7) is said to be a trajectory space Kt of
equation (7). Now, we describe the trajectory space K1 in detail.

Consider solutions u(s) of (7) defined on [t1,t2] C R. We consider solutions to problem (7) in
a Banach space F, 1,. The space Fy, ¢, is a set f(s),s € [t1,t2] satistying f(s) € E for almost all
s € [t1,t2], where E is a Banach space, satisfying E; C E C Ej.

For instance, F, 1, can be considered as the intersection spaces C([t1,t2]; E), or Ly(t1,t2; E), for p €
[1,00]. Suppose that Tl 1, Fr my C© Fty ot and [y 4, fll 7, ., < Cltaste, 1, ) fll7, ., Y € Frim
Here [t1,t2] C [11, 2] and II;, 4, denotes the restriction operator onto [tq, 2], constant C(t1,t2, 71, 72)
does not depend on f.

Suppose that S(h) for h € R denotes the translation operator S(h)f(s) = f(h+s). It is easy to see,
that if the argument s of f(-) belongs to the segment [t1, 2], then the argument s of S(h)f(-) belongs
to [t1 — h,to —h] for h € R. Suppose that the mapping S(h) is an isomorphism from Fy, ¢, to Fy, _p ¢,—n
and |S(R) fll 7, .y n = IfllFt12s V€ Fiyto- It is easy to see that this assumption is natural.

Suppose that if f(s) € Fy, +,, then A(f(s)) € Dy, 1,, where Dy, 4, is a Banach space, which is larger,
Firts € Dy, t,. The derivative %Sf) is a distribution with values in FEj, a{ € D'((t1,t2); Ep) and we
suppose that Dy, 1, C D'((t1,1t2); Ep) for all (¢1,t2) C R. A function u(s) € Fy, 4, is a solution of (7),
if %?(s) = A(u(s)) in the sense of D'((t1,t2); Ep).

Let us define the space Fi°¢ = {f(s), s € Ry | Uy, 1, f(s) € Fiy s, ¥ [t1,t2] C Ry} For instance,
if 7y, = C([t1,t2]; E), then Fi°© = C(Ry; E) and if Fy, 4, = Ly(t1, to; E), then Fi°¢ = Li*(R; E).

A function u(s) € Fi° is a solution of (7), if Iy, y,u(s) € F, ¢, and u(s) is a solution of (7) for
every [t1,t2] C R4.

Let Kt be a set of solutions to (7) from F°. Note, that KT in general is not the set of all solutions
from ]-"_lfc. The set KT consists on elements, which are trajectories and the set KT is the trajectory
space of the equation (7).

Suppose that the trajectory space K is translation invariant, i.e., if u(s) € Kt, then u(h+s) € KT
for every h > 0.

Consider the translation operators S(h) in ¢ : S(h)f(s) = f(s+h), h > 0. It is easy to see that
the map {S(h),h > 0} forms a semigroup in F1° : S(h1)S(ha) = S(h1 + ha) for hi,hy > 0 and in
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addition S(0) is the identity operator. Next step is to change the variable h into the time variable t.
The translation semigroup {S(t),t > 0} maps the trajectory space K to itself: S(¢)KT C KT for all
t>0.

We investigate attracting properties of the translation semigroup {S(¢)} acting on the trajectory
space Kt C F _lfc. Next step is to define a topology in the space ]:j_oc.

One can see, that metrics py, 4,(-,-) is defined on F3, 4, for every [t1,t2] C R. Suppose that

Pty to (Ht1,t2f7 Ht1,t2.g) S D(tl,t277'1,7'2)[771,72 (fa g) vf7g S ‘FT1,7'27 [tlatQ] g [7-177—2])

ptl—h,tg—h(s(h’)fv S(h)g) = pt1,t2(fa g) \v/fvg € ]:tl,t2? [tlytZ] C Ra h € R.

Now, we denote by ©y, s, metric spaces on Fy, 4,. For instance, py, 1, is metric associated with the norm
|- I, ., of Ft,,to- At the other hand, in application pt, +, generates the topology Oy, ¢, that is weaker
than the strong one of the 7, 4,.

