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Solvability of an initial-boundary value problem for a nonlinear
pseudoparabolic equation with degeneration

This article is devoted to the solvability of degenerate nonlinear equations of pseudoparabolic type. Such
problems appear naturally in physical and biological models. The article aims to study the solvability in
the classes of regular solutions of (all derivatives generalized in the sense of S.L. Sobolev included in the
equation) initial-boundary value problems for differential equations. For the problems under consideration,
We have found conditions on parameters ensuring the existence of solutions and we have proved existence
and uniqueness theorems. The main method for proving the solvability of boundary value problems is the
regularization method.

Keywords: pseudo parabolic equations, degenerate equations, boundary value problems, nonlinear equations,
solvability, uniqueness.

Introduction

In the modern theory of partial differential equations, an important place is occupied by the study of
degenerate hyperbolic and elliptic equations, as well as equations of mixed type. The increased interest in this
class of equations is explained both by the great theoretical significance of the obtained results and by their
numerous applications in gas dynamics, hydrodynamics, in the theory of infinitesimal bending of the surface,
in the momentless theory of shells, in various branches of mechanics of continuous media, acoustics, and in the
theory of electron scattering and many other areas of expertise. Degenerate equations are a good model for
physical and biological processes. Such equations have become an actual formulation and solution of various
boundary value problems. Consequently, degenerate equations are currently the subject of fundamental research
by many mathematicians.

Boundary value problems for pseudo parabolic equations were investigated in the works of D. Colton [1],
A.M. Nakhushev [2], A.I. Kozhanov [3], M.S. Salakhitdinov [4], T.D. Dzhuraev [5], and others.

One of the important sections of the theory of partial differential equations is the formulation and study of
well-posed boundary value problems for degenerate parabolic equations of the second, third, and higher orders.

Boundary value problems for second-order degenerate parabolic equations are considered in the works
of M. Gevrey [6], O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralczeva [7], C.D. Pagani, G. Talenti [§],
Yu.P. Gorkov [9].

In this article, we consider boundary value problems for differential equations of the following type:

o(t)uy — vAu — xAuy + |[ulP?u+ c(z, t)u = f(x,t) (t€QC R, n>3,0<t<T) (1)

where v = const > 0 and f (z,t) is the external force. In these equations, the function ¢ (¢) and x (¢) can
arbitrarily change sign on the segment [0,7], and it can vanish on subsets of the segment [0,7] of positive
measure.

In article [3] I.A. Kozhanov and E.E. Maczievskaya in a cylindrical domain @ = Q x (0,7) (0 < T < +o0,
Q C R"™ — bounded area with smooth border T') considered the solvability of a boundary value problem for
differential equations:

eu+y ) Autc(z,t)u=f(z,t) (e QCR",0<t<T). (2)

*Corresponding author.
E-mail: Aitzhanov.Serik81@gmail.com
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Solvability of an initial-boundary...

In articles [10], [11] for equation (2), a statement of the first boundary value problem is proposed, and the
existence of its generalized solutions is proved.
G. Fichera [10] considered an equation of the following type:

Lu = aijuwm + by, +cu = f(z,t)

and for the first boundary value problem the existence of its generalized solutions is proved.
O.A. Olejinik and E.V. Radkevich [11] proved the existence of generalized solutions to the first boundary
value problem for the following type of equation:

Lu = a"ug, ., + by +c(z)u=f(z).

L. A. Kozhanov [12] proved the uniqueness of solutions to the first boundary value problem for the following
type of equation:

0
Utt+a()8t

The purpose of this work is to study the solvability of the first boundary value problem for doubly degenerate
differential equations (1) in classes of regular solutions — solutions that have all derivatives generalized in the
sense of Sobolev entering the equation.

In [13], A. Benaissa and Ch. Aichi considered a one-dimensional degenerate wave equation with a boundary
control condition of fractional derivative type

(Au) + Bu = f (x,t).

ug (z,t) — (a(x) ug (2,t)), =0in (0,1) x (0,00), (3)

where the coefficient a is a positive function on [0, 1] but vanishes at zero. The degeneracy of (3) at x = 0 is
measured by the parameter u, defined by

|’ (z)|
fg = SUp —————.
0<z<1 G(I)

The researchers pointed out that the problem is not uniformly stable by a spectrum method and they studied
the polynomial stability using the semigroup theory of linear operators.

In [14], the authors considered the following modelization of a flexible torque arm controlled by two feedbacks
depending only on the boundary velocities:

g (2,1) — (a (2) ug (2,1)), + aue (2,1) + By (2,) =0, 0 <z <1, t >0,
(a(x)ug) (0) = kyue (0 t), t>0,
(a(x)ug) (1) = —kouy (1,8), t >0,

where
a >0, ﬁ>07 kl, k‘QZO, k‘1+k‘2750,
a€Wt=(0,1), a(x) > ag, Vo €[0,1].

They proved the exponential decay of the solutions.
In [15], the authors considered a biharmonic regularization to the following nonlinear degenerate elliptic
equation:

Qu:Zle {am (Z;i 1 @ij (2, Du) Oy u 4+ by zuDu)) ¢i (x,u, Du) O, u| +d(x)u
=+ 20,000, €QCRY, Du=Vu=(84,,...,0,),

where the coefficients will be specified later. By degenerate ellipticity, we imply that the coefficients a;;,
i,7 =1, ...,d, satisfy degenerate ellipticity conditions

0 < A(z,p) €] < ayj (z,p) &&j, 2 €Q, pe RY,

for all £ = (&1,...,&4) € RY\0. Under appropriate assumption on the coeffcients, we prove that a sequence of
biharmonic regularization to a nonlinear degenerate elliptic equation with possibly rough coeffcients preserves
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certain regularity as the approximation parameter tends to zero. In order to obtain the result, they introduced
a generalization of the Chebyshev inequality. They also presented numerical example.

In [16], the author considered degenerate quasilinear pseudoparabolic equations with memory terms and
variational inequalities:

O (u) =V - (a (2) V) = V- (t,2,u, V) + M7 (u) = 7 (u),
uw/ =0on (0,T) x 09,
W (u(0,2)) =¥ (uo (x)) in Q,

where the memory operator M is defined by
(M7 (t) (u) ,07) / / KI(t,s) ¢’ (s,2,Vu (s,x)) dsVo? (t,z) da

for all functions u, v € LP <O,T; Hé’p (Q)l), for almost all ¢t € (0,T).

The existence of solutions of degenerate quasilinear pseudoparabolic equations, where the term O;u is
replaced by O;b(u), with memory terms and quasilinear variational inequalities is shown. The existence of
solutions of equations is proved under the assumption that the nonlinear function b is monotone and a gradient
of a convex, continuously differentiable function. The uniqueness is proved for Lipschitz continuous elliptic parts.
The existence of solutions of quasilinear variational inequalities is proved under stronger assumptions, namely,
the nonlinear function defining the elliptic part is assumed to be a gradient and the function b to be Lipschitz
continuous.

Statement of the problem

Let Q C R", n > 3 is a bounded domain with the smooth border 9Q, Qr is a cylinder Q x (0,7T) of finite
height T, S = 02 ® (0,T) is a side boundary. Further, let v > 0, x, p are constants, ¢ (t),c(x,t) and f (z,t)
be the given functions defined at t € [0, 7], x € Q, L is a differential operator whose action on a given w (x,t)
is determined by the equality

Lw = o(t)w; — vAw — xAw; + |w\pi2 w + c(z, t)w

where 2 < p < 4, A is the Laplace operator in the variables x1, xo, ..., T,
Boundary problem I. Find a function u (x,t) that is a solution of the equation:

Lu = f(x,1) (4)
in the Qr = Q x (0,7) and such that condition:
ulg =0, ()

u(z,0) =0,z € Q.

Boundary problem II. Find a function u (x,t) that is a solution of equation (4) in the Q7 = 2 x (0,T") and
such that conditions (5) and
w(z,0) =u(z,T)=0, z € Q.

Solvability of boundary value problems I-11

Theorem 1. Let the conditions
o(t) € CH0,T], c(z,t) € C*(Qr); (6)
2c(x,t) — @' (t) > c1 >0, 2c(x,t) + ' (t) > co >0at (x,t) € Qr; (7)
¢(0) <0, ¢(T) > 0; (8)
fla,t) e Wyl (Qr), flz,t) =0 at (z,t) €S, f(z,0)=0. (9)

6 Bulletin of the Karaganda University



Solvability of an initial-boundary...

0 0
Then there is a unique solution u € Lo(0,T; WZ(Q)) N W3 (2), uy € La(0,T; W(Q)) N WH(Q), uy € La(Qy) of
the boundary value problem I.
Proof. For the proof, we use the regularization method. Let € be a positive number. Let L. denote the
differential operator whose action on a given function w (z,t) is determined by the equality

L.w = eAwy + Lw.
Consider a boundary value problem: Find a function w (z,t) that is a solution of the equation
L.w= f(x,t) (10)
in the Qr = Q x (0,T) and with conditions (5) and
u(z,0) = u(x, T) =0, z € Q. (11)
Note that the first priori estimate is valid
2 2 2 p
ellVurllz g, + llullz g + IVullz g, + llull, o < e (12)

To prove this estimate, it suffices to analyze the equality

/ L.uudxdt = fudxdt
T Qr

using the conditions of the theorem (6), (7), (8), (9), and Young’s inequality.

Consider the following equation:

—/ L.uAudzdt = —/ fAudzxdt.
Q Q

Let us write this equation by integrating by parts:

el Aulls o, + 3 foo(T) [Vu(z, ) do—

=5 Jo, @) |Vl dzdt + % [y |Au(z, T)|* dt

+v o |Buf® dedt + (p— 1) [ |ulP ™ [VulPdadt + [, c(z,t)|Vuldedt =
—fQT Ve(z, t)uVudzdt — fQT fAudzdt.

(13)

Let us estimate right-hand side of the equation (13):

2 C4 2
‘— ; Vc(:c,t)uVudxdt‘ <ca||Vully g, lully o, < IVullz o, + 1 lullop -
T

14 2 1 2
‘/QfAudxdt‘ < 5 lAullz g + 50 I l20r -

Substituting the obtained inequalities into equation (13) and taking into account the conditions of the theorem
(6)—(9), we obtain the second priori estimate

ellAul3 g, + Jo, 1Aul dedt + [, ul’~* |Vu|*dzdt < Cs. (14)
0
Now, let us show that at conditions (9), the solutions u € Lo (0,T; W2(2))NW3(Q), u; € La2(0,T; W(Q))N

0
NW3(Q), uy € La(Q;) of the boundary value problem (10), (5), (11) will satisfy the estimates uniform by &.
In the next step, consider equality

/LguAuttdmdt: —/ fAuydzdt.
Q Q

Mathematics series. Ne 1(105) /2022 7
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This equality is easily transformed to form

€ ||AuttHL2(QT) + 2 3 Jo 9(0) [Vuy(z, 0)| dz+

+X [, |Aut z,0)|? dedt +v [, |Awg|? dadt + 1 3 Jo, 2c(z,t) + ¢' (1)) (Vg |? dadt =
= —fQ ct(z, t)VuVuy + Ve(z, t)us Vug + Vct(x tyuVuyg)dxdt—

—(p—1) fQ lulP~? utAutdxdt—i—fQ V f: Vudzdt.

Let us estimate to [, [ulP~? uy Augdadt

‘fQ Juf?” utAutd:vdt’ e
< 5l Al g, + % IVuel3 g, + Co.

2o lullf,E mor <

Using the conditions of the theorem (6)—(9), we obtain from this that solution w (z,t) of the boundary value
problem (10), (5), (11) satisfies the estimate

5||Autt|\2Lg(QT) +/Q \Aut|2dxdt+/ V| dadt < C. (15)
T T

Estimates (12), (14) and (15) are already enough for choosing a sequence converging to the solution of
boundary value problem I.

Let {&;},=, be a sequence of positive numbers converging to 0. We denote by w; (x, t) the solution to boundary
value problem (10), (5), (11) for & = ¢;. For the sequence {u; (z,t)},=, for € = &, the priori estimates (12), (14)
and (15) hold. It follows from these estimates and the reflexive property of the Hilbert space that there exists
a subsequence {u, (z,t)},-, and a function u (z,t) such that

€l — 0,

(x,t) = u(x,t) in La (Qr) weakly,
x,t) = Vug (z,t) in Ly (Qr) weakly,
)
) = Auyg (x,t) in Lo (Qr) weakly,
ElkAulktt (z,t) = 0in Ly (Qr) weakly,

converges for k — oo. Obviously, the limit function u (, t) will belong to the space u € Lo (0,T; W3 (2))NW3 (Q),
0
up € Lo(0,T; WZ(2)) N W), us € La(Qy), and that it is a solution to the problem 1. O

0
The study of the solvability of boundary value problem II in classes u € Lo(0,T; W2(Q2)) N W3 (Q),

0
ug € Lo(0,T; WE(2)) N W3 (2), us € La(Qy) is carried out in the whole similarly to the study of the solvability
of boundary value problem I. The regularization method is used again, the operator L. is again used as a
regularizing operator. The difference is that in the regularizing problem at ¢ = 0 and ¢ = T there are conditions

u(z,0) =u(z,T) =0,z € Q.
Theorem 2. Let conditions (6), (7) and (9), and conditions

©(0) >0, (T) <0

0 0
also hold. Then there is a unique solution u € Lo(0,T; WZ(2)) N W3 (Q), uy € L2(0,T; WZ(Q)) N W3(Q),
ug € Lo(Qy) of the boundary value problem II.

8 Bulletin of the Karaganda University



Solvability of an initial-boundary...

The uniqueness of a solution

Theorem 3. Let conditions (6)—(9) be satisfied. Then u(z,t) the solution of the boundary value problem I is
a unique.

Proof. To prove the uniqueness of the equation suppose that problem has two solutions: u; (z,t) and us (, t).
Then their difference ¢ (z,t) = uy (x,t) — uz (z,t) satisfies condition

I, 0) = 9¢(z,T) =0, x € Q.
Then, (10) is written in a form
eAVy + p(t)dy + \ul\p_g up — |U2|p_2 ug — vAY — YAV + ez, t)9 = 0.

Consider the following equation:

fQT (EA’LSI“ + tp(t)ﬁt + ‘ul‘p_2 Uy — |U2|p_2 Ug — vA9—
—xAY; + c(z,t)9) Idzdt = 0.
For any p > 0, the inequality holds
[(Jun [P ur =zl uz) (u1 = u2)| > ¢ fuy — uaf”*2.

Let us write this equation by integrating by parts

eIVIl3 0, + S fo, VPdudt+
+5 Jo, VO dadt + ¢ [, 9" <0

In this case, we come to an equality
Y=0=u —uy =0= u; = us.
So, we proved the uniqueness of a solution.

Statement of the second problem

Let Q@ € R™, n > 3 is a bounded domain with the smooth border 9, Qr is a cylinder © x (0,7) with
a finite height T, S = 9Q ® (0,T) is a side boundary. Further, let v > 0, x, ¢ be constants, ¢ (t),c(z,t) and
f (z,t) be the given functions defined at ¢ € [0,7], x € Q, L is a differential operator whose action on a given
w (x,t) is determined by the equality

Lw = p(t)w; — vAw — xAw; — [Vw|? + c(z, t)w

where 0 < ¢ < 1, A is the Laplace operator in the variables x1, zo, ..., z,.
Boundary problem III. Find a function u (z,t) that is a solution of the equation

Lu= f(x,t) (16)
in the Qr = Q x (0,T) and with the conditions
ulg =0, (17)

u(z,0) =0,z € Q.

Boundary problem IV. Find a function u (z,t) that is a solution of the equation (16) in the Q7 = Q x (0,T)
and with condition (17), and condition

w(z,0) =u(z,T)=0,z €.

Mathematics series. Ne 1(105)/2022 9
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Solvability of boundary value problems I-11

Theorem 4. Let conditions (6), (7) and (9), and conditions

©(0) <0, o(T) >0
0 0
also hold. Then there is a unique solution u € Lo(0,T; WZ(2)) N W3 (Q), uy € L2(0,T; W2(Q)) N W1 (Q),
ut € La(Qy) of the boundary value problem III.
Theorem 5. Let conditions (6), (7) and (9), and conditions

(0) >0, p(T) <0
0 0
also hold. Then there is a unique solution u € Lo(0,7; WZ(Q)) N W1(S2), us € L2(0,T; WZ(Q2)) N W3(€),
us € Lo(Q4) of the boundary value problem III.
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C.E. Aitrskanos!?, 7K. Tiney6epail, I'. Canar!

LOa-Dapabu amwindaes. Kasar yammows yrusepcumemi, Aamamo, Kaszaxeman;
2 X anvisapanotk;, aKNApGMMBLE, METHOA0ZUALGD YrUusepcumemi, Armamot, Kasaxcman

A3BFrpIHIAJIFaH CBIBBIKTHI €MeC IICEBI0NapaboJIaJabIK TeHAeYy YIMiH
OacTanKpI-IIETTIK eCcenTiH MIeTiJIiM/I1Iiri

MakaJta 1iceBIoTIapabOIAIBIK, THIITErl a3FbIHAJJIFaH CBI3BIKTHI €MeC TeHJIEYJIEep/IiH IIeliIiMIairine ap-
nasgraH. MyHmait mpobiemanap GU3MKAHBIH KoHE OWOJIOTUSHBIH 9p TYPJI MOJEIbIEPIHIE TYbIHIANIHL.
Makasnanbig, MakcaTbl — jguddepennuanipk, Teggeynep yuin mekti ecenrepaiy (C.J1.Cobones marbiHa-
CBIHJIa ZKAJIIIbLJIAHFaH GaPJIbIK, TyBIHIBLIAP/BI KOCA AJFAH/) PEryJIsipJbl IeniMAep KIACHIHIAFbI HIeliM-
JimikTi 3eprTey. KapacThIphLIbIl OTBIDFAH €CEITiH, MIEMTiTyiHe KenIIiK O6epeTin, mapaMeTpiiepre mapTTap
TaOBLIFAH YKOHE KAPACTBIPBIIFAH €CelITep YIIiH IIEeMIiMHIH 6ap >KoHe »KAJIFbI3/bIK, TeOPEeMAJIaphl J19JIEJIIeH-
ren. IIlekTik ecenrep/in meniMIINNH Ao/ Aey/IiH HeTi3ri 9/1ici perynaspusaius d9ici 60/1a/bl.

Kiam ce3dep: iceBmonapabOSIbIK, TEHIEYIED, a3FbIHIAFAH TEH/IEYJIED, METTIK €CENTep, ChI3BIKTHI €MEC TEH-
Jeysep, MENMIIIK, KaJFbI3/IbIK.

C.E. A#rrskanos!?, K. Tuney6bepau!, I'. Canat!

! Kazaxcxud nayuonasvront yrnusepcumem umeny aro-Dapabu, Armamo, Kazazcman;
2 Meoicoynapodnuiti yrueepcumem un@opmayuonisis mexnorozut, Aimamol, Kazaxcman

PaBpeI_HI/IMOCTb Ha‘{aJII)HO—Kpa.eBOﬁ 3adad1 AJIA HEeJIMHEMHOI O
HCGB,D;OHapaﬁO.TII/I‘IeCKOI‘O YpPpaBHE€HNA C BbBIPO2K/JI€HNEM

Crarbsl MOCBSINEHA PA3PEIIMMOCTU BBIPOXKIEHHBIX HEJMHEHHBIX YPaBHEHUH IICEBIONAapabOInIecKOro TH-
na. Takue 3a/1a4M €CTECTBEHHO BO3HUKAIOT B pu3myecknx u buosiormdeckux mozessx. llenpio crarbu siB-
JIETCST MCCJIEIOBAHNE PA3PEIIUMOCTH B KJIACCAX PETYJISIPHBIX PEIeHnil (BKJIOYAONNX B yPABHEHUE BCE
npoussozuble, 06o6mennbie mo C.JI.CoboseBy) KpaeBbix 3a1a4 it quddepeHnuanbubix ypasaennit. s
paccMaTpUBaEeMbIX 3aj@d aBTOPAMM HalJIeHbl YCJIOBUs HA [1apaMeTpbl, TapaHTUPYIOIINe, YTO 3a/a49a MMe-
er perterrie. Kpome TOro, J0Ka3aHBI TEOPEMBI CYIIIECTBOBAHUS W €IMHCTBEHHOCTH. B KadyecTBe OCHOBHOTO
MeTO/Ia JIOKA3aTeIbCTBA PA3PEIINMOCTH KPAEBBIX 3329 BbIOPAH METOJ| PEryJIspU3aliin.

Karoueswie caosa: nceBnonapabonviecKue ypaBHEHUsI, BBIPOXKIEHHBIE YPABHEHUsI, KPAeBble 3a/a4u, HeJl-
HelHbIe ypaBHEHNs, PA3PEIIUMOCTD, €INHCTBEHHOCTb.
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Mathematical modeling of the energy consumption problem

The importance of energy-saving and correct design is obvious for energy efficiency. Correct design means
that before construction considerable things, such as orientation or isolation decisions, need to be made.
This study gives a mathematical model of the nonstationary energy consumption calculation problems.
The model is well-posedness in Holder spaces of the mixed one-dimensional parabolic problem with Robin
boundary conditions. In this study, an effective numerical method is also developed for energy consumption
calculation which is related to this mathematical model. The three case problems are taken to test this
numerical method. The dynamic model results have been compared with the previous finite-difference or
steady-state solutions. The study also aims to develop a mathematical model in which the result can be
found at any time.

Keywords: mathematical modeling, heat diffusion equation, difference scheme, stability.

Introduction

An important part of energy consumption occurs in buildings. Energy Efficient Building Design (EEBD) is
a design that reduces energy usage and pollution controlling the criteria. Architectural building design rules are
functionality, stability, and aesthetics. Today, efficiency and healthiness also are added. An efficient design means
not only doing things during operating but also doing correct design before the construction. There are numerous
studies on EEBD all over the world (see [1-7]). A national software, that calculates the energy consumption of
buildings according to the Turkish Standards Institute (TS EN 13790), exists in Turkey. Note that the problem
is complicated because the energy consumption calculation depends on many variables, such as nonstationary
external temperature and solar radiation, building materials, heat losses and gains and energy consumption
change with time. Energy consumption numerical calculations take a lot of time because of the stability criterion.
It is not easy to check hour by hour for the whole year. For these reasons, the mathematical model and theoretical
solution are valuable. In this article, the mathematical model of a building’s outer wall consisting of an opaque
wall is obtained by taking as a boundary value problem for the annual energy consumption calculation. The heat
conduction differential equation and the boundary equations of the one-dimensional nonstationary boundary
value problem are given. This study also gives a one-dimensional nonstationary general solution for some energy
consumption calculation problems. Finally, the dynamic model results were compared with the numerical results.

