М.К. Кудайбергенов1, А.Л. Карцевский2,3, К.Т. Исказов4

1 Казахский Хуманитарный и Юридический Инновационный Университет, Семей, Казахстан;
2 Институт Соболева математики, Новосибирск, Россия;
3 Новосибирский государственный университет, Россия;
4 Л.Н. Гумилев Евразийский национальный университет, Астана, Казахстан
(E-mail: melskk@mail.ru)

1. Introduction

The paper deals with the plane problem of the deformation of a horizontal coal bed of finite length that is under the influence of overlying rocks and lies between two drifts. An analytical solution in the form of a series is constructed. It takes a small amount of time to calculate it. The method is specifically designed for monitoring of geomechanical fields during the development of coal seams in real time.

Conveyor technologies for coal extraction are increasingly used for underground mining. In this connection, the security problems associated with the increase in the likelihood of occurrence of mountain impacts and sudden gas releases are exacerbated [1]. In mines and mining camps the passive systems of monitoring of environment are used. They record microseismic emission (ITU), which occurs due to deformation of the rock mass caused by a quasistatic change in stresses during cleaning operations [2, 3]. Interpretation of the received data on the spot is carried out locally by statistical methods [4, 5]. On the other hand, there are significant correlations between the characteristics of the ITU and the integral parameters of the stress-strain state of rocks [6]. However, their use in practice is difficult, because the currently available numerical methods for calculating stress and strain fields in geo-environments [7–9] and, in particular, of carbonaceous masses [10], despite the universality and existence of many commercial codes (ANSYS, ABACUS, FLAC, etc.), it is very difficult to use for the rapid estimation of geomechanical fields with the purpose of making decisions over times of the order of tens of seconds, which is required when forecasting technogenic dynamic events [2]. Therefore, the development of analytical methods for calculating geomechanical fields remains relevant. These methods allow obtaining the required solution for the minimum time required in practice.

The mathematically stated problem reduces to solving a two-dimensional homogeneous biharmonic equation. Numerous methods have been proposed to solve it. It is necessary to mention solutions in the form of polynomials, solutions of Fielean and Ribier. However, these solutions are not suitable for any kind of boundary conditions. There is an approach of the so-called nonclosed solution, when the solution is represented as the sums of several series, when the coefficient of one series is expressed in terms of all the coefficients of the second series, i.e. an infinite system of linear algebraic equations is obtained for finding coefficients. If it is possible to prove its completely regularity, then it is possible to use the simple reduction method. However, this approach is associated with a great deal of computation. It is possible to find a solution with the help of fundamental beam functions A.N. Krylov, but among them there are hyperbolic sines and cosines, which can lead to large errors during computation in large domains. To solve the biharmonic equation, there are other approaches (see, for example, [11–14]), which compare solutions obtained by various methods (they can be found in the work) [15].
In our opinion, the most promising approach seems to be S.A. Khalilov’s approach. They were offered and studied special basis functions [16, 17], which allow, first, to obtain a solution in the form of a series; secondly, simple actions are performed to search for the coefficients of this series; it is not necessary to solve infinite systems of linear algebraic equations. This approach was proposed to solve the applied problems of aircraft building (see, for example [15–24]). It was shown that the numerical solution of the biharmonic equation, constructed with the help of proposed functions, is calculated very accurately. The maximum deviation is localized near the corner points of the domain (see, for example, [15–20], etc.) and is small (about 1.2 %), the largest error is achieved for a square area, the more the rectangular domain differs from the square, the less the calculation error.

We used the experience of S.A. Khalilov and his disciples for the construction of an algorithm for the rapid calculation of stresses in a coal-rock massif. This algorithm will be used in the future to interpret geological information in order to predict the possibility of mining, which is still a very urgent task of ensuring the safety of mining operations. The first attempts in this direction were made in [25, 26].