The projective limit of the spaces Oy, 4, defines the topology @lfc in F¢, that is, by definition,
a sequence {fi(s)} C Fi tends to f(s) € Fi°¢ as k — oo in O if py, 4, (4 4o fi Mty 1o f) — 0 as
k — oo for all [t1,ts] C Ry. It is possible to show that the topology @lfc is metrizable. For this aim
we use, for example, the Frechet metric

—m Pom(f1, f2)
L+ pom(fi, f2)

pi(fr fo) =2

meN

(8)

The translation semigroup {S(¢)} is continuous in ©'. This statement follows from the definition
of @lfc.
We also define the following Banach space

FL={f(s) € FEL || fllz < +oo},

where the norm
£l 72 = sup [[To,1f(h + 8)[| 7.1
h>0

We remember that ff’r C Gifc. We need from our Banach space ]-"i only one fact It should define
bounded subsets in the trajectory space K. For constructing a trajectory attractor in KT, instead
of considering the corresponding uniform convergence topology of the Banach space ]:3_, we use much
weaker topology, i.e. the local convergence topology GIfc.

Assume that KT C F?, that is, every trajectory u(s) € KT of equation (7) has a finite norm. We
define an attracting set and a trajectory attractor of the translation semigroup {S(t)} acting on K*.

Definition 2.1. A set P C O is called an attracting set of the semigroup {S(¢)} acting on KT in
the topology @lfc if for any bounded in ]:3_ set B C KT the set P attracts S(t)B as t — +oo in the
topology ©%, i.e., for any e-neighbourhood O.(P) in ©%¢ there exists t; > 0 such that S(t)B C O(P)
for all ¢t > t;.

It is easy to see that the attracting property of P can be formulated equivalently: we have

diSt@mM (H07M5(t)87 HO,MP) — 0 (t — +OO)7

where distp(X,Y) := sup,¢cy distp(z,Y) = sup,cx infyey pam(z,y) is the Hausdorff semidistance
from a set X to a set Y in a metric space M. We remember that the Hausdorff semidistance is not
symmetric, for any B C KT bounded in ]-'j’_ and for each M > 0.

Definition 2.2 ([14]). A set 2 C KT is called the trajectory attractor of the translation semigroup
{S(t)} on KT in the topology ©%°, if
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(i) 2 is bounded in F¢ and compact in ©',
(ii) the set 2 is strictly invariant with respect to the semigroup: S(¢)2 = 2 for all ¢ > 0,
(iif) 2 is an attracting set for {S(¢)} on K in the topology ©¢, that is, for each M > 0 we have

diSt@(),M (H07MS(t)B, H07M91) —0 (t— +00).

Let us formulate the main assertion on the trajectory attractor for equation (7).

Theorem 2.1 ([13,14]). Assume that the trajectory space KT corresponding to equation (7) is
contained in .7-"_1;. Suppose that the translation semigroup {S(t)} has an attracting set P CK* which is
bounded in F¥ and compact in ©°. Then the translation semigroup {S(¢),t > 0} acting on Kt has
the trajectory attractor 2l C P. The set 2 is bounded in .7-"3_ and compact in @l_fc.

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the structure of the
trajectory attractor 2 to equation (7). We study the equation (7) on the time axis

ou
Frie A(u), t € R. 9)

Note that the trajectory space KT of equation (9) on R, have been defined. We need this notion
on the entire R. If a function f(s), s € R, is defined on the entire time axis, then the translations
S(h)f(s) = f(s+ h) are also defined for negative h. A function u(s),s € R is a complete trajectory of
equation (9) if II u(s + h) € KT for all h € R. Here I} = Il o denotes the restriction operator to
R,.

We have ffC,F_If_, and @lfc. Let us define spaces F°¢, Fb, and ©!°¢ in the same way:

Floo = {f(s),s € R | My 1, f(5) € Fryy ¥ [t1,82] SRy FPi={f(s) € F| | fll o < 400},
where

[fll 7 := sup [To.1 f(h + 8)[| 7y, - (10)
heR

The topological space ©!°¢ coincides (as a set) with F°¢ and, by definition, fi(s) — f(s) (k — o0)
in ©1°¢ if Tl 4, fr(s) — gy 4, f(5) (k — 00) in Oy 4, for each [t1,t2] C R. Tt is easy to see that O is
a metric space as well as 95?0.