Theoretical background
In this section, we consider the theoretical background of the mathematical model of energy-saving problems.

The well-posedness of differential and difference heat problems with third boundary conditions in Holder spaces
is established. Numerical results are provided.

*Corresponding author.
E-mail: allaberen.ashyralyev@eng.bau. edu. tr
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Stability and coercive stability of differential problem
We study the initial-boundary value problem

2ultn) — 2 (a(2) 24D 4 Sut,x) = f (t,2), tE€ (0,T), w € (0,1),
u(0,2) = ¢ (x), = €l0,1], (1)
u(t,0) —(t) = buy (¢,0), —u (t,1) —w(t) = cuy (t,1), t € 0,7,

for the one-dimensional heat equation with Robin boundary conditions. Here 0 < a < a (z) and b, ¢, § are positive
constants. Under compatibility conditions problem, (1) has a unique solution (¢, z) for smooth functions a (),

z € (0,1), p(x), z € [0,1], ¥(t), w(t), t € [0,T], f(t,z), (t,z) € (0,1) x (0,1).
Assume that H be a Hilbert space and A be the self-adjoint positive-definite operator defined by the formula

Az = —% (a(m) dz(;)) +02(x) 2)

with domain ; ) )
D(A)={z:2,z € Ly(0,1), 2(0) =bz (0), —z(l) =cz (I)}.

Here and in the rest of this paper, C§ ([0, 7], H) (0 < a < 1) stands for Banach spaces of all abstract continuous
functions ¢(t) defined on [0,7] with values in H satisfying a Holder condition with weight ¢* for which the
following norm is finite

t+1)" et +71) — @)
lelleg or,m = lelloqom,m +  sup - £,
0<t<t+r<T T

Here, C ([0,T], H) stands for the Banach space of all abstract continuous functions ¢(t) defined on [0, T] with
values in H equipped with the norm

= t .
ooy i = mas, ()

Let the Sobolev space WZ(0,1) be defined as the set of all functions v(x) defined on (0,1) such that both
v(x) and v”(z) are locally integrable in L2(0,1), equipped with the norm

/2 .
| [ i
0

Theorem 1. Assume that f(t,z) and ¥(t), w(t) are continuous functions and satisfying a Holder condition
with weight ¢®. Then the problem (1) has a unique solution u € C§ (L2(0,1)) and for the solution of problem
(1) the following stability estimates

1 1/2

L
2
oz = | [ 1o da
0

lullcs 0,77, L200,0) < M (456) (Il py0,0 + 1 g o,11,200,0) T 1PNl cgom + HWHC(‘;[O,T]}

and coercive stability estimates

lutll e 0,77, L2 (0,0)) T+ ||“Hcg([o,T],W;(o,z)) < M (q,0) [||<P||w22(o,l)

+ sy 1 log (0.1, ooy + ¥l ooz + llcgo.m

are satisfied.
Proof. Denote by
z? x?
t = t 1— —-o t) — ———wl(t 3
wlte) =) + (1= gy ) 000~ e 0, Q

where w (t, x) is the solution of the following initial-boundary value problem:
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wy (t,z) — (a(x) wy (¢, ), + dw(t, )
= f () + u(t) (1 ﬁ) S —0)
+5 (0(t) (1 - wla ) - e ) + () (a(@)2), @
() (a(@)a),, te (0.7), T e (0,0),
w(0,2) = ¢ (&) + (0 >( i) — e (0), @ € (L1,
w (t,0) = bw, (¢,0), —w (t,1) — cw, (¢,1) =0, t €[0,7].

Applying (3), we get

el (o1, 2a0.y < Nlos 021,220 + K1 O [Illesiom + wlospom]
||“Hcg([o,T],W22(o,z)) < ||w||cg([o,T],L2(0,l)]) + K> (1) [”wHCS‘[O,T] + ”w”Cg[O,T]} :

Therefore, the following theorem will be complete the proof of Theorem 1.
Theorem 2. Under assumptions of Theorem 1, the problem (4) has a unique solution in C ([0, T], L2(0,1))
and the following stability estimate:

lwll e 0,17, L500,0) < M (a,6) [||<P||L2[o,z] + 1f les (o, L210,) T 1PNl e o + ”wHCg[O,T]}

and coercive stability estimate

lwellce (0,77, L2(0.0)) + ||w||cg([o,T},W§(o,z)) < M(q,9) [”‘PHW(O nt (1 a) Hf”C" ([0,71],L2(0,1))
¥l egom + HWHC{,‘[O,T]}

are satisfied.
Proof. Problem (4) can be written in the following abstract form

{ w'(t) + Aw(t) = f(t) + Ye(t)qr + () g2 + P (t)gs +w(t)qu, 0 <t < T,
w(0) = p +1¥(0)q1 +w (0) g2

in a Hilbert space H = L2(0,1) with the space operator A = A* defined by the formula (2). Here, f(¢) = f(¢, )
is the given abstract function, w(t) = w(t, «) is unknown function and

(5)

2 2 2
an=q)=1- ﬁ,(h =q(x) = *ﬁ,% =q3(x) =0 ( lz+2k) + lz+21p (a(x) x)xa

2
qs = qa(x) = —0piae + IQ%ZC (a(x)x),

are known elements of L3(0,1). The proof of Theorem 2 is based on theorems on stability and coercive stability
of the abstract problem (5) (see, [1,2]), the self-adjointness and positive definiteness of the space operator A*
defined by formula (2).

Stability and coercive stability of difference problem

Let a € (0,1) is a given number and C¢ (H) = Cg ([0,T]. ,H]),C; (H) = C([0,T]. , H) be Banach spaces
of all H-valued mesh functions w, = {wy}1_, defined on

0,T), = {tx = k7,0 <k < N,N7 =T}

with the corresponding norms

el e = mas, el
hoellosn = 5w (N =)™ (6) wnen — willm + sl
T 1<k<k+n<N
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Moreover, let Lop = Lo [0,1], and W3, = W3(0,1), be normed spaces of all mesh functions
h M
Y (x) = {¥n},—o defined on
0,1, ={xn =nh,0<n < M,Mh =1}

equipped with norms
1/2

2
V"l =1 D W@k
wE[O,l]h
and

1/2
2

R e P D D (GO

z€(0,1)n

respectively. Furthermore, we introduce the difference operator A7 defined by the formula

Awuh(l_) { ]. <a U'n,Jrl — Unp a Unp — unl) + 5U }le (6)
=N 7 n+1 — Un n )
h h h h .

acting in the space of mesh functions u” (z) = {Un}nM:() defined on [0, 1], satisfying the conditions (h + b) ug —

—buy =0, —cupr—1 + (h+ ¢) ups = 0. For the numerical solution {u}! (a:)};jzo of problem (1), we present DS of
the first order of approximation

-1 ko —uk uk —uk
uﬁfuﬁ _ % <an+1un+;b no__ an n n—1 + 5Uk
=[5 fE = f(txn), th €T, 2y =nh, k€ LN, ne€ M —1
u%chn, on =@ (v,), n€0,M, (7)

(h +b)uf — bul = hpy, cuk, | — (h+c)uk; = hwy,
Y = P(tk), wp =w(tk), k€0, N

and of the second order of approximation

WP —uF1 1 wF gk e 1 Wkl gkt Wkl gkt
n Tn 7% an+1 71+}L n — an, n hn 1 7% an+1 n+1h n —an n - n—1
ko k—1
+oletn = fk ok = f (4 — T 2,), tp € kT, p =nh, k€N, ne€1,M — 1,
0 _ —
g@n, gpn—ap(xn),nEOM ®
wbml_y k-1
U +u uf —uk —u
otug — =D ( 1Y + » 0 ,
1 k k k—1_ k—1
uZVI+UM _ Upnr —Upr—1 Upng  —“Upr—1
2 —WE=C¢C 2h + 2h )
wk = ¢(tk), W = w(tk), ke 0, N.

Let us give the following results on the stability and coercive stability of DSs (7) and (8).
Theorem 3. For the solution of DSs (7) and (8) the stability estimates

N
H{UZ}kzl‘ c

< M (,8) [||l¢"],,,

(L2n)

C@[QT]T]

i

+ [ty

+[ |

and coercive stability estimates

N
-
k=1

C2(Lap) cglo,1),

o [ T [

C2 (Lan) #=tllos(wz,)
1 W N
T (1-a) H{fk }’“:1’ Ce(Lan) * "{¢k}1 ‘ cgl0,1], + H{ e ‘ cg[o,T]T]
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hold. Here,
N ul ,  for first order DS,
uz - uh+uh
b—*=L  for Crank-Nicolson DS.

Proof. We will use
h)? — nh? h)? — nh?
u£w§+(1 ) —n )wk DR — 9)

242lc+(c—1)h 242lc+(c—1)h

where {w}! (x)}kN:O is the solution of the following DSs

wk—wk71 k _wk ’ka—wk
-4 (anJrl n+;1 n o an, n hn—l _’_5wa
fk ( (nh)®>—nh? Ye—tPr_1 _ _(nh)’—nh® wp—wp_3
- 1242lc+(c—1)h T 1242lc+(c—1)h T
(nh)?—nh? (nh)?—nh?
+6 [( Z2lct (e l)h) Uk~ Taier (e l)hwk} (10)
+m(nan+l (n—l)an)['l/)k—i—u)k],kel,N,ne].,M—].
_ (nh)%—nh? (nh)%—nh? NAT
=¢nt (1 21 2lct (c— l)h) Yo — Eraterec—nrwo, 7 € 0, M,
(h +b)wk —bwh =0,cwk, | — (h+c)wh, =0, 9k €0, N

and
wp—wp Tt Wy =Wy wy—wy 1 wp—wy ! wy —wp Ty
T — 35 (anﬂ s T an g, 1) — a5 | @1 —On T

+6M — fk — (1= (nh)z_nhz Yie—Yr—1 _ (nh)z—nhz Wr—Wk—1
2 —Jn 1242lc+(c—1l)h T 1242lc+(c—l)h T
__(nh)*—nh? Yetr—1 __ (nh)?-nh® wptwp_i

+0 [(1 P2l (c—Dh 2k Pt2lcf(c—Dh 2 (11)
2

0 _ B (nh)2—nh? nh)Q—nh
Wy, = ¢ + (1 12+210+(c oh ) Yo = Erstere—pawo, 1 €0, 0,M,

(h+b)wf —bwk =0,cwh, | — (h+c)wh, =0, k€0, N
for (7) and (8), respectively. Applying (9), we obtain

Bl < 105 ey, 5 {005 (CoR
H{Uk}k=1 Co(Lan) }k 1 C2(Lapn) {ujk}k:l Ce 0,7~ N {Wk}k ! Ccglo,1],
and
N B £ PR [ LS B (7
U oo (W3, =1l ca (w2,) k=1 ga 0,7, Wk S k=1 coor], |
Therefore, the following theorem will be complete the proof of Theorem 3.
Theorem 4. For the solution of DSs (10) and (11) the stability estimates
h
H k}k 1’CQ(L < Ksfa [H(‘O HLzh
g, + ol o, + o]
k=1]|ca k=l ceto,1), k= ceto,1),
and coercive stability estimates
1 N
H{ (wy — w;’i_l)} < K3(q) [Hs@hHWz
T k=1 2h
C2(Lan)
=l = [ty
) H{f’“}’“zl‘cs +H{¢k}’“zl s, T {erd s cglo.1),

hold.
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Proof. Problems (10) and (11) can be written in the following abstract forms

wi—wp_, Ah h h e —Yr—1 h Wk — wk 1 1<k<N,
p + wk i+ a1 p + g2 +Q31/1k+(J4wk7 12)
12

wi = " + qpo + ghwo
and Crank-Nicolson

h_ . h ho o h _ _ ‘ .
Wy j_”k71 +Ahwk+;‘uk‘71 _ f;? Jrq{zi/)k 71_111%1 Jrqgwk :17%1 +q§1'¢'k+;bk—1 +qi7,wk+‘;k—1’ 1<k<N,
'wQ:SO +q1¢o+CI2W0,

in a Hilbert space H = Loy, with the space operator A" = A% defined by the formula (6). Here, f* = f}! (x) is
given abstract mesh function, w? = w} (x) is unknown mesh function and

h _ _h o (nh)27nh2 h _ h o (nh)gfnh2 h _ h o (nh)gfnh2
¢ =g (z) = (1 - l2+2lc+(c—l)h) » 42 = 43(2) = — piierre—nny 68 = ¢3(%) =0 (1 - l2+2lc+(c—l)h)
nh)“—nh
+ l2+2lc-12-(c—l)h (nani1 — (n—1)an), ¢ = di(x) = *5125r21)c+(c—z)h + l2+2lc-i2-(c—l)h (nant1 — (n—1)ay) are

known elements of Loj. The proof of Theorem 4 is based on theorems on stability and coercive stability of the
abstract problem (12) (see [1,2]), the self-adjointness and positive definiteness of the difference operator A7

defined by the formula (6).

Numerical results

Now, the numerical results for the solution of the initial boundary value problem

ue(t, ) — Ugy (t, ) = —%e cos 3,
O0<t<l, O0<z<m,
u(0,2) =cos§, 0 <z <m, (13)

u(t,0) — et = uy, (t,0),
—u(t,m)— et =u, (t,m), 0<t <1

for the parabolic equation with Robin conditions are presented. The exact solution of this problem is

u(t,r) = e 'cos g

For the approximate solution of problem (13), the set [0,1]; x [0, 7] of a family of grid points depending on

the small parameters 7 and h
[Oa 1]7’ X [Ov’ﬂh

={(tg,xn) ty =kr, 0< k<N, Nr=1, 2, =nh, 0<n< M, Mh=m}

is defined. For the numerical solution of problem (13), we present the first order of accuracy Rothe DS:

k k—1 k _92
unfun Uni1 u +un 1 3 —t Tn
- n = fu,fn = —fe" " cos i,
1§k<N 1<n<M-1,
0 _
u, =cos -, 0<n< M, (14)
k k
k _ —tp _ U3 —Ug
uy —e k=~
k 1 —t uﬁl*“ﬁf 1
e Uk — — —
Uy + 5€ = - =0, 0<k<N
and second order of accuracy Crank-Nicolson DS
uﬁ—urlffl L upg—2ubul o upiy 2w et g
T 212 212 = Jns
fh=-3eTicosie, 1<k<N, 1<n<M-1,
uo—cos -, OSnSM,
. o . 15)
T T S S e (
2 2h 2h J
— k—1 k—1
“XIJFUI;\/[ ! + lo—trtd — _uiﬁu*“?u—l Uy UM
2 2 - 2h 2h J
1<kE<N.
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For the computer implementation of DS (14), we can apply two approaches.
First, for obtaining the solution of difference scheme (14), we rewrite it as the initial value problem for the
first order difference equation with respect to & and matrix coefficients

AT L BuF = Tf* 1<k <N, u°=¢ (16)

where A, B are (M + 1) x (M + 1) square matrices and f* is (M + 1) x 1 column matrix. Here,

[(1++ -4+ 0 - 0 0 0
a b a 0 0 0
0 a b 0 0 0
A= . . P . . ,
0 0O 0 - b b 0
0 0 0 a b a
1 1
L 0 0 0 0 % —1—7] (M+1)x (M+1)
[0 0 00 0]
0 ¢ 0 0 O
0 0 ¢ 0 0 O
B = . .
0 0O c 0 0
0 00 -0 ¢ O
100 0 - 00 O_(M+1)><(M+1)
here and in future
1 1 2
R
and
5
fE —0.75e ™" cos &
fF= ) = )
fJICIk—l —O.75e;t’“_(;os L
far (M+1)x1 2¢ " (M+1)x1

From (16) it follows that

uf = —inv(A)BuF "t +inv(A)If*, k=1,--- N, v’ =o.
for DS (14) and

[ 1+ -4 0 0 0 0
a b a 0 O 0
0 a b 0 0 0
A= . . . ;
0 0 0 b a 0
0 0 a b a
1 1 1
L 0 0 0 0 25 2 2h d(M41)x(M+1)
[(14+L —2% 0 -0 0 0 ]
a c 0 O 0
0 c 0 0 0
B = . . .
0 0 0 c a 0
0 0 0 a c a
1 1 1
L 0 0 0 0 25 —2~an | (M+1)x(M+1)
and
1 1 1 1 1
T 190 _7+77 - )
2h2 T  h? T  h?
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and 4T
(’)f e~ tht3
i —0.75¢ =2 cos &
fF= =
T C M —
o —0.75e "2 cos T
k 1 —tp+Z
Y g€ "t

(M+1)x1 2 (M+1)x1
for DS (14). From (16) it follows that

ub = —inv(A)Bu* ! + inv(A)If* k=1,--- N, u’=¢.

Now, we will give the results of the numerical analysis. We recorded the numerical solutions u* of these
difference schemes at (tg,z,) for different N and M values. For their comparison, here and future errors are
computed by

— k
E, =  max, |u(tk,xn) — un’ .
0<n<M

Table 1 demonstrates the error analysis between the exact solution and the solutions derived by the difference
scheme. The error of Crank-Nicolson DS is E, = O(7% + h). It is constructed for N = M = 20, 40 and 0.

Table 1
Error analysis of first order Rothe DS (14)

Error N=M=20 | N=M=40 | N=M =80
E, 0,0076 0,0038 0,0019

Table 2 illustrates the error analysis between the exact solution and the solutions derived by Crank-Nicolson.
It is constructed for N2 = M = 100, 400 and 1600.

Table 2
Error analysis of Crank-Nicolson DS (15)

Error N=10 | N=20 | N =40
E, 0,0020 | 0,00046 | 0,00011

As it is seen in Tables 1 and 2, if N is multiplied by 2, the value of errors decreases approximately 1/2 for
the DS (14) and 1/4 for the Crank-Nicolson DS (15). This shows that DS (15) has the second order of accuracy

in time.
Mathematical modeling of the energy consumption problem

The importance of energy-saving and correct design is obvious for energy efficiency. Correct design means
that before construction of something as orientation or isolation decisions needs to be made. The energy-saving
means things to do during operation as automatic control. An important part of energy consumption occurs
in buildings. For decision making, there are numerous studies on this subject all over the world. A national
software calculates the energy consumption of buildings according to the TS EN 13790 standard.

The problem is complicated because the energy consumption calculation depends on many variables, such
as the external temperature and the heat losses and gains, including the sun radiation change over time. Energy
consumption numerical calculations given by the standard is time-consuming. Thus, the mathematical model
and theoretical solution are valuable.

In this article, the annual energy consumption mathematical model of a house’s room assumed heat loss
and gain through the opaque outer wall. The heat conduction differential equation and boundary equations of
the one-dimensional, nonstationary boundary value problem are obtained for the outer wall. This study aims
at a dynamic model to compare the results of the numerical calculations ([7]). The study also aims to develop
a mathematical model in which the result can be found at any time.

In this study, an effective numerical method is developed for energy consumption calculation. The three
case problems are taken to test this method.
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Case 1. Outer wall with different convection boundary problems; outer wall of a building which is initially
20°C, is suddenly subjected to the convection boundary condition from the outer surface with air at 0°C' and the
convection coefficient 25 W/m? K while inner temperature 20°C' and inner convection resistance 0.13m2K /W are
constant. Time-dependent temperature distribution and how long it will take to reach steady-state conditions
are needed to be determined. Thermo-physical properties of the wall; p = 2000 kg/m3, k = 1W/mK,
¢ =1000J/kgK.

ug(t, ) — 5.10 Tug, (t, ) =0, 0 <t < 3600, 0 <z < 0.2,
w(0,2) =0, 0<x<0.2

ug (£,0) = 25u (¢,0), 0 <t < 3600,

ug (¢,0.2) = 140 — 7u (¢,0.2), 0 <t < 3600.

Case 2. Time-dependent on outer temperature problem; outer wall of a building which is initially 20°C),
is suddenly subjected to the convection boundary condition from the outer surface with time-dependent air
temperature with the convection coefficient 25 W/m?K while inner temperature 20°C’ and inner convection
resistance 0.13m?K /W are constant. Time-dependent temperature distribution and energy consumption are

needed to be determined. Thermo-physical properties of the wall; p = 2000 kg/m3, k = 1W/mK,
¢ =1000J/kgK.

u(t,x) —5.10" Ty, (t, ) =0, 0 <t < 3600, 0 < x < 0.2,
uw(0,2) =20, 0 <x<0.2,

25 (u (t,0) — 20| sin(7t/86400)|) = u, (¢,0), 0 <t < 3600,
—1.438u (¢,0.2) + 28.76 = u, (¢,0.2), 0 <t < 3600.

Case 3. Time-dependent on outer temperature and solar radiation problems; An outer wall of a building
which is initially 20°C), is suddenly subjected to the convection boundary condition from the outer surface with
time-dependent air temperature with the convection coefficient 25 W/m?2K while inner temperature 20°C' and
inner convection resistance 0.13m2K /W are constant and time-dependent (constant) solar energy gain. Time-

dependent temperature distribution and energy consumption are needed to be determined. Thermo-physical
properties of the wall; p = 2000 kg/m3, k = 1W/mK, ¢ = 1000 J/kgK.

ug(t, ) — 510" Tug (t, ) = f(t), 0 <t < 86400, 0 < x < 0.2,
uw(0,2) =20, 0 <x<0.2,

25 (u (t,0) — 20 sin®(7t/86400)) = u, (¢,0), 0 <t < 3600,
7[20 — u (£,0.2)] = u, (t,0.2), 0 <t < 3600,

0, t < 21600,
f(t) =< 5.10"*sin®(7t/43200), 21600 < t < 64800,
0, 64800 < ¢ < 86400.
Results

The results are compared with the previous finite-difference or steady-state solutions [7].

Case 1. One layer residence outer wall composed of one material initially is at the homogenously 20°C.
Then suddenly outside air temperature falls 0°C' and stays stable. Wall is 20 cm thick. Wall material properties
are wall conduction coefficient 1W/mK and specific heat 1000.J/kgK, density 2000 kg/m3. Heat convection
coefficients inner and outer temperatures are 7.69 and 25 W/m?2K respectively. This method’s time-dependent
results for the wall inner temperature distribution are given in Table 3.
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Table 3
Temperature distribution for Case 1
Time(h) Temperature q(W/m?K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 0 5.48 14.33 17.53 20 17
12 0 3.50 10.92 15.36 20 35
24 0 2.43 8.26 13.52 20 49
48 0 2.11 7.38 12.55 20 57

The limit of this time-dependent solution for ¢ — oo is the steady-state solution, which is shown in Table 4.
Steady-state temperature distribution goes to the linear line. Integrating heat loss over time we can get energy
consumption rate approximation 2000 Wh/m?.

