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Homogenization of Attractors to Ginzburg-Landau Equations in
Media with Locally Periodic Obstacles: Critical Case

In this paper the Ginzburg-Landau equation is considered in locally periodic porous medium, with rapidly
oscillating terms in the equation and boundary conditions. It is proved that the trajectory attractors of
this equation converge in a weak sense to the trajectory attractors of the limit Ginzburg-Landau equation
with an additional potential term. For this aim we use an approach from the papers and monographs of
V.V. Chepyzhov and M.I. Vishik concerning trajectory attractors of evolution equations. Also we apply
homogenization methods appeared at the end of the XX-th century. First, we apply the asymptotic methods
for formal construction of asymptotics, then, we verify the leading terms of asymptotic series by means
of the methods of functional analysis and integral estimates. Defining the appropriate axillary functional
spaces with weak topology, we derive the limit (homogenized) equation and prove the existence of trajectory
attractors for this equation. Then we formulate the main theorem and prove it with the help of axillary
lemmas.

Keywords: attractors, homogenization, Ginzburg-Landau equations, nonlinear equations, weak convergence,
perforated domain, strange term, porous medium.

Introduction

This work is connected with modelling of processes in perforated materials and porous media.
Asymptotic analysis of solutions to problems in porous media is sufficiently complicated, especially in
the case of a threshold value of sizes and a number of cavities with nontrivial Robin (Fourier) conditions
on their boundaries, i.e. in the case of a singular perturbation of problems. In this situation the limit
equation describing the effective behavior of the model, has a different structure if one compares it
with the given one. We investigate the situation when an additional potential term appears in the limit
Ginzburg-Landau equation and prove the Hausdorff convergence of attractors as the small parameter
tends to zero. Thus, we construct the limit attractor and prove the convergence of the attractors of the
given problem, to the attractor of the limit problem with an additional potential in the equation. Here
we investigate the asymptotic behavior of attractors to an initial boundary value problem for complex
Ginzburg-Landau equations in porous media. In many pure mathematical papers one can find the
asymptotic analysis of problems in porous media (see, for example, [1–7]). Interesting homogenization
results have been obtained for periodic, almost periodic and random structures. We want to mention
here the basic frameworks [8–11], where one can find the detail bibliography.

About attractors see, for instance, [12–14] and the references in these monographs. Homogenization
of attractors were studied in [14–17] (see also [18–21]).
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In this paper we present the proofs of weak convergence of the trajectory attractor Aε to the
Ginzburg-Landau equation in a perforated domain, as ε → 0, to the trajectory attractor A of the
homogenized equation in some natural functional space. Here, the small parameter ε characterizes the
linear size of cavities and the distance between them in porous medium. We prove the appearance of
a so called “strange term” (the potential term) in the limit equation (for example see works [1, 2]).

1 Statement of the problem

We start by the definition of a perforated domain. Suppose Ω ⊂ Rd, d ≥ 2, is a smooth bounded
domain. Denote

Υε = {j ∈ Zd : dist (εj, ∂Ω) ≥ ε
√
d}, � ≡ {ξ : −1

2
< ξj <

1

2
, j = 1, . . . , d}.

Considering a smooth function F (x, ξ) 1-periodic in ξ, which satisfies F (x, ξ)
∣∣∣
ξ∈∂�

≥ const > 0,

F (x, 0) = −1, ∇ξF 6= 0 as ξ ∈ �\{0}, we define Dε
j = {x ∈ ε (�+ j) |F (x, xε ) ≤ 0}. The perforated

domain now is defined in the following way:

Ωε = Ω\
⋃
j∈Υε

Dε
j .

Denote by ω the set {ξ ∈ Rd | F (x, ξ) < 0}, and by S the set {ξ ∈ Rd | F (x, ξ) = 0}. The boundary
∂Ωε consists of ∂Ω and the boundary of the holes Sε ⊂ Ω, Sε = (∂Ωε) ∩ Ω.

We study the asymptotic behavior of attractors to the problem

∂uε
∂t

= (1 + αi)∆uε +R(x,
x

ε
)uε −

(
1 + β(x,

x

ε
)i
)
|uε|2uε + g(x), x ∈ Ωε,

(1 + αi)
∂uε
∂ν

+ εq(x,
x

ε
)uε = 0, x ∈ Sε, t > 0,

uε = 0, x ∈ ∂Ω,
uε = U(x), x ∈ Ωε, t = 0,

(1)

where α is a real constant, the vector ν is the outer unit vector to the boundary, u = u1 + iu2 ∈ C,
g(x) ∈ C1(Ω;C), a nonnegative 1-periodic in ξ function q(x, ξ) belongs to C1(Ω;Rd). Suppose that

−β1 ≤ β(x, ξ) ≤ β2, −R1 ≤ R(x, ξ) ≤ R2 (where R0, R1, β1, β2 > 0), (2)

for x ∈ Ω, ξ ∈ Rd and the functions R (x, ξ) and β (x, ξ) can be averaged in L∞,∗w(Ω). The averages
are R̄(x) and β̄(x) respectively, i.e.,∫

Ω
R (x, ξ)ϕ1(x)dx →

∫
Ω
R̄(x)ϕ1(x)dx,∫

Ω
β (x, ξ)ϕ1(x)dx →

∫
Ω
β̄(x)ϕ1(x)dx

(3)

for any ϕ1(x) ∈ L1(Ω), where ξ =
x

ε
as ε→ 0+ .

We define the following spaces:H := L2(Ω;C),Hε := L2(Ωε;C),V := H1
0 (Ω;C),Vε := H1(Ωε;C; ∂Ω)

is a set of functions from H1(Ωε;C) with a zero trace on ∂Ω, and Lp := Lp(Ω;C), Lp,ε := Lp(Ωε;C).
These spaces have, respectively, the next norms

‖v‖2 :=

∫
Ω
|v(x)|2dx, ‖v‖2ε :=

∫
Ωε

|v(x)|2dx, ‖v‖21 :=

∫
Ω
|∇v(x)|2dx,

‖v‖21ε :=

∫
Ωε

|∇v(x)|2dx, ‖v‖pLp :=

∫
Ω
|v(x)|pdx, ‖v‖pLp ε :=

∫
Ωε

|v(x)|pdx.
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Let us denote that dual spaces to V by V′ := H−1(Ω;C) and, moreover, Lq is the dual spaces of Lp,
where q = p

p−1 , in analogous way V′ε and Lq,ε are the dual spaces of Vε and Lp,ε.
As usually (see [14]) we investigate the behavior of weak solutions to initial boundary value problem