Definition 2.3. The kernel K in the space F° of equation (9) is the union of all complete trajectories
u(s), s € R, of equation (9) that are bounded in the space F? with respect to the norm (10), i.e.

Mo u(h+ s)||7, <Cu VhER.

Theorem 2.2. Assume that the hypotheses of Theorem holds. Then 24 = 11 I, the set K is compact
in ©%¢ and bounded in F°.

To prove this assertion one can use the approach from [14].

In various applications, to prove that a ball in ]-"3 is compact in @lfc the following lemma is useful.
Let Ey and F7 be Banach spaces such that F; C Ey. We consider the Banach spaces

WPLPO(O?M;EDEU) = {Qb(s),s e€o,M ’ w() € Lpl (OvM;El)? ¢/(> € LPO(OvM;EO)}7

Woo,po(oaM;EbEU) = {¢(S)?S S 07M ’ Qp() € Loo(OvMa E1)7 W() € LPO(O,M; EO)}»

(where p; > 1 and pg > 1) with norms

M 1/p1 M 1/po
ol = ([ Tl as) o+ ([T woimas)
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M 1/po
ol . o= esssup {[0()]1z, | s € [0, M]} + ( / ||w'<s>||%°0ds> .

Lemma 2.1 (Aubin-Lions-Simon, [22]). Assume that E; € E C Ey. Then the following embeddings
are compact:

Wi p0(0,T5 Ev, Ey) € Ly, (0,T; E), Weopo (0,15 Ev, Eg) € C([0,T]; E).
In this paper we investigate evolution equations and their trajectory attractors depending on a
small parameter € > 0.
Definition 2.4. We say that the trajectory attractors 2, converge to the trajectory attractor 2 as
€ — 0 in the topological space @lj_)c if for any neighborhood O(2() in @lfc there is an €; > 0 such that
2. C O®A) for any € < €1, that is, for each M > 0 we have

diste, ,, (Ilo,ar2e, o, a2A) — 0 (€ — 0).
3 Formal homogenization procedure

Let M; be a solution to a problem

AgMi (.Z‘,f) =0 in W,

M;(x, . 11
OMi(z, &) 8(13/6 §) =—-r; on S(x). (11)
Denote by (-) the integral over the set 0 Nw, and Q(z fs q(x, &) d

The limit problem has the form

([ ouy d L OMi(2,©)\ duo
o e g (< g >ax>

—R(x)uo <1 B(a)i) uol® uo + Q(@)uo = [ONw|g(z), z €, (12)
ug = 0, e 0, t>0,
up = U(z), xeQt=0.

\

It is easy to see that system (12) also has trajectory attractor 2 in the trajectory space Kj
corresponding to problem (12) and 24 = II; K, where K is the kernel of system (12) in .7:_?_.
The integral identity for problem (12) takes the form

ov ) OM;(z,§) \ Oug Ov
_/]R+/§2u0mdtda:+(1+a1)/R+/ Z<” 7, >8:1:18:c]dtd+
/R+/ z)ug — (14 B(x ))|u0|2u0—Q(a:)u0>vdtdx:/RJr/Q|Dﬂw]g(x)vdtda:

for any function v € C§°(R4; V N Ly).

Remark 3.1. Note that M;(z,&) are not defined in the whole 2. We can extend M;(z,£) into the
interior of the cavities retaining the regularity of these functions by means of the technique of the
symmetric extension, keeping the same notation for the extended functions.
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4 Auziliaries

We study the asymptotics of solution uc(x) as € — 0 to the next boundary-value problem

—(1+ ai)Aue = g(x) in

. 8“6 € o
o e o
ue =0 on Of).

Here n. is the internal normal to the boundary of cavities and g(x, ) is a sufficiently smooth 1-periodic
in ¢ function.

Definition 4.1. The function u. € H' (2, 98) is a solution of problem (13), if the following integral
identity

(1+ od) . Vue(x) Vo(z) dz + 6/56

q (x, %) ue(x)v(x)ds = /6 g(x)v(x)dx

holds true for any function v € H'(Q., 00).
Here H'(Q¢,09) is the closure of the set of functions belonging to C*°(Q°) and vanishing in a
neighborhood of 9Q, by the H'(Q¢) norm.