Table 4
Steady state temperature distribution for Case 1
Time(h) Temperature q(W/m?*K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 0 2.16 7.57 12.97 20 54

If we compare Table 3 results with Table 4, steady-state solutions are reasonable.

Case 2. Similar wall with Case 1, subjected this time with variable outer temperature according to
Uoutside(t) = 20 sin2(t/ 24) function. The temperature distribution of this wall is found by this method in Table
5 and compared with finite difference solution, Table 6.

Table 5

Temperature distribution for Case 2 variable outside temperature with sin function

Time(h) Temperature q(W/m?*K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 13.93 15.49 17.08 20 22
12 20 18.88 17.05 16.91 20 28
24 0 5.12 13.42 15.87 20 32
48 0 491 12.25 14.58 20 41

Table 5 temperatures are over Table 3 temperatures as expected. Energy consumption rate is approximately
1200 Wh/m?.

Table 6
The finite difference temperature distribution for Case 2
Time(h) Temperature q(W/m?*K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 6.05 12.60 16.56 20 26
12 20 17.91 14.80 16.42 20 38
24 0 3.81 11.50 15.89 20 32
48 0 3.77 11.37 15.80 20 32

If the heat losses are integrated over a time period, heat energy consumption can be found.

The finite-difference numerical results of the article [7] for Case 2 are illustrated in Table 6. If we compare
this study result of Table 5 with Table 6, then time-dependent solutions are reasonable.

Case 3. Similar wall with Case 1, subjected this time with variable outer temperature according
10 Uoutside(t) = 20 sin2(t/ 24) function and variable sun radiation with a periodic sin function 6 < ¢ < 18,
q" = 20sin*(t/24) function. The temperature distribution of this wall is found by this method in Table 7 and
compared with finite difference solution in Table 8.
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Table 7

Temperature distribution for Case 3 variable outside temperature and sun radiation with sin function

Time(h) Temperature q(W/m?*K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 11.65 16.02 18.20 20 13
12 20 19.00 18.11 18.80 20 13
24 0 5.43 11.53 15.65 20 24
48 0 5.34. 11.27 15.44 20 24

Table 7 temperatures exceed Table 3 and Table 5 temperatures as expected. The finite-difference numerical
result of the article 7] for Case 3 is pointed out in Table 8. If we compare this study results of Table 7 with
Table 8, then time-dependent solutions are reasonable.

Table 8

The finite-difference temperature distribution solution for Case 3 variable outside temperature and sun
radiation with sin function for a window and an opaque wall [7]

Time(h) Temperature q(W/m?K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 6 12.43 16.24 20 32
12 20 18.10 15.65 16.92 20 24
24 0 3.85 11.58 15.74 20 36
48 0 4.13 10.95 13.26 20 36
Conclusions

The energy consumption problem is complicated because the energy consumption calculation depends on
many variables, such as the external temperature and the heat losses and gains, including the sun radiation
change over time. Energy consumption numerical calculations given by the standard take a lot of time. In the
present paper, we have examined the model of the nonstationary energy consumption calculation problems. The
theoretical background of this model has been provided. The well-posedness of the mixed problem for parabolic
equations with Robin conditions has been studied. The first and second-order accuracy single-step absolute
stable difference schemes have been constructed. Well-posedness in Holder spaces on time of these differential
and difference parabolic problems has been established. Finally, these difference schemes have been applied for
the energy consumption problems for the heat equations. The developed results are justified.
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A. Ampansiest??, M. Ypyn?®, 1.1, Ilapmakcusorty®

! Bazuewezup yrusepcumemi, Cmambya, Typrus;
2 Peceti zaavxmap docmwiene yrusepcumemi, Mockey, Peced;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
4 Tasy wevic yuusepcumems, Hukocus, Typrus;
5 Tanamacapati yrusepcumemi, Cmambya, Typrus;
5 Cmambya mexruxavs yrnusepcumemi, Cmambya, Typrua;

DHEepPTUugHbI TYThIHY MOCeJeJIepiH MaTeMaTUKAJBbIK MOJEJIbJey

OHeprusiHbl YHEM/IEy MeH JyPBIC »Ko0aJjiay SHeprust THIMAUINr yimH MaHb3ael. Jlypeic nusaiin gereHimisz
— KYPBLIBICKA Jeiiin OGarmapiay HeMece OKIIayJsay »KYMBICTAPBIH Kacay KepeK. Bys 3eprreyze Geitcramm-
OHAPJIBIK SHEPIUSIHbI TYTHIHYIbI €CENTEY €CENTepiHiH MaTeMaTHKAJIbIK MOJEJ YCBIHBIIFaH, ssFHU lebuep
kenicriringeri PoGen maprrapsr 6ap apajac 6ip eJem i mapabosiaJiblK, ecenTiy, KoppekTiairi. ABropiap
OCBhI MATEMATHUKAJIBIK MOJE/Tbre OalJIaHbICThI SHEPTUSTHBI TYTHIHYIBI €CENTEYIIH THIMI CAH/IBIK O/IICIH Ka-
caraH. ByJ1 caHIBIK 9/1icTi TEKcepy VIIH YIII ecen aJbIHIAbI. JInHaMUKAJIBIK, MOAEIbIIH HOTUKEIePi aJIIbIHFbI
aMBIPBIM/IBIK, HEMECE CTAI[MOHAPJIBIK, MIEIIMIepMeH CaJIbICThIPbLIAbl. COHBIMEH KaTap, 3epTTey HOTHKEHI
Ke3 KeJI'eH yaKbITTa Tabyra 60aThiH MaTeMaTHKAJILIK MOJEJIbIl JKacayra OarbITTaaIraH.

Kiam cesdep: MaTeMaTUKAJIBIK, MOJEbIEY, KBITYOTKI3TIINITIK TEHIEY1, Al BIPBIMIBIK, CXEMAChI, TYPAKTHLIBIK,

A. Amrpansiest??, M. Ypyn?®, 1. /1. Ilapmakcusoriy®

! Viueepcumem Bazuewezup, Cmambya, Typuus;
2 Poceutickuti yrusepcumem dpyoicbu napodos, Mockea, Poccua;
3 Mncmumym mamemamusy v Mamemamuseckozo modesuposarus, Armamo, Kazazcman;
4 Bausicnesocmownuiti yrusepcumem, Huxocus, Typuus;
5 Mauramacapatickud yrnusepcumem, Cmambya, Typuus;
5 Cmambyaverut mexnuveckul ynusepcumem, Cmambyas, Typyus

MareMaTndeckoe MOdeJIMPOBaHNe NPo0JieMbl dHEProInoTpedIIeHns

Baknocts sHEprocbeperkeHnsi M IPaBUJILHOIO IIPOEKTUPOBAHUS OYEBUIHA JJIsI dHEProddEKTUBHOCTH.
IIpaBunbHBI gu3aiiH O3HAYAET, YTO IIepe]] CTPOUTEIHbCTBOM HYXKHO CJHIEJIaTh YUTO-TO BPOJIE€ PEIIeHUs IO
OPUMEHTAIUN WMJIM U30JISIIUA. B JIaHHOM MCC/IeIOBaAaHUM MPEJJIOKEHA MaTeMaTHIeCKash MOJE/Ib 3a/1ad pacde-
Ta HECTAIIMOHAPHOI'O SHEProNOTPeOsIEHUsI, KOTOPas MPEeICTaBIsieT co00il KOPPEKTHOCTh B MPOCTPAHCTBAX
Ténpaepa cMmemanHoOl OMHOMEPHON MapaboMiecKoil 3aa4dn ¢ yciaopusmu Pobena. ABropamu pazpaboTaH
3 PEKTUBHBIN YUCTEHHBIA METO pacyeTa dHEPronoTped/IeH s, CBI3aHHbINA C JJAHHONH MaTeMaTUIeCKONR MO-
JHenbio. JIjisi TpOBEPKU 9TOr0 YKMCJIEHHOI'O METOJa B3sIThl TPU 3aJa4u. Pe3y/brarhl JUHAMUYIECKON MOIe/n
CPaBHUBAJIUCH C NPEABIAYINUAMUA KOHEIHO-PA3HOCTHBIMU WJIA CTAIIMOHAPHBIMHU PEHNICHUAMU. KpOMe TOrO,
HCCJIeIOBaHNE HAIIPABJIEHO Ha Pa3pabOTKy MaTeMaTHYeCKON MOEsN, B KOTOPOM pPe3yJibTaT MOXKET ObITh
HaiijieH B j11000€e BpeMmsl.

Karouesvie crosa: mareMaTHdeCKOe MOJIEIMPOBAHUE, YPaBHEHHE TEIJIONPOBOJSHOCTH, PAa3HOCTHAS CXEMA,
YCTOUYIUBOCTbD.
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On solvability of boundary value problem for a nonlinear
Fredholm integro-differential equation

The paper proposes a constructive method to solve a nonlinear boundary value problem for a Fredholm
integro-differential equation. Using D.S. Dzhumabaev parametrization method, the problem under
consideration is transformed into an equivalent boundary value problem for a system of nonlinear integro-
differential equations with parameters on the subintervals. When applying the parametrization method to
a nonlinear Fredholm integro-differential equation, the intermediate problem is a special Cauchy problem
for a system of nonlinear integro-differential equations with parameters. By substitution the solution to
the special Cauchy problem with parameters into the boundary condition and the continuity conditions
of the solution to the original problem at the interior partition points, we construct a system of nonlinear
algebraic equations in parameters. It is proved that the solvability of this system provides the existence
of a solution to the original boundary value problem. The iterative methods are used to solve both the
constructed system of algebraic equations in parameters and the special Cauchy problem. An algorithm for
solving boundary value problem under consideration is provided.

Keywords: nonlinear Fredholm integro-differential equation, boundary value problem, special Cauchy
problem, iterative process, isolated solution, algorithm, Dzhumabaev parametrization method.

Introduction

The research of initial and boundary value problems (BVPs) for integro-differential equations (IDEs) is
devoted to the works of many authors [1-15]. Fredholm IDEs have a number of features that should be taken into
account in setting problems for these equations and developing methods for solving them. By D.S. Dzhumabaev
parametrization method [16] the new Ay general solution to linear Fredholm IDE is proposed in [17], the
concept of the general solution is extended to Fredholm IDEs with nonlinear differential parts [18]. In [19-21],
the criteria for solvability, unique solvability and conditions of well-posedness of linear boundary value problems
for Fredholm IDEs are established.

On [0,7] the boundary value problem for nonlinear Fredholm integro-differential equation (IDE) is
biconsidered:

dz ™ T n
i At)z + ’;gok(t)/o V(7)) fre(m,z(7))dr, te€]0,T], z€R", (1)

9[x(0), =(T)] = 0, (2)

where n x n matrices A(t), pr(t), ¥ (7) are continuous on [0, 7], f : [0,T]x R™ — R™, k = 1,m ||z|| = max |z;|.
1=1,n

Denote by C([0,T],R™) the space of continuous functions z : [0,7] — R"™ with the norm ||z[j; =

= t)|.
e [l

A solution to problem (1), (2) is a continuously differentiable on [0, 7] (at the points t = 0, t = T, equation
(1) is satisfied by one-sided derivatives) function z(t) € C'([0,T7], R"), which satisfies equation (1) and boundary
condition (2).

The aim of the paper is to propose a constructive method for finding isolated solution to problem (1), (2).

*Corresponding author.
E-mail: mynbaevast80@gmail.com
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1 Scheme of the parametrization method

Let Ay be a partition of the interval [0,7] into N parts by points to =0 < t; < ... <ty =T.
The restriction of the function x(¢) on the rth interval [t,_1,¢,) denote by ,(t) : z,(t) = x(t), t € [tr—1,t),
r =1, N, and we reduce the problem (1), (2) to equivalent multi-point boundary value problem

dx,

m N t,
o A(t)x, + Z(pk(t) Z/ Vi(T) fe(Tyzi(T))dr, t€[tr_1,t), z,€R", r=1N, (3)
k=1 j=1"tr—1

olri(0), tim an ()] =0, @
ti%?,omp(t)] = xp-i-l(tp)’ p=1,N—-1, (5)

where equations (5) are the continuity conditions for solutions to problem (1), (2) at the interior points of
partition Ay.

Denote by C’([O,T], AN,R”N) the space consisting of all function systems x[t] = (xl(t),xg(t), . ,:cN(t)),
where functions @, : [t,_1,t.) — R™, r = 1, N, are continuous and have finite left-sided limits tﬁlitmiO x,(t), with
the norm ||z[]||, = max sup |z, (t)]|.

r=1,N te[t, _1,t,)

A solution to problem (3)—(5) is a function system z*[t] = (z}(t),23(t),..., 2% () € C([0,T],An, R™Y),

where the function z*r(t) continuously differentiable on [t,._1,t,), satisfies equation (3) for all ¢t € [t,_1,t,),

r=1,N, and for x7(0), tiiqglo 'y (1), t_l)itm_o xy(t), Ty q(tp), p=1,N — 1, there are equalities (4), (5).
P

We introduce additional parameters A, = z,(t,—1) and make substitutions w,(t) = z.(t) — A, r = 1, N,
then we obtain the multi-point boundary value problem with parameters

du,

m N tr
= AW+ ]+ > () Z/ V() fe(Tyus (1) + \j)dr,  t€[tr_1,t,), r=1,N, (6)
k=1 j=1"tr—1

up(tr—1) =0, r=1,N, (7)
g[/\h AN + ilg uN(t)} =0, (8)
Ap + tahtglfo up(t)] = Apy1, p=1,N-1 (9)

A solution to problem (6)—(9) is a pair (A\*,u*[t]) with elements \* = (A}, \5,...,\y) € RN,
u*t] = (ui(t),us(t),...,ui () € C([0,T], Ax, R™N), where the function u*(t) continuously differentiable on
[tr—1,tr) satisfies differential equation (6) for all ¢ € [t,_1,t,) (for ¢ = ¢,_; equation (6) satisfies the right-
hand derivative of the function w,(t),) condition (7), and for A}, Ay + t_l)i%n_o un(t), Ay + t_l)itr:l_ou;(t) = A1
p=1,N — 1, equalities (8), (9) hold.

If (A*,u*[t]) is a solution to problem (6)—(9), then the function z*(¢t) defined by the equalities
() = N4k (t), t € [tr—1,t.), 7 =1, N, z*(t) = A*N+tii¥1 Ou}“\,(t), is the solution to problem (1), (2). And vice

versa, if #(t) is a solution to problem (1), (2), then the pair (X, a[t]) with elements A = (A1, Aa, ..., Ay) € R™Y,
Uy (t), uz(t), ..., u1(t)n, where A, = Z(tr—1), Urp(t) = Z(t) — Ay, t € [tr—1,t.), 7 = 1, N, is the solution to problem

(6)-(9)-

Problem (6), (7) is the special Cauchy problem for the system of nonlinear Fredholm IDEs.
2 The solvability of problem (1), (2)

We will use the limit values of the solution to problem (6), (7) later on, when we turn to problem (1), (2).
Therefore, it is reasonable to consider the special Cauchy problem on the closed subintervals:

m N tr
Z:mWMM+Zm®Z/ Uk() fu(rv(r) + \)dr, teft_it,], r=1N,  (10)
k=1 j=1

tr—1
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vp(tr—1) =0, r=1N. (11)

Denote by 5([O,T]7 A, R™) the space consisting of all function systems v[t] = (vi(t),v2(t),...,vn(t)),
t)]

where functions v, : [t,—1,t,] = R"™, r = 1, N, are continuous, with the norm ||v[]”3 = max [max | lor(t)]]-
7‘:17N te tr—htr

It is obvious that if for fixed value of parameter A = A the function systems u[t, ] and v[t, \] are the
solutions to problems (6), (7) and (10), (11) respectively, then the following equalities are valid:

ur(t,N) = v (6, N), t€[tr_1,ty), r=T1,N, (12)
t_l}ltrrn_ou,,(t,)\) =vp(ty,A), T=1,N. (13)

The sufficient conditions of the solvability problem (10), (11) are established in [22].
Employing (8), (9) and considering (12), (13), we get the system of nonlinear algebraic equations in
parameters
g[)\1,>\N+UN(t,)\1,)\2,...,>\N)] =0, (14)

)‘p+vp(ta)‘17)‘27“~v)\N)]:)‘p+17 p:].,N—]. (15)
We rewrite system (14), (15) in the following form:

Q. (AN, A\ v[t]) = 0. (16)

Condition A. There exists h > 0 : Nh = T, N € N, such that the system of nonlinear equations
Q.(ANn,A,0) = 0 has the solution A® = (AP AL A0y ¢ RN and for A = A© the special
Cauchy problem (10), (11) with the initial guess solution v(®?)[t] = (0,0,...,0), has the solution v[t, A\(?)] €
C([0,T), Ax, R™).

Denote by PC(]0,T], An, R™) the space of piecewise continuous functions z : [0,T] — R™ with the possible
discontinuity points ts, s =1, N — 1, with the norm ||z|4y = sup [z(?)].

By the equalities (9 (¢) = A9 4 vﬁo)(t), t € [ty_1,t.], 7 = 1, N, we define the piecewise continuous function
2@ () on [0,7].

Choose py >0, p, > 0, p, > 0 we construct sets:

SAD p)={A= (A1 Az, .., An) € R A= AO)| = m%”)‘r — A9 < pat,
r=1,

S[t, \D), p,) = {v[t] € C([0,T], An, R™) : [[v[-] — v[, AV]|l2 < pu},
SO (t), ps) = {x(t) € PC([0,T), An, R") : |l — 2O 4 < p,}.

Theorem 1. Let A* € S(A(9), py) be a solution to equation (16) and v[t, \*] € S(v[t, A(?)], p,) be a solution
to the special Cauchy problem (10), (11) for A = A*. Then the function z*(t), defined by the equalities
o*(t) = N+ v (t, \*), t € [t,_1,t,], r = 1, N, is a solution to problem (1), (2) and x*(t) € S(z(®(t), p.).

Using Theorem 2 [23; 45] to equation (16) we get the following assertion.

Theorem 2. Let the following conditions be fulfilled:
0Q.(An; A v[t])

is uniformly continuous in S(A(), py);

0Q.(AN; A, v[t])
O

(i) the Jacobi matrix

(i) 9Q:(An; A, v[t])

o\
(i) 7 [| Qs (An; A, v O[] < pa.
Then there exists o > 1 such that for any o > aq the sequence \¥), generated by the iterative process

-1
is invertible and H [ } H < ~* for all A € S(A® | py), v* is constant;

D) _ g0 L[0Qu(AniA®, v
« o\

IR
[t, A\ ])} Qu(An: A® ot AP, k=0,1,2,...,

converges to A*, an isolated solution to equation (16) in S(A(?), py), and

I = AO < [|Qu(An; A, wft, AO)|.
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Condition B. The functions fy(t,z), & = 1,m, g(v,w) have uniformly continuous partial derivatives
Ofe(t,x) 9dg(v, w) ag(v, w) 0.1
’ = {(t,z) : t T, ||z — z©(t o}y G2 pe) =
02) Oglvs) 0900 Ly gorp,) = {(tw) < t € 0,10 e — 2O < pi), CO2ps) = {(ww) €
R : ||v — 2(0)|| < pg, ||w — :E(O)( )|| < px} respectively, and
e R b B e B

where Ly o, k =1, m, Ly, Ly are const.
Let the function system v[t, A] be the solution to the special Cauchy problem (10), (11), i.e. the following
equalities are valid:

tr
WZA()[W& )+ ]+ Z/tr lwk I filmoj(r )+ A)dr,  t€ [t t,], r=LN, (17)
vp(tr—1,A\) =0, r=1,N. (18)

vy (t, \)

Condition B by Peano’s theorem provides the existence of partial derivatives ri = 1, N, for all

A€ S(AO ) py). Differentiating (17), (18) with respect to \;, i = 1, N, yields

N

dr+

- ((’)v:?()\t /\)) = A(t) {LUEX; a) + an] + > wi(t) Z/ ' ¢k(7)afk(77 Uj((;; N FA) avg(; 2

t; ) )
+ t)/ wk(ﬂaf’“(ﬂ“ég”“’)dn teltit), r=LN,
k= i—1
avr(trflaA) _ .
T —0, T,Z—].,N,

where
{I ., r=1, I isthe identity matrix of dimension n,
Ors =

O, r#i, O isthen X n zero matrix.

O (t, A e — . .
If we denote by z.;(t, A) the partial derivative % =0, r,i =1, N, then for each i = 1, N the function
system z;[t, \] = (z1(¢, A), ..., (2n (¢, N)) is a solution to the linear special matrix Cauchy problem
dzy; 8fk (1,0 (1, A) + X))
I = A(t) [Z”* —‘rO'” Z/ w oz ji(T,)\)dT—i-

23 [ BEENIN g ), 2T

Zri(tr—h)‘) =0, ri=1,N.

Condition B and conditions of Theorem 2 [22]| provide the existence of the Jacobi matrix

~ 611,1@) Q1,N—1@) %,N@)

0Q. (AN; A, U[t]) _ | % ()\) .. g2,N-1 (/\) q2,N ()\) (19)
A o R R
qn,1 ()\) ..+ gN,N-1 (>\) 4dN,N ()\)

aQ* (AN7 Xa U[ta X])
oA

for all A € S()\(O),p,\) and its uniform continuity in S()\(O),pA). Here the components of

are the n x n matrices

o~

q1,1 (X) =g, [3\\17 A + on (T, X)] + Gu [3\\17 A + on (T, X)]21\7,1 (T, N),
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q1,s (3\\) = gq/u [Xla/):N + UN(Ty X)] ZN,s (T7 X)a s=2,N—1,
(JLN(X) = iy [/):17 A+ on (T, X)] [I+2nn(T, X)],

Qp,r()\) :prl,r(tp—l,)\), P#Ta p#r—’_lv
qzw(//\\) =-I+ Zp—l,p(tp—lvx)’ qpm—l(X) =I+z1p-1 (tp—lv//\\)a p=2,N,r=1N,

where z;[t, \] = (zl’i(t7X)7 e ,zNﬂ-(t7X)), i =1, N, is the solution to the special Cauchy problem (10), (11) for
A=A

3 An algorithm for solving problem (6)—(9)

Assume that the conditions A, B hold and problem (10), (11) is well-posedness. For the initial approximation
of the solution to problem (6)—(9), we take a pair (A(*), v[t, A(¥)]) and find the sequence (A*), v[t, \®)]), k € N,
according to the following algorithm:

Step 1. a) Employing the values of elements of the function system v[t, \(?)], we compose the n vector and
the n x n matrices:

9NN + oy (T, AO)]
0 0
Q. (AN A [t \]) = A oy (8, A@) =AY

/\5\(;))_1 +on_1 (tv-1, AO) — /\53)

(1, A©) + A(?)
ox

m ti
PO(t) = At)ori + > on(t) / W(T)af’“(mi dr, telt,_i,t], mi=1N,
k=1 ti1

O fe(t, v; (£, (@) + A0
(1) = (t) =

b) By solving N special matrix Cauchy problems for the system of linear IDEs

m N t.