(1), i.e., the functions

uε(x, s) ∈ Lloc∞ (R+;Hε) ∩ Lloc2 (R+;Vε) ∩ Lloc4 (R+;L4,ε)

which satisfy problem (1) in the sense of integral identity, i.e. for any function ψ ∈ C∞0 (R+;Vε ∩L4,ε)
we have

−
∫ ∞

0

∫
Ωε

uε
∂ψ

∂t
dxdt+ (1 + αi)

∫ ∞
0

∫
Ωε

∇uε∇ψ dxdt−
∫ ∞

0

∫
Ωε

((
R
(
x,
x

ε

)
uε−

−
(

1 + β
(
x,
x

ε

)
i

)
|uε|2uε

))
ψ dxdt+ ε

∫ +∞

0

∫
Sε

q
(
x,
x

ε

)
uεψ dσdt =

∫ ∞
0

∫
Ωε

g(x)ψ dxdt. (4)

Since uε(x, t) ∈ L4(0,M ;L4,ε), one can get R
(
x, xε

)
uε(x, t) −

(
1 + β

(
x, xε

)
i
)
|uε(x, t)|2uε(x, t) ∈

L4/3(0,M ;L4/3,ε). In addition, since uε(x, t) ∈ L2(0,M ;Vε), we have (1 + αi)∆uε(x, t) + g (x) ∈
L2(0,M ;V′ε). Consequently, for any weak solution uε(x, s) to problem (1) we obtain

∂uε(x, t)

∂t
∈ L4/3(0,M ;L4/3,ε) + L2(0,M ;V′ε).

Keeping in mind the Sobolev embedding theorem, we conclude L4/3(0,M ;L4/3,ε) +L2(0,M ;V′ε) ⊂
L4/3

(
0,M ;H−rε

)
. Here the space H−rε := H−r(Ωε;C) and r = max {1, d/4}. Therefore, for an arbitrary

weak solution uε(x, t) of (1) we get ∂uε(x,t)
∂t ∈ L4/3 (0,M ;H−rε ).

Remark 1.1. Using the standard approach from [13], one can prove the existence of weak solution
u(x, s) to the problem (1) for every U ∈ Hε and fixed ε, satisfying u(x, 0) = U(x).

It is possible to prove the following basic Lemma similarly to Proposition 3 from [20].
Lemma 1.1. Suppose that uε(x, t) ∈ Lloc2 (R+;Vε) ∩ Lloc4 (R+;L4,ε) is a weak solution to (1). Then
(i) u ∈ C(R+;Hε);
(ii) the function ‖uε(·, t)‖2ε is absolutely continuous on R+ and, moreover,

1

2

d

dt
‖uε(·, t)‖2ε + ‖∇uε(·, t)‖2ε + ‖uε(·, t)‖4L4,ε

−
∫

Ωε

R
(
x,
x

ε

)
|uε(x, t)|2dx+

+ ε

∫
Sε

q
(
x,
x

ε

)
|uε(x, t)|2dσ =

∫
Ωε

Re (g(x)ūε(x, t)) dx,

for almost every t ∈ R+.
We fix ε. Bellow, where it is natural, we omit the index ε in the notation of functional spaces. Now we

use the approach described in Section 2 to construct the trajectory attractor of (1), which has the form
(7) if we set E1 = Lp∩V, E0 = H−r, E = H and A(u) = (1+αi)∆u+R(·)u− (1 + β(·)i) |u|2u+g(·).

To define the trajectory space K+
ε for (1), we use the general approaches of Section 2 and for every

[t1, t2] ∈ R we have the Banach spaces

Ft1,t2 := L4(t1, t2;L4) ∩ L2(t1, t2;V) ∩ L∞(t1, t2;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ L4/3

(
t1, t2;H−r

)}
with the following norm

‖v‖Ft1,t2 := ‖v‖L4(t1,t2;L4) + ‖v‖L2(t1,t2;V) + ‖v‖L∞(0,M ;H) +

∥∥∥∥∂v∂t
∥∥∥∥
L4/3(t1,t2;H−r)

.
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Setting Dt1,t2 = Lq (t1, t2;H−r) we obtain Ft1,t2 ⊆ Dt1,t2 and for u(s) ∈ Ft1,t2 we have A(u(s)) ∈
Dt1,t2 . One considers now weak solutions to (1) as solutions of an equation in the general scheme of
Section 2.

Consider the spaces

F loc+ = Lloc4 (R+;L4) ∩ Lloc2 (R+;V) ∩ Lloc∞ (R+;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lloc4/3(R+;H−r)

}
,

F locε,+ = Lloc4 (R+;L4,ε) ∩ Lloc2 (R+;Vε) ∩ Lloc∞ (R+;Hε) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lloc4/3(R+;Hε

−r)

}
.

We introduce the following notation. Let K+
ε be the set of all weak solutions to (1). For any U ∈ H

there exists at least one trajectory u(·) ∈ K+
ε such that u(0) = U(x). Consequently, the space K+

ε to
(1) is not empty and is sufficiently large.

It is easy to see that K+
ε ⊂ F loc+ and the space K+

ε is translation invariant, i.e., if u(s) ∈ K+
ε , then

u(h+ s) ∈ K+
ε for all h ≥ 0. Hence, S(h)K+

ε ⊆ K+
ε for all h ≥ 0.

We define metrics ρt1,t2(·, ·) in the spaces Ft1,t2 by means of the norms from L2(t1, t2;H). We get

ρ0,M (u, v) =

(∫ M

0
‖u(s)− v(s)‖2Hds

)1/2

∀u(·), v(·) ∈ F0,M .

The topology Θloc
+ in F loc+ (respectively Θloc

ε,+ in F locε,+) is generated by these metrics. Let us recall that
{vk} ⊂ F loc+ converges to v ∈ F loc+ as k → ∞ in Θloc

+ if ‖vk(·) − v(·)‖L2(0,M ;H) → 0 (k → ∞) for
each M > 0. Bearing in mind (8), we conclude that the topology Θloc

+ is metrizable. We consider this
topology in the trajectory space K+

ε of (1). Also it can be seen that the translation semigroup {S(t)}
acting on K+

ε , is continuous in this topology.
Using the scheme of Section 2, one can define bounded sets in the space K+

ε by means of the Banach
space Fb+. We naturally get

Fb+ = Lb4(R+;L4) ∩ Lb2(R+;V) ∩ L∞(R+;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lb4/3(R+;H−r)

}
and the set Fb+ is a subspace of F loc+ .

Consider the translation semigroup {S(t)} on K+
ε , S(t) : K+

ε → K+
ε , t ≥ 0.