Here we derive the leading terms of the asymptotic expansion and, then, construct the homogranized
problem. For this aim we consider the solution u.(z) to (13) as an asymptotic series

ue(z) = up(z) + euy (a:, %) + 2uy <x, %) + Sug (x, %) +... (14)

Substituting expression (14) in equation (13) and bearing in mind the relation

0 x 0 10
S (2.2) = (&jcm,f) + 6354(“)) ‘ ,

=2
we get the formula
=IO A () = Agug(a) + e (Apun(a )| _, +2(Va,Vem(@,€) |+
1+ ai 9 52% ) ) g:%
1
2 (Ben(@O)|_, +¢ (Aaua(e.&) | _, +26(Va, Veur. ) | _,

+ (Bem(e, )| _, +¢ (s, ) |,

€ €

26 (Va, Veus(2,6) | _, +e(Beus(,&) | _, +... (15)

T

e=2

Similarily, substituting (14) into boundary conditions in (13), we get the relation

ou q(xz, % N q(z, 2
= 37/: e 1(+ cii) ue = (Vatio, ve) + € 1(+ ;i) uo + € (Vgur, ve) +
 (Fonleg )+ G (G o)
£1§:f7€ 1+ aid 1 z U2, Ye £2§:%7e
a (@, q(z,
-+ 631(_i_oii)Ul2 + 63 (Vmu37l/e) + 62 (V£U3}§:%7VE) + 641(_’_0661)“3 + .. » (16)

which means that it satisfies the boundary condition on S..
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The normal vector v depends on z and ¢ in Q.. Now, we consider x and § = ¢ as independent
variables, and then we represent v, in ). in the form

v, ) = 2w, 8)| _, +edl(w,8)|

€ e

where v is a normal vector to S(z) = {¢| F(x,&) = 0},
vl =1+ 0O(e).

Collecting all the terms of order ¢! in (15) and of order € in (16), we deduce the auxiliary problem

AgUl (x,f) =0 in W,
0 17
Wlr8) _ (g (up(@),i)  on S an
v
which we solve in the space of 1-periodic in ¢ functions and here = is a parameter, w := {£ €

T?| F(z,£) > 0}. This is the cell problem appearing in case of Neumann conditions on the boundary

of cavities. It is easy to see that the compatibility condition / (Vyuo(z),v(€)) do = 0 of (17) is
S(z
satisfied, and the solution of this problem is the first corrector in (14).

At the next step we collect all the terms of order € in (15) and of order €' in (16). This gives us

A§u2 ('T’ f) = - 19_5_1'()11 - AxUO(x) -2 (vfa vxul(J:? 5)) n w,
%i‘gjf) = —(Vawr(2,€),0) — (Veur (2,), 1) - (18)
— (Vauo(z),v) — a(z, &) up(x) on S(z).

1+a1

The 1-periodic in & solution of the latter problem is the second term of the internal asymptotic
expansion of u(z).

It is easy to see that for our analysis it is convenient to represent the solution u;(z,&) of problem
(17) in the following form:

ul(xaf) = (gradxuo(x)’ M(:C,f)) )

where 1-periodic vector—function M (z,&) = (Mi(z,£), ..., Mg(z,£)) is a solution to (11).
Now, (18) can be rewritten as follows

AgUg(az,f) - _19-?6)!1 2;1 (22;;08% 8M5(§“j7£)_
d
S S S g - 3 el )
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Writing down the solvability condition in the last problem, we derive the equation:
g(z) 0?ug(z) OM;(z, &) Oug(z) O>M;(x, &)
A 2 + 2 d¢ =
L. (1 ai T Z e Z o005 )*©

d 82 X OM;(z,
:/Q < 2 MM"(JJ’@W + ?x@ @8 L
£ O > Z

Lj

2y, l,j:].
duo(z) OM;(x,6) , = Oug(x) ,  q(x.€)
+jz:1 oz, 9, Vj+i:1 oz, V+1+oa o(x) |do. (19)

From (19) by the Stokes formula we derive the equation

IR M(x, )\ duo(z) = /OMi(z, &)\ uo(x)
|Dﬂw\Axuo(a:)+i§::1< gty 2 +MZ:1< o)) T
Jug ()

g@) _ Q)
8.%1' ’

uls -
HENw T T

(20)

which is the limit equation in €. We denoted by < - > the integral over 0 Nw, and Q(z) =

fS(x (z,€) do. Moreover, U;(z fS x)< 8§ —|—1/Z() do.