Az, . 7 (0) (0)

g —A(t)zri—l-kzlapk(t)z:l/v ) () z5i(r)dr + P (1), t € [too1 ],
- iz

tj—1

t € lty_1,ty], r,j=1,N.

Z”‘(tr_l) = 07 T,i = 1,N,

we find the function systems

zi[t, A0 = (216, X)L (8,A9)), i =T, N.

9Q. (Ax: X, o[t A7)
o\

¢) Construct the Jacobi matrix by formula (19), where

011 (M) = g, (MO A9 + on (T AO) | + g1, [AVAQ + on (T, 00) | 23 (T A@),

a1,s(N?) = g, NV AD + on (T AAO) |an o (TA®), s =2 N =1,
a1 (A7) = g, MO0 +on (T AO)] x [14 2w (14O

qp,r ()\(O)) = prl,r (tpflv /\(0))7 p 7é T, p 7é r+ 1a
rr(\) = T+ 2p-15(tp-1.07), Gpp 1 (M) =T+ 2151 (-1,0), p=2N, 7

Solve the system of linear algebraic equations

Q. (An: A, vft, A©)])
o\

1
AN = —=Q.(Ay; O 0t AO)), Axe B,
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for some o > 1 and find A9 . Determine A1) as follows:
AL = (0 4L ANO

d) Choose the function system v [t, )\(0)] as an initial guess solution to problem (10), (11) for A = A and
by iterative process [22; 53] find the function system v[t, /\(1)}.

Step 2. a) Employing the values of elements of the function system v[t, \()], we compose the n vector and
the n X n matrices:

gAY Fon (1,00)]

Qu(anAD oA = [ N Huln ) Dy

AL+ o 1(tN L AM) —AQ

: )\(1) )\(1)
P(l)( o + Z‘Pk / e (9fk (7, v; (Tax ) + )dT, teltyaty], ri=T,N,

8f (t7 (tv)‘(l)—i_)\(l))
V() = ()=

b) By solving N special matrix Cauchy problems for the system of linear IDEs

dzm
= zM+Z<pk Z/ WD () z5i(r)dr + PP (), tE [tro1,ta],

te[t'rflatria TajzlaN'

Zri(trfl) :Oa Tvi: ]-va

we find the function systems

2 [t7 )\(1)] = (zli(ta )‘(1))7 cee ;ZNi(t7 )‘(1)))7 i = ]-a N.

0Q. (An; AW, vft, A1)
oA\

a1 (AD) = g, AV + on (T AD) | 4 g0, AV AQ + on (T,0D) | 2n (T, AD),

¢) Construct the Jacobi matrix

by formula (19), where

a1 (AV) = gl MR+ on (T AD) 2w (TAD), s =2 N =1,
QI,N()\(l)) =g, [)\51)7 )\5\1;) + un (T, )\(1))} X {I + 2y, (T, )\(O))},
dp,r (A(l)) = Zp—1,r (tp—17 A(l))v p 7& r o p 7é r+ 1; dp,p (A(l)) =-I+ Zp—1,p (tp_l, A(l))7
qp7p_1()\(1)) :I+Zp_17p_1(tp_1,>\(l)), P = Q,N, r = l,N.
Solve the system of linear algebraic equations

Q. (An; A w[t, AM))
6>\

for some a > 1 and find AA® . Determine A as follows:

1
AN = _aQ*(ANv A(l),i}[t, A(l)i)’ AX € RnN’

A® =AM L AN

d) Choose the function system v|t, )\(1)] as an initial guess solution to problem (10), (11) for A = A, find
the function system v[t, A(?)].

Continuing this process, in the kth step of the algorithm we get a pair ()\(k), v[t7 )\(k)}), k=1,2,.... The
conditions of Theorem 2 [22; 53] and Theorem 2 ensure the convergence of this sequence to ()\*, v [t, )\*]), the
solution to problem (6)—(9), as k — co.

Given ¢ > 0, the iterative process should be terminated if [[AA*)|| < e. Theorem 2 yields an
alternative termination criterion. If conditions of this theorem are fulfilled, then the inequality [A* = AR <
YN Qs (An, A w[t, \F)])|| is true. Therefore, the iterative process terminates if v*(|Q. (An, A®) v[t, \F)])|| < .
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®pearoabM ChI3bIKThI €MeC MHTEerPaIabIK- A depeHITnAIIbIK,
TeH/Ieyl YIITiH OIeTTIiK eCeNTiH MIeIIiJIiMIIIr TypPpaJabl

Maxkamnaga @pearossm MHTErPATILIK-IUMOMEPEHITNANIBIK TEHEYl YIMH CBhI3BIKTBI €MeC IETTIK ecerl-
Ti mentyis KOHCTPYKTUBTI oici yewburan. JI.C. JIxkymabaeBToiH, mapaMerpiiey OiCiH KOJIIaHa OTbI-
PBII, KapPaCTHIPBLIBII OTBIDFAH €Cell ilIKi MHTEPBaJJapAarbl IIapaMeTpPJsli ChI3BIKTBI €MeC WHTETrPaJIJIbIK-
nuddepeHTIAIBIK, TEHIAEYIEP KYiecl YITiH SKBUBAJEHTT] IMETTIK ecenKe KeaTipiiredn. @pearoabM ChI3bI-
KTBI eMeC NHTEeTrPaJIIbIK-1uddepeHnnaablk TeHIeyiHe TapaMeTpJey 9iCiH KOJITaHFaH Ke3/e apaJsIblK eCcell
rapaMeTpJii ChI3BIKTHI eMeC HHTEerpasIbIK-1ud depeHInallIbIK TeHIeyIep Kyiieci yinin apaaiibl Ko ecebi
Goubr TaOBLTIAABI. ApHaiibl Komm ecebiHiH IIEmIiMiH IIETTIK IIAPTKA KoHE OACTAIIKbLI €CEIITIiH IMeIriMiH
OesikTey il iKi HyKTeIepineri y3iaicci3aik maprrapblHa KOO apKbLIbl TapaMeTpJiepre KAThICThI ChI3bI-
KTBI eMec ajrebpaJiblk TEHIEYIep *Kylieci KypbLIabl. By xKyiieHiH memiiMiairi 6acTankpl MeTTIiK ecer-
TiH IIeNIiMILUIINHE KaMTaMachl3 eTeTiHirine Herizgesnared. IlapaMerpiiepre KaTbICThI aareOpaJIblK TeHJe-
yJep XKyiecin kKoHe apHaiibl KoIm ecebin menry yImiH UTepaIusiibIK, 91iCTep KOJIaHbLIaIbl. KapacThlpbl-
JIBII OTBIPFAH IIETTIK €CEITi eIy aJrOpUTMi YChIHBLIFAaH.

Kiam cosdep: cuI3bIKTBI emec PpeirobM UHTErPAIIbIK-Tud(MepeHIInaIbIK, TeHIEY1, MEeTTIK ecer, nTepa-
[USTBIK, TPOITECC, OKITAYIAHFAH IIIEITiM, aaropurM, /2KyMabaeBThIH TapaMeTpJiey SIici.
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L Mnemumym mamemamusy u Mamemamuueckozo modeauposarua, Aamame, Kazaxcman;
2 Kasazcxutl Hayuonaivrod yrusepcumem ument avb-Papabu, Aamamo, Kasaxcman;
3 Axmiobuncrut pezuonasviuili ynusepcumem umenu K. Xybanosa, Axmobe, Kaszazcman

O pa3zpenmmMocTu KpaeBoii 3a/1a9m JJisi HeJIMHEHHOTO
nHTEerpo-anddepennuaapbaoro ypasaeansa ®Ppearoabma

B cratbe mpemioxkeH KOHCTPYKTHBHBIR METOJ[ PEINEHUS HEJIMHEHHOW KpaeBOil 3a/adm NI WHTErPO-
muddepernuanbaoro ypasaenuss Openronbma. C nomomnbio Meroga napamerpusanun J.C. IxxymabaeBa
paccMaTpuBaeMasi 3aatua Ipeobpa3oBaHa B KBUBAJIEHTHYIO KPAeBYIO 3aady s CHCTEMbl HEJIMHEHHBIX
nHTErpo-auddepeHnnaIbHbIX YPaBHEHUI ¢ TapaMeTpaMu Ha oAbIHTepBaiax. | [pu npuMenennn MeToa na-
paMeTpHU3aliy K HeJUHEHHOMY MHTerpo-guddepenimatsaoMy ypasHeHno Openrosbyma IpoMexKyTOIHON
3ajaveil SBJISIeTCsT CIenua bHas 3ajada Komm s cucTeMbl HEJIMHEWHBIX WHTErpo-IuddepeHnnaabHbIX
ypaBHeHUit ¢ mapamerpamu. [lyTem mopcTraHoBKM perrenusi crennaabHOil 3amadun Ko ¢ mapamerpavMu B
IPAHUYHOE YCJIOBHE U YCJIOBUS HEIIPEPBIBHOCTU PEIIEHMsI UCXOJIHON 33/1a491 B TOYKAX BHYTPEHHEro pa3bue-
HUSI CTPOUTCS CUCTEMA HEJIMHEWHBIX arebpandecKuxX ypaBHeHMi o mapaMmerpam. JlokazaHo, 9To paspemnin-
MOCTB 3TOH CHCTE€MBI 00ECIIeUMBAET CYIECTBOBAHNE DEIeHNs MCXOMHON KpaeBoit 3amaqdn. VTepamnumonnbie
METO/IbI MCIIOJIb30BAaHbI KaK IS PEIIeHHsI IOCTPOEHHOM CHUCTEMBI ajredpanvyecKux ypaBHEHU 110 ITapaMeT-
paM, Tak ¥ JJjIs pelleHusl CreruaibHoi 3amaun Komm. [IpuBenen ajroputM pereHust paccMaTpUBAEMO
KpaeBoO#l 3aJ1a4u.

Kmouesvie crosa: HenuHeitHOe nHTErpo-auddepennuaibioe ypasaenue @pejrosibMa, KpaeBas 3a/1a49a, Clie-
nuasibHas 3as1a4da Komm, nrepanyoHHbIil IpoIece, n30JIMPOBAHHOE PEIIeHNe, aJITOPUTM, METOJ, IIapaMeTpH-
zaruu Jxxymabaesa.
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On the stability of the difference analogue of the boundary value
problem for a mixed type equation

This paper considers a difference problem for a mixed-type equation, to which a problem of integral geometry
for a family of curves satisfying certain regularity conditions is reduced. These problems are related to
numerous applications, including interpretation problem of seismic data, problem of interpretation of X-
ray images, problems of computed tomography and technical diagnostics. The study of difference analogues
of integral geometry problems has specific difficulties associated with the fact that for finite-difference
analogues of partial derivatives, basic relations are performed with a certain shift in the discrete variable. In
this regard, many relations obtained in a continuous formulation, when transitioned to a discrete analogue,
have a more complex and cumbersome form, which requires additional studies of the resulting terms with a
shift. Another important feature of the integral geometry problem is the absence of a theorem for existence
of a solution in general case. Consequently, the paper uses the concept of correctness according to A.N.
Tikhonov, particularly, it is assumed that there is a solution to the problem of integral geometry and its
differential-difference analogue. The stability estimate of the difference analogue of the boundary value
problem for a mixed-type equation obtained in this work is vital for understanding the effectiveness of
numerical methods for solving problems of geotomography, medical tomography, flaw detection, etc. It
also has a great practical significance in solving multidimensional inverse problems of acoustics, seismic
exploration.

Keywords: ill-posed problem, boundary value problem, mixed-type equation, stability estimate, difference
problem, quadratic form.

Introduction

The research focuses on a difference-differential problem for a mixed-type equation, to which reduces the
problem of integral geometry for a family of curves satisfying certain regularity conditions is reduced.

The problems of integral geometry consist of finding a function or a more complex quantity (differential
form, tensor field, etc.) defined on a certain variety, through its integrals over a certain family of sub-variety of
smaller dimension.

Some inverse problems for kinetic equations widely used in physics and astrophysics are closely related to
problems of integral geometry. The problems of integral geometry refer to ill-posed problems of mathematical
physics, the foundations of which were laid in the works [1-3]. These problems are associated with numerous
applications (problem of computed tomography, inverse problems of acoustics, and seismic exploration).

The need to study differential-difference and finite-difference analogues of integral geometry problems was
first expressed and formulated as a new promising direction by Academician M.M. Lavrentiev. Therefore, the
study of differential-difference and finite-difference analogues of integral geometry problems is an urgent problem.

M.M. Lavrentiev and V.G. Romanov first showed in the work [4] that a number of inverse problems for
hyperbolic equations are reduced to problems of integral geometry. Further, V.G. Romanov obtained uniqueness
theorems and estimates of conditional stability to solve integral geometry problems for a fairly general family
of curves on a plane invariant with respect to the rotation group [5], as well as for families of curves and hyper
surfaces in n-dimensional space invariant with respect to parallel transfers of these objects along some plane [6].

A very general result on uniqueness and stability estimates for a special family of curves was obtained
by R.G. Mukhometov. These stability estimates are based on reducing the integral geometry problem to an
equivalent boundary value problem for a partial differential equation of mixed type [7].

*Corresponding author.
E-mail: saule.meldebekova@Qayu. edu.kz
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Methods and materials

Let D be a bounded simply connected domain in the plane with a smooth boundary I':
v=¢§(2), y=mn(z), =z€[0d, £0)=£&0), n0)=n),
where z is the length of the curve I'. In the D there are smooth curves defined by the equations

x:90(%0’2/07975)79:w(l"O)yO’ovS)a (1)

where (¢, yo) is a point from which the curve exits at an angle 8, the variable parameter s is the curve length.
The set of function definitions ¢ and ) is the set, indeed

T = {(x0,0,0, )/ (w0,90) € D,0 €[0,27],5 € [07l~(x0,y0,9)]},

where [ (20, Yo, 0) is the length of the part of the curve leaving the point (x¢, y¢) at an angle 6 and lying between
(z0,y0) and the point of intersection of the curve with the boundary.

Let the set of curves (1) be such that it can be regarded as a two-parameter family of curves K(v, z)
satisfying the conditions as follows:

a) through any two different points from D single curve K(v,z) passes; each curve of the family K(v, z)
intersects I' at points (£(z),n(2)) and (£(7),n(y)), the other points do not lie on T'; the lengths of all curves are
uniformly bounded;

b)y € C3(T), € C3(T), and all derivatives of these functions are uniformly bounded in T}

) %%((ﬁ:;ﬁ)) > c¢1 > 0, where c; is a constant;

d) p(z,y,0,s) = o(z,y,27,s),¥(z,y,0,s) = ¥(z,y,2n, s), similar equalities are also valid for derivatives of
these functions up to the third order inclusive.
Let U(z, y) € C?(D) and

V(V?Z) = f U(.’L‘, y)p(xa:%z)ds; v € [Ovl]’ z € [071] (2)

The problem of integral geometry (2) is to find a function U(z,y) in the domain D according to the given
curves K (7, z) and functions V (v, 2).

If the family K (v, z) satisfies the conditions a)-d), then problem (2) is equivalent to the following boundary
value problem

82 > :07 (x,y,z) GQL (3)

W(ﬁ(V);U(A/)aZ) = V(’Ya Z)? V(Z’Z) =0, v, 2 € [0’”7 (4)

where p(x,y,z) is a known function, Q; = Q\ {(£(2),1(2),2) : 2 € [0,1]} , Q=D x [0,1].
K(z,y, z) is a part of the curve from the family K (v, z) connecting the points (z,y) € D and (£(z), n(z)),

8zp+3yp

0 (8W0059 OW sin 0

Wz, y, 2) = / Uz, y, 2)p(a, y, 2)ds.
K(z,y,z)

O(x,y, z) is an angle between the tangent to K(z,y,z) at the point (z,y) and the z axis, the variable
parameter s is the curve length.

The functions W(x,y, z) and 0(x,y, z) have the following differential properties [7]:

Lemma 1. The function W (z,y, z) € C(Q2) has continuous derivatives up to and including the second order
on the set ;.

Lemma 2. The derivative Wy, W,, W, are bounded in Q;, and W, W, Wy, in the neighborhood of any

_1
point of the form (£ (z), n(z), z) that can have a type singularity {(Jc —£(2)*+ (y — n(z))ﬂ ’
Lemma 3. The function 6(z,y, z) is differentiable on the set €; and the derivative 6, in the neighborhood
1

of any point of the form (£ (2), n(z), 2) has a type singularity {(x — () + (y — n(z))ﬂ N
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Assume that the requirements for the family of curves K (v, z) and the plane D necessary to bring problem
(2) to problem (3), (4) are met. Let us also assume that any straight line that is parallel to the axis of the
abscissa or ordinate can intersect the boundary of the domain D at no more than two points.
Let
ap = inf {z}, bp= sup {a},
(z,y)€D (x,y)€D

az = inf {y},bo= sup {y},
(z,y)€D (z,y)€D

hj = (bJ — aj)/Nj, j = 1,2;]7,3 = Z/Ng,

where Nj, j = 1,2,3, are natural numbers.
Let ¢ satisfy the condition
0<e<min{(by —ay1)/3,(by —az)/3},

D* = {(e.0) € D min_p((w.0),(0.8) > ¢

(e,8)
Ry, = {(CUi,yj)7 T, = ay + ihl,yj = a9 + jho,i =0,1,....,N1;5 =0,1, ..., NQ} .
The neighborhood R(ihq,jha) of the point (a1 + ih1,as + jhe) will be called a set consisting of the point
itself (ay + ih1,az + jha) and four points of the form (ay + (i & 1)hy, a2 + (j £ 1)h2).
D5 is a set of all points (a1 + ihi, as + jho) lying in D® N R), together with its neighborhood R(ih1, jhs).
I - the set of all points (a1 + thi,as + jhe) € Dj such that the intersection (ihi,jhs) with the set
(D® N Ry)/D;, is nonempty. Then,

A5, = UN(ihy,ih2), Dy = R,ND.

h

Futher, we assume that the coefficients and a solution of problem (3)—(4) have the following properties:

W(z,y,z) € C*(0°),0(x,y,2) € C*(Q°), Q°F = D" x [0,1],

2 * _ _
pla,y,2) € C5(Q), plz,y,2) > C* > 0, 5= > | 5

We constider the following difference problem (depending on the parameter z): Find a function ®; ;(z), that
satisfies the equation

a0 3/).1‘

q’g%*“%g =U,;, (a1 +1ihi,as+1ihe) € Dy, z€]0,l] (5)
and the boundary condition
®;j(2) = F; j(2), (a1 +ihi,a2+ jhy) € A}, z€][0,1], (6)

here
Di(2) = (23,5, 2) = (a1 + thy, a2 + jha, 2),
Uij =Ul(xi,y;) = Ulay +ih1, as+ jha), i=0,N1, j=0,Na,
©y = (Firy = Fie1)/2h, @y = (Fyji1 = Fijj-1)/2ha,
A=cosb; j(z), B=sinb,;(z), 0;;(z)=0(a1+ihi, a2+ jho,2), C=plai+ihi,as+ jhe,z).
Note that in this formulation, information about the solution is given not only on the boundary I' 1but

also in some its € neighborhood, which is due to the presence of type features [(x —£(2)* 4 (y — n(2))? i
derivatives 6., W,., W, Wy, in the neighborhood of any point of the form ({(2),n(z), ) [7].
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Results and Discussion

Theorem. Suppose that the solution to problem (5)-(6) exists. Let for all the (z;,y;) € D}, functions
®;5(z) € CH0,1], ®;;(0) = @;;(0),
F@j(Z) S Cl[O,l], FiJ(O) = F@j(l),

and the functions C' = p(a1 + th1, a2 + jhe, 2). 0; ;j(2) satisfy the conditions

00
0:4(0) = :5(1). 5 >

o 1
0z pl|’

Then for all N;j > 9, j = 1,2 there is an estimate

l

S+ @hhe <o [ >
h

Dy, 0

) ) OF\?
Fihi+ Fiho+ | — | (h1 + ho)|dz, (7)
z ] 0z

where c¢3 is some positive constant that depends on the function p(x,y, z) and the curves family K (v, 2).

In estimation (7), it is assumed that with a decrease of hy and hs, the parameter € can also decrease, since
¢ does not depend on ¢ (the parameter € was chosen solely to eliminate features that are present in the original
continuous problem). Consequently, the smaller the grid is, the narrower the domain may be in which the feature
is concentrated.

Proof. Using the methodology proposed in the papers [8], [9] both parts (5) are multiplied by
2C(— B®, + A<I>0 ) , the resulting equality is written in the form

Ji+ Jo = 0. (8)

Here

0 A B

Using the differentiation formula of the product of functlons, we transform Ji:

h= 4 |(-Boy + a0, ) (40, + B2, )| +
+AB(17 Do ? — %%%A2<I>g<1>o +
+ 55 B2y @y — laLAB@O - ng2<1>%2+
+ABD, 2 (q> ) + 9L ABD, @y —

)~ $2ABD @y + L2 BB, 0y
~B20, £ (0 ) + @B%O +2 1 9C ABD, *+

+A20, 2 (@) — S2ABD, @y — ig—CA%O Dy +
1 0C 2
+AB<I>Od (@ - $524Ba,*.

Substituting these expressions Ji, Jo into (8
= cos?0 — sin?0 = A2 — B2, from (9), (10) we ge

o)+ A2,

Y
) and denoting D = sin20 = 2sinf cosd = 2AB, E = cos20 =
t

C 0z

(%_i_lacD)q)% —2d, (I)018CE+( %8CD @02+
10 2 (B ) ~ @y 2 () + 2 | (- By +Aq>o) (40
Y T T Yy x Yy

(11)
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It is not difficult to notice that

i(%)=6§%a i(%):<$vy

h?
(uv)g = ugv +uvg + ?[uwvw]i,
where
fo= fi+1;fi7 fi _ fi*hfli—l
Then,
o (52)g — Py (F2)g = {‘I’g (g%)}g - [‘I’g (%)}g
5oy (80),], + 5 e, (3D),]

from (11) we obtain

it g | (B2 + ARy ) (40 + Boy )] + @ 52], — |@, 52],
h3 9% h? 9® _w
-3 ‘I’gx(*z)mh +§[@gy(a)y}§ =0,

where

0z C 0z C 0z

xT

k:<%+ﬂimp>%2—ﬂ@%180E+(%—Jimp)@?