Suppose that Kε is the kernel to (1), that consists of all weak complete solutions u(s),∈ R, to our
system of equations, bounded in

Fb = Lb4(R;L4) ∩ Lb2(R;V) ∩ L∞(R;H) ∩
{
v
∣∣∣ ∂v
∂t
∈ Lb4/3(R;H−r)

}
.

Proposition 1.1. Problem (1) has the trajectory attractors Aε in the topological space Θloc
+ . The

set Aε is uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb+ and compact in Θloc
+ . Moreover, Aε = Π+Kε, the

kernel Kε is non-empty and uniformly (w.r.t. ε ∈ (0, 1)) bounded in Fb. Recall that the spaces Fb+ and
Θloc

+ depend on ε.
To prove this proposition we use the approach of the proof from [14]. To prove the existence of an

absorbing set (bounded in Fb+ and compact in Θloc
+ ) one can use Lemma l.1 similar to [14].

It is easy to verify, that Aε ⊂ B0(R) for all ε ∈ (0, 1). Here B0(R) is a ball in Fb+ with a sufficiently
large radius R. By means of Lemma 2.1 we have

B0(R) b Lloc2 (R+;H1−δ), (5)

B0(R) b C loc(R+;H−δ), 0 < δ ≤ 1. (6)
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Formula (5) immediately follows, if we take E0 = H−r, E = H1−δ, E1 = H1 = V, and p1 = 2,
p0 = 4/3, keeping in mind the compact embedding V b H1−δ. Formula (6) follows from the compact
embedding H b H−δ, if we take E0 = H−r(D), E = H−δ, E1 = H1 = V, and p0 = 4/3.

Bearing in mind (5) and (6), the attraction to the constructed trajectory attractor can be strengthen.
Corollary 1.1. For any bounded in Fb+ set B ⊂ K+

ε we get

distL2(0,M ;H1−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

distC([0,M ];H−δ) (Π0,MS(t)B,Π0,MKε)→ 0 (t→∞),

where M is a positive constant.

2 Trajectory attractors of evolution equations

This section is devoted to the construction of trajectory attractors to autonomous evolution equations.
Consider an autonomous evolution equation of the form

∂u

∂t
= A(u), t ≥ 0. (7)

Here A(·) : E1 → E0 is a nonlinear operator, E1, E0 are Banach spaces and E1 ⊆ E0. As an example
one can consider A(u) = (1 + αi)∆u+R(·)u− (1 + β(·)i) |u|2u+ g(·).

We study weak solutions u(s) to (7) as functions of parameter s ∈ R+ as a whole. To be precise
we say that s ≡ t denotes the time. The set of solutions of (7) is said to be a trajectory space K+ of
equation (7). Now, we describe the trajectory space K+ in detail.

Consider solutions u(s) of (7) defined on [t1, t2] ⊂ R. We consider solutions to problem (7) in
a Banach space Ft1,t2 . The space Ft1,t2 is a set f(s), s ∈ [t1, t2] satisfying f(s) ∈ E for almost all
s ∈ [t1, t2], where E is a Banach space, satisfying E1 ⊆ E ⊆ E0.

For instance, Ft1,t2 can be considered as the intersection spaces C([t1, t2];E), or Lp(t1, t2;E), for p ∈
[1,∞]. Suppose that Πt1,t2Fτ1,τ2 ⊆ Ft1,t2 and ‖Πt1,t2f‖Ft1,t2 ≤ C(t1, t2, τ1, τ2)‖f‖Fτ1,τ2 ∀f ∈ Fτ1,τ2 .
Here [t1, t2] ⊆ [τ1, τ2] and Πt1,t2 denotes the restriction operator onto [t1, t2], constant C(t1, t2, τ1, τ2)
does not depend on f .

Suppose that S(h) for h ∈ R denotes the translation operator S(h)f(s) = f(h+s). It is easy to see,
that if the argument s of f(·) belongs to the segment [t1, t2], then the argument s of S(h)f(·) belongs
to [t1−h, t2−h] for h ∈ R. Suppose that the mapping S(h) is an isomorphism from Ft1,t2 to Ft1−h,t2−h
and ‖S(h)f‖Ft1−h,t2−h = ‖f‖Ft1,t2 ∀f ∈ Ft1,t2 . It is easy to see that this assumption is natural.

Suppose that if f(s) ∈ Ft1,t2 , then A(f(s)) ∈ Dt1,t2 , where Dt1,t2 is a Banach space, which is larger,
Ft1,t2 ⊆ Dt1,t2 . The derivative ∂f(t)

∂t is a distribution with values in E0,
∂f
∂t ∈ D

′((t1, t2);E0) and we
suppose that Dt1,t2 ⊆ D′((t1, t2);E0) for all (t1, t2) ⊂ R. A function u(s) ∈ Ft1,t2 is a solution of (7),
if ∂u∂t (s) = A(u(s)) in the sense of D′((t1, t2);E0).

Let us define the space F loc+ = {f(s), s ∈ R+ | Πt1,t2f(s) ∈ Ft1,t2 , ∀ [t1, t2] ⊂ R+}. For instance,
if Ft1,t2 = C([t1, t2];E), then F loc+ = C(R+;E) and if Ft1,t2 = Lp(t1, t2;E), then F loc+ = Llocp (R+;E).

A function u(s) ∈ F loc+ is a solution of (7), if Πt1,t2u(s) ∈ Ft1,t2 and u(s) is a solution of (7) for
every [t1, t2] ⊂ R+.

Let K+ be a set of solutions to (7) from F loc+ . Note, that K+ in general is not the set of all solutions
from F loc+ . The set K+ consists on elements, which are trajectories and the set K+ is the trajectory
space of the equation (7).

Suppose that the trajectory space K+ is translation invariant, i.e., if u(s) ∈ K+, then u(h+s) ∈ K+

for every h ≥ 0.
Consider the translation operators S(h) in F loc+ : S(h)f(s) = f(s+ h), h ≥ 0. It is easy to see that

the map {S(h), h ≥ 0} forms a semigroup in F loc+ : S(h1)S(h2) = S(h1 + h2) for h1, h2 ≥ 0 and in
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addition S(0) is the identity operator. Next step is to change the variable h into the time variable t.
The translation semigroup {S(t), t ≥ 0} maps the trajectory space K+ to itself: S(t)K+ ⊆ K+ for all
t ≥ 0.

We investigate attracting properties of the translation semigroup {S(t)} acting on the trajectory
space K+ ⊂ F loc+ . Next step is to define a topology in the space F loc+ .

One can see, that metrics ρt1,t2(·, ·) is defined on Ft1,t2 for every [t1, t2] ⊂ R. Suppose that

ρt1,t2 (Πt1,t2f,Πt1,t2g) ≤ D(t1, t2, τ1, τ2)ρτ1,τ2 (f, g) ∀f, g ∈ Fτ1,τ2 , [t1, t2] ⊆ [τ1, τ2],

ρt1−h,t2−h(S(h)f, S(h)g) = ρt1,t2(f, g) ∀f, g ∈ Ft1,t2 , [t1, t2] ⊂ R, h ∈ R.

Now, we denote by Θt1,t2 metric spaces on Ft1,t2 . For instance, ρt1,t2 is metric associated with the norm
‖ · ‖Ft1,t2 of Ft1,t2 . At the other hand, in application ρt1,t2 generates the topology Θt1,t2 that is weaker
than the strong one of the Ft1,t2 .

The projective limit of the spaces Θt1,t2 defines the topology Θloc
+ in F loc+ , that is, by definition,

a sequence {fk(s)} ⊂ F loc+ tends to f(s) ∈ F loc+ as k → ∞ in Θloc
+ if ρt1,t2(Πt1,t2fk,Πt1,t2f) → 0 as

k → ∞ for all [t1, t2] ⊂ R+. It is possible to show that the topology Θloc
+ is metrizable. For this aim

we use, for example, the Frechet metric

ρ+(f1, f2) :=
∑
m∈N

2−m
ρ0,m(f1, f2)

1 + ρ0,m(f1, f2)
. (8)

The translation semigroup {S(t)} is continuous in Θloc
+ . This statement follows from the definition

of Θloc
+ .
We also define the following Banach space

Fb+ := {f(s) ∈ F loc+ | ‖f‖Fb+ < +∞},

where the norm
‖f‖Fb+ := sup

h≥0
‖Π0,1f(h+ s)‖F0,1 .

We remember that Fb+ ⊆ Θloc
+ . We need from our Banach space Fb+ only one fact It should define

bounded subsets in the trajectory space K+. For constructing a trajectory attractor in K+, instead
of considering the corresponding uniform convergence topology of the Banach space Fb+, we use much
weaker topology, i.e. the local convergence topology Θloc

+ .
Assume that K+ ⊆ F b+, that is, every trajectory u(s) ∈ K+ of equation (7) has a finite norm. We

define an attracting set and a trajectory attractor of the translation semigroup {S(t)} acting on K+.
Definition 2.1. A set P ⊆ Θloc

+ is called an attracting set of the semigroup {S(t)} acting on K+ in
the topology Θloc

+ if for any bounded in Fb+ set B ⊆ K+ the set P attracts S(t)B as t → +∞ in the
topology Θloc

+ , i.e., for any ε-neighbourhood Oε(P) in Θloc
+ there exists t1 ≥ 0 such that S(t)B ⊆ Oε(P)

for all t ≥ t1.
It is easy to see that the attracting property of P can be formulated equivalently: we have

distΘ0,M
(Π0,MS(t)B,Π0,MP) −→ 0 (t→ +∞),

where distM(X,Y ) := supx∈X distM(x, Y ) = supx∈X infy∈Y ρM(x, y) is the Hausdorff semidistance
from a set X to a set Y in a metric space M. We remember that the Hausdorff semidistance is not
symmetric, for any B ⊆ K+ bounded in Fb+ and for each M > 0.

Definition 2.2 ([14]). A set A ⊆ K+ is called the trajectory attractor of the translation semigroup
{S(t)} on K+ in the topology Θloc

+ , if

16 Bulletin of the Karaganda University
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(i) A is bounded in Fb+ and compact in Θloc
+ ,

(ii) the set A is strictly invariant with respect to the semigroup: S(t)A = A for all t ≥ 0,

(iii) A is an attracting set for {S(t)} on K+ in the topology Θloc
+ , that is, for each M > 0 we have

distΘ0,M
(Π0,MS(t)B,Π0,MA)→ 0 (t→ +∞).

Let us formulate the main assertion on the trajectory attractor for equation (7).
Theorem 2.1 ([13, 14]). Assume that the trajectory space K+ corresponding to equation (7) is

contained in Fb+. Suppose that the translation semigroup {S(t)} has an attracting set P ⊆K+ which is
bounded in Fb+ and compact in Θloc

+ . Then the translation semigroup {S(t), t ≥ 0} acting on K+ has
the trajectory attractor A ⊆ P. The set A is bounded in Fb+ and compact in Θloc

+ .

Let us describe in detail, i.e., in terms of complete trajectories of the equation, the structure of the
trajectory attractor A to equation (7). We study the equation (7) on the time axis

∂u

∂t
= A(u), t ∈ R. (9)

Note that the trajectory space K+ of equation (9) on R+ have been defined. We need this notion
on the entire R. If a function f(s), s ∈ R, is defined on the entire time axis, then the translations
S(h)f(s) = f(s+ h) are also defined for negative h. A function u(s), s ∈ R is a complete trajectory of
equation (9) if Π+u(s + h) ∈ K+ for all h ∈ R. Here Π+ = Π0,∞ denotes the restriction operator to
R+.

We have F loc+ ,Fb+, and Θloc
+ . Let us define spaces F loc,Fb, and Θloc in the same way:

F loc := {f(s), s ∈ R | Πt1,t2f(s) ∈ Ft1,t2 ∀ [t1, t2] ⊆ R}; Fb := {f(s) ∈ F loc | ‖f‖Fb < +∞},

where
‖f‖Fb := sup

h∈R
‖Π0,1f(h+ s)‖F0,1 . (10)

The topological space Θloc coincides (as a set) with F loc and, by definition, fk(s)→ f(s) (k →∞)
in Θloc if Πt1,t2fk(s)→ Πt1,t2f(s) (k →∞) in Θt1,t2 for each [t1, t2] ⊆ R. It is easy to see that Θloc is
a metric space as well as Θloc

+ .
Definition 2.3. The kernel K in the space Fb of equation (9) is the union of all complete trajectories

u(s), s ∈ R, of equation (9) that are bounded in the space Fb with respect to the norm (10), i.e.

‖Π0,1u(h+ s)‖F0,1 ≤ Cu ∀h ∈ R.

Theorem 2.2. Assume that the hypotheses of Theorem holds. Then A = Π+K, the set K is compact
in Θloc and bounded in Fb.

To prove this assertion one can use the approach from [14].
In various applications, to prove that a ball in Fb+ is compact in Θloc

+ the following lemma is useful.
Let E0 and E1 be Banach spaces such that E1 ⊂ E0. We consider the Banach spaces

Wp1,p0(0,M ;E1, E0) =
{
ψ(s), s ∈ 0,M | ψ(·) ∈ Lp1(0,M ;E1), ψ′(·) ∈ Lp0(0,M ;E0)

}
,

W∞,p0(0,M ;E1, E0) =
{
ψ(s), s ∈ 0,M | ψ(·) ∈ L∞(0,M ;E1), ψ′(·) ∈ Lp0(0,M ;E0)

}
,

(where p1 ≥ 1 and p0 > 1) with norms

‖ψ‖Wp1,p0
:=

(∫ M

0
‖ψ(s)‖p1E1

ds

)1/p1

+

(∫ M

0
‖ψ′(s)‖p0E0

ds

)1/p0

,
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‖ψ‖W∞,p0 := ess sup {‖ψ(s)‖E1 | s ∈ [0,M ]}+

(∫ M

0
‖ψ′(s)‖p0E0

ds

)1/p0

.

Lemma 2.1 (Aubin-Lions-Simon, [22]). Assume that E1 b E ⊂ E0. Then the following embeddings
are compact:

Wp1,p0(0, T ;E1, E0) b Lp1(0, T ;E), W∞,p0(0, T ;E1, E0) b C([0, T ];E).

In this paper we investigate evolution equations and their trajectory attractors depending on a
small parameter ε > 0.

Definition 2.4. We say that the trajectory attractors Aε converge to the trajectory attractor A as
ε→ 0 in the topological space Θloc

+ if for any neighborhood O(A) in Θloc
+ there is an ε1 ≥ 0 such that

Aε ⊆ O(A) for any ε < ε1, that is, for each M > 0 we have

distΘ0,M
(Π0,MAε,Π0,MA)→ 0 (ε→ 0).

3 Formal homogenization procedure

Let Mi be a solution to a problem ∆ξMi (x, ξ) = 0 in ω,
∂Mi(x, ξ)

∂ν
= −ν̃i on S(x).

(11)

Denote by 〈·〉 the integral over the set � ∩ ω, and Q(x) =
∫
S q(x, ξ) dσ.

The limit problem has the form

∂u0

∂t
− (1 + αi)

d∑
i,j=1

∂

∂xi

(〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0

∂xj

)
−

−R(x)u0 + (1 + β(x)i) |u0|2 u0 +Q(x)u0 = |� ∩ ω| g(x), x ∈ Ω,
u0 = 0, x ∈ ∂Ω, t > 0,
u0 = U(x), x ∈ Ω, t = 0.

(12)

It is easy to see that system (12) also has trajectory attractor A in the trajectory space K+

corresponding to problem (12) and A = Π+K, where K is the kernel of system (12) in Fb+.
The integral identity for problem (12) takes the form

−
∫
R+

∫
Ω
u0
∂v

∂t
dtdx+ (1 + αi)

∫
R+

∫
Ω

d∑
i,j=1

〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0

∂xi

∂v

∂xj
dtdx+

−
∫
R+

∫
Ω

(
R(x)u0 − (1 + β(x)i) |u0|2 u0 −Q(x)u0

)
vdtdx =

∫
R+

∫
Ω
|� ∩ ω| g(x) v dtdx

for any function v ∈ C∞0 (R+;V ∩ L4).

Remark 3.1. Note that Mi(x, ξ) are not defined in the whole Ω. We can extend Mi(x, ξ) into the
interior of the cavities retaining the regularity of these functions by means of the technique of the
symmetric extension, keeping the same notation for the extended functions.
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4 Auxiliaries

We study the asymptotics of solution uε(x) as ε→ 0 to the next boundary-value problem
−(1 + αi)∆uε = g(x) in Ωε,

(1 + αi)
∂uε
∂νε

+ εq
(
x,
x

ε

)
uε = 0 on Sε,

uε = 0 on ∂Ω.

(13)

Here nε is the internal normal to the boundary of cavities and q(x, ξ) is a sufficiently smooth 1-periodic
in ξ function.

Definition 4.1. The function uε ∈ H1(Ωε, ∂Ω) is a solution of problem (13), if the following integral
identity

(1 + αi)

∫
Ωε
∇uε(x)∇v(x) dx+ ε

∫
Sε

q
(
x,
x

ε

)
uε(x)v(x) ds =

∫
Ωε
g(x) v(x) dx

holds true for any function v ∈ H1(Ωε, ∂Ω).

Here H1(Ωε, ∂Ω) is the closure of the set of functions belonging to C∞(Ω
ε
) and vanishing in a

neighborhood of ∂Ω, by the H1(Ωε) norm.
Here we derive the leading terms of the asymptotic expansion and, then, construct the homogranized

problem. For this aim we consider the solution uε(x) to (13) as an asymptotic series

uε(x) = u0(x) + εu1

(
x,
x

ε

)
+ ε2u2

(
x,
x

ε

)
+ ε3u3

(
x,
x

ε

)
+ . . . (14)

Substituting expression (14) in equation (13) and bearing in mind the relation

∂

∂x
ζ
(
x,
x

ε

)
=

(
∂

∂x
ζ(x, ξ) +

1

ε

∂

∂ξ
ζ(x, ξ)

) ∣∣∣∣
ξ=x

ε

,

we get the formula

− g(x)

1 + αi
= ∆xuε(x) ∼= ∆xu0(x) + ε (∆xu1(x, ξ))

∣∣∣
ξ=x

ε

+ 2 (∇x,∇ξu1(x, ξ))
∣∣∣
ξ=x

ε

+

+
1

ε
(∆ξu1(x, ξ))

∣∣∣
ξ=x

ε

+ ε2 (∆xu2(x, ξ))
∣∣∣
ξ=x

ε

+ 2ε (∇x,∇ξu2(x, ξ))
∣∣∣
ξ=x

ε

+

+ (∆ξu2(x, ξ))
∣∣∣
ξ=x

ε

+ ε3 (∆xu3(x, ξ))
∣∣∣
ξ=x

ε

+

+ 2ε2 (∇x,∇ξu3(x, ξ))
∣∣∣
ξ=x

ε

+ ε (∆ξu3(x, ξ))
∣∣∣
ξ=x

ε

+ . . . (15)

Similarily, substituting (14) into boundary conditions in (13), we get the relation

0 =
∂uε
∂νε

+ ε
q
(
x, xε

)
1 + αi

uε ∼= (∇xu0, νε) + ε
q
(
x, xε

)
1 + αi

u0 + ε (∇xu1, νε) +

+
(
∇ξu1

∣∣
ξ=x

ε
, νε

)
+ ε2

q
(
x, xε

)
1 + αi

u1 + ε2 (∇xu2, νε) + ε
(
∇ξu2

∣∣
ξ=x

ε
, νε

)
+

+ ε3
q
(
x, xε

)
1 + αi

u2 + ε3 (∇xu3, νε) + ε2
(
∇ξu3

∣∣
ξ=x

ε
, νε

)
+ ε4

q
(
x, xε

)
1 + αi

u3 + . . . , (16)

which means that it satisfies the boundary condition on Sε.
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The normal vector νε depends on x and x
ε in Ωε. Now, we consider x and ξ = x

ε as independent
variables, and then we represent νε in Ωε in the form

νε(x,
x

ε
) = ν̃(x, ξ)

∣∣∣
ξ=x

ε

+ εν ′ε(x, ξ)
∣∣∣
ξ=x

ε

,

where ν̃ is a normal vector to S(x) = {ξ |F (x, ξ) = 0},

ν ′ε = ν ′ +O(ε).

Collecting all the terms of order ε−1 in (15) and of order ε0 in (16), we deduce the auxiliary problem ∆ξu1 (x, ξ) = 0 in ω,
∂u1(x, ξ)

∂ν
= − (∇x(u0(x)), ñ) on S,

(17)

which we solve in the space of 1-periodic in ξ functions and here x is a parameter, ω := {ξ ∈
Td |F (x, ξ) > 0}. This is the cell problem appearing in case of Neumann conditions on the boundary

of cavities. It is easy to see that the compatibility condition
∫
S(x)

(∇xu0(x), ν̃(ξ)) dσ = 0 of (17) is

satisfied, and the solution of this problem is the first corrector in (14).
At the next step we collect all the terms of order ε0 in (15) and of order ε1 in (16). This gives us

∆ξu2 (x, ξ) = − g(x)

1 + αi
−∆xu0(x)− 2 (∇ξ,∇xu1(x, ξ)) in ω,

∂u2(x, ξ)

∂ν
= − (∇xu1(x, ξ), ν̃)− (∇ξu1(x, ξ), ν ′)−

−
(
∇xu0(x), ν ′

)
− q(x, ξ)

1 + αi
u0(x) on S(x).

(18)

The 1-periodic in ξ solution of the latter problem is the second term of the internal asymptotic
expansion of uε(x).

It is easy to see that for our analysis it is convenient to represent the solution u1(x, ξ) of problem
(17) in the following form:

u1(x, ξ) = (gradxu0(x),M(x, ξ)) ,

where 1-periodic vector–function M(x, ξ) = (M1(x, ξ), . . . ,Md(x, ξ)) is a solution to (11).
Now, (18) can be rewritten as follows

∆ξu2 (x, ξ) = − g(x)

1 + αi
−∆xu0(x)− 2

d∑
i,j=1

∂2u0(x)

∂xi ∂xj

∂Mi(x, ξ)

∂ξj
−

−2

d∑
i,j=1

∂u0(x)

∂xi

∂2Mi(x, ξ)

∂ξj ∂xj
in ω,

∂u2(x, ξ)

∂ν
= −

d∑
i,j=1

∂2u0(x)

∂xi ∂xj
Mi(x, ξ)νj −

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

∂xj
νj−

−q(x, ξ)
1 + αi

u0(x)−
d∑

i,j=1

∂u0(x)

∂xi

(
∂Mi(x, ξ)

∂ξj
+ δij

)
ν ′j on S(x).
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Writing down the solvability condition in the last problem, we derive the equation:

∫
�∩ω

(
g(x)

1 + αi
+ ∆xu0(x) + 2

d∑
i,j=1

∂2u0(x)

∂xi ∂xj

∂Mi(x, ξ)

∂ξj
+ 2

d∑
i,j=1

∂u0(x)

∂xi

∂2Mi(x, ξ)

∂ξj ∂xj

)
dξ =

=

∫
Q

(
d∑

i,j=1

∂2u0(x)

∂xi ∂xj
Mi(x, ξ)νj +

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

xj
νj+

+

d∑
i,j=1

∂u0(x)

∂xi

∂Mi(x, ξ)

∂ξj
ν ′j +

d∑
i=1

∂u0(x)

∂xi
ν ′i +

q(x, ξ)

1 + αi
u0(x)

)
dσ. (19)

From (19) by the Stokes formula we derive the equation

|� ∩ ω|∆xu0(x) +
d∑

i,j=1

〈
∂2Mi(x, ξ)

∂xj ∂ξj

〉
∂u0(x)

∂xi
+

d∑
i,j=1

〈
∂Mi(x, ξ)

∂ξj

〉
∂2u0(x)

∂xi ∂xj
+

+ |� ∩ ω| g(x)

1 + αi
=

Q(x)

1 + αi
u0(x) +

d∑
i=1

Ui(x)
∂u0(x)

∂xi
, (20)

which is the limit equation in Ω. We denoted by < · > the integral over � ∩ ω, and Q(x) =∫
S(x) q(x, ξ) dσ. Moreover, Ui(x) =

∫
S(x)

(
∂Mi(x,ξ)
∂ξj

ν ′j + ν ′i

)
dσ.

It is not necessary to calculate Ui(x), since by the selfadjointness of the operators of the given
problems and the convergence of the corresponding belinear forms, we get that the G–limit operator
is necessary selfadjoint. Therefore, the limit equation (20) takes the form:

(1 + αi)
d∑

i,j=1

∂

∂xj

(〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0(x)

∂xi

)
+ |� ∩ ω|g(x) = Q(x)u0(x) (21)

and, consequently,

Ui(x) =
d∑
j=1

∂

∂xj

〈
∂Mi(x, ξ)

∂ξj

〉
−

d∑
j=1

〈
∂2Mi(x, ξ)

∂xj ∂ξj

〉
.

It is easy to see that
〈
δij + ∂Mi(x,ξ)

∂ξj

〉
is a smooth positively defined matrix (see [9]).

The next statement is about the limit behavior of the solution to (13).
Theorem 4.1. Suppose that g(x) ∈ C1(Rd) and that q(x, ξ) is smooth enough nonnegative function.

Then, for any sufficiently small ε problem (13) has the unique solution and the following convergence

‖u0 − uε‖H1(Ωε) −→ 0

takes place, where u0 is a solution of equation (21) with zero Dirichlet conditions on ∂Ω.
Remark 4.1. In fact, in the formulation of Theorem 4.1 the condition q(x, ξ) ≥ 0 can be replaced

by the weaker condition Q(x) ≥ 0.

4.1 Preliminary Lemmas

Here we give some technical propositions, which we use in the further analysis. Some of these
propositions have been proved in [3, 23]. We omit their proofs.
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Lemma 4.1. If the conditions of Theorem are satisfied, then the Friederichs type inequality∫
Ωε

|∇v|2dx+ ε

∫
Sε

q
(
x,
x

ε

)
v2ds ≥ C1‖v‖2H1(Ωε,∂Ω)

is valid for any v ∈ H1(Ωε, ∂Ω), where C1 is independent of ε.
Now we formulate a modified version of Lemma 5 from [23].
Lemma 4.2. If we suppose

1

|� ∩ ω|

∫
�∩ω

Q(x) dξ −
∫
S(x)

q(x, ξ) dσ ≡ 0,

then the following inequality∣∣∣∣ 1

|� ∩ ω|

∫
Ωε
Q(x) v(x) dx− ε

∫
Sε

q
(
x,
x

ε

)
v(x) dσ

∣∣∣∣ ≤ C2ε‖v‖H1(Ωε)

holds for any v(x) ∈ H1(Ωε, ∂Ω); the constant C2 is independent of ε.
Proof. The proof of this assertion can be found in [24].

Lemma 4.3. If yε is a solution to
−(1 + αi)∆yε = hε(x) in Ωε,

(1 + αi)
∂yε
∂νε

+ εq
(
x,
x

ε

)
yε = 0 on Sε,

yε = 0 on Ω,

where hε(x) = g(x) for x ∈ Ωε and 0 otherwise, then

‖yε‖H1(Ωε) ≤ C3ε.

The proposition, which is a modification of Lemma 5 from [23], formulated below.
Lemma 4.4. Suppose wε(x) ∈ L∞(Ω), and let Πε belong to {x ∈ Ω | dist (x, ∂Ω) ≤ C0ε}. Then the

following inequality ∣∣∣∣∫
Πε
wε(x)

∣∣∣
ξ=x

ε

∇xu0(x) v(x) dx

∣∣∣∣ ≤ C4ε
3
2 ‖w‖L∞(Ω)‖v‖H1(Ωε)

holds for any v(x) ∈ H1(Ωε, ∂Ω); the constant C4 is independent of ε.
Proof of the Theorem 4.1. The proof of this assertion can be found in [23].

5 The main assertion

Here formulate the main proposition concerning the Ginzburg-Landau equation.
Theorem 5.1. The following limit holds in the topological space Θloc

+

Aε → A as ε→ 0 + . (22)

Moreover,
Kε → K as ε→ 0 + in Θloc. (23)

Remark 5.1. The functions belonging the sets Aε and Kε are defined in the perforated domains Ωε.
But, all these functions can be extended insides the cavities remaining their norms in the spaces H,V,
and Lp (without perforation) with the constants independent of the small parameter (the prolongation
of functions defined in perforated domains, see, for instance, in [10; Ch.VIII]). Hence, in Theorem 5.1,
we have all the distances in the spaces without perforation.
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Proof. It is easy to see that (23) implies (22). Hence, it is sufficient to prove (23), i.e., for every
neighborhood O(K) in Θloc there exists ε1 = ε1(O) > 0, such that

Kε ⊂ O(K) for ε < ε1. (24)

Assume that (24) is not true. Then there exists a neighborhood O′(K) in Θloc, a sequence εk →
0 + (k →∞), and a sequence uεk(·) = uεk(s) ∈ Kεk , such that

uεk /∈ O
′(K) for all k ∈ N.

The function uεk(s), s ∈ R is a solution to

∂uεk
∂t

= (1 + αi)∆uεk +R

(
x,
x

εk

)
uεk −

(
1 + β

(
x,
x

εk

)
i

)
|uεk |

2uεk + g (x) , x ∈ Ωεk ,

(1 + αi)
∂uεk
∂ν

+ εkq
(
x,
x

εk

)
uεk = 0, x ∈ Sεk , t > 0,

uεk = 0, x ∈ ∂Ω,
uεk = U(x), x ∈ Ωεk , t = 0.

on the axis t ∈ R. To get the uniform in ε estimate of the solution we use the following Lemmas (see
[25; Ch. III, §5] and [26] respectively).

By means of integral identity (4) and Lemma 1.1 we derive the estimate, the sequence {uεk(x, s)}
is bounded in Fb, i.e.,

‖uεk‖Fb = sup
t∈R
‖uεk(t)‖+ sup

t∈R

(∫ t+1

t
‖uεk(s)‖21ds

)1/2

+

+ sup
t∈R

(∫ t+1

t
‖uεk(s)‖4L4

ds

)1/4

+ sup
t∈R

(∫ t+1

t

∥∥∥∂uεk
∂t

(s)
∥∥∥4/3

H−r
ds

)3/4

≤ C for all k ∈ N. (25)

The constant C is independent of ε.
Consequently, there exists a subsequence {uε′k(x, s)} ⊂ {uεk(x, s)}, such that uεk(x, s)→ u(s) as k →

∞ in Θloc. Here u(x, s) ∈ Fb and u(s) are the solution to (25) with the same constant C. Because
of (25) we get uεk(x, s) ⇀ u(x, s) (k → ∞) weakly in Lloc2 (R;V), weakly in Lloc4 (R;L4), ∗-weakly in
Lloc∞ (R+;H) and ∂uεk (x,s)

∂t ⇀ ∂u(x,s)
∂t (k → ∞) weakly in Lloc4/3,w (R;H−r). We claim that u(x, s) ∈ K.

We have ‖u‖Fb ≤ C. Hence, we have to establish that u(x, s) is a weak solution to (12).
According to the auxiliary problem in the case θ = 1 we have

(1 + αi)

∫ M

−M

∫
Ωεk

∇uεk∇ψ dxdt+ εk

∫ M

−M

∫
Sεk

q
(
x,
x

εk

)
uεkψdσdt+

∫ M

−M

∫
Ωεk

g(x)ψdxdt −→

(1 + αi)

∫ M

−M

∫
Ω

d∑
i,j=1

〈
δij +

∂Mi(x, ξ)

∂ξj

〉
∂u0(x, t)

∂xi

∂ψ

∂xj
dxdt−

+

∫ M

−M

∫
Ω
Q(x)u0(x, t)ψdxdt+

∫ M

−M

∫
Ω
|� ∩ ω| g(x)ψdxdt

as k →∞.
The differentiation is continuous in the space of generalized functions, also

∂uε
∂t
−→ ∂u0

∂t
as ε→ 0+.
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Now, we prove that

R

(
x,
x

εk

)
uεk(x, s) ⇀ R̄(x)u(x, s) (26)

and (
1 + β

(
x,
x

εk

)
i

)
|uεk(x, s)|2uεk(x, s) ⇀

(
1 + β̄(x)i

)
|u(x, s)|2u(x, s) (27)

as k →∞ weakly in Lloc4/3,w

(
R;L4/3

)
.

Fixing an arbitrary numberM > 0, we consider the sequence {uεk(x, s)} bounded in L4 (−M,M ;L4)
(see (25)). Hence, the sequence {|uεk(x, s)|2uεk(x, s)} is bounded in L4/3

(
−M,M ;L4/3

)
. Because

{uεk(x, s)} is bounded in L2(−M,M ;V) and
{
∂uεk(x, s)

∂t

}
is bounded in L4/3 (−M,M ;H−r) we

suppose that uεk(x, s)→ u(x, s) as k →∞ strongly in L2 (−M,M ;H) and hence

uεk(x, s)→ u(x, s) a.e. in (x, s) ∈ Ω× (−M,M).

It follows that

|uεk(x, s)|2uεk(x, s)→ |u(x, s)|2u(x, s) a.e. in (x, s) ∈ Ω× (−M,M). (28)

We have(
1 + β

(
x,
x

εk

)
i

)
|uεk(x, s)|2uεk(x, s)−

(
1 + β̄(x)i

)
|u(x, s)|2u(x, s) =

=

(
1 + β

(
x,
x

εk

)
i

)(
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
+

+

((
1 + β

(
x,
x

εk

)
i

)
−
(
1 + β̄(x)i

))
|u(x, s)|2u(x, s). (29)

We show that both terms in the right-hand side of (29) tends to zero as k → ∞ weakly in
L4/3

(
−M,M ;L4/3

)
.

The sequence
(

1 + β
(
x, xεk

)
i
) (
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
converges to zero as k →∞

almost everywhere in (x, s) ∈ Ω× (−M,M) (see (28)) and is bounded in L4/3

(
−M,M ;L4/3

)
(see (2)).

Consequently using Lemma 1.3 from [27] we get
(

1 + β
(
x, xεk

)
i
) (
|uεk(x, s)|2uεk(x, s)− |u(x, s)|2u(x, s)

)
⇀ 0 weakly in L4/3

(
−M,M ;L4/3

)
as k →∞.

The sequence
((

1 + β
(
x, xεk

)
i
)
−
(
1 + β̄(x)i

))
|u(x, s)|2u(x, s) goes weakly in L4/3

(
−M,M ;L4/3

)
to zero as k →∞, since by the assumption β

(
x,
x

ε

)
⇀ β̄(x) *-weakly in L∞,w (−M,M ;L∞) as k →∞

(see (3)) and |u(x, s)|2u(x, s) ∈ L4/3

(
−M,M ;L4/3

)
.

We have proved (27). The convergence of (26) is proved similarly.
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Локальды периодты кеуектерi бар орталарда Гинсбург-Ландау
теңдеулерiнiң аттракторларын орташалау: критикалық жағдай

Жұмыста теңдеуде және шекаралық шарттарында тез тербелмелi мүшелерi бар Гинсбург-Ландау
теңдеуiн тесiк облыста қарастырылған. Бұл теңдеудiң траекториялық аттракторлары әлсiз мағынада
«оғаш мүшесi» (әлеуетi) бар орташаланған Гинсбург-Ландау теңдеуiнiң траекториялық аттрактор-
ларына жуықтайтыны дәлелденедi. Ол үшiн В.В. Чепыжовтың және М.И. Вишиктiң эволюциялық
теңдеулердiң траекториялық аттракторлары туралы мақалалары мен монографияларының әдiстемесi
қолданылған. Сондай–ақ, XX ғасырдың соңында пайда болған орташалау әдiстерi пайдаланылған.
Алдымен асимптотикалық әдiстердi асимптотиканы формальды құру үшiн қолданылған, содан кей-
iн асимптотикалық қатарлардың негiзгi мүшелерiн функционалды талдау және интегралды бағалау
әдiстерiн қолдана отырып таңдалған. Сәйкесiнше, көмекшi әлсiз топологиялы функционалды кеңiс-
тiктi анықтай отырып, шектi (орташаланған) теңдеуi алынған және осы теңдеудiң траекториялық
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аттракторы бар екенi дәлелденген. Содан кейiн негiзгi теорема тұжырымдалған, оны көмекшi лем-
малардың көмегiмен дәлелденген.

Кiлт сөздер: аттракторлар, орташалау, Гинсбург-Ландау теңдеулерi, сызықтық емес теңдеулер, әлсiз
жинақтылық, тесiк облыс, «оғаш мүше», кеуектi орта.

K.A. Бекмаганбетов1,2, Г.А. Чечкин2,3,4, В.В. Чепыжов5, A.А. Толемис2,6

1Московский государственный университет имени М.В. Ломоносова (Казахстанский филиал),
Астана, Казахстан;

2Институт математики и математического моделирования, Алматы, Казахстан;
3Московский государственный университет имени М.В. Ломоносова, Москва, Россия;

4Институт математики с компьютерным центром (подразделение Уфимского федерального
исследовательского центра Российской академии наук), Уфа, Россия;

5Институт проблем передачи информации имени А.А. Харкевича Российской академии наук, Москва, Россия;
6Евразийский национальный университет имени Л.Н. Гумилева, Астана, Казахстан

Усреднение аттракторов уравнений Гинзбурга-Ландау в средах с
локально периодическими препятствиями: критический случай

Мы рассматриваем уравнение Гинзбурга-Ландау с быстро осциллирующими членами в уравнении
и граничных условиях в перфорированной области. Доказываем, что траекторные аттракторы этого
уравнения в слабом смысле сходятся к траекторным аттракторам усредненного уравнения Гинзбурга-
Ландау со «странным членом» (потенциалом). Для этого используем подход из статей и монографий
В.В. Чепыжова и М.И. Вишика о траекторных аттракторах эволюционных уравнений. Также мы
применяем методы усреднения, появившиеся в конце XX века. Сначала используем асимптотические
методы для формального построения асимптотик, далее выверяем главные члены асимптотических
рядов с помощью методов функционального анализа и интегральных оценок. Определяя соответству-
ющие вспомогательные функциональные пространства со слабой топологией, выводим предельное
(усредненное) уравнение и доказываем существование траекторного аттрактора для этого уравне-
ния. Затем формулируем основную теорему и доказываем ее с помощью вспомогательных лемм.

Ключевые слова: аттракторы, усреднение, уравнения Гинзбурга-Ландау, нелинейные уравнения, сла-
бая сходимость, перфорированная область, «странный член», пористая среда.
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