It is not necessary to calculate Ui(x), since by the selfadjointness of the operators of the given
problems and the convergence of the corresponding belinear forms, we get that the G-limit operator
is necessary selfadjoint. Therefore, the limit equation (20) takes the form:

d i\ L (v
(rai) 30 o2 (5 + 22 200 4 pnae) = Qo) )

i1 Zj 863 817,
and, consequently,
ia<aM x§>> Z<82Mi<x,§>>
= 0 8f] = 8.7}]' 85] .

It is easy to see that <(5Zj + é ’£)> is a smooth positively defined matrix (see [9]).

The next statement is about the limit behavior of the solution to (13).
Theorem 4.1. Suppose that g(z) € C'(R?) and that g(x, £) is smooth enough nonnegative function.
Then, for any sufficiently small e problem (13) has the unique solution and the following convergence

luo — uellgr ) — 0

takes place, where ug is a solution of equation (21) with zero Dirichlet conditions on 9.
Remark 4.1. In fact, in the formulation of Theorem 4.1 the condition g(z,&) > 0 can be replaced
by the weaker condition Q(z) > 0

4.1 Preliminary Lemmas

Here we give some technical propositions, which we use in the further analysis. Some of these
propositions have been proved in [3,23]. We omit their proofs.
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Lemma 4.1. If the conditions of Theorem are satisfied, then the Friederichs type inequality

x
| 19ear e [ a o) s> Cullolfanon
is valid for any v € H(Qc, 99Q), where C; is independent of e.

Now we formulate a modified version of Lemma 5 from [23].

Lemma 4.2. If we suppose

b
||:| N w‘ ONw

Q) df—/s( 4l €) do =0

then the following inequality
1

q (az, %) v(z) do

< Coellvllgr(aq

Q(z)v(x) dx — e/

Se

holds for any v(z) € H (e, 09); the constant Cy is independent of e.
Proof. The proof of this assertion can be found in [24].

Lemma 4.3. 1f y, is a solution to

—(1+ ad)Aye = h¢(x) in Qe
~ OYe T B

(1+ ai) a0, + eq (:n, ;) Ye=0 on S,

Ye =10 on €,

where he(z) = g(z) for x € Q. and 0 otherwise, then

el 1 () < Cae.

The proposition, which is a modification of Lemma 5 from [23], formulated below.
Lemma 4.4. Suppose w®(z) € Loo(€2), and let 1€ belong to {z € Q|dist (z,0) < Cye}. Then the
following inequality

3
| o @), Vew(@)vie) de| < Cred oo ol

€

holds for any v(z) € H'(£,dQ); the constant Cy is independent of e.
Proof of the Theorem 4.1. The proof of this assertion can be found in [23].

5 The main assertion

Here formulate the main proposition concerning the Ginzburg-Landau equation.
Theorem 5.1. The following limit holds in the topological space @fﬁc

A —2A ase—0+. (22)

Moreover, B
Ke—Kase—0+ in 0 (23)

Remark 5.1. The functions belonging the sets 2 and K. are defined in the perforated domains 2.
But, all these functions can be extended insides the cavities remaining their norms in the spaces H, V,
and L, (without perforation) with the constants independent of the small parameter (the prolongation
of functions defined in perforated domains, see, for instance, in [10; Ch.VIII]). Hence, in Theorem 5.1,
we have all the distances in the spaces without perforation.
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Proof. 1t is easy to see that (23) implies (22). Hence, it is sufficient to prove (23), i.e., for every
neighborhood O(K) in ©!¢ there exists ¢; = €1(O) > 0, such that

K. Cc OK) for e<e. (24)

Assume that (24) is not true. Then there exists a neighborhood O’(K) in ©!°° a sequence ¢, —
+ (k — 00), and a sequence uc, () = uc, (s) € K¢, , such that

ue, ¢ O'(K) forall keN.

The function ue, (s),s € R is a solution to

”
8(7;? = (14 od)Aue, + R <:1:, i) Ue,, — <1 +8 (m, i) i> |Uek|2Uek tg(x), req,,
(1 ai) 88u;k * 6kq<x’ %>ue’“ =0, T € 8¢yt >0,
U, =0, x € 09,
U, = U(x), v 0, 0.

on the axis ¢t € R. To get the uniform in e estimate of the solution we use the following Lemmas (see
[25; Ch. III, §5| and [26] respectively).