(12)

Considering the expression J3 as a quadratic form with respect to ®, and ®,, it is not difficult to ensure
T Y

that the determinant of this quadratic form is

AN AT
0z Coz)
9 _|19C
0z C 0z

Then from the condition

the positive definiteness of the quadratic form J3 follows.
Using the inequality

2 (ac — b?) (@2 + 2),

azx® + 2bxy + cy? >
a+c+1/(a—c)®+4b?

which is true for a positive-definite quadratic form az? + 2bzy + cy?, we have

00 10C 9 2
>l == == 0 0 .
Jg_(@z C 0z )((I)m +(I)y )

Considering that

* oL 10C
C—p(:ﬁ,y,z), p(xvyaz)> >0, (az_ 6@

)=

it is not difficult to make sure that there is such cs > 0 and there is an inequality
l

(2 |z

0z C 0z
0
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Further, summing over 4, j using condition (6) and integrating over z, taking into account the formulas (13),
(14) as well as the periodicity of functions ®; ;(z),6; ;(z) over z and inequality |ab] < (a® +b?)/2, from equality
(12) after simple transformations, we obtain an estimate

OF\ 2
F2hy + Fiha t () (h1 + ha)

ER dz,

l
S @+ e <ea [ 3
0 A%

e
Dh

in which ¢5 depends on the functions p(z,y, z) and the curves family K (v, z). So, the theorem is proved.
Conclusions

The stability estimate of the difference analogue of the boundary value problem for a mixed-type
equation obtained in the work can be used to justify the convergence of numerical methods for solving
problems of geotomography, medical tomography, flaw detection and is of great practical significance in solving
multidimensional inverse problems of acoustics, seismic exploration.
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[''b. Bakanos, C.K. MenebekoBa

Kootca Axmem Hcayu amwvindazor Xasvrapanrok Kazak-mypix yrnusepcumemi, Typricman, Kazaxcman

Apanac TunTi TeHAey YIMiH MIEKapPaJIbIK, €CelTiH aifbIPhIM/IBIK,
AHAJIOTBIHBIH, OPHBIKThIJIBIFbI YKAJIbI

Maxkanana keitbip apasac THUOTI TEHIEY YIMH afBIPHIMIBIK, €CEIKe KEJITIPLTETIH PEryssipJiblK MapTTapblH
KAHAFATTAHIBIPATHIH KUCBIKTAD Vil YIIiH KONBIIFAH NHTEIPAJIIBIK TeOMeTpHsI ecedi KapacThIpbLIIbl. Byt
ecernTep KONTereH KOChIMINaJapMeH 6ailJIaHBICThI, OHBIH, iMIIHE ceiicMobap/iay MoJIIMETTEPIH WHTEPIIPETa-
[UsLIay €CENTePi, PEHTTEH CyPeTTEPIH MHTEPIPETAIINSIAY, KOMIBIOTEP/IIK TOMOTpadus KOHE TEXHUKAJIBIK,
JMArHOCTHKa ecentepi. MIHTerpasiiblK, reoMeTpusi eCeNTEPiHiH albIPBIM/IBIK, AHAJIOITAPBIH 3€PTTEY/IiH O3iHe
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TOH KYpIesii TycTapsl 6ap, aepbec TYBIHIBIIAP/IBIH IIIEKTEYTi-albIPBIMIBIK, AHAJIOTTAPBI VIMH HEeri3ri KaThi-
HacTap JUCKPETTI allHbIMAJIbI OOiibIHIIIA Gesrijii 6ip bIFBICYMeH KYyprisiayine 6aiianbicTbl 605161, COHIBI-
KTaH, Y3lIicci3 KOMBIIBIM/Ia aJIbIHATHIH KOIITEreH KATBIHACTAD JUCKPETTI aHAJIOIKA aybICKAHIA aHAFYDPJIbIM
KypJeai Typre me Goajbl »KoHE BIFBICY OAPBICHIHIA TYBIHAANTHIH KOCBLIFBIIIITAPFA KATBICTBI KOCBHIMIIIA
3epTTeysiepl Tajaln eredi. by ecenTepiH Tarbl jia 6ip epekInesiri — KaJjbl JKargaiaa meniMHie 6ap
GoJtybl »Kaitabl TeopeMa koK. Ocbrran GaitanbicTbl A.H. TuxoHOB GONBIHINIA KOPPEKTIIIK YFBIMBI KOJIIa-
HBLIAJIBI, SIFHU WHTETPAJIILIK TeoMeTpust ecebi MeH OHBIH JauddepeHInaIbIK-albIPhIMIBIK, AHAJIOTBIHBIH
memriMi 6ap 60s1a161 Jen xopamasanaabl. COHbIMEH KaTap, apaJjiac TUIITI TeHJEY YIIH MEeKapaJIbIK, ecerl-
TiH afBIPBIM/IBIK AHAJIOTBIHBIH AJIBIHFAH OPHBIKTHLIBIK 6aFaCchl T€OTOMOTIPAMUsi, METUITUHAJIBIK, TOMOT'PAUsI,
nedeKkTocKonus KoHe T.0. eCenTep/ii CaHIbIK, OIICTEPMEH IENTyIiH THIMIIIITIH TYCIHy YIIIiH ©Te MaHBI3/IbI.
Conjaii-ak, akyCTuKa, ceficMobapJiay/blH, KOl eJIeMIl Kepi ecenTepiH IIerryje e YIKEH IPaKTUKAJIBIK,
MoHi 6ap.

Kiam ce3dep: KOPPEKTiIi eMec ecell, MeKapaJIblK, €Cell, apajac TUMTI TEHJEY, OPHBIKTHLIBIK, 0aFachl, aifbl-
PBIMJBIK, €Cell, KBaJPaTThl (HOpMa.

[''B. Bakanos, C.K. MeJiiebekoBa

Meotcdynapodnnii xazaxcko-mypeykul yrusepcumem umenu Xodoca Axmema Hcasu, Typxecman, Kasaxcman

06 yCTOﬁqHBOCTH Pa3HOCTHOI'O aHaJIoTra FpaHI/I‘IHOﬁ 3aa9IM1 OJIs
YpaBHEeHNsA CMEIIaHHOI'oO THUIla

B crarpe paccmorpena pa3zHocTHaASA 3a/1a4a I yPAaBHEHHS CMEIIAHHOI'O TUIA, K KOTOPOM CBOAUTCH 3a1a9a
WHTErPAJIbHOI T€OMeTPHUHN [jIsi CeEMENCTBa KPUBBIX, YAOBJIETBOPSAIONNX HEKOTOPBIM YCJOBHUAM DPEryIsapHO-
cTH. DTHU 33/1a9K CBI3aHbI C MHOIMOYUCICHHBIMUA PUJIOXKEHUSIMHU, B TOM YHUCJIE C 3a/1a9aMUi UHTEPIIPETAIIUN
JIAHHBIX CECMOPA3BeIKN, NHTEPIPETAIINN PEHTTEHOBCKUX CHUMKOB, KOMITBIOTEPHON TOMOrpacun u 3a1a-
9aMM TEXHUYECKOU auarHOCTHKHU. VcciemoBaHme pa3HOCTHBIX aHAJIOTOB 3aJ1ad WHTErPaJbHON TeOMEeTPUU
nMeeT crrenuduIecKue TPYAHOCTH, CBI3aHHbBIE C TEM 00CTOSTENILCTBOM, YTO JJIsI KOHEYHO-PA3HOCTHBIX aHa-
JIOTOB YaCTHBIX IIPOU3BO/IHBIX OCHOBHBIE COOTHOIIIEHUS BBITIOJHSIIOTCS C HEKOTOPBIM C/IBUT'OM IIO TMCKPETHON
mepeMeHHON. B CBsI3u ¢ 9TUM MHOTHE COOTHOIIIEHUS, TIOJIyIaeMble B HEIIPEPHIBHOM ITOCTAHOBKE, ITPU IIEPEX0-
e K JTUCKPETHOMY AHAJIOTy MMEIOT OoJjiee CIIOXKHYIO U IPOMO3IKYI0 (OPMY, UTO TPEOYeT JTONOJTHUTETIbHBIX
HCCJIEIOBAHNI BO3HHUKAIOIIMX CJIAraeMbIX €O cABUroM. Eime ofHON BaKHONH OCOGEHHOCTHIO 3a/1a9M WHTE-
rpajbHOIl TEOMETPUU SABJISETCS OTCYTCTBUE TEOPEMBI CYIIECTBOBAHUS PEIIEHUs B obOmeM ciaydae. B cBsazm
¢ sTuM B pabore ucrosb3oBaHo noHsrue koppektHocru 1o A.H. TuxonoBy, a mMeHHO, IpejosaraeTcs,
9TO pelleHne 3a/adi MHTErpajbHON reoMerpun u ee auddepeHnuaabHO-Pa3HOCTHOIO aHAJIOTA CYIIECTBY-
er. [losyuennas aBTopaMu OIEHKa yCTOMIMBOCTH PA3HOCTHOTO AHAJIOTA TPAHMIHON 3a1a49u JJIs yPABHEHUST
CMEIIaHHOrO TUIIA UMEeET BayKHOE 3HAUEHNUE JJIsi HOHUMAHUS 3(DMEKTUBHOCTH YHCIEHHBIX METO/IOB PEITEeHUs
3a/1a9 reoToMorpadun, MeIUIMHCKON ToMorpadun, nedekrockonuu u T. ;1. Kpome toro, nMeer Gosbiioe
MPaKTUYIECKOe 3HAYECHNE [IPU PEIIEHNN MHOTOMEDPHBIX OOPATHBIX 3339 aKyCTHUKU, CEACMOPA3BEIKM.

Karouesvie crosa: HEKOppEKTHAS 3aja4a, KpaeBas 33/1a4a, YPaBHEHNE CMEIIAHHOIO TUIIA, OIIEHKa yCTONIH-
BOCTH, pa3HOCTHAs 3aJia9a, KBaJpaTUIHas (POpMa.
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A note on epidemiologic models: SIR modeling
of the COVID-19 with variable coefficients

The coronavirus disease 2019 (COVID-19) has been responsible for over three million reported cases
worldwide. The construction of an appropriate mathematical (epidemiological) model for this disease is
a challenging task. In this paper, we first consider susceptible — infectious — recovered (SIR) model with
constant parameters and obtain an approximate solution for the SIR model with varying coefficient as it is
one of the simplest models and many models are derived from this framework. The numerical experiments
confirm that the proposed formulation demonstrates similar characteristic behaviour with the well-known
approximations.

Keywords: infectious diseases, COVID-19, mathematical modeling, SIR model, variable coefficients.

Introduction

The coronavirus disease (COVID-19) was pronounced as a major health hazard by World Health
Organization (WHO) in late December 2019 [1]. At present, this disease is affecting over 200 countries and
territories around the world, and the global number of COVID-19 cases is increasing rapidly. In early December
of 2019, this infectious disease has first broken out in China. Although, the disease in China seems to be under
control, there are still many infections around the world. The high rate of the infection spread and the number
of fatalities makes the understanding of the current epidemiological models more important than ever before. A
considerable amount of research works of different complexity levels from simple to complicated ones has been
devoted to defeat the disease, which include a lot of problem parameters. The introduced models encountered
in the literature are typically based on systems of ordinary differential equations (ODEs) or partial differential
equations (PDEs) [2,3]. Although the PDE models allow one to describe dynamics in time and space; they are
not simple to formulate, analyze, and solve.

The most relevant mathematical models relating to the spread of the disease is the susceptible — infectious
— recovered (SIR) model [4-8], susceptible — exposed — infectious — removed (SEIR) model [5,9-11], the
susceptible — infectious — susceptible (SIS) model [12,13]. The SEIR, SIR and SIS models can also reflect
the dynamics of different epidemics such as Human Immunodeficiency Virus (HIV), Severe Acute Respiratory
Syndrome (SARS) and they have also been used to model the COVID-19 [8,11]. There are also other strategies
such as the logistic model [14,15], the susceptible — asymptomatic — recovered — infected — isolated infected —
quarantined susceptible (SARII,S,;) model [16], the susceptible — unquarantined — quarantined — confirmed
(SUQC) model [17], the susceptible — exposed — insusceptible — quarantined — recovered — death (SEIQRDP)
model [18] to describe the trend of COVID-19 [19]. Although many studies use ordinary differential equations
(ODEs) to predict the susceptible, infected, and recovered populations, it is worth mentioning the PDE models
for the spread of an epidemic. The SIR model has been studied in [20] by constructing a hyperbolic Kolmogorov
PDE for the discrete-stochastic model, in the large population limit. Moreover, the dynamics of SIR type
reaction-diffusion epidemic model with specific nonlinear incidence rate has been investigated in [21]. The study
of suitable PDE models for the COVID-19 case will be detailed in a forthcoming work. It should also be noted
that complicated models need more effort as they include a lot of variables and require a detailed analysis for
their validation which makes the procedure difficult in the absence of reliable data.

In this work, we consider well-known SIR model to simulate the process of COVID-19 which is proposed by
Kermack and McKendrick [22]. There are different strategies to understand the predictions of this model and
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the behavior of its solutions. Kermack and McKendrick [22] reduced this problem with constant parameters
to a single differential equation and derived an approximate solution in terms of a hyperbolic secant function.
The classical SIR model contains two time-invariant coefficients: The transmission rate 5 and the removal
(recovering) rate v which neglects the time-varying property of 5 and . However, it is too simple to effectively
predict the trend of the disease. Therefore, assuming the ratio of the transmission and removal rates to remain
constant when both rates are functions of time variable ¢, we study a time-dependent SIR model and obtain
approximate solution of such model which allows changing infection and removal rates for the latest COVID-19
data.

The rest of this paper is organized as follows. In Section 1, we briefly introduce the SIR model with constant
coefficients and its approximate solution. We present approximate solution of SIR model with time-dependent
coefficients in Section 2. In Section 3, we provide some numerical tests to illustrate the performance of proposed
formulation for both constant and variable coeflicient cases.

1 The SIR Model with Constant Coefficients

In 1927, a set of equations studied by Kermack and McKendrick [22] to investigate the dynamics of an
infectious disease in three groups: Susceptible (.9), infectious (I), and recovered (R) whose sizes are functions
of time ¢, that is,

WU — _B1(t) S(t),  Slto) = So,
a0 — 5 1(t) S(t) — A1),  I(to) = Io, (1)

T =71, R(to) = Ro
together with a fixed population size N,
S(t)+I(t)+ R(t) = N. (2)

Here, S(t) represents the number of susceptible individuals not yet infected with disease at ¢, I(t) stands for
the number of infectious individuals who have been infected and are in danger of spreading the disease to the
susceptibles, and R(t) is the number of removed (and immune) or deceased individuals. The constant parameter
B stands for the infection rate, and the average infectious period is 1/ days. The initial conditions are given
by! S(to) = So, I(to) = Io, R(to) = RO Z 0.

The mentioned simple system is appropriate for estimating the dynamics of the COVID-19 in different
countries [23-25] by using the freely available statistics provided by the European Centre for Disease Prevention
Control and World Health Organisation [26]. Therefore, this model has been taken as a background by many
researchers for modeling COVID-19 in various countries of the world as it provides a simple procedure. The
equations are generally solved numerically. Kermack and McKendrick [22] first reduced this problem to a single
differential equation as in the following way: Using problem (1) and equality (2), we have

MO~ v - st) - R)) 3)
and
a _ _B
dR v

which is a separable differential equation and it can be solved for S and then substituted to the equation (3) to
get:

dR(t _B(R(t)—
—di) = (N = Soe™ ORI — R(1)).

Since it is not possible to find R as an explicit function, by assuming that gR is small compared with unity,

the exponential term can be expanded in powers of gR. Thus, we have

dR(t)

== = 7<N_50_RO+ (55‘0—1)}3(75)—2;50]%(25)24—...). (4)
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Moreover, Kermack and McKendrick [22] neglegted some terms in (4) that is,

dR :
% ~ fy(N — 8o — Rg + (550 - 1) R(t) - WSOR(t)2>7

and derived the following approximate solution of the SIR model for the removal rate, %—If, in terms of a
hyperbolic function,

2 —
R(t) ~ BZSO <§SO -1+ Htanh(\/?fyt — ¢>>)7

where

1 %Sofl

=i

¢ = tanh™
2 2
V== (550 - 1) +25010%.

‘We note that the rate of infection 8 can be changed by vaccination or isolation of infected individuals and the
rate of removal v can be changed by the use of different medicines or treatment protocols. Moreover, changing
infection rate § and removal rate v for the latest coronavirus data may allow one to track the reproductivity
of the COVID-19 through time and to assess the effectiveness of the control measures implemented by the
public health authorities [27]. This can be achieved by using time-dependent 3(¢) and ~y(¢) functions, rather
than constants 8 and « which is the subject of the following section.

2 The SIR Model with Time-Dependent Coefficients

In this section, we consider a generalized version of the SIR model in which the infectious rate 5 and the

removal rate v may vary with respect to time when the ratio % remains constant. Replacing 8 and v by 8(t)

and y(t) in problem (1) yields,
B0 — _B(t) I(t) S(t),  S(to) = So.
a0 — (1) (1) S(8) — v (DI, (o) = Io, (5)
- =) 1(t), R(ty) = Ro.

By following the steps in Section 1, we wish to solve the following problem which is a Riccati differential equation
that is quadratic in the unknown function R:

1)
2(1)?

%ﬁt) — (%) (N — Sy — Ry + (58;50 — 1>R(t) -

Then, it is easy to verify that the solution of problem (6) is given by,

SOR(t)Q) ~ 0. (6)

1+ Syq — P tan <\/@ (01 v f 1y(@) dsc) )

R(t) = o ,

where

_ B@®)
9= 5@

¥ =—14 Soq(q(—2N + 2Ry + Sp) + 2),
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Once the unknown function R(t) is calculated, I(¢) and S(t) can be obtained by using problem (5):

1 dR(t)
S(t) = Spe 9EW®),

We note that, due to the nature of the problem such a SIR model with time-dependent coefficients is much
better to track the disease spread, control, and predict the future trend of the disease.

Remark 1. It is worth mentioning that the mean square analytical solution of a Riccati equation of random
coefficients under some assumptions is studied in [28]. Moreover, the solution (7) can be seen as a solution of
SIR model in a different form when the infectious rate 8 and the removal rate v are constant. For more details,
we refer the readers to [22].

8 Numerical Results

3.1 Experiments with Constant Coefficients

In this case, we report some numerical experiments and compare the performance of two numerical solutions:
The solution by Kermack and McKendrick and the present formulation for the SIR model with constant
coefficients. We remark that the numerical results are encouraging and the proposed formulation has similar
features with the solution obtained by Kermack and McKendrick.

FExperiment 1a:

We first investigate the following test problem in [6],

WSO — _BI(t) St),  S(0) = So,
a0 — 5 1(t) S(t) —y I(t),  1(0) = Io,
B0 — 5y I(t),  R(0) = Ro.

In this study, the authors study the spread of ongoing COVID-19 when ¢t € [0,200]; 8 = 2/14; v = 1/14;
So = 0.999; Iy = 0.001; Ry = 0; N = 1 (normalized version). In Figure 1, we represent elevation plots of the
solutions obtained with the present formulation and the Kermack and McKendrick formulation. The results of

the numerical experiments have similar features with the strategies which shows that it can be used to estimate
COVID-19 epidemic trend.

Number of individuals Number of individuals

08r 08F

sk — S-(Cakir&Sendur) 060 — S-(Kermack&McKendrick)
|-(Cakir&Sendur) I-(Kermack&McKendrick)
o4 ~— ™ R-(Cakir&Sendur) %[ ~— R-(Kermack&McKendrick)

02r 021

L Days L L . L Days

Figure 1. SIR model solutions. Left: Solution by Cakir and Sendur, Right: Solution by Kermack and McKendrick

Ezxperiment 1b:

We consider the test problem in [25]. In this study, the data for the COVID-19 disease outbreak is adjusted
the Kermack and McKendrick approximation of the SIR model. We set the problem parameters to find the
solution of the SIR model for different countries in Table 1. We present only the elevation plots for China in
Figure 2 as the data for other countries produces similar features in capturing the behavior of the solution. The
results show that the SIR model is a good choice to get a better understanding of COVID-19.
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Table 1
The parameters to solve SIR model for different countries
Country v Ié] So Io
China 0.08 4.564 e-06 85631 5
Spain 0.08 8.416 e-07 | 265551 1
Italy 0.08 8.597 e-07 | 258511 1
France 0.08 1.096 e-06 | 179659 3
Germany 0.08 1.053 e-06 | 206003 1
Argentina | 0.019 | 5.784 e-07 | 155575 | 200
Mexico 0.0908 | 3.174 e-07 | 479575 13
China China
Number of individuals Number of individuals
80000 - 80000 -
60000} — S~(Cakir&Sendur) o000 — S-(Kermack&McKendrick)
|-(Cakir&Sendur) |-(Kermack&McKendrick)
400000 R-(Cakir&Sendur) 40000 R-(Kermack&McKendrick)
20000 N\ 20000+ N\
50 0 0 20 =0 0 % 0 %0 20 %0

Figure 2. SIR model solutions for China. Left: Solution by Cakir and Sendur,
Right: Solution by Kermack and McKendrick

3.2 Experiments with Time-Dependent Coefficients

In this case, we report some numerical experiments to display the performance of the present formulation
for the SIR model with time dependent coefficients when 8(t) = gpt"; v(t) = pt" for several values of p, ¢, 7.
With the above choice, the solution can be rewritten in the following form:

Ve ur — So—1
) 1+ S — y@tan (055 4 tan ! (25=1))
q*So ’

where
o =—1+¢So(q(—2N + 2Ry + Sy) + 2).

Once the unknown function R(t) is calculated, I(t) and S(t) can be obtained by following the steps in Section 2.
Experiment 2a:
We investigate the following test problem with time-dependent coeflicients:
- = B I(#) S@),  S(to) = So,

U0 = 8(1) 1(1) S() ~ A1), I(to) = o,
T = (1) 1), R(to) = Ry,

when ¢ € [0,200]; to = 0; Sp = 0.999; I, = 0.001; Ry = 0.