2 Formulation of the task

It is necessary to calculate stress fields in a coal seam of finite length lying between two drifts. Due to the long length of the reservoir compared to its thickness and distance between the drifts, we assume that the model of a flat deformed state is applicable [27]. In this case, the Navier equilibrium equation is written in the following form:

\[
\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xz}}{\partial z} = 0, \quad \frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \sigma_z}{\partial z} = 0.
\] (1)

The stress state in the reservoir is described by the equation of continuity of deformation of Saint-Venant

\[
\frac{\partial^2 \varepsilon_x}{\partial z^2} + \frac{\partial^2 \varepsilon_z}{\partial x^2} = \frac{\partial^2 \gamma_{xz}}{\partial x \partial z}
\] (2)

and Hooke’s law

\[
\varepsilon_x = \frac{1}{E'} (\sigma_x - \nu' \sigma_z), \quad \varepsilon_z = \frac{1}{E'} (\sigma_z - \nu' \sigma_x), \quad \gamma_{xz} = \frac{2(1 + \nu')}{E'} \tau_{xz}.
\] (3)

Here \(E'\) and \(\nu'\) are the Young’s modulus and the Paussson coefficient for the plane problem of the deformed state [27].

We assume that the boundary conditions hold

\[
\sigma_z|_{z=\pm l_z} = \begin{cases} f_1(x) & \text{if } z = l_z, \\ f_2(x) & \text{if } z = -l_z \end{cases}, \quad \tau_{xz}|_{z=\pm l_z} = \begin{cases} g_1(x) \\ g_2(x) \end{cases}
\] (4)

and the matching conditions at the corner points: \(g_j(\pm l_z) = 0 (j = 1, 2)\).

In the simple case, we can assume: \(f_1(x) = f_2(x)\), \(g_1(x) = -g_2(x)\).

![Figure. Coal layer model and coordinate system adopted in the paper](image)

We consider that the considered system is balanced (the coal seam, being under the influence of forces on it, is stationary) (see. Fig.). In this case, the moment of forces and the sum of the forces acting on the layer must be zero. That is, the following equations must be satisfied:

\[
\int_{-l_z}^{l_z} \left[x\sigma_z(x, l_z) - l_z \tau_{xz}(x, l_z) \right] dx + \int_{-l_z}^{l_z} \left[x\sigma_z(x, -l_z) + l_z \tau_{xz}(x, -l_z) \right] dx = 0; \quad \int_{-l_z}^{l_z} \sigma_z(x, l_z) dx = \int_{-l_z}^{l_z} \sigma_z(x, -l_z) dx = 0.
\] (5)
Stress-strain state horizontal coal seam of finite length

or, taking into account (4),

\[
\frac{1}{2} \left(\int_{-l_x}^{l_x} x f_1(x) \, dx - \int_{-l_x}^{l_x} x f_2(x) \, dx \right) = l_x \int_{-l_x}^{l_x} g_1(x) \, dx;
\]

(6)

\[
\int_{-l_x}^{l_x} f_1(x) \, dx = \int_{-l_x}^{l_x} f_2(x) \, dx, \quad \int_{-l_x}^{l_x} g_1(x) \, dx = \int_{-l_x}^{l_x} g_2(x) \, dx.
\]

Following the well-known approach for calculating stresses (see, for example, [27]), we introduce the Erie function and obtain the differential equation to which it satisfies.

A consequence of relations (2)–(3) is the equation

\[
\frac{\partial^2}{\partial x^2} (\sigma_x - \nu' \sigma_z) + \frac{\partial^2}{\partial y^2} (\sigma_z - \nu' \sigma_x) = 2(1 + \nu') \frac{\partial^2}{\partial x \partial y} \tau_{xz}.
\]

(7)

It follows from (1)–(3), (7) that

\[
\Delta (\sigma_x + \sigma_z) = 0.
\]

(8)

We introduce the Erie function \(\varphi \) so that equations (1) are satisfied automatically

\[
\sigma_x = \frac{\partial^2 \varphi}{\partial x^2}, \quad \sigma_z = \frac{\partial^2 \varphi}{\partial y^2}, \quad \tau_{xz} = -\frac{\partial^2 \varphi}{\partial x \partial y},
\]

(9)

then from (8) for the Erie \(\varphi \) function the biharmonic equation will take place:

\[
\Delta^2 \varphi = 0.
\]

(10)

To solve equation (10), from (4) and (9) follow the boundary conditions:

\[
\varphi_{x|z=\pm l_x} = \begin{cases} f_1(x) \\ f_2(x) \end{cases}, \quad \varphi_{z|z=\pm l_x} = \begin{cases} g_1(x) \\ g_2(x) \end{cases},
\]

\[
\varphi_{x|x=\pm l_x} = 0, \quad \varphi_{z|x=\pm l_x} = 0.
\]

(11)

Thus, in order to find the stresses \(\sigma_x, \sigma_z \), and \(\tau_{xz} \) in the domain \([-l_x, l_x] \times [-l_x, l_x]\), it is necessary to find the solution of the problem (10)–(11), and then use the representations (9).

To apply the mathematical technique (as in the case of using the solutions of Fileon or Ribiere), it is necessary that for the basis functions \(H_m(x) \) on the interval \([-l_x, l_x]\) the following conditions exist at the ends: \(H_m(\pm l_x) = 0 \), \(H'_m(\pm l_x) = 0 \). The functions \(\sin(\pi x/l_x) \) or \(\cos(\pi x/l_x) \) do not satisfy such conditions.

3 Selection of basic functions

S.A. Khalilov proposed to use the basis functions \(H_m(x) \) [16, 17] for the solution of the biharmonic equation of the following form:

\[
H_m(x) = P_{m+4}^4(x), \quad m = 0, 1, 2, \ldots,
\]

where \(P_{m+4}^4(x) \) are normalized adjoint Legendre polynomials. The system of functions \(\{H_m(x)\}_{m=0}^{\infty} \) is complete and orthonormal on the interval \([-1, 1]\).

A continuous function \(s(x) \) with boundary values \(s(\pm 1) = 0, s'(\pm 1) = 0 \) can be decomposed into the Fourier series in the system of functions \(\{H_m(x)\}_{m=0}^{\infty} \), the series converges absolutely and uniformly.

The presentation takes place [16, 17]

\[
H_m(x) = (1 - x^2)^2 \sum_{k=0}^{[m/2]} W_{mk} x^{m-2k}, \quad W_{mk} = \frac{(-1)^k}{2^{m+3}} \sum_{m=0}^{m!(2m+9)} \frac{(2m-2k+7)!}{(m-k+3)!k!(m-2k)!}.
\]
(\lfloor \cdot \rfloor \text{ is the integer part of a number}), the recurrence formula

\[H_m(x) = \xi_m x H_{m-1}(x) - \zeta_m H_{m-2}(x), \quad m = 1, 2, \ldots, \quad H_{-1}(x) = 0, \quad H_0(x) = W_0(1 - x^2)^2, \]

\[\xi_m = \sqrt{\frac{(2m + 9)(2m + 7)}{m(m + 8)}}, \quad \zeta_m = \sqrt{\frac{(m - 1)(m + 7)(2m + 9)}{m(m + 8)(2m + 5)}} \]

and the following equalities [17,18]:

\[\|H'_n\|_{[-1,1]}^2 = \frac{1}{15}(2n + 9)(n^2 + 9n + 5); \]

\[\|H''_n\|_{[-1,1]}^2 = \frac{1}{4}(2n + 9) \left((n + 2)(n + 7) \left[1 + \frac{1}{60}n(n + 2)(n + 7)(n + 9) \right] - n(n + 9) \left[3 + \frac{1}{84}(n - 1)(n + 4)(n + 5)(n + 10) \right] \right). \]

S.A. Khalilov and his co-authors have been shown and shown on numerical examples [15–20] that the functions \(H'_m(x) \) and \(H''_m(x) \) are quasi-orthogonal in the sense of the following conditions:

\[\frac{\langle H'_n(x), H'_m(x) \rangle}{\|H'_n(x)\| \|H'_m(x)\|} = \theta, \quad |\theta| \approx 0, \quad m \neq n, \quad k = 1, 2, \]

This remarkable property of these functions made it possible to apply the Bubnov-Galerkin procedure to the search for the solution of thebiharmonic equation and greatly simplify it.

In this paper, the functions \(X_m(x; L) = (1/\sqrt{L})H_m(x/L) \) will be used. These functions are orthonormal on the interval \([-L, L]\).

Below we need expansions of functions in a series in the derivatives of the functions \(X_m(x, L) \).

The expansion of the continuous function \(s(x) \) \((s(\pm L) = 0)\) in a series in the functions \(X'_m(x; L) \) has the form

\[s(x) = \frac{3}{4L^3} \int_{-L}^L s(y) dy \cdot \left(1 - \frac{x^2}{L^2} \right) + \sum_{m=0}^{\infty} c_m s X'_m(x; L). \]

The expansion of the continuous function \(s(x) \) \((|s(x)| < \infty)\) in a series in the functions \(H''_k(x; L) \) has the form

\[s(x) = -\frac{3}{2L^3} \int_{-L}^L y s(y) dy \cdot x + \frac{1}{4L} \int_{-L}^L s(y) dy + \sum_{m=0}^{\infty} c_m s^2 X'_m(x; L). \]

The decomposition data were obtained in [28].

4 Construction of the solution of the biharmonic equation

First of all, we introduce some notation. Let the functions \(f_j(x) \) and \(g_j(x) \)(\(j = 1, 2 \)) be representable in the form of series

\[f_j(x) = f_{j-2}(x) + \sum_{m=0}^\infty f'_m X'_m(x; l_x), \quad f_{j-1} = \frac{1}{4L^3} \int_{-L}^L f_j(s) ds, \quad f_{j-2} = -\frac{3}{2L^3} \int_{-L}^L s f_j(s) ds; \]

\[g_j(x) = g_{j-1} \left(1 - \frac{x^2}{L^2} \right) + \sum_{m=0}^\infty g'_m X'_m(x; l_x), \quad g_{j-1} = \frac{3}{4L^3} \int_{-L}^L g_j(s) ds. \]
We denote by c_m where from (12) we obtain the problems

\[\frac{1}{2} (f_{-2}^1 - f_{-2}^2) = -\frac{2l^2}{l_e^2} G. \]

We seek the solution of the biharmonic equation in the form

\[\varphi(x, z) = \varphi_1(x, z) + \varphi_2(x, z). \]

The function $\varphi_1(x, z)$ is a solution of the biharmonic equation (10) and satisfies the boundary conditions

\[\frac{\partial^2 \varphi_1}{\partial x^2} \bigg|_{z=\pm l_x} = \left\{ \begin{array}{ll} f_m^1 \cdot x + F, & \frac{\partial^2 \varphi_1}{\partial x \partial z} \bigg|_{z=\pm l_x} = -G \left(1 - \frac{x^2}{l_e^2}\right); \\ g_m \cdot x, & \frac{\partial^2 \varphi_1}{\partial x \partial z} \bigg|_{z=\pm l_x} = 0. \end{array} \right. \]

Using the method of undetermined coefficients, it is not difficult to obtain $\varphi_1(x, z)$ as a polynomial:

\[\varphi_1(x, z) = \frac{H}{6} x^3 + \frac{F}{2} x^2 - \frac{G}{3l_e} x^3 z + G x z. \]

Obviously, the function $\varphi_1(x, z)$ is found up to linear functions of x and z, since the above-mentioned boundary conditions do not ensure the uniqueness of the solution of the biharmonic equation.

The function $\varphi_2(x, z)$ is a solution of the biharmonic equation (10) and satisfies the boundary conditions

\[\frac{\partial^2 \varphi_2}{\partial x^2} \bigg|_{z=\pm l_x} = \sum_{m=0}^{\infty} \left\{ f_m^1 \right\} X_m'(x; l_x), \quad \frac{\partial^2 \varphi_2}{\partial x \partial z} \bigg|_{z=\pm l_x} = \sum_{m=0}^{\infty} \left\{ g_m \right\} X_m'(x; l_x); \]

\[\frac{\partial^2 \varphi_2}{\partial z^2} \bigg|_{x=\pm l_x} = 0, \quad \frac{\partial^2 \varphi_2}{\partial x \partial z} \bigg|_{x=\pm l_x} = 0. \]

These boundary conditions automatically satisfy the relations (6) by the properties of the functions $X_m(x; l_x)$ ($\forall m$).

An approximate analytic solution $\varphi_2(x, z)$ will be sought in the form

\[\varphi_2(x, z) = \sum_{m=0}^{\infty} R_m(z) X_m(x; l_x). \]

The Bubnov-Galerkin procedure applied to the solution of the homogeneous biharmonic equation (10) leads to an infinite system of ordinary differential equations

\[\sum_{m=0}^{\infty} \left[R_m(X_m''', X_m') - 2R_m''(X_m'', X_m') + R_m''' \delta_{ms} \right] = 0, \quad s = 0, 1, 2, ..., \quad (12) \]

here δ_{ms} — is the Kronecker symbol.

We use the property of quasiorthogonality of the first and second derivatives of the functions $X_m(x; l_x)$, from (12) we obtain the problems

\[R_m''' - 2c_m^2 R_m'' + d_m^4 R_m = 0, \quad R_m(\pm l_x) = \left\{ \begin{array}{ll} f_m^1 \cdot x + F, & R_m'(\pm l_x) = \left\{ \begin{array}{ll} g_m \cdot x, & m = 0, 1, 2, ..., \end{array} \right. \end{array} \right. \quad (13) \]

where $c_m^2 = \|X_m'(\cdot; l_x)\|^2$ and $d_m^4 = \|X_m''(\cdot; l_x)\|^2$.

Серия «Математика». № 2(90)/2018 137
Since $d_m > r_m$ for all m [17], the four roots of the characteristic equation can be found in the form: $\pm b_m e^{\pm i\theta_m}$, where $2\theta_m = \arctg \sqrt{d_m^2/r_m^2 - 1}$. Consequently, the solutions of problems (13) have the form:

$$R_m(z) = \hat{L}_m \sin(\theta_m z) \sinh(d_m z) + \hat{K}_m \cos(\theta_m z) \cosh(d_m z) + \hat{L}_m \sin(\theta_m z) \cosh(d_m z) + \hat{K}_m \cos(\theta_m z) \sinh(d_m z);$$

$$\hat{L}_m = \frac{\partial_m \sin(\theta_m l_z) \sinh(d_m l_z) - d_m \cos(\theta_m l_z) \cosh(d_m l_z)}{\Delta_1} \left(f_m^1 + f_m^2\right) - \frac{\cos(\theta_m l_z) \cosh(d_m l_z)}{\Delta_1} \left(g_m^1 - g_m^2\right);$$

$$\hat{K}_m = \frac{\partial_m \cos(\theta_m l_z) \cosh(d_m l_z) + d_m \sin(\theta_m l_z) \sinh(d_m l_z)}{\Delta_1} \left(f_m^1 - f_m^2\right) + \frac{\sin(\theta_m l_z) \sinh(d_m l_z)}{\Delta_1} \left(g_m^1 - g_m^2\right);$$

$$\hat{L}_m = \frac{\partial_m \sin(\theta_m l_z) \sinh(d_m l_z) - d_m \cos(\theta_m l_z) \cosh(d_m l_z)}{\Delta_2} \left(f_m^1 - f_m^2\right) + \frac{\cos(\theta_m l_z) \cosh(d_m l_z)}{\Delta_2} \left(g_m^1 + g_m^2\right);$$

$$\hat{K}_m = \frac{\partial_m \cos(\theta_m l_z) \cosh(d_m l_z) + d_m \sin(\theta_m l_z) \sinh(d_m l_z)}{\Delta_2} \left(f_m^1 + f_m^2\right) + \frac{\sin(\theta_m l_z) \sinh(d_m l_z)}{\Delta_2} \left(g_m^1 + g_m^2\right);$$

$$\Delta_1 = \partial_m \sin(2d_m l_z) + d_m \sin(2\theta_m l_z), \quad \Delta_2 = \partial_m \sin(2d_m l_z) - d_m \sin(2\theta_m l_z).$$

5 The resulting expressions for stresses

Summarizing the above expressions, we arrive at the expression

$$\varphi(x, z) = \frac{H}{6} x^3 + \frac{F}{2} x^2 + \frac{G}{3l_z^2} x^3 z + Gxz + \sum_{m=0}^{\infty} R_m(z) X_m(x; l_z),$$

where all the necessary quantities are obtained above. From the definition (9) for the stresses, we obtain the following equalities:

$$\sigma_x(x, z) = \sum_{m=0}^{\infty} R_m''(z) X_m(x; l_z);$$

$$\sigma_z(x, z) = H x + F - 2G \frac{x^2}{l_z^2} + \sum_{m=0}^{\infty} R_m(z) X_m''(x; l_z);$$

$$\tau_{xz}(x, z) = -G \left(1 - \frac{x^2}{l_z^2}\right) - \sum_{m=0}^{\infty} R_m'(z) X_m'(x; l_z).$$

Conclusion

Analytic expressions are constructed for the approximate calculation of stresses in a coal seam of finite length that are under the influence of overlying rocks and lie between two drifts. For acceptable accuracy, 20-40 series members are required for the expansion of the functions f_j and g_j, so the stress distribution used to interpret the geomechanical monitoring data for the combine harvesting of stocks can be determined in real time.

References

Stress-strain state horizontal coal seam of finite length

М.К. Кудайбергенов, А.Л. Карчевский, К.Т. Искаков

Кълденен жаткан көмір қабатының шекті үзьындығындагы кернеу-деформацияланган куйі

Мақалада жоғары жаттан қылыстардың асерінде түрған және екі штрек арасында жатқан шекті үзьындығы бар көмір қабаттарындағы кернеудерді есептеуге арналған аналитикалық еріктер алынған. Бул шешімдер алғарлық тәсілдердің шекті жуықтарын құял шешу үшін пьезометрыялық қосындылар мен жинақты қатар түрінде көрсетілген. Осы әдіс жок және жұық жүргізеді. Комбайнды құялу құйыбұрлары және екі штрек арасындағы жатқан көмір қабатының кернеулерге мониторинг жүргізеді. Бұл шешімді құядануына боғыт болады. Мұндағы кез келген және штрек при жұық жүргізуде болады. Тау-кен жұмыс жүргізу үшін осы құйылырдың әсері болып бөлінеді.

Кілт сөз бал: серпімділік теориясының жазылыстың есебі, бигармоникалық тәсілдер, кернеу, көмір қабаты.

М.К. Кудайбергенов, А.Л. Карчевский, К.Т. Искаков

Напряженно-деформированное состояние горизонтального угольного пласта конечной длины

В статье получены аналитические выражения для вычисления напряжений в угольном пласте конечной длины, который находится под действием лежащих выше пород и между двумя штреками. Решение представлено в виде суммы полинома и сходящегося ряда. Для определения коэффициентов ряда не требуется решать бесконечных систем алгебраических уравнений. Это способствует быстрому численному нахождению требуемых величин с достаточной для практики точностью. Данное решение может быть использовано для интерпретации данных геомеханического мониторинга при комбайновой выемке углі в режиме реального времени и напряжений в разрабатываемом угольном пласте с целью прогнозирования возможности горного выброса, что до сих пор является весьма актуальной задачей обеспечения безопасности горных работ.

Ключевые слова: плоская задача теории упругости, бигармоническое уравнение, напряжение, угольный пласт.
References

24 Tkachenko, D.A. (2014). Ortonormirovannyi v enerheticheskoi prostranstve biharmonicheskogo operatora bazis v priamouholnikie pri odnorodnykh hlavnykh krayevykh usloviakh po hranitse [An orthonormal basis in the energy space of a biharmonic operator is a rectangle under homogeneous principal boundary conditions along the boundary]. Aviatsionno-kosmicheskaia tekhnika i tekhnologii – Aerospace Engineering and Technology, 5, 41–51 [in Russian].