By means of integral identity (4) and Lemma 1.1 we derive the estimate, the sequence {ue, (z,s)}
is bounded in F?, i.e.,

t+1 ) 1/2
[ter |70 = sup [[ue, (¢)[| + sup (/ IIUEk(S)II1d8> +
teR teR \Jt

1/4

t+1 A B Ou, 4/3 3/4
+ sup </t Huek(s)\L4d5> + sup </t Hat(S)HHTdS> < C forall ke N. (25)

teR teR

The constant C' is independent of e.

Consequently, there exists a subsequence {u¢ (z,5)} C {uc, (2, )}, such that uc, (z,s) = u(s) as k —
oo in ©¢, Here u(z,s) € F° and u(s) are the solution to (25) with the same constant C. Because
of (25) we get uc, (z,5) — u(x,s) (k — o) weakly in LY¢(R; V), weakly in LY¢ (R;Ly), *weakly in
L*(Ro: H) and 2550 940 () o0) weakly in LI¢5,  (R;H™"). We claim that u(z, s) € K.
We have ||ul| z» < C. Hence, we have to establish that u(x, s) is a weak solution to (12).

According to the auxiliary problem in the case § = 1 we have

(1+ad / / Vue, Vi dxdt + €y, / / uekd)dadt + / / x)drdt —

1+a1/ /Z<w OM;( m£)>auo(mt)a¢

= 0¢; Ox; Ox;

+/_A;/§2Q(x)uo(x,t)wdxdt+/_]‘;/gmew‘g(x)wdxdt

Oue —>@a — 0+.
ot ot ©F

dxdt—

as k — oo.

The differentiation is continuous in the space of generalized functions, also
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Now, we prove that
R <x, j) Ue, (T,8) = R(z)u(z, s) (26)
k
and

(1 + 5 <:c, :) i) e, (7, 8) [Pue, (7, 8) = (1 + B(2)i) |u(z, s)|*u(z, s) (27)

as k — oo weakly in Li"/cgw (R; L4/3).

Fixing an arbitrary number M > 0, we consider the sequence {ue, (x, s)} bounded in Ly (—M, M;Ly)
(see (25)). Hence, the sequence {|ue,(z,s)[*ue, (z,s)} is bounded in Ly/3 (—M,M;Lyy3). Because
Oue, (z,s)

ot
suppose that uc, (z,s) = u(x,s) as k — oo strongly in Ly (—M, M;H) and hence

{ue, (z,5)} is bounded in Lo(—M,M;V) and is bounded in Ly/3 (=M, M;H™") we

Ue, (x,s) = u(z, s) ae. in (z,s) € Q x (=M, M).
It follows that
|te, (2, 8) e, (z,8) — |u(z, s)[*u(z, s) a.e. in (z,5) € Q x (=M, M). (28)
We have

14+ 6| =, 2 [te, (, s)|2uek (z,s) — (1 + ﬁ_(x)l) lu(z, s)[*u(z, s) =
(0 (=2))
_ <1 w ( k) i> (lue, (2 8) P, (2. 8) — [u(a, ) Pule, 5)) +
(108 (2 2)1) = 04 500 ) oo )Putes). (29)

€k

We show that both terms in the right-hand side of (29) tends to zero as k — oo weakly in
L4/3 (—M, M; L4/3)-

The sequence <1 + 4 (:z:, i) i) (Jtey, (m, 5)[Pue, (2, 8) — |u(z, 5)[*u(z, s)) converges to zero as k — oo

almost everywhere in (x,s) € Qx (=M, M) (see (28)) and is bounded in Ly /3 (=M, M;Ly3) (see (2)).