In Figure 3, we first set ¢ = 2, p = 0.02 and illustrate the behavior of the solution obtained with the present
formulation for increasing values of r : 0 < r < 1. We observe high number of infectious individuals at later
stages when r is smaller and high number of infected individuals at early stage when r is increasing.
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Number of individuals Number of individuals
1.0 1.0
08f 08
sl — S-(Cakir&Sendur) -
|-(Cakir&Sendur) —
04f P — R-(Cakir&Sendur) 04 ]~
02 / 02 /
0 50 0 150 200 0 0 0 0 150 0 0
r=0.2 r=0.35
Number of individuals Number of individuals
10 10
08t 08
o5l — S—(Cakir&Sendur) 08
|-(Cakir&Sendur) _
04} R-(Cakir&Sendur) 04 5\
02r 02 |
0 50 0 150 200 O 0 50 0 150 20 0
r=0.5 r=0.9

Figure 3. SIR model solutions when B(t) = 2v(¢); v(t) = t"/50

Experiment 2b:

Next, we investigate the behavior of the solution with respect to the ratio ¢ = 8 In

— S-(Cakir&Sendur)
|-(Cakir&Sendur)
— R-(Cakir&Sendur)

— S—(Cakir&Sendur)
|-(Cakir&Sendur)
- R-(Cakir&Sendur)

Figure 4, we set

p = 1/100, r = 0.5 and demonstrate the behavior of the solution obtained with the present formulation for
increasing values of q. We note that relatively more susceptible individuals can complete the disease process
without being infected when 1.4 < ¢ < 1.6. This situation can be explained with the existence of high-quality
health care services, individuals’ protection awareness and high rates of COVID-19 vaccinations. Moreover, we
observe that more individuals have been infected and are in danger of spreading the disease to the susceptible
for increasing values of ¢. The numerical results are encouraging and the approximate solution captures the

characteristic behavior of the problem.

Number of individuals Number of individuals
1.0 1

08t 08f
sl — S-(Cakir&Sendur) sk
|-(Cakir&Sendur)
04t — R-(Cakir&Sendur) o4t o
f/)
/
02f 02t /
P /
S n . _ Days R . s L Days
0 50 100 150 200 250 0 50 100 150 200 250
q=1.4 q=1.5
Number of individuals Number of individuals
1.0 1.0
08F 08}
osl —— S—(Cakir&Sendur) sl
|-(Cakir&Sendur) e
04 , — R-(Cakir&Sendur) 04 /S~
/ </
02} 02}
- A
! - L Days — . . L Days
0 50 100 150 200 250 0 50 100 150 200 250
q=1.6 q=2

Figure 4. SIR model solutions when 3(t) = ¢~(t); v(t) = t>°/100
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Conclusions

The main advantage of SIR models comes from its ability to establish a balance between simplicity and
usefulness. Therefore, we investigate the approximate solutions of the SIR epidemiological model which has
been widely used for over 100 years. Numerical experiments confirm the good performance of the proposed
formulation for a wide range of problem configurations. Consequently, the SIR model captures some features of
the COVID-19 behavior and thus, it could provide guidance for the evolution of the pandemic with only two
parameters. Moreover the coefficients for the transition to the infectious or recovered (removed) compartment,
namely 8 and -y, do not remain fixed during the spread of the disease. Indeed, the transmission coefficients
could be different for various cases, such as active tourism season, Christmas, the start and end periods of
education, festivals, periods in which measures are applied tightly or loosened. For this reason, the SIR model
with time-dependent coefficients seems much better to analyze the trend of the disease.

We note that, recently, many remarkable complicated models including a lot of parameters have been used to
understand the COVID-19 cases. However, it is not easy to determine which mathematical model describes the
COVID-19 outbreak best. Furthermore, a simpler model is not better or worse than a more complicated model
and using complicated models may not be more reliable compared to using a simpler model. The investigation
of various suitable models for the COVID-19 case, a comparison of such models ranging from simple to more
complicated ones for specific countries and the highlight of their strengths and weaknesses in different situations
can be considered as a future work. We also note that many studies use ordinary differential equations (ODEs)
to predict the susceptible, infected, and recovered populations for the COVID-19 case. It is also remarkable to
consider the spatial effects in the spread of epidemics for the mobility of people within a country and the regional
levels of risk (effects of transboundary spread, face mask requirement, quarantine, lockdown, etc., among county
clusters). This situation can be modelled by partial differential equations (PDEs) and it is a subject of a new
research.
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3. Yakup, A. Cenmayp

Ananusdaev, Anaaddun Ketixybam yrusepcumemi, Anmanus, Typrus

DU AEeMUOJIOTUAJIBIK, MOAEJIbAEP TypaJjbl MaKaJja: e3repMei
Koddburmentrepi 6ap SIR COVID—-19 mouesbaey

2019 xbutrel KopoHasupyc aypysl (COVID-19) 6ykin ssiemie TipKesreH yII MUJUIMOHHAH acTaM Karjaiira
ceGen Gouripl. Byur aypy/ipiH, XKeTKITIKTI MaTeMaTHKaIbIK (I11eMIOJIOIUSIIBIK ) MOJIEJIH KyPy KUbIH MiHJIET.
Maxkasaa aJbIMeH TyPakThl napamerpsepi 6ap "cesiMmran — »kyknansl — kaanbiaa kearipiaren” (SIR)
MOJENI KapacThIPBLIFaH KoHe o3repmesti Koaddunmenti 6ap SIR MomeniHe XKybIK, IIeNIiM aJbIHFaH, ONTKEH]
OyYJI KapamaifbIM MOJENbIEPIiH Oipi *KoHe KOIITereH MOJIEJbIEP OChl KYPBUIBIMHBIH, TYBIHIBICHI OOJIBIN Ta-
Ob11a1bl. CaHIBIK, SKCIIEPUMEHTTED YCBIHBLIFAH TY2KBIPBIMHBIH O€JITLT XKYBIKTayIapMEH YKCAC CHIIATTAFDI
TOPTIOIH KepceTeTiHiH pacTaiiib.

Kiam cesdep: xkyknausl aypyiaap, COVID-19, maremaTukasibik, Mogeabaey, SIR mMozesi, aitHbIMaiIb Koad-
dunmenTTep.

Bulletin of the Karaganda University



A note on epidemiologic models ...

3. Hakup, A. Cenmyp

Vhusepcumem Aaanou Anaadduna Ketixybama, Anmanva, Typuyus

3aMeTka 00 3MUIEMUOJIOTUTIECKIUX MOJIEIIX: MOJEJINPOBAaHUE
SIR COVID-19 c nepemenabiMu Ko3ddduiimearamm

Koponasupycnas 6osesub 2019 roga (COVID-19) crasna npuunHoii Gosiee TpeX MIJIJIMOHOB 3aPErCTPUPO-
BaHHBIX CJIy9aeB 3a00JeBanms BO BeceM Mupe. IlocTpoenne afeKBaTHON MATEMATHIECKON (IMUIEMIOIOTIe-
CKOI) MOIeIH 9TOro 3ab60JIeBaHus ABJISETCS CJIOXKHOMN 3aa4eii. B craTbe paccMOTpeHa MOMIENIb «BOCIPUUAM-
4YMBbI — 3apa3Hblii — BbI3A0poBeBmMit> (SIR) ¢ HOCTOSIHHBIMK ITapaMeTPaMy ¥ MOJLYI€HO IPUOJINKEHHOE
pemterne nyist momesn SIR ¢ mepemenHBIM K09(DDUITMEHTOM, TOCKOIBKY 9TO OJHA U3 CAMBIX TPOCTBIX MOJIE-
JIeil, 1 MHOT'HE MOJEJIM sIBJISIOTCSI IPOU3BOJIHBIMU OT 3TON CTPYKTYPbI. UMC/IEHHbIE SKCIIEPUMEHTHI [I0/ITBEP-
JKJIAIOT, 9TO TPEJJIOKEHHAsT (POPMYIUPOBKA MOKA3BIBAET CXO/IHOE XapaKTEPHOE IMOBEJIEHNE C U3BECTHBIMU
MPUOJTAKEHUSIMUA.

Karouesvie caosa: nudekuumonnbie 6osesnn, COVID-19, maremaruyeckoe mozesnupoBanue, SIR—Mmomesn,
rnepeMeHHble KOdMDPUIIUEHTDI.
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On simple modules with singular highest weights for so0y,1(K)

In this paper, we study formal characters of simple modules with singular highest weights over classical Lie
algebras of type B over an algebraically closed field of characteristic p > h, where h is the Coxeter number.
Assume that the highest weights of these simple modules are restricted. We have given a description of
their formal characters. In particular, we have obtained some new examples of simple Weyl modules. In
the restricted region, the representation theory of algebraic groups and its Lie algebras are equivalent.
Therefore, we can use the tools of the representation theory of semisimple and simply-connected algebraic
groups in positive characteristic. To describe the formal characters of simple modules, we construct Jantzen
filtrations of Weyl modules of the corresponding highest weights.

Keywords: Lie algebra, simple module, algebraic group, Weyl module, Jantzen filtration.

Introduction

The study of the structure of Weyl modules is one of the central questions of the representation theory
of simply-connected and semisimple algebraic groups in positive characteristics. If the structure of the Weyl
modules is known, then it is easy to describe the formal characteristics of simple modules associated with them.
There is a remarkable Lusztig’s conjecture, which facilitates to describe the characters of simple modules. Its
validity is proved for sufficiently large characteristics of the ground field. In [1], Fiebig gave the upper bound
of the exceptional characteristics for Lusztig’s character formula. It depends on the root system and is far from
the Coxeter number of the root system. Furthermore, the description of the Kazhdan-Lusztig polynomials for
the antidominant elements of the affine Weyl group that appear in the Lusztig’s character formula is due to
the complicated calculations. In the restricted region, they are known only for small groups, such as SLs(K),
SL3(K), Sps(K), G2, SL4(K), Sps(K) u SO7(K). For nonrestricted elements, they are computed in some special
cases. Thus, the problem of a description of the formal characters of simple modules using the structure of Weyl
modules still remains of current interest.

Let G be a semisimple, simply-connected algebraic group of type B; over an algebraically closed field of
characteristic p > h, where h is the Coxeter number, and g be a Lie algebra of G. In this paper, for all [ > 2,
we give the structure of the Weyl modules with singular highest weights for G with highest weights defined by
the dominant elements of the following subsets of the affine Weyl group W), of G :

Yi={y-1=1, yi=s05152---8; |1 =0, 1, - ,1};

Yo = {yi+; = s0s182--si51-1---si—;|j=1,2, --- |1 —2};
Zy={2-1=50,20=1, zi = yiso|i=1,2, - ,l};
Zy ={z14j = Y1505 = 1,2, -+ ;1 = 2}
Here s, 51, - -+, s; are the generators of W),. The affine Weyl group W, is a Coxeter group of type B, with the

following defending relations:

(sis))™7 =1, s2 =1, (sos))> =1 (i #1), (sos1)* =1, (1)

*Corresponding author.
E-mail: ibrayevsh@mail.Tu
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where i, j € {1, 2, ---, I} and
1, ifi=j;
o 2, if|z’—j|>1;
TN 8, if i — gl =1and (i,5) ¢ {(I - 1,0), (1,1 - D}
4, if (4,5) € {1 — 1,0, (1,1 - 1)}.

Let R be an irreducible root system of type Bj, a1, as, -+ ,a; be the simple roots, and wy,ws, -+ ,w; be
the fundamental weights. Denote by h the Coxeter number of R. Let us shortly discuss the well-known results
on the structure of the Weyl modules for simply-connected and semisimple algebraic groups of type B;. In [2]
and [3], Braden and Jantzen described the structure of the Weyl modules with highest restricted weights of
the algebraic group of type Bs. The simplicity of the Weyl module V (sg - v) with the dominant highest weight
s - v, where v € C \ C1, was proved by Rudakov in [4, Theorem 2| for semisimple Lie algebras over a field
of characteristic p > h. In [5], O’Halloran obtained a set of Weyl modules with a simple radical and described
their structure. In small characteristics, the Weyl modules with restricted highest weights were described for
By (p = 2) by Dowd and Sin [6], for Bs (p = 2,3) by Ye and Zhou [7], [8]. In [9], Arslan and Sin studied the
nonrestricted case V' (2w;) and the Weyl modules with the fundamental weights in characteristic p = 2 for B,
whith [ > 2. The structure of the Weyl modules with highest weights in {rw; |0 < r < p — 1} was calculated
by Cardinali and Pasini [10]. For the group of type B4 over a field of characteristic p > 0, in [11], Wiggins
calculated the structure of the Weyl modules with the highest weights in {rw, |0 < r < p—1}. A similar result
was obtained by Cavallin for the groups of type B; over a field of characteristic p > 2 and for the highest weights
in {2w1, w1 + 2wy, w1 +w; |2 < 5 <1} [12].

1 Notation and formulation of the main results

Before starting to formulate our results, we introduce some notation and useful facts. Basically, we will
use standard notation. Let R be an irreducible root system of type B; and let G be a simply-connected and
semisimple algebraic group with root system R over an algebraically closed field K of characteristic p > h, where
h is Coxeter number of R. We assume that R C R!, where R is the field of real numbers. On R! there is the usual
euclidean inner product (-,-). This leads to the natural pairing (-,-) : R! x R — R given by (A, u) = (A, "),
where ¥ = ﬁu. If A = {aq, a9, - ,a;} is the set of simple roots and {e; |i = 1, 2, - - -, [} is the orthonormal

basis of R! then the positive roots of R can be seen as a set [13]:

{ov+ i1+ 4+a;j=¢—¢j1 |1 <i<j<I1-1}U
Rt = {aj+ - 4+a=¢li=1,2--,1}U (2)
{Odi+~"+()éj+204j+1+"'+2()él=€i+€j+1|1§i§j<l}.

Let T' C G be a maximal torus, and B be the Borel subgroup corresponding to the negative roots. We
denote by U the unipotent radical of B. The set X(T') of additive characters for T' can be seen as a subset of
R! with basis wy, we, - -+ ,w; satisfying (w;, a;) = ;5. The set X (T') also has the following property:

X(T)={NeR'|(\ a) € Z for all « € R}.

Any rational G-module can be considered as the direct sum of T-modules:

where V), = {v € V [tv = A(t)v, for all t € T'}. If V), # 0 we say A is a weight of V, and V), is a weight subspace
of V. In this case, the vectors of V will be called weight vectors.
Let
XMt ={Ne X(T)|{\a)>0foral a c R"}

be the set of dominant weights. If p € X (T')T is the half-sum of the positive roots, then it is easy to prove that

p=wi+ws+ - +uw. (3)
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We define the formal characters of V' by

Z dimy, Vet € Z(X @ Ze.

AEX(T) AeX(T)

Let Z be the set of integers, and my,mg, -+ ,my € Z. If A = ZZ 1 miw; € X(T) then, by (2) and (3), we
get
m;+1, ifa=a;, i=1,2,---,1;
ifa=aj+-+oy, 1<i<j=1,2--,1-1;
<>\+p7a>: 2m; + -+ 2my_1 +my 4+ 21 — 20 + 1, (4)
fa=a;+--4+a, i=1,2,---, 1 —1;

ms + -+ my +2myp + -+ 20y +my + 20— 0 — g,
fa=a;+ 4o +2a501+ - +2q, 1<i<j<l

Let A € X(T)* and H°(\) be the vector space over K of all regular functions f : G — K satisfying:
F(bg) = Ab~Y)f(g), for allbe B, g € G.
We define on H°(\) a G-module structure given by
gf(h) = f(hg), where f € H°()\), g,h € G.

Also, it is well-known that H°(\) = Ind% Ky, where K, is a one dimensional B-module defined by A € X(T)*
via the isomorphism B/U = T. Let L(\) be a maximal semisimple submodule (socle) of H%(\). Each L()\) is
a simple G-module and every simple G-module is isomorphic to L(\) for some A € X (T)*. The Weyl module
V(A) with the highest weight A € X (T)* is isomorphic to H°(—wg(\))*, where wq is the maximal element of
the Weyl group W for R. There is the following Weyl character formula:

Dwew (-1)1Wer o)
S e (— 1)1 eule)

Let V be a G-module. We define a composition coefficient [V : L(\)] for A € X (T')" such that

Vi= > [V:LOILM)

NEX(T)+

X\ = V] = [H (V)] =

If [V : L(A)] # 0 then we say that L(\) is a composition factor of V.
For a € Rt and n € Z let us define the affine reflections s, , on X (T') by [14, I1.6.1]

San - A=A—(A+p,a) +npa for all A € X(T).

By W, denote the affine Weyl group generated by all s, , with @ € RT and n € Z. The usual finite Weyl group
W of R appears as the subgroup of W, generated by the reflections s, o with a € R*.

Let ag = w1 = €1 be the unique highest short root of R. We will use the following notation: s, := s; for
all i € {1, 2, ---, 1} and s := Sq,,1- Then the set of generators of Wis S ={s;|i =1, 2, ---, I} and the set of
generators of W, is S, = S U {so}.

We will also use the affine hyperplanes and the affine alcoves. For o € R* and n € Z we define

Hyn={ve R! | (v + p, ) = np}.

The set of affine alcoves A is defined as the set of connected components of

RA( U  Han):

aER, nEZ
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The fundamental alcove Cy € A is defined by
Ci={veR0< (v+pa)<pforall a € RT}.

We denote by C; a closure of C.
Let W, C W), be the set of dominant elements defined by

W, ={weW,|w-veX(T)" for any v € C1}.
The stabilizer st(A\) of A € X(T') is the set
stA) ={we Wy, |w- A=A}

If stA) NS, = @7we say A is a regular weight, otherwise it is called a singular weight. Let A\ = w - v, where
w € Wy and v € Cy. It is known that A is a regular weight if and only if v € C}.
Next we introduce some notation for singular weights. Let Hy := H,,1 and H; := H,, o for all

i€{1,2, -, 1} By Vi, iy, i, denote any element of C; \ C; satisfying the following conditions:
1) Vit i, im € H; N Hi2 NN Hz'm
2) Z.laiQa 7im€{03 13 ) l}v
3) i1 <dg < v <y
HhYme{l, 2, -, 1+1}.

Let v € C1\ Cy. Denote by w, the (left) coset of the stabilizer st(r) containing the element w € W,". Then
W; = Uy ew: W An action of w, on v defined by W, - v = u - v for any v € w,. If w, - v € X(T)* we say w,
is dominant for v. Then, up to isomorphism, w, defines a simple G-module (respectively, a Weyl module) with

highest weight w,, - v. We will use notation w for the coset w, when v is fixed.
Let W' C W,f and v € Cy \ Cy. By definition, put

W'F = {w,|w,-veX(T)t and we W'}

We say that W’ is the set of dominant elements of W' for v.
Now we formulate the main results of this paper.

Theorem 1. Let G be a simply-connected and semisimple algebraic group of type B; (I > 2) over an
algebraically closed field K of characteristic p > h, where h = 2 is the Coxeter number. Suppose that v € C1\C}
and (YIUYaUZy UZo)f # 0. Ifw, € (YLUY2U Z; U Zs) then x(w, - v) = [L(w, - v)] except in the following
cases:

Yi - VO) [ ( )]

(a) [L(Ti1 - 0)], wherei € {2,3,---,2l—2};

X
X

a) x(7; +

(b) x(z2 - 1v1) = [L(Z2 - 11)] + [L(Yo - 11)];

(¢) x(zi - 1) = [L(Z - v1)] + [L(Zi=1 - 11)], where i € {3, 4, ---, 21 — 3};

(d) X(Z2l 2-V1) = [L(Z2172 v)] + [L(Zai=3 - v1)] + [L(G2i—2 - 1)];

(e) x(Zi—1 -vi) = [L(Ziz1 - vi)] + [L(gi—1 - vi)], where i € {2, 3, ---, l};

() x(Z5 - ) = (L ve)] + L@ )], where i € {2,3, -+, 1~ 1}.

A result similar to Theorem 1 was also obtained for simply-connected and semisimple algebraic groups of
type D [15] and C [16].

Corollary 1. Let g be a simple classical Lie algebra of type B; (I > 2) over an algebraically closed field K of
characteristic p > h, where h is the Coxeter number. Suppose that v € C; \ C; and (Y, UYo U Z; U Z5)F # .
Ifw, € (Y1UY>UZ U Zy)) then [L(w, - v)] = x(w, - v) except in the following cases:

(a) forall i € {2, 3, ---, 21 — 2},

(L@ - v0)] = >_ (1) x(T5 - wo);

(b) [L(z2 - v1)] = =x (%o - v1) + x(Z2 - 11));
(c) forallie {3,4,---,2l -3},

Lz v)] = (=1 "X @) + (=1 x(Z - n);
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(D[L(zmz - )] = (D) X (@0 - 1) + 3o (=127 x(Z - 1) — X(Taia - 1)
(€) [L(Zim1 - vi)l = =x(%i—1 - vi) + x(Zim1 - vi), where i € {2, 3, -+, I};
(f) [L(Zzimic1 - vi)] = —x(Tai—izt - vi) + x(Zai—i—1 - Vi), where ¢ € {2, 3, -+, | — 1}.

2 Preliminary results

Let V()A) be a Weyl module with highest weight A € X (T)*. Then there is a filtration of submodules

VA =V VN D V(A)2D--- (5)
such that V(\)/V(A\)! = L(\) and
Z[V(A)J] = Z Z Vp(np)X(Sa,n : A)a (6)
j>0 a€ERT 0<np<(A+p,c)

where v,(m) = maz{i € N|p‘lm} [14, I1.8.19]. The filtration (5) is called the Jantzen filtration and (6) is called
Jantzen’s sum formula.

Let v = ajwy + asws + - -+ + quw; € X(T), where a; € Z for all j € {1, 2, --- , I}.
Lemma 1. Let y; € Y7 UY5 and v = 22:1 a;w;, where ay, --- , a; € Z. Then

(@) yo-v=>p—a—2% _ya; —a; — 2l + Dwi + 3 \_y azwi;

(b) foralli e {1, ---, 1 — 2},

, - '
yi-v= (p— Z;‘:la]‘ — QZj:tJrl aj — a 7 2 + i)w; +
Z;‘:Q a/j*le + (ai + ai+1 + 1)wi+1 —|— Zj:i+2 a]wj7

() yi—1-v=_(p— 2221 aj —l— 1wy + le;lg aj_1wj + (2a1-1 + a; + 2)wi;
(D) y-v=(p- 22;11 aj — Dwi + Zé_:lg aj—1w;j + (2a1-1 + a + 2)wi;
(e) foralli e {1, ---,1—

)

_ Yiri v =(p— Zé;ifl a; — 1+ i)wi+
Z;;z;l aj1Wj; + (al,i,1 +aj—; + l)wl,i + Z;’:l—i—i—l a;jws.

Proof. (a) By (4), we have

y0~1/:1/7(<u+p,040>7p)040:y+(p7222;1a¢7a1721+1)w1:
(p—al 7222;; a; — aj f2l+1)w1 +Zé=2 a;W;.

(b) We use induction on i. By (4),

1
s1-v=_(—a1 —2)ws + (a1 +as + Dws + Zaiwi.
i=3
Then
y1-v=s1-v—({s1-v+p,a) —pay =
31~V—|—(p—222;§ai —a;— 204 3)w; =
(p—ay — 22;; a; —a; — 2l + Dwy + (a1 + as + Dws + 22:3 a;w;.

Therefore, the statement is true for i = 1.

Suppose that the statement is true for all i < ¢, where ¢t <1 — 2. By (4),

t—2 !
S V= Zajwj + (ap—1 +ar + DXi—1 4+ (—ap — 2wy + (ar + age1 + Dwpyr + Z a;w;.
j=1 j=t+2

By the induction hypothesis,

yeo1v=(p—Yi_ja;— 23 ja; — 2L+t — Dwi+
Sy 1wy + (@ + ag + Dwr + 35,y ajw;.
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Then
YoV =yi—1- (st v)=(p— Z;;Ql aj — (-1 +ar +1) = 2(—ay — 2)—
2(a; + agpq +1) — 2 2234—2 a; —2l+t —1)w + 23;12 a;_1w;+
(a—1+ar+1—ar — 2+ Dws + (ar + a1 + Dwepr + Zé’:t+2 ajwj =
(p— Z;Zl a; — 2 Z;;ltﬂ =20+ t)wy + Zﬁ':g a;—1wji+
(at—1 +at + Dweyr + Zé:wz ajws.

(¢) By (4) we have

-3
S5_1-v= Zajwj + (a—2 + a1 + DNz + (—my—1 — 2)wi—1 + (2a1-1 + a; + 2)w;.
j=1

Then, the statement (b) for i =1 — 2 gives us

1—
Yi—1-V=yi—2- (s1-1-v)=(p— Zj:?i a; — (aj—g +aj—1 +1)—

2(—0,[_1 — 2) — (2(11_1 +a; + 2) -1 - 2)UJ1+
22;22 ajwj+ (a2 +a—1 +1—a—1 — 2+ Dwi—1 + (2011 + a; + 2)w+
Yo w; = (p— Yoy @ — 1= Dwr + Y525 a5 1w; + (201 + a + 2)w,

(d) By (4),

1-2
S V= Zajwj + (a1 +ap + Dwi—1 + (—a; — 2)w;.
j=1

Then using the statement (c), we have

l—
yov=y-1-(si-v)=(p-— Zj:21 aj — (a1 +a;+1)—

(—ar—2) — 1= Dwi + Yy aj_1w; + (2(ai—1 + ar + 1) + (—a; — 2) + 2)w; =
(2al—1 +a; + 2)Wl + Zé‘:t+2 a;w; =
(p— 22;11 a; — wr + Z;lg aj1wj + (2a1-1 + a; + 2)w;.

(e) By (4),

1-2
S|V = Z a;w; + (a—2 + aj—1 + Dwi—g + (—aj—1 — 2)wi—1 + (a1 + a1 + 2)w;.
j=1

Then using the statement (d), we have

-2 -2
v v =y (s v) ==Y a; — 1+ Dwi + Y aj1w; + (a2 + a1 + Dwi_1 + ey,
=1 =2

Therefore, the statement is true for i = 1.
Suppose that the statement is true for all ¢ < ¢, where t <1 — 2. By (4)

l—t—2
Si—t V=2 ajwj+ (@—t—1 +a—¢ + Dwi—¢—1+

l
(—ar—t = 2)wi—t + (@1t + G—t41 + Dwimep1 + D5 440 QW5
By the induction hypothesis,

Yiyt—1-v = (p— Z;;tl a; —l+t— 1w+

Y ajwy + (@ armesn + Dwieen + 5 405
Then o
Yipt "V = Yigt—1 - (S1—¢ V) = (p— Zj=1 aj — (aj——1 +ar—¢ +1)—
(—ar—t —2) =1+t — 1w Zé_:tg_l aj-1wj + (a—t—1 + ¢ )wi—¢+
!
(—ar—+ —2+ al—ltjlal—t-i-l +1+ 1)wl—tl+1t 4; D ity QW =
(p — Ej_:l_ aj — l + t)wl + Ej_:Z_ aj_le-i-
!
(al—t—l + alft)wlft + Ej:lftJrl a;ws-
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|
Lemma 2. Let z; € Z1 U Zy and v = Zl 1 a;w;, where ay, asg, -+, a; € Z. Then
(a) z1-v=a1w1 + (p—ay —as — 221 Bal a; — 2l + 2)ws + Zé:s aiWi;
(b) for alli € {2, 3, ---,1—2},
zi~1/:(Z§:1a]—+i—l)w1+( —a — 2ZJ QaJ a; — 20+ Dwa+
> e aj—1ws + (@i + aip1 + Dwigr + Z]=1+2 a;jwys
(€) 21 v = (X _ya;+1— 2w +(p—ar —2 z] ya;—ap— 2+ Dws + 305 aj 1w + (a1 + ag + 2w

d) z-v= (22:1 a; +1—1w +(p—a — QEJ 2a] a; — 21+ ws + Zé;; aj_1wj + (2a;-1 + a; + 2)wy;
(e) foralli e {1, ---,1—2},

2 v =( l_l ! ]—1—22] i ta+l+i—Dw+

‘ (p—ay — 22] 2aj al—2l+1)WQ+
Zé;’;laj,le—k(al i1 Fa— + Dw - rFZJ 1—i+1 jWj-

Proof. By definition, z; = y;so foralli € {1, 2, --- | 21—2}. Then z;-v = y;-(sg-v) foralli € {1, 2, --- | 21—2}.
Since sy = yo, using the statement (a), we have

l
so~1/:(pfal722a¢7a1721+1)w1+2aiwi.

Therefore,
-1 l
zi-l/zyi-((p—al—2Zai—al—2l+1)w1+2aiwi). (7)
i=2 =2
Thus, for all ¢ € {1, 2, --- , 21 — 2}, the statement of the lemma for z; follows from the corresponding statement
for y; of the Lemma 1 and from (7). O

Now we find a system of generators of a stabilizer of the elements v;, 4, ... ;.. € C1\ C1.

Lemma 3. Let S, be a system of generators of a stabilizer of v € 4 \Ci. If v = v;, 4,... i,, then
SV = {Sila Sigy * sim}'

In particular, if m =1 then S,, = {s;} for all i € {0, 1, 2, --- , I}.
Proof. The generators sg, s1, -+, 5; of W), act on v as follows:
Y- V7(<V+Pa040>*p)050 ifSZSO
’ V_{V_<V+pa04i>ai ifie{l,2,---,1} (8)

If 1 = 0 then by definition vy ;,,... e HoNnH;,N---NH,, . Then

yim
(M0,i0, - i + Py 0) =P
and
<V07i27"‘ yim + p7 a7/> = O
for all i € {42, ,im}. Therefore, by (8), the condition
SESVU7.2 _{SGS |S 10,ig,-- 7m:V07i23"'7im}

yields s € {so, Si,, ==+, Si,, } C Sp.
If i1 # 0 then by definition v;, 4, ... 5,, € H;, N H;, N---N H;, . Then

<Vi17i2)"' jim T 05 ai> =0
for all i € {41,412, ,im}. Therefore, by (8), the condition

s € SVil,i2,~-~.im = {S € SP | 8 Vigig, o i — Vil,iz,"wim}

yieldSS€{$i1,$iza"' ,Sim}CSp- D
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Lemma 4. Let w e Y1UYs, v € Cy;\Cy and w-v € X(T)T.

(a) If w =1 then v € {vy}.

(b) If w = yo then v € {v1, vo}.

(c) If w =y then v € {11, va, vy, 102}

(d) If w=1y;, where i € {2, 3, ---, 1 — 2}, then v € {v;, viy1, Vo, Vo4, V0,i+1}-
(e) f w=y;—1, yi then v € {vi—1, v, vo, vo,1-1}-

(f) If w = yp4q, where i € {1, 2, --- , I — 2}, then

ve{v_i—1, vi—i, Yo, Voi—i—1, VO,l—i}-

Proof. (a) We prove that v = v, 4,....;,. € X(T)" if and only if m = 1 and 4; = 0. Indeed, if m = 1
and i; = 0 then v belongs to the upper closure of Cy, since (vy + p, ;) # 0 for all 4 € {1,2,---,1} and
(vo + p, ) = p. Therefore 0 < (1o + p, ) < p for all & € A.

Conversely, if v = v;, 4y ... i, € X(T)T then (V4 iy, 4, +p, @) # 0 for all« € RT. In particular, (v, i, ... i
+p,a) # 0 for all @ € {a,, iy, -+, @y, }. Then

i1 =10y =+ =1py =0,

since

Vigsig,orim € C1\ C1.

Therefore, by the conditions 2) and 3) of the definition of v;, 4,.... ;,., we get m = 1 and 47 = 0. This implies
UV =1.

(0) Let v = vy, 4y e iy = 22:1 a;w; and v ¢ Hy. Then (v, iy, 4, +p, ) # 0forall a € {a;,, ayy, -+, a4, }-
This condition yields a;, = a;, = --- = a;,, = —1. By the statement (b) of Lemma 1, yo-v € X (T)" if and only
if i1 =49 = -+- =4, = 1. Then by the conditions 2) and 3) of the definition of v;, 4, ... ;,., we get m = 1 and

i1 = 1. This implies that v = v;.

If v € Hy then 43 = 0 and (vg4y,... 4,, + P, @0) = p. Using (5) we get QZé;ll a;j + a; + 2l — 1 = p. Then by

ylm
the statement (b) of Lemma 1, yo - v € X(T)7 if and only if i5 = ig = - -+ = i, = 0. Then by the conditions 2)
and 3) of the definition of vy ;, ... 4,,, we get m =1 and iy = 0. Therefore, v = vy.
Other statements are easily proved similarly as the previous statement. (I

For the elements of Z; U Zs, using Lemma 2, we have the following

Lemma 5. Let w € Zy U Zo, v € O\ Cy and w-v € X(T)7.
(a) If w = 2z then v € {1o, vy, Vo 2}-

(b) If w = 25 then v € {Vl, V2, V3, Vo, V1,3, V0,2, 1/0,3}.

(¢) If w= z;, where i € {3, 4, --- , I — 2}, then

IS {Vl, Vi, Vit1, V1,iy Y1,i+1, Vo, 10,i, Vo,z'+1}-
(d) fw = 2z_1, z then v € {v1, vj_1, Vi, V11-1, V11, Vo, Vo,—1}-
(e) If w = 244, where i € {1, 2, --- | [ — 3}, then
v e {vi, Vimim1, Viei, V1i—i—1s V1,i—is Y0, V0,1—i—1 Y0,i—i }-

(f) If w= 29;_5 then v € {Vl, V2, V1,2, V0, V0,1, 1/072}.

By Lemmas 4 and 5, if (Y1 UYoU Z; U Z3)} # () then
IS {V07 Vi, Viy V1,i4+1, VO,i|i = 17 27 Tty l— 1}

We calculate the stabilizers of these elements v.

Lemma 6. The following statements hold:

(a) for all ¢ € {0,1,--- 1}, st(v;) = {1, s;};

(b) for all i € {3,4,--- ,1}, st(v1:) = {1, s1, S, $18:};

(c)for alli € {2,3,--- ,1 =1}, st(vo,) = {1, so, si, S08i};

(d) st(vi2) = {1, s1, 52, 5152, 5251, 515251};

(e) st(vo1) = {1, so, S1, S150, S0S1, S15051, S05150, S1505150}-
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Proof. It follows from the defining relations (1) of the affine Weyl group W), and Lemma 3. O
Using Lemma 6, we can easily describe (Y1 UYoU Z; U Zy)} for all v listed above. Below, we often omit the
index v of the element T, when v is a fixed element of C \ Ci.

Lemma 7. Consider the elements in {vg, vy, v, 1,141, V0,4 |1 = 1,2, - ,1 — 1}. The following hold:

(a) Y1UY2UZ1 U Zy)f ={mi|i=0,1, - 20 — 2}, where 7jg = {1, yo} and 7; = {ys, zi}:

(b) (Yl UYoUZy UZQ)erl = {%7 Y21-2, 71|Z =23, 21_2}a where o = {y07 yl}v Yar—2 = {y2l—2a y2[—251}
and Z; = {2, zis1};

(c)forallie{2,3,---,1—1},

(Y1UY2UZ1 U Zo)) = W1, Zict, Yai—im1, Z2i—i-1}

where 7,1 = {yi—1, ¥i}, Zic1 = {zi—1, %}, Yoi—ie1 = {Y21—i—1, Y2i—i} and Zy—i—1 = {Z21—i—1, Z21—i};
(d) MUY UZ1UZs) ={wi—1, Zi_1}, where i1 = {yi—1, i} w Z—1 = {211, 2}
(e) YIUYaU Z1 U Zs) = {Z31_3}, where

V1,2
Z2i—3 = {%21-3, Z21—2, %21-351, Z21—251, Z21—35152, Z21—25152};
(f)forallie{3,4,---,1—1}, iuYaUZ U Zg)j‘u = {Z;_1, Zai—i—1}, where
Zicl = {%i—1, Zis 2i—151, ZiS1}, Zal—i—1 = {%20—i—1, %21—i, Z21—i—151, 221—i51}}

(g) V1 UYoUZy U Zs)t = {z_1}, where z;1 = {211, 21, 21-151, 2151}

Vi

(h) (YUY U Z3 U Zg)j‘o,1 = {Y21_2}, where
Yoi—2 = {y2l72, 221—2, Y21-251, 221—251, Y201-25150, 221—-25150, Y201—-25150S, 22172818081};
(1) foralli e {2,3,---,1—1},
YiUYaUZ1 U Zo) = {1, Jaimi 1}

where 7;—1 = {yi—la Yiy Zi—1, Zi} and Yoi—i—1 = {y2z—i—1, Y21—iy 221—i—1, 221—1‘}-
Proof. Let w € Y1 UY, U Z; U Zs. By definition,

w, = {wz |z € st(v)}. 9)
Then using (9) and Lemmas 4 — 6, we obtain the required statements. O

8 Proof of the Theorem 1

Using Lemma 7 and the sum formula (6), we can easily prove Theorem 1.
By sum formula (6), for all cases listed in the statements (d)—(!) of Lemma 7,

Z[V(@- vy =0.
J>0
In the following cases >, o[V (w - v)7] is also trivial:
D) we{yo, y1} € V1UY2U Z1 U Zo);f s
2) w e {%, 221_2} C (Yl UYouZy U Zg)j_l;
N we{vi—1, Ja—ic1y C 1UY2 U Z3 U Zg)ii, wherei € {2,3,---,1—1}
Hhw=71€(Y1UY2UZ 1 UZy) k.
Therefore, in all these cases x(w - v) = [L(w - v)].
Thus, it remains to prove only the statements (a)—(f).

(a) By the statement (a) of Lemma 7, %o,, = {1, yo} and %;,, = {v:, 2z} for all i € {1,2,---, 2] — 2}
Therefore, x(vo) = x(yo - vo) and x(y; - vo) = x(z;) for all ¢ € {1, 2, ---, 2] — 2}. Then using the sum formula
(6), we have

Y V@)1= (1) @t v) (10)
>0 k=2
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for alli € {2, 3, -+, 2l — 2}. If i = 2 then by (10),
> V@, - v0)’] = x(@ - v0) = [L@1 - wo)]-
7>0

This implies that x(3 - v0) = [L(¥z2 - v0)] + [L(y1 - 10)]-
Now suppose that the statement (a) is true for all ¢ < ¢, where ¢ < 2] — 2. Then by (10),

%

S V@ w0)] = S ) FLEET - vo)] + (L@ - vo)]) = (LT - vo)]

>0 k=2

This yields x(7z - vo) = [L(¥ - vo)] + [L(Tz—1 - v0)]- So, the statement (a) is true for all i € {2, 3, - - -

(b). By the statement (b) of Lemma 7, x(v1) = x(21 - ¥1) = 0. Then by (6),

o XsolVE )= (D)X )+
(1) Rz ) + 06 = 20— 2)x(Taie - 1)

forall i € {2, 3, ---, 2] — 2}. If i = 2 then using (11), we get
>oV(E- n)] = X(@ ) = LG - ).
Jj>0

This yields the statement (b).

2 — 2}.

(11)

(¢). We use (11) and the induction on i. If ¢ = 3 then by (11) and by the statement (b) of this Theorem 1,

we have ‘
NV m)) = —x@ - n) +x(zn) = [L(z - n).
j>0
This yields x(z3 - v1) = [L(z5 - v1)] + [L(Z2 - 11)].
Now suppose that the statement (c) is true for all ¢ < ¢, where ¢ < 2] — 3. Then by (11),

Y isolV(E - v0)’] = (=1)'x (%0 - V1)+Zk S~ I ) =
(Tl)[ @ - v)l + (=)' 2([L(z2 - v1)] + [L(@ - 1))+
fma (D) PN - )] + (L m))) = [L(EST - n)-

It follows that x(Zz-v0) = [L(Z-v0)]+[L(Zi=1-v0)]. Therefore, the statement (c) is true for all i € {3, 4, - -

(d). By (11),
20-3
Y IVEz v =x@ - v)+ > ()X ) + x(Taa).
>0 k=2

Using the previous statements (b) and (c¢) of this Theorem 1, we obtain

S solV(Zi—z - w)] = [L(Go - v)] + (- 1)2175([13(72‘ vi)] + [L(Yo - v1)])+
P (D)2 (L(E - )] + (L@ »))) + L@z - )] =
[L(Zz—5 - 1)) + [L(y2l 2-v1)]

It follows that x(Zz—2 - v1) = [L(Zai—2 - v1)] + [L(Zai—3 - v1)] + [L(Tai—z - v1)].
(e). Let i € {2, 3, - -+ , I}. By the statement (¢) of Lemma 7,

x(vi) = x(y; - vi) = x(zj -vi) =0
forall j € {0, 1, ---, 7 —2}. Then by (6),
> IVET v =X w)

3>0
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forallie {2,3,---,1}. So, foralli e {2,3,---, 1},
X(zim1 - vi) = [L(zimr - vi)] + [L(gimt - vi))-
(f). Let ¢ € {2, 3, --- | — 1}. By the statement (c¢) of Lemma 7,

x(vi) = x(y; - vi) = x(z - vi) =0

forall j € {0,1,---,i—2}U{i+1,i+2,---,2l —i—1} and x(zi_1) = x(%;). Then by (6),
> VEmT v = x@ai - vi)
§>0

forallie{2,3,---,1—1}.So, forallie€{2,3, -1 —1},

X(Z2i—im1 - vi) = [L(Zai—im1 - vi)] + [L(Gai—i1 - vi)]-
The proof of Theorem 1 is complete. (I

Remark 1. Let (YUY U Z1 U Zo)F # 0. If v lies in the intersection of two hyperplanes then, by Theorem 1,
all Weyl modules with highest weights w - v with w € (Y; U Y32 U Z; U Z3) are simple.
From the proof of Theorem 1 we immediately obtain the following

Corollary 2. Let G be a simply-connected and semisimple algebraic group of type B; (I > 2) over an
algebraically closed field K of characteristic p > h, where h is the Coxeter number. Then the Weyl modules
with the following highest weights are simple:

( ) Vo, yil o;

(b) yO Vl?% vy, Zo1—92* V1;

(¢) iz1 - vi, where i € {2, 3, l};

(d) g2i—i—1 - vi, where i € {2 3, =1

(e) Z21—3 - V1,2,

(f) Ziz1 - v14, Zai—i—1 - 1,4, where i € {3, 4, --- , 1 —1};
(8) Zi—1 - v

(h) y2l 210,15

D) vi—1- Vo,iy Y2l—i—1 " Voz,Whereze{Z 3, -, 1—1}

Remark 2. Tt is known that, in the restricted region, the differential of each simple G-module is a simple
g-module, where g is the Lie algebra of G. Therefore, Corollary 2 generalizes the Rudakov simplicity criterion [4,
Theorem 2| for semisimple Lie algebras of type B;. The Weyl module V (7 - v1) satisfies the Rudakov simplicity
criterion. In all other cases the highest weights obtained in Corollary 2 do not satisfy the Rudakov simplicity
criterion.

Using Lemmas 1 and 2, one can easily describe highest weights of the simple Weyl modules listed in
Corollary 2. For example, by definition, g - 1 = yo - ¥1, and vy satisfies the condition (14 4 p, 1) = 0, since

vy € Hy. If we write v = Zz.:l a;w; then the above condition yields a; = —1. Then by the statement (a) of
Lemma 1,
-1 !
Yo v =Yo V= (prZaj —q 721+2)w1+2ajwj,
j=2 j=2

where 222;12 a; +a;+2l-3<p.

Remark 3. The simplicity of the following Weyl modules for the algebraic group of type B, was proved
in [11, Theorem 1, (d)]:

o V((p—4)ws) =V (z2-11,3), where vy 3 = —wy — w3 + (p — 4)wy € Hy N Hs;

o V((p—5)ws) =V (71 -10,2), where vp2 = —ws + (p — 5)ws € Ho N Hy;

e V((p—06)wy) =V(ygo-11), where v; = —wq + (p — 6)ws € Hy;

e V((p—T)wy) =V (vg), where vy = (p — T)ws € Hp.

Thus, Corollary 2 gives several new examples of simple Weyl modules for the algebraic groups of type B;.
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[II.ITI. blowpaes, A.ZK. Ceiirmyparos, JI.C. Kannbaera

Kopxwum Ama amwimdazo. Koiaviiopda yrusepcumemi, Kwsviiopda, Kasaxcmar

509,,1(K) yirin cuHryssip yJjkeH cajMakThbl Kol MOAYIbJep TypPaJbl

Makanana cunarramacsl p > h, myugarsl h — Kokcrep canbl 6osarbiH airebpasiblk TYHBIK, epicreri B
Typingeri KiIaccukasblK JIu aaredGpachbHbIH CHHTYIISP YIKEH CAJIMaKThI 2Koil MOAYJIbaepiHiy dpopMasasl Xa-
paxTepsiepi 3eprresii. Byur kil Moy IbIepiH, YIKEH caJMaKTaphl MEKTeIreH jel ecenresinei. OQuapabiy
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dopmasiipl XapakTepsepiHia cunartamackl 6epinmi. lepbec karnaiima, kot Beitnb Momynbaepiniy xaHa
MbIcaaaps! aabiHabl. [llekTesnren canMakTap KarqaiiblHIa aJredpasiblK Ipynnaasap MeH osapisH Jlu am-
rebpaJiapbIHbIH KOPiHicTep Teopusichl SkBuBaeHTTI. COHIBIKTAH, OH CAMATTAMaJIbl ©picTep/Ieri KapThliail
Kol GipbaitlaHbICKAH aarebpasiblK, IPYIIIaJIapIblH, KOPIHICTED TEOPUsICHIHBIH, 9icTepi KomaHblIraH. 2Koit
MOJIYIbAEPAiH (bOpMaJIIbl XapaKTepJepiH CHIATTay YIIIH VJIKEH CaJMarbl COMKec KeseTiH Belyb Moysib-
nepinig AHreH QUILTPAIUACHH KYPY HalIaIaHbLIaIbI.

Kiam cesdep: JIn anrebpacsl, Kot MO/ b, anrebpaJblK, rpymna, Beiib Moy, SHIEH DUIBTPAIUSICHL.

[II.I1I. Ubpaes, A.ZK. Ceiirmypatos, JI.C. Kaunbaera

Kuwizvinopounckuti ynusepcumem umeny Kopxom Ama, Kwswaopda, Kazaxcman

O mpocThIX MOJIYJISIX CO CTAPIINM CHUHTYJISPHBIM BECOM JJist 09, 1(K)

10

64

B crarbe usyuensr (hopMasibHbBIE XapaKTePhl TPOCTHIX MOIYJIEN CO CTAPIINM CUHTYJISIPHBIM BECOM KJIACCHIEC-
Koit anrebpsl Jlu Tuna B Ham anrebpamdeckun 3aMKHYTBIM ITOJIEM XapaKTEPUCTUKU p > h, toe h — gmcio
Kokcrepa. IIpemmomnoxkeno, 9To crapiinme Beca 3TUX [IPOCTBIX MOJLYJIEil OrpaHuYeHbl. ABTOpAMU OIMUCAHBI UX
(dopMaJibHBbIE XapaKTephbl. B 4acTHOCTH, MOJIyYeHbl HOBbIE NIPUMEPHI MPOCTHIX Moy el Beitisa. B obmactu
OI'PAHWYEHHBIX BECOB TEOPWH MPEIACTABICHUN ajredbpamdeckux rpymnn u ux aarebp Jlu sksuanentbr. [lo
9TOI NPUYUHE MOXKHO IPHUMEHSTh MHCTPYMEHTHI TEOPUU IPEJCTABJIEHUI MTOJIYIIPOCTHIX OJIHOCBSI3HBIX AJI-
rebpandecKux TPy B MOJOKUTETBLHON XapakTepuctuke. [Ijist onucanust (popMaIbHBIX XapaKTEPOB MPOC-
TBIX MOJYJI€Hl MCIIOIb30BaHA KOHCTPYKIS (bubTparun SHiena momyeit Beisisi cooTBeTCTBYIOMUX CTAp-
LIUX BECOB.

Karouesvie caosa: anrebpa Jlu, mpocroit Moysib, ajrebpandeckasi IpyIa, MOLyJb Beiiss, uabrpams
Aunena.
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Interpolation of nonlinear integral Urysohn operators in net spaces

In this paper, we study the interpolation properties of the net spaces Np (M), in the case when M is
a sufficiently general arbitrary system of measurable subsets from R". The integral Urysohn operator
is considered. This operator generalizes all linear, integral operators, and non-linear integral operators.
The Urysohn operator is not a quasilinear or subadditive operator. Therefore, the classical interpolation
theorems for these operators do not hold. A certain analogue of the Marcinkiewicz-type interpolation
theorem for this class of operators is obtained. This theorem allows to obtain, in a sense, a strong estimate
for Urysohn operators in net spaces from weak estimates for these operators in net spaces with local nets.
For example, in order for the Urysohn integral operator in a net space, where the net is the set of all balls
in R"™, it is sufficient for it to be of weak type for net spaces, where the net is concentric balls.

Keywords: interpolation spaces, net spaces, Urysohn integral operators.

Introduction

Let (V,v), (U,p) are measurable spaces and Z(U), M(V) are normed spaces of v-measurable and
p-measurable functions, respectively. Let K : R x U x V — R, and the operator T : Z(U) — M (V) is defined
by the following equality: For any f € Z(U)

T(f.y) = /U K(f(z),z.9)du , yeV (1)

and assume that this integral exists and is finite for almost all y € V. This operator is called the Urysohn
integral operator.

In the paper [1], new interpolation theorems were proved for these operators in Morrey-type spaces. Analogs
of the interpolation theorems of Marcinkiewicz-Calderon, Stein-Weiss, Petre were obtained.

In this paper, we study the interpolation properties of the net spaces N, ,(M). Also, we prove a certain
analogue of the Marcinkiewicz-type interpolation theorem for the Urysohn operator (1). We use the ideas
developed in [1-3], where an interpolation theorem of Marcinkiewicz type for Morrey spaces was obtained.

Let in R™ is given n-dimensional Lebesgue measure p, M is an arbitrary system of measurable subsets from
R™. For a function f(z), defined and integrable on each e from M, we define the function

- 1
f(t, M) = sup ‘ /f(x)dx , >0,
ee M |6‘ e
le] >t
where the supremum is taken over all e € M, whose measure is |e] def pe > t. In the case, when

sup{le| : e € M} = a < 00 and ¢ > « assuming that f(¢, M) = 0.
Let p, ¢ parameters satisfy the conditions 0 < p < 00, 0 < ¢ < co. We define the net spaces N, 4(M), as the
set of all functions f, such that for ¢ < 0o

1 Tar\ @
o0 = ([ (#7e00) F) " <.
0
*Corresponding author.

E-mail: aitolkynnur@gmail.com
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and for ¢ = oo
1
1INy oo (vr) = supt? f(t, M) < 00
t>0

These spaces were introduced in the work [4]. Net spaces have found important applications in various
problems of harmonic analysis, operator theory and the theory of stochastic processes [5-13].

Marcinkiewicz-type interpolation theorem for Urysohn operators

A family of measurable sets G = {G4}+~0 is called a local net if it satisfies the following conditions G; C Gy
for t < s and |G| =t. An example of a local net is the set {B:(z)}+>0 of all balls centered at the point .

Let G = {Gt}t>0 be a local net. We define the net Fg .o = U,cq G + 2, where G + x = {G; + 2}¢>,. The
net Fg o will be called the generated by local net G and the set 2.

Example. Let @ = R", G = {Q¢}:>0 be a set of cubes centered at 0, then Fg o = {Q + 2}1>0, zern is the
set of all cubes in R".

Lemma 1. Let T be the Urysohn operator of the form (1), then for an arbitrary function f € Z(U) from
the domain and for any p measurable set w C U the following condition holds:

T(f,y) =T(fXw y) + T(fxv\w y) = T(0,y).
Proof. Due to the additivity of the integral with respect to measure

T(f,y)*T(fxw,y):/UK(f( s xy)dp — /K x),x,y)dp

- Kﬁwmwm@mw+/memwaww
U\w w

- K@aww—/memwwmw
U\w

/K 2)x0\e (@), @ y)dp — /KOxw@ KOz
U\w

/K (#)X0w(), 2 y)dp — /KOMMMTUmWw T(0,y).

Lemma 2. (Hardy’s inequalities) Let p > 0,—00 < v < o0 and 0 < 0 < 7 < o0, then the following
inequalities hold

([ (oo 2))2)' <t ([ o))
([ L o) )') ) <om ([ () )

Theorem 1. Let Q@ C R", G = {Gi}¢>0 is the local net, FF = |J,.qG + 2. Let 0 < po < p1 < oo and
0<CI07Q1SOOaQO#QIa0<9<1>1§T§007

and

-

1 1-6 0 1 1-60 6
+7

p v w4 o  q
If for the Urysohn operator T and some My, M7 > 0 the following inequalities hold

IT(f) = TN, o (Gra) < MillflIN,, 1 (G+a), ©=0,1, z €Q, (2)
then

IT(f) = T(0)|n,.r) < Mg MY\ flIn,. .cr), (3)
for all functions f € N, ,(F'), where ¢ > 0 depends only on the parameters po, p1,qo, q1,D0, ¢, T, 0.
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Proof.
Let 1 <7 < o0, f €Ny, (F), for arbitrary x € , s > 0, we define the functions

fO,s :fXGerma fl,s :f_fO,sa

where x¢,+, denotes the characteristic function of the set Gy 4 x. It is easily seen that fy, € N, 1 and
fi1,s € Np, 1. Then f = fo o+ f1,s and

1
— T —T(0 d
sup |GE‘/G§+$( (F,y) - T(0,)) y\

= Sup —— /G (T(fxc.+a>y) + T(fxrn\G.+a>¥) — 2T(0,y))dy
etz

et |Gl

£t

1
< sup |GE\ /G NG T(o,y»dy\

1
toup ‘ | @G- T(Qy))dy\ A
|Gf‘ Gng:v

£t

First, we estimate I;, according to the inequality (2) we have

I, =sup —

(T(fowy) - T(0, y))dy\

Gg-}-x

<t W suprq10 sup —— / (T(fo,87y)—T(07y))dy‘
Ge+x

r>0 E>r |G§|

=t w0 [[(T(fo.sy

=T, YNy oo (Ga) < Mot W 1 fo,5l[ Ny 1 (G+a)
OO 1

)
_1 S 1 1
= Myt 20 (/ rplo sup‘/ fo,s(y)dy‘r + 7P0 SUP —— / fo.s(y)dy
0 e>r |Gel | Jaeta s e>r |Gel | Java

Let 0 <r <s,if £ <s, y € Ge +x, we have fo (y) = f(¥)xc,+2 = f(y), if £ > s, then
/ fo,s(y)dy‘ = ‘/ f(y)dy‘-
GE+I Gs+x

By the first integral, we have the following,
d 5o
- / 7o sup ’ / dy
o svexr|GelJota

/OS w5 fr, 1)

dr)

S

[l ][ o
0o exr \Gg Geta

g 7o sup —— ‘/ dy
E>r ‘Gﬁ G£+CE

By the second integral, we have

dr

© dr R 1

/ rpo sup —-— ‘/ Jo,s( )dll / PO SuUp - / f(y )dy
o e>r |Ge | Jaeto e>r 1Ge | Ja, 40
a1 a1 _qd
Lo b | o5
Gtz s £>r ‘Gﬁl r Gs+zx
a1 R
Wt | [ | < s )
|GS| Gs+ax

Thus, we get
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We estimate I in a similar way applying the inequality (2), we obtain

I, = sup (T(f1,s,y) — T(O,y))dy‘
s>t Gs+x
<tar suprflll sup —— / (T(f1,s,y) — T(O,y))dy‘
r>0 s>r |G | Gs+x

1 1
=t 7 |[(T(frs:y) = T, 9Ny, oo (Gray < Mat™ @ | f1slIn,, 1 (Gra)

_1 R 1
=Mt « (/ rPLSUp —— / fls( ) d’/‘)
0 s>r |G | Gs+z

S
1 1

_1 1 1 r 1
=Mt @ </ TP sup’/ f1,s(y)dy‘+/ TP SUp ‘/ f1.s(y)dy
0 e>r |Gel Get+a r s e>r |Gel Getaz

= Myt~ o <J1 + J2>.

To estimate .J1, JJo note that

0.c<s,
‘ /G+ / 1’S(y>dy’ N Jeronse S0y
0.¢<s,
P 7 WP B e
Further,
ne [ (| [ sw+| [ sow])T
o eor |Gl \| Jora Gota
<[ rpll(f(s,FH | sy o )dr
0 Gota e>r |Gel
< 2f(s,F) [ o = s ),
and ’

Jo < / rm Sup —— <‘/ dy‘ ‘/ dyD dr
s §2r |G§‘ Getx Gtz
0o B 1 0o
</ m(ﬂs Pl [ walse )T < [Tk fen®
Gota e>r |Gl s r

1 dr o d
‘/ y)dy rPll Sup —— 4 —/ rhr 1 f(r, F) !
Gs+x s
sﬁ_l

e>r |Gel 7
a1 dr a1
| W s AR (R (O

Combining the estimates, we obtain the following estimate

+

Iy S Myt (/ P )Y 4 spllf(&F))-

So, we got the following estimate

1
sup

_a 51 dr a1
s>t |Gs| ~/G3+1:(T(f7 y) - T(O,y))dy’ S Mot </0 7 P0 f(r, F)7 + sPo f(S,F))
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sane ([T ok fe T s ).

Assuming that s = c¢t”, where v = (q — ) / pi ) then, taking into account the above estimates,

IT(f) = TO)llw, . (1) = ( / h (tq T

z€R™
S MoAy + MoAs + My As + My Ay,

we obtain

Gs+zx

where

1 g Tdt\ "
Ay = (/ (tq a1 (ct7) P f(ct”,F)) t> .
0
Using the change of variable ct” =y, we get

Alz’)/iéc_e(ﬁ_%)Bl, A2:7—%C—0(ﬁ—%)32,

1

Az = fy_%c(lie)(%iﬁ)Bz’ Ay = 7_%0(179)(131 po)B37

where

3}

b ([ (P8 [ ®) )
be = (/OO (y%f(y»F))T d;)T = fll~, . 7),

1
Rl AR R dr\"dy\ "
B3 = (/ (y (1 9)(191 PO)/ 7’:011 f(r, F)r) y> ,
0 Y r Yy
1

To estimate Bi, B3 we apply Hardy’s inequalities from the lemma 2 and we obtain

1
o0 a1 )yia - Tdy\ T
Bls( / (ye(m po)“ﬂf(nF)) yy) <1 fllv o,
0
[e'e] Td 1
Bgs( / (yw-“(m-po)*mf(r,m) yy) <l -
0

Thus, from the above estimates, the following estimate was obtained

11 _ 1 1
I7(H) = TO)ln, ) S (Moc 0(7-%) 4 a0 G vo>)||an,J,T<F>,
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where the corresponding constants depend only on pg, p1, qo, q1,p,q, T and 6.

PoP1

Mo

P1—P0
Let ¢ = <Ml) , then

IT(f) = TO)lln, ) S Mg~ M| fllw, . )

Consequently, we obtain the required estimate (3). The theorem is proved.
Corollary. Let F be the set of all balls in R™, F, — the set of all balls centered at the point z € R". Let
0<po<pr<ooand0<qoq <00,q #q1,0<0<1,1<7< 00,

1-6 0

q0 q1

p Do P ’

1 1-6 46 1
= + - =
q

If the following inequalities hold for the Urysohn operator T" and some My, M7 > 0

IT(f) = TO)INy, o (G4a) < Millflln,, 1(G4a), ©=0,1, 2 € R,

then for all functions f € N, -(F), holds

IT(f) = TO)lln, . r) < My " M| flIn, . 5

where ¢ > 0 depends only on parameters pg, p1, 90,91, D, 4, T, 0-
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A X. Kamunongaitt, E.JI. Hypeynranos?

LI H.Dymunes amuindaen, Bypasua yammoss yrnusepcumemi, Hyp-Cyaman, Kazaxcman;
2M.B. Jlomonocoe amwmdaze. MMY Kazaxcman gdusuanv, Hyp-Cyaman, Kazaxeman

ChI3BIKTHIK, €MeC MHTErpaJijibl Y PbICOH OIIepaTOPJIAPbIHBIH, TOPJIbI
KEHICTIKTEepPiH/IeTi MHTEePIOJIAINACHI

Maxkanana Ny (M) TOpsbl KeHICTIKTEPiHIH, HHTEPIOIANMIBIK, KacueTTepi 3eprresren, myHaarelr M — R™
2KUBIHBIHBIH, OJIIIIEHETIH iIKi KUbIHIAP/IbIH XKETKIJIKTI >KaJmbl epikTi »Kyiteci. InTerpasibr Y pbIicoH onepa-
TOPBI KAPACTHIPBLLIFaH. Byst onepaTop 6apJiIbIK CBI3BIKTHIK, WHTETPAJIILI ONEPATOPJIapIbl, COHIAN-AK, ChI3bI-
KTBI eMeC HHTErPAJIIbI OIIePATOPJIAPAbL 2KAJIIBIIANIBL. Y PBICOH OIIEPATOPHI, 9/IETTE, KBA3UCHI3BIKTHI HEMECE
cyOaIIUTUBTI OIIEpaTOp €MeC, COHMIBIKTAH OyJI OIlepaTopJiap YIIiH KJIACCUKAJIBIK HHTEPIIOJISIUAIIBIK TeOpe-
MaJjiap opbiHAaIMaiabl. OChl omepaTopsap Kiaackl YImH MapiuHKeBUY THIIHIETT HHTEPIOJISIIASIBIK, T€O0-
peMachIHbIH 6erisi 6ip aHaJIOrbl aJbIHALI. By Teopema 6erisi 6ip MarbIHAIa JIOKAJIbIBI TOPbI 6ap TOPJIbI
KeHiCTiKTep/ieri Y pPBhICOH OollepaTopjaphl YIIMH 9JIci3 Garasayiiap/ial TOPJIbl KEHICTIKTEP/IETi OChI OIlepaTop-
Jap ymra kymri Garanay anyra MyMKiHgik 6epemi. Mpicaibl, Top R™-geri 6apiblk miapiap >KUbIHTHIEFBI
60JIaTHIH TOPJIBI KEHICTIriH/Ie Y PBICOH MHTErPAJIIbI OIePATOPHI OOy VIIMiH, OHBIH, TOP KOHIIEHTPJII IIapJap
0O0/IaTBIH TOPJIbI KEHICTIKTEp YIIH 9JICi3 THITI OOIybI KETKITIKTI.

Kiam cesdep: nHTEpIIONANNS KEHICTIKTEP], TOPJIBI KEHICTIKTED, Y PBICOH OII€PATOPJIAPHI.

A X. Kamunongait', E.JI. Hypcynranos?

! Bepasutickuti nayuonarvnwd yrusepcumem umenu JI.H. Dymuaesa, Hyp-Cyaman, Kasazcman;
2 Kasaxcmancrud gusuan Mockoeckozo 2ocydapcmeentozo
yrusepcumema um. M.B. Jlomonocosa, Hyp-Cyaman, Kazaxcman

uaTepnonsnusa HEJIMHENHBIX NHTETPAJbHBIX OIIEPAaTOPOB
YpbIicOHA B CeTEBBIX IMTPOCTPAHCTBAX

B craThe m3yueHbl HHTEPIOAIMOHHbIE CBOKCTBA CEeTEBBIX IpocTpaHcTB Np o(M), B ciaydae korma M ecTb
JIOCTATOYHO O0IIAasi MPOU3BOJIbHAS CUCTEMa U3MEPUMBIX ITOJAMHOXKECTB u3 R™. PaccMOTpeH MHTerpaJibHbIii
omeparop YpwicoHa. laHHBIN omepaTop 0000IAeT BCe JIMHEWHbIE, NMHTEIPAJBHBIE, & TAKXKe HEJINHEHHBIe
uHTerpaJibubie oneparopbl. Oueparop YpbicoHA, BOOOIIE TOBOPs, HE SIBJISETCS KBA3WJINHEIHBIM JInOO Cy0-
aJTUTUBHBIM, TIO9TOMY KJIACCUYECKNE NHTEPIIOJISIIMOHHBIE TEOPEMBI JIJTsT 9TUX OIIEPATOPOB HE UMEIOT MEeCTa.
Tlosyuen HeKmMit aHAIOr UHTEPIIOISAIMOHHON TeopeMbl Tuia MapIimHKeBrIa /I 9TOTO KJIAaCCa OMEePaTOPOB.
Hacrosiiiast reopema 1103BoJisieT osry4arb B HEKOTOPOM CMBICJIE CUJIbHYTO OIEHKY JIJIsi OLIEPATOPOB Y PBICOHA
B CETEBBbIX IMPOCTPAHCTBAX U3 CJIAOBIX OIEHOK JJIsi HUX. TaK, HApUMep, JJjisl TOro, 9TOObI ObLT WHTErpajb-
HBII omepaTop Y PbICOHA B CETEBOM IIPOCTPAHCTBE, IJle CeTh €CTh MHOXKECTBO BcexX mapoB B R mocTarodHo,
4T06BI OH GBbLI CIA00I0 TUIA JJIsl CETEBBIX IPOCTPAHCTB, TJ€ CETh €CTh KOHIEHTPUYECKUE IAPbI.

Karouesvie caro6a: MHTEPIIOISIMOHHBIE IIPDOCTPAHCTBA, CETEBOE IIPOCTPAHCTBO, OLIEPATOPHI Y PHICOHA, UHTE-
IpaJIbHBII OIIEPaTOP.
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Boundary value problem for the heat equation with a load as the
Riemann-Liouville fractional derivative

A boundary value problem for a fractionally loaded heat equation is considered in the first quadrant. The
loaded term has the form of the Riemann-Liouville’s fractional derivative with respect to the time variable,
and the order of the derivative in the loaded term is less than the order of the differential part. The study is
based on reducing the boundary value problem to a Volterra integral equation. The kernel of the obtained
integral equation contains a special function, namely, the Wright function. The kernel is estimated, and the
conditions for the unique solvability of the integral equation are obtained.

Keywords: loaded equation, fractional derivative, Volterra integral equation, Wright function, unique
solvability.

Introduction

The study of fractional differential equations has been the subject of intense research attention [1-7]. This
is due both to the development of the fractional integration and differentiation theory, and to the use of the
apparatus of fractional integration and differentiation in various fields of science. Considerable interest in the
study of fractional differential equations, among other things, is also fueled by various applications in physics,
mechanics, and simulation [8-14]. Of particular note are some recent applications of the fractional diffusion
equation to economics and financial modeling (see e.g., [15]). Monographs [16-18] contain vast bibliographies
concerning the issue. Also, an important section in the theory of differential equations is the class of loaded
equations. The study of loaded partial differential equations has a long history and occupies an important place
in the modern theory of differential equations. In [19], on numerous examples A.M. Nakhushev showed the
practical and theoretical importance of studies on loaded equations. In [20-23|, the theory of loaded equations
was further developed. In [22,23] loaded differential equations are considered as weak or strong perturbations
of differential equations depending on the derivative order of the loaded summand.

In the works [24-27], BVPs with a loaded heat equation are investigated, when the loaded term is represented
in the form of a fractional derivative. In [24,25], the load moves with a constant velocity. The loaded term is
the trace of the fractional order derivative on the line « = ¢. It is represented as a Riemann-Liouville fