Order of the trigonometric widths of the Nikol’skii-Besov classes with mixed metric in the metric of anisotropic Lorentz spaces

In this paper we estimate the order of the trigonometric width of the Nikol’skii–Besov classes $B_{pq}^{\alpha\tau} (\mathbb{T}^n)$ with mixed metric in the anisotropic Lorentz space $L_{\theta p} (\mathbb{T}^n)$ when $1 < p = (p_1, \ldots, p_n) < 2 < q = (q_1, \ldots, q_n)$. The concept of a trigonometric width in the one-dimensional case was first introduced by R.S. Ismagilov and he established his estimates for certain classes in the space of continuous functions. For a function of several variables exact orders of trigonometric widths of Sobolev class W_{p}^{r}, Nikol’skii class H_{p}^{r} in the space L_{q} are established by E.S. Belinsky, V.E. Majorov, Yu. Makovoz, G.G. Magaril-Ilyaev, V.N. Temlyakov. This problem for the Besov class B_{pq}^{r} was investigated by A.S. Romanyuk, D.B. Bazarkhanov. The trigonometric width for the anisotropic Nikol’skii-Besov classes $B_{pq}^{\alpha\tau} (\mathbb{T}^n)$ in the metric of the anisotropic Lorentz spaces $L_{\theta p} (\mathbb{T}^n)$ was found by K.A. Bekmaganbetov and Ye. Toleugazy.

Keywords: trigonometric widths, anisotropic Lorentz space, Nikol’skii–Besov class with mixed metric.

Introduction

Let $V \subset L_1 (\mathbb{T}^n)$ be the normed space and $F \subset V$ be some functional class. The trigonometric width of the class F in the space V is defined as follows (see [1])

$$d_M^F (F, V) = \inf_{t \in F} \sup_{t (\Omega_M; \cdot)} \| f (\cdot) - t (\Omega_M; \cdot) \|_{V},$$

where $t (\Omega_M; x) = \sum_{j=1}^{M} c_j e^{i (k_j, x)}$, $\Omega_M = \{ k_1, \ldots, k_M \}$ is the set of vectors $k_j = (k_{j1}, \ldots, k_{jn})$ from the integer lattice \mathbb{Z}^n and c_j are some numbers ($j = 1, \ldots, M$).

The concept of a trigonometric width in the one-dimensional case was first introduced by R.S. Ismagilov [1] and he established its estimates for certain classes in the space of continuous functions. For a function of several variables exact orders of trigonometric widths of Sobolev class W_{p}^{r}, Nikol’skii class H_{p}^{r} in the space L_{q} are established by E.S. Belinsky [2], V.E. Majorov [3], Yu. Makovoz [4], G.G. Magaril-Ilyaev [5], V.N. Temlyakov [6]. This problem for the Besov class B_{pq}^{r} was investigated by A.S. Romanyuk [7], D.B. Bazarkhanov [8]. The trigonometric width for the anisotropic Nikol’skii-Besov classes $B_{pq}^{\alpha\tau} (\mathbb{T}^n)$ in the metric of the anisotropic Lorentz spaces $L_{\theta p} (\mathbb{T}^n)$ was found by K.A. Bekmaganbetov and Ye. Toleugazy [9].

We study the problem of estimating the order of the trigonometric width of the Nikol’skii-Besov classes $B_{pq}^{\alpha\tau} (\mathbb{T}^n)$ with a mixed metric in the metric of anisotropic Lorentz spaces $L_{\theta p} (\mathbb{T}^n)$.

Preliminaries and auxiliary results

Let $f (x) = f (x_1, \ldots, x_n)$ be a measurable function defined by \mathbb{T}^n. Let multiindexes $1 \leq p = (p_1, \ldots, p_n) < \infty$. A Lebesgue space $L_p (\mathbb{T}^n)$ with mixed metric is the set of functions for which the following quantity is finite

$$\| f \|_{L_p (\mathbb{T}^n)} = \left(\int_0^{2\pi} \cdots \left(\int_0^{2\pi} |f (x_1, \ldots, x_n)|^{p_1} \, dx_1 \right)^{p_2 / p_1} \cdots \left(\int_0^{2\pi} |f (x_1, \ldots, x_n)|^{p_n} \, dx_n \right)^{p_{n-1} / p_n} \right)^{1 / p_n}.$$

Here, the expression $\left(\int_0^{2\pi} |f (t)|^p \, dt \right)^{1 / p}$ for $p = \infty$ is understood as $\sup_{0 \leq t < 2\pi} |f (t)|$.

Серия «Математика». № 1(97)/2020
For the function \(f \in L_p(\mathbb{T}^n) \) we denote
\[
\Delta_n(f, x) = \sum_{k \in \rho(s)} a_k(f)e^{i(k,x)},
\]
where \(\{a_k(f)\}_{k \in \mathbb{Z}^n} \) are Fourier coefficients of the function \(f \) with respect to the multiple trigonometric system \(\rho(s) = \{k = (k_1, \ldots, k_n) \in \mathbb{Z}^n : 2^{-i} \leq |k_i| < 2^i, i = 1, \ldots, n\} \).

Let \(0 < \alpha = (\alpha_1, \ldots, \alpha_n) < \infty, 0 < \tau = (\tau_1, \ldots, \tau_n) \leq \infty \) and for any number \(t \) there exists a trigonometric polynomial \(P(\Omega_M, x) \) from Corollary 1, which is approaching the \(f \).

Lemma 1 [10]. Let \(2 \leq q < \infty \). Then for any trigonometric polynomial
\[
P(\Omega_M, x) = \sum_{j=1}^{M} e^{i(k_j,x)}
\]
and for any number \(N \leq M \) there exists a trigonometric polynomial \(P(\Omega_N, x) \) containing at most \(N \) harmonics and such that
\[
\|P(\Omega_M, \cdot) - P(\Omega_N, \cdot)\|_{L_q(\mathbb{T}^n)} \leq CMN^{-1/2},
\]
moreover \(\Omega_N \subset \Omega_M \) and all coefficients \(P(\Omega_N, x) \) are the same and do not exceed \(MN^{-1} \).

Corollary 1 [11]. Let \(2 < q = (q_1, \ldots, q_n) \leq \infty, 0 < \theta = (\theta_1, \ldots, \theta_n) \leq \infty \). Then for any trigonometric polynomial
\[
P(\Omega_M, x) = \sum_{j=1}^{M} e^{i(k_j,x)}
\]
and for any number \(N \leq M \) there exists a trigonometric polynomial \(P(\Omega_N, x) \) containing at most \(N \) harmonics and such that
\[
\|P(\Omega_M, \cdot) - P(\Omega_N, \cdot)\|_{L_{q\theta}(\mathbb{T}^n)} \leq CMN^{-1/2},
\]
moreover \(\Omega_N \subset \Omega_M \) and all coefficients \(P(\Omega_N, x) \) are the same and do not exceed \(MN^{-1} \).

For any \(s \in \mathbb{Z}^n \) we consider a linear operator
\[
(T_Ns) f(x) = f(x) * \left(\sum_{k \in \rho(s)} e^{i(k,x)} - t(\Omega_N, x) \right),
\]
where \(t(\Omega_N, x) \) is a trigonometric polynomial from Corollary 1, which is approaching the \(\{s\} \).

Lemma 2. Let \(1 < p < 2 \), the multiindex \(q = (q_1, \ldots, q_n) \) be such that \(2 < q_j < p' \) for all \(j = 1, \ldots, n \) and \(\theta = (\theta_1, \ldots, \theta_n) \leq \infty \). Then the norm operator \(T_Ns \) acting from \(L_p(\mathbb{T}^n) \) to \(L_{q\theta}(\mathbb{T}^n) \) satisfies the following inequality
\[
\|T_Ns\|_{L_p(\mathbb{T}^n) \to L_{q\theta}(\mathbb{T}^n)} \leq C_1 2^{(1,s)} N_s^{-1/2 + 1/p'}.
\]
Proof. Taking into account that the coefficients of the polynomial \(t(\Omega_{N_0}, x) \) are the same and do not exceed \(2^{(1, s)} N_0^{-1} \) by Parseval’s equality we have
\[
\| T_{N_0} \|_{L_2(T^n)\rightarrow L_2(T^n)} \leq C_1 2^{(1, s)} N_0^{-1}. \tag{1}
\]

Further, using the generalized Minkowski’s inequalities and Corollary 1 we can write
\[
\| T_{N_0} f \|_{L_{q^*}(T^n)} \leq \| f \|_{L_1(T^n)} \left| \sum_{k\in\rho(s)} e^{t(k\cdot)} - t(\Omega_{N_0}, \cdot) \right|_{L_{q^*}(T^n)} \leq C_2 2^{(1, s)} N_0^{-1/2} \| f \|_{L_1(T^n)}.
\]

Therefore, by definition, \(\| T_{N_0} \|_{L_1(T^n)\rightarrow L_{q^*}(T^n)} \) we find
\[
\| T_{N_0} \|_{L_1(T^n)\rightarrow L_{q^*}(T^n)} \leq C_2 2^{(1, s)} N_0^{-1/2}. \tag{2}
\]

Further, using the Riesz-Thorin interpolation theorem for Lebesgue spaces and anisotropic Lorentz spaces, we obtain
\[
\| T_{N_0} \|_{L_1(T^n)\rightarrow L_{q^*}(T^n)} \leq \| T_{N_0} \|_{L_2(T^n)\rightarrow L_2(T^n)} \| T_{N_0} \|_{L_1(T^n)\rightarrow L_{q^*}(T^n)}, \tag{3}
\]
where \(0 < \lambda < 1 \) and \(1/p = (1 - \lambda)/2 + \lambda/1, \ 1/q = (1 - \lambda)/2 + \lambda/q^* \) and \(1/\theta = (1 - \lambda)/2 + \lambda/\theta^* \).

By substituting (1) and (2) and performing elementary transformations, we receive at the required estimate with the additional condition \(0 < \theta = (\theta_1, \ldots, \theta_n) < p' = (p', \ldots, p') \). For the remaining values of the parameters \(\theta = (\theta_1, \ldots, \theta_n) \) the validity of the assertion follows from the embedding \(L_{q^*}(T^n) \rightarrow L_{q^*}(T^n) \) for \(0 < \theta = (\theta_1, \ldots, \theta_n) \leq \theta_2 = (\theta_1, \ldots, \theta_n) \leq \infty \).

Let us formulate a special case of the embedding theorem from E.D. Nursultanov’s paper ([12]) as a Lemma.

Lemma 3 [12]. Let \(1 \leq p = (p_1, \ldots, p_n) < q = (q_1, \ldots, q_n) < \infty, \ 0 < \tau = (\tau_1, \ldots, \tau_n) \leq \infty \) and \(\alpha = 1/p - 1/q \), then
\[
B_p^\alpha(T^n) \hookrightarrow L_{q^*}(T^n).
\]

Furthermore we need the following sets
\[
Y^n(N, \gamma) = \left\{ s = (s_1, \ldots, s_n) \in \mathbb{Z}_+^n : \sum_{j=1}^n \gamma_j s_j \geq N \right\},
\]
\[
N^n(N, \gamma) = \left\{ s = (s_1, \ldots, s_n) \in \mathbb{Z}_+^n : \sum_{j=1}^n \gamma_j s_j = N \right\}.
\]

Lemma 4 [13]. Let \(n \in \mathbb{N}, \ n \geq 2, \ 0 < \gamma' = (\gamma'_1, \ldots, \gamma'_n) \leq \gamma = (\gamma_1, \ldots, \gamma_n) < \infty, \ 0 < \delta > 0 \) and \(0 < \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \leq \infty \). Then
\[
\left\| \left\{ 2^{-\delta(s, \gamma)} \right\}_{s \in Y^n(N, \gamma)} \right\|_{L_1(\mathbb{Z}_+^n)} \leq C 2^{-\delta q N} N^{\sum_{j=1}^n (\varepsilon_j - 1)/\varepsilon_j},
\]
where \(\eta = \min \left\{ \gamma_j/\gamma'_j : j = 1, \ldots, n \right\}, \ A = \{ j : \gamma_j/\gamma'_j = n, j = 1, \ldots, n \}, \ j_1 = \min \{ j : j \in A \}. \)

Lemma 5 [13]. Let \(n \in \mathbb{N}, \ n \geq 2, \ 0 < \gamma = (\gamma_1, \ldots, \gamma_n) < \infty, \ 0 < \delta \in \mathbb{R} \) and \(0 < \varepsilon = (\varepsilon_1, \ldots, \varepsilon_n) \leq \infty \). Then
\[
\left\| \left\{ 2^{-\delta(s, \gamma)} \right\}_{s \in N^n(N, \gamma')} \right\|_{L_1(\mathbb{Z}_+^n)} \leq C 2^{-\delta q N} N^{\sum_{j=1}^n (1)/\varepsilon_j}.
\]

Main result

The main result of this paper includes:

Theorem 1. Let \(1 < p = (p_1, \ldots, p_n) < 2 < q = (q_1, \ldots, q_n) < p_0' = (p_0', \ldots, p_0'), \ p_0 = \max \{ p_j : j = 1, \ldots, n \}, \ 1 \leq \tau = (\tau_1, \ldots, \tau_n), \ 0 \leq \alpha = (\alpha_1, \ldots, \alpha_n) \) be such that \(\alpha_j > 1 + 1/p_j - 1/p_0 \) for all \(j = 1, \ldots, n \). Let \(\zeta = \min \{ \alpha_j - 1/p_j + 1/q_j : j = 1, \ldots, n \}, \ D = \{ j = 1, \ldots, n : \alpha_j - 1/p_j + 1/q_j = \zeta \}, \ j_1 = \min \{ j : j \in D \}, \ q_j = q_j, \) for all \(j \in D \) and \(q_j \geq q_{j_1} \) for all \(j \notin D \).
Then the following relation holds
\[d_M^2(B_p^{α,τ}(T^m),L_qθ(T^m)) = M^{-α_n-1/p_{j_1}+1/2}(\log M)^{(|D|-1)(α_j-1/p_{j_1}+1/2)+\sum_{t\in D\setminus\{j_1\}}(1/2-1/τ_j)+} \]
where \(|D|\) is amount of elements of the set \(D\), \(a_+ = \max\{a;0\}\).

Proof. Let \(f \in B_p^{α,τ}(T^m)\). For any natural number \(M\) there exists the natural number \(m\) such that \(M \approx 2^m m^{|D|-1}\). We will seek an approximating polynomial \(P(Ω_M, x)\) in the following form
\[P(Ω_M; x) = \sum_{(γ', s)} Δ_γ(f, x) + \sum_{m≤(γ', s) < β_m} t(Ω_{N_s}; x) + Δ_γ(f, x), \]
where
\[β = \left(\alpha_{j_1} - 1/p_{j_1} + 1/2 - \frac{\log m}{m} \sum_{j∈D\setminus\{j_1\}} \left(1/2 - 1/τ_j - (1/θ_j - 1/τ_j)_+\right)\right)/\left(\alpha_{j_1} - 1/p_{j_1} + 1/q_{j_1}\right). \]
\(γ_j = (α_j - 1/p_{j_1} + 1/q_{j_1})/(α_{j_1} - 1/p_{j_1} + 1/q_{j_1}), j = 1, \ldots, n, γ'_j = γ_j\) for \(j ∈ D\) and \(1 < γ'_j < γ_j\) for \(j \notin D\). The polynomials \(t(Ω_{N_s}, x)\) are chosen for every “block” \(t_s(x) = \sum_{k∈β(s)} e^{i(k,x)}\) according to Corollary 1 and numbers \(N_s = \left[2^{(α_{j_1}-1/p_{j_1}+1/q_0)m}2^{-(α-1/p+1/p_0-1)s}\right]\). Note that according to Lemma 4
\[\sum_{m≤(γ', s) < β_m} N_s = 2^{(α_{j_1}-1/p_{j_1}+1/q_0)m} \sum_{m≤(γ', s) < β_m} 2^{-(α-1/p+1/p_0-1)s} \leq 2^{(α_{j_1}-1/p_{j_1}+1/q_0)m}\left\| 2^{-(α-1/p+1/p_0-1)s}\right\|_{L_qθ(T^m)} \leq 2^{(α_{j_1}-1/p_{j_1}+1/q_0)m}2^{-(α_{j_1}-1/p_{j_1}+1/q_0)m}m^{|D|-1} = 2^m m^{|D|-1} ≈ M, \]
so that \((α_j - 1/p_{j_1} + 1/p_0 - 1)/(α_{j_1} - 1/p_{j_1} + 1/p_0 - 1) > γ'_j\) at \(j \notin D\). Moreover according to equality (5) and Minkowski’s inequality we have
\[\|f(·) - P(Ω_M; ·)\|_{L_qθ(T^m)} ≤ C_1 \left(\left\| \sum_{m≤(γ', s) < β_m} \left(Δ_γ(f, ·) - Δ_γ(f, ·) * t(Ω_{N_s}; ·) \right) \right\|_{L_qθ(T^m)} + \left\| \sum_{(γ', s) ≥ β_m} Δ_γ(f, ·) \right\|_{L_qθ(T^m)} \right) \]
\[= C_1 (I_1(f) + I_2(f)). \]
Firstly we estimate \(I_2(f)\). By Lemma 3 we have
\[I_2(f) ≤ C_2 \left\| 2^{(1/p-1/q, s)} \|Δ_γ(f, ·)\|_{L_p(T^m)} \right\|_{l_p} \left\| Y^n(β_m, γ') \right\|_{l_p} ≤ I_3(f). \]
According to Hölder’s inequality with parameters \(1/θ = 1/τ + 1/ε\), where \(1/ε = (1/θ - 1/τ)_+\) and Lemma 4, taking into account that \(γ' ≤ γ\) we find
\[I_3(f) = \left\| 2^{(α, s)} \|Δ_γ(f, ·)\|_{L_p(T^m)} \cdot 2^{-(α_{j_1}-1/p_{j_1}+1/q_{j_1})(γ, s)} \right\|_{s∈ Y^n(β_m, γ')} \leq \left\| 2^{(α, s)} \|Δ_γ(f, ·)\|_{L_p(T^m)} \right\|_{s∈ Y^n(β_m, γ')} \times \left\| 2^{-(α_{j_1}-1/p_{j_1}+1/q_{j_1})(γ, s)} \right\|_{s∈ Y^n(β_m, γ')} \leq \]

20 Вестник Карагандинского университета
\[I_2 \leq C_5 M^{-1/2} (\log M)^{D(1/2)} (1/2 - 1/\tau) \]

Now, let us estimate the value \(I_1(f) \). By using the Littlewood-Paley theorem (see [14]), we obtain

\[I_1(f) \leq C_6 \left\{ \left\| \sum_{m \in \mathbb{N}^n \setminus \{0\}} (\Delta_m f) \ast t(\Omega_{m,s}^+) \right\|_{L^{q}(T^n)} \right\}^{1/2} \]

\[= C_6 \left\{ \left\| T_{\ast} \Delta_m f \right\|_{L^{q}(T^n)} \right\} \|_{L^{q}(T^n)} \]

(10)

where \(\mathbb{N}^n(m, \beta m, \gamma') = \{ s \in \mathbb{Z}^n_+: m \leq (\gamma', s) < \beta m \} \).

By using Lemma 2 and inequality of different metric for trigonometric polynomials in the Lebesgue spaces with mixed metric (see [14]) for \(1 < p_j < p_0 \) (\(j = 1, \ldots, n \)), from (10) we have

\[I_1(f) \leq C_7 \left\{ 2^{1,\mathcal{a}} N_s^{-1/2} \| \Delta_m f \|_{L^{p_0}(T^n)} \right\} \|_{L^{q}(T^n)} \]

\[\leq C_8 \left\{ N_s^{-1/2} \| \Delta_m f \|_{L^{p_0}(T^n)} \right\} \|_{L^{q}(T^n)} \]

\[= C_9 \left\{ N_s^{-1/2} \| \Delta_m f \|_{L^{p_0}(T^n)} \right\} \|_{L^{q}(T^n)} \]

(11)

According to Hölder’s inequality with parameters \(1/2 = 1/\tau + 1/\varepsilon \), where \(1/\varepsilon = (1/2 - 1/\tau)_+ \) and by (11) we find

\[I_1(f) \leq C_6 \left\{ 2^{1,\mathcal{a}} \| \Delta_m f \|_{L^{p_0}(T^n)} \right\} \|_{L^{q}(T^n)} \]

\[\times \left\{ N_s^{-1/2} \| \Delta_m f \|_{L^{p_0}(T^n)} \right\} \|_{L^{q}(T^n)} \]

(11)
\begin{equation}
\leq C_8 \left\| f \right\|_{B_2^\infty(T^n)} \left\| \left\{ N_j^{-\left(1/2+1/p'_0\right)} \alpha_j \right\} \right\|_{L_2} \leq C_8 \left\| \left\{ N_j^{-\left(1/2+1/p'_0\right)} \alpha_j \right\} \right\|_{L_2} \tag{12}
\end{equation}
for any function \(f \in B_2^\infty(T^n) \).

By continuing (12), according to the Lemma 4 we have
\[
I_1(f) \leq C_8 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0)m} \times \left\| \left\{ 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0-1)} \alpha_j \right\} \right\|_{L_2} = C_8 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0)m} \times \left\| \left\{ 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0-1)} \alpha_j \right\} \right\|_{L_2} \leq C_8 2\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0)m \left\| \left\{ 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0-1)} \alpha_j \right\} \right\|_{L_2} \leq C_9 2\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0)m 2^{\left(1/2+1/p'_0\right)(\alpha_j-1/p_j+1/p_0-1)} m \sum_{j \in D \setminus \{j_1\} \cap \{j_2\}} 1/\epsilon_j = C_9 2\left(\alpha_j-1/p_j+1/2\right)m \sum_{j \in D \setminus \{j_1\} \cap \{j_2\}} (1/2-\tau_j) + \frac{1}{\epsilon_j}
\]
as \((\alpha_j-1/p_j+1/p_0-1)/(\alpha_j-1/p_j+1/p_0-1) > \gamma_j^0\) at \(j \notin D \).

Taking into account that \(M \geq 2^{m(\|D\|+1)} \) we find
\[
I_2(f) \leq C_{10} M^{-\left(\alpha_j-1/p_j+1/2\right)(\log M)(\|D\|+1)} \left(\alpha_j-1/p_j+1/2\right) + \sum_{j \in D \setminus \{j_1\} \cap \{j_2\}} (1/2-\tau_j) + \frac{1}{\epsilon_j}
\tag{13}
\]
Inserting (9) and (13) into (6) we obtain the inequality, which gives the upper estimate in (4).

For the proof of the lower estimate we consider the following value
\[
e_M(f)_V = \sup_{f \in F} \inf_{\sum_{j=1}^M b_j e^{i(k_j,x)}} \left\| f - \sum_{j=1}^M b_j e^{i(k_j,x)} \right\|_V,
\]
which is called the best \(M \)-term approximation of the class \(F \) in metric space \(V \).

Moreover, by the definition, the following inequality holds
\[
e_M(f)_V \leq d_M^2(f,V).
\]

By using the condition \(2 < q_j \) \((j = 1, \ldots, n) \) we have
\[
e_M(f)_{L_2(T^n)} \leq C_{11} e_M(f)_{L_w^q(T^n)}.
\]

For the proof of the lower estimate we will use double relation, which follows from the general results of S.M. Nikol’skii (see [15]). According to this relation for any function \(f \in L_2(T^n) \) the following equality holds
\[
e_M(f)_{L_2(T^n)} = \inf_{\sum_{j=1}^M b_j e^{i(k_j,x)}} \sup_{f \in F} \left\| f - \sum_{j=1}^M b_j e^{i(k_j,x)} \right\|_{L_2(T^n)}
\tag{14}
\]
where \(L \) is a linear span of a system of functions \(\{ e^{i(k,x)} \}_{k \in \Omega_M} \).

We consider the function
\[
f(x) = m^{-\sum_{j \in D \setminus \{j_1\} \cap \{j_2\}} 1/\tau_j} \sum_{m \leq \gamma_j < s_0 < \gamma_j + n} \prod_{j=1}^n 2^{\left(\alpha_j+1-1/p_j\right)s_j} \sum_{k \in \rho(s_0)} e^{i(k,x)}
\]
where \(D' = \{ j \in D : 2 < \tau_j \} \cup \{j_1\} \), \(s_0 = (s_0^0, \ldots, s_0^n) \), \(s_j^0 = s_j \) at \(j \in D' \) and \(s_j^0 = 0 \) at \(j \notin D' \).
In the paper [16] it was proved that the function $C_{12}f(x)$ belongs to the class $B^0_{r}(\mathbb{T}^n)$.

Let us construct the function $P(x)$ satisfying the condition (14).

Let

$$u(x) = \sum_{(s_i, s_0) \leq m} \sum_{k \in \rho(s_0)} e^{i(k \cdot x)}$$

and Ω_M be an arbitrary collection of integer vectors $k = (k_1, \ldots, k_n)$.

We denote by

$$v(x) = \sum_{(s_i, s_0) \leq m} \sum_{k \in \rho(s_0) \cap \Omega_M} e^{i(k \cdot x)}$$

the function, containing only those terms of (15), for which $w(x)$ does not contain the harmonics from Ω_M. By Minkowski’s inequality and Parseval’s equality for function $w(x) = u(x) - v(x)$ we have

$$\|w\|_{L_2(\mathbb{T}^n)} \leq C_{13}M^{1/2}.$$

We consider the function $P(x) = C^{-1}_{13} M^{-1/2} w(x)$, then $\|P\|_{L_2(\mathbb{T}^n)} \leq 1$. Since the function $w(x) = u(x) - v(x)$ does not contain the harmonics from Ω_M, then function $P \in L^1$. Thus, the function $P(x)$ satisfies the conditions from (14).

According to (14) and by Lemma 5 we obtain

$$e_M(f)_{L_2(\mathbb{T}^n)} \geq C_{14} M^{-1/2} \left| \int_{\mathbb{T}^n} f(x) \omega(x) dx \right| \geq$$

$$\geq C_{14} M^{-1/2} m^{-\sum_{j \in \mathbb{N} \backslash \{1\}} 1/T_j} \sum_{(s_i, s_0) = m} \prod_{j=1}^{n} 2^{-(\alpha_j + 1 - 1/p_j) s_0} \sum_{k \in \rho(s_0)} 1 =$$

$$\geq C_{14} M^{-1/2} m^{-\sum_{j \in \mathbb{N} \backslash \{1\}} 1/T_j} \sum_{(s_i, s_0) = m} \prod_{j=1}^{n} 2^{-(\alpha_j - 1/p_j) s_0} =$$

$$= C_{14} M^{-1/2} m^{-\sum_{j \in \mathbb{N} \backslash \{1\}} 1/T_j} \left\| \sum_{j \in \mathbb{N} \backslash \{1\}} \left\{ 2^{-(\alpha_j - 1/p_j) s_0} \right\}_{\mathbb{N} \backslash \{1\}} \right\|_{L_1} \geq$$

$$\geq M^{-1/2} m^{-\sum_{j \in \mathbb{N} \backslash \{1\}} 1/T_j} 2^{-(\alpha_j - 1/p_j) m \|\mathbb{N} \| \|D\|^{-1}}.$$

(16)

where $s = (s_{j_1}, \ldots, s_{j_1(D)})$.

Taking into account that $M \approx 2^m m^{\|D\|^{-1}}$ from (16) we have

$$e_M(f)_{L_2(\mathbb{T}^n)} \geq C_{15} 2^{-(\alpha_j - 1/p_j) m} \sum_{j \in \mathbb{N} \backslash \{1\}} (1/2 - 1/T_j) \geq$$

$$= C_{16} M^{-(\alpha_j - 1/p_j) m} (\log M)^{\|D\|^{-1}} (\alpha_j - 1/p_j) m + \sum_{j \in \mathbb{N} \backslash \{1\}} (1/2 - 1/T_j).$$

(17)

By (17) lower estimate in (4) follows.

Remark. Note, that for $p = (p, \ldots, p)$, $\tau = (\tau, \ldots, \tau)$ and $q = \theta = (q, \ldots, q)$ the statement of the theorem coincides with the corresponding result of A.S. Romanyuk [7].

Acknowledgments

Research was partially supported by the grant of the Science Committee of Ministry of Education and Science of the Republic of Kazakhstan (grants AP05132071, AP05132590).

References

К.А. Bekmaganbetov, K.Ye. Kervenev, Ye. Toleugazy

Анизотропты Лоренц кеңістігінде метрикасындағы аралас метрикалы Никольский-Бесов класындағы тригонометриялық көлденеңін реті

Тригонометриялық көлденең ұзындығы бірлешеді және жағдайда алғаш рет Р.С. Исымгилов енгізді және ұзілісінің функциялар кеңістікіндегі біркіткен кластер ұзындығы оларға бағалаудар бәлгіледі. Кен әйірмеалы функциялар ұзындық L_q кеңістікінде Соболевтік W^r_p Никольскийдің $B^{r,p}_{p,q}$ кластерлердің тригонометриялық көлденеңдерінің нормалары менді бұл бағалаударды Қ.А.Бекмаганбетов және Е. Толегазының бірнеше табілді.

Құрам сөздер: тригонометриялық көлденең, анизотропты Лоренц кеңістіктері, аралас метрикалы Никольский-Бесов класы.
Порядок тригонометрического поперечника класса Никольского-Бесова со смешанной метрикой в метрике анизотропного пространства Лоренца

Понятие тригонометрического поперечника в одномерном случае впервые введено Р.С. Исмагиловым и им были установлены оценки для некоторых классов в пространстве непрерывных функций. Для функций многих переменных точные порядки тригонометрических поперечников класса Соболева W^r_p Никольского H^r_p в пространстве L_q установлены Э.С.Белинским, В.Е. Майоровым, Ю. Маковозом, Г.Г. Магарил-Ильйевым, В.Н. Темляковым. Эта задача для класса Бесова B^r_{pq} исследована А.С. Романюком и Д.В. Базархановым. Тригонометрический поперечник для анизотропного класса Никольского-Бесова $B^{r}_{pq}(\mathbb{T}^n)$ в метрике анизотропных пространств Лоренца $L_{aq}(\mathbb{T}^n)$ был найден К.А. Бекмаганбетовым и Е. Толеугазы.

Ключевые слова: тригонометрический поперечник, анизотропные пространства Лоренца, класс Никольского-Бесова со смешанной метрикой.

References