2

Consequently using Lemma 1.3 from [27] we get (1 + 5 <x, i) i) (|uey (. 8)|Pue, (z,8) — |u(z, s)Pu(z, s))

— 0 weakly in L3 (—M, M; L4/3) as k — oo.
The sequence ((1 + 5 (:r, i) i) -1+ B(w)1)) lu(z, s)[Pu(z, s) goes weakly in Ly 3 (—M, M;Ly/3)
to zero as k — o0, since by the assumption S (m, E) — B(z) *-weakly in Lo (—M, M;Ls) as k — oo
€

(see (3)) and |u(z,s)|*u(z, s) € Ly3 (—M, M;Lyy3).
We have proved (27). The convergence of (26) is proved similarly.
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A. Bekmaranberos'?, I A. Yeukuu®>*, B.B. Yenbnkor®, A.O. Tememic?®
9 M b

YM.B. Jlomorocos amuwirdazo, Mackey memaexemmir yrnusepcumeni (Kasaxeman guavanv), Acmana, Kasaxcman;
2 Mamemamuka sicone mamemamuraivr modeavoey uncmumymot, Aivamo, Kazaxcman;
3M.B. Jlomonocos amwimdazo, Mackey memaexemmir yrusepcumemi, Mockey, Pecet;
4 Komnwtomepain opmanviev, 6ap mamemamura urcmumymon (Peceti evtioim arademuacomviy Ydha dedepanvovy
sepmmey opmanvieviibiy, 6eaimwect), Ya, Peceti;
5 Peceii evtavim axademuacomomy A.A. Xapresuw amomdaen, Axnapam 6epy maceresepi uncmumymaos, Mackey, Pecei;
SJI.H. Dymuses amwindaen, Bypasua yammows yrnusepcumemsi, Acmana, Kaszaxeman

Jlokaababl mepumoATHI KeyekTepi 6ap oprajsiapsaa I'macOypr-Jlapgay
TeHJIeyJ/IePiHiH aTTPAKTOPJAPbIH OpTAaINaJaay: KPUTUKAJIBIK, XKaF1ail

2KywmpicTa TeHzeyme KoHe IIeKapaJiblK, MapTTapblHaa Te3 Tepbenamernti mymrenepi 6ap ['mucbypr-Jlammay
TEHJIEYiH TeCiK 00JIbICTa KapaCTBIPBLIFaH. Byl TeHIey1iH TPAeKTOPUSIBIK aTTPAKTOPJIAPHI 9JICI3 MAFbIHAIA
«oram Mymieci» (oseyeri) 6ap opramasnanran ['uacOypr-Jlannay TeHIeyiHiH TPacKTOPHUSIIBIK, ATTPAKTOD-
JIapbIHA KYBIKTAUTHIHBL gstenaeneai. Om ymnin B.B. Yensrkosreiy yxome M.V, BummmkTin, 9BOTIOIASIIBIK
TeHEYIEPiH TPACKTOPUSLIBIK, ATTPAKTOPJIAPEI TYPAJIbl MAKAJIAJIaPhl MEH MOHOTpAUAIAPBIHbIH dicTeMec
kosimanbuirad. Conpmaii—ak, XX rachIpIblH COHBIHIA Haiija GoraH opraliasay dJicTepl HaiilajaHbUIFaH.
AJLIBIMEH aCUMITOTUKAJIBIK, SIICTEP/ Il aCUMITOTUKAHBI (DOPMAJIBILI KYPY YIIIH KOJJIAHBLIFAH, COJAH Keli-
iH aCHMITOTHKAJBIK, KaTapJIap/IblH Heri3ri Mymresepin OyHKITHOHAIBI TAJIIAY KOHE MHTErPaJIbl Oaraaay
9JIiICTEPIH KOJIJIaHA OTHIPHIN TaHaa raH. CollKeciHIe, KOMEKIII 9JICi3 TOMOJIOTUsIbI (PYHKIIMOHAJIBI KEHiC-
TIKTI aHBIKTA{ OTBIPBIN, MEKTI (OpPTAIIATAHFAH) TEHJECYl AJBIHFAH KOHE OCHI TEHJIEYIIIH TPACKTOPHUSLIBIK
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aTTpakTOpbl bap ekeHi Jpiesgenred. ComaH KeiiiH Heri3ri Teopema TYXKbIPBIMIAJFaH, OHbl KOMEKII JIeM-
MaJIap/iblH, KOMETriMeH J19J/IeJI/IeHTeH.

Kiam cesdep: arTpakTopsap, opramadsay, ' macoypr-Jlanmay Teseymepi, CBI3BIKTHIK €MeC TeHIeYep, 9JICi3
JKUHAKTBIJIBIK, TECIK 00JIbIC, «OFaIll MYIIe», KEYeKTi opTa.

K.A. Bekmaraunteros'?. . A. Yeukuu®>* B.B. Yenbnkor®, A.A. Tomemuc?®
) 9 M

! Mocxkoscxudi 2ocydapcmeennmdi ynusepcumem umenu M.B. Jlomonocosa (Kazaxcmancrud duiuan),
Acmana, Kazaxcman;

2 Mncmumym Mamemamusy U MamemMamuseckozo modesuposarus, Armamo, Kazaxcman;
3 Mocxosckuti zocydapemeennuiti yrusepcumem umenu M.B. Jlomonocosa, Mocksa, Poccus;

1 Hnemumym mamemamusy ¢ komnviomeprsim yenmpom (noopazdesenue Ydumcrozo dedeparvinozo

uceaedosamenvckozo yenmpa Poccutickoti axademuu nayk), Yda, Poccus;
5 Unemumym npobaem nepedaru ungopmavun umenu A.A. Xapresuwa Poccutickoti axademuu nayx, Mocksa, Poccus;

8 Espasutickuti nayuornarvrud yrusepcumem umenu JI.H. Dymusesa, Acmana, Kazazcman

YcpeaHenne aTrTpakTopoB ypaBHeHuii 'mu30ypra-Jlanmay B cpegax c
JIOKAJIbHO TIEPUOJINIECKNMHU NPENATCTBUAMMN: KPUTUYECKHIN CIydaii

Mg paccmarpuBaeMm ypauenune ['muzbypra-Jlangay ¢ ObICTPO OCHUJLUIMPYIONMMMA YI€HAMUA B ypaBHEHUU
¥ TPAHWYHBIX YCJIOBUAX B epdopupoBanHoit obiaactu. JlokaspiBaeM, 9TO TPAEKTOPHBIE ATTPAKTOPHI STOTO
ypaBHEHUS B CJ1aOOM CMBICJIE CXOSTCS K TPAEKTOPHBIM aTTPAKTOPaM yCPeaHeHHOro ypaBuenus ['uu3bypra-
Jlarznay co «CTpaHHBIM YiIeHOM» (IOTeHHHMAIoM). [IJIs 3TOro UCIo/Ib3yeM IOAX0/| U3 cTaTeil u MOHOrpadmit
B.B. YenbnkoBa u M.JM. Bummka 0 TpaeKTOPHBIX aTTPaKTOPaX IBOJIOIMUOHHBLIX ypaBHeHUi. Takke MbI
NIpUMEHsIEM MEeTO/IbI yCpeIHEeH s, TTogBuBINuecs B KoHie XX Beka. CHavdasa UCHOJIb3yeM aCUMITOTUICCKHE
MeTObI JijIsi (POPMAJIBHOIO MOCTPOEHUST ACUMIITOTHK, JIaJiee BbIBEPSEM IJIaBHBIE UJIEHBI ACUMIITOTHIECKUX
PSIIOB C TIOMOIIBIO METOIOB (DYHKITMOHAJIBHOTO aHAIN3a U HHTETPAIbHBIX OIeHOK. Ompeessis COOTBETCTBY-
IOIIe BCIOMOTaTe/bHbIE (DYHKIMOHAJIBHBIE IPOCTPAHCTBA CO CJIa0O0# TOMOJIOTHEH, BBIBOAUM IIPEIETbHOE
(ycpelHeHHOE) ypaBHEHHE U JIOKAa3bIBAEM CYyIECTBOBAHUE TPAEKTOPHOIO ATTPAKTOPA JJIsi 9TOrO ypaBHE-
HusA. 3aTeM (OPMyIUpPyeM OCHOBHYIO TEOPEMY U JOKA3bIBAEM €€ C MOMOIIBI0 BCIIOMOTATEIbHBIX JIEMM.

Kmouesvie caro6a: aTTpakTOphI, yCpeaHeHne, ypaBHeHus | nn3dypra-Jlannay, Hennneiinble ypaBHeHUs, Cla-
Gasi CXOIMMOCTB, epdOpUpOBaHHast 06JIACTb, «CTPAHHBIN YJIE€H», IOPUCTasl CPejia.
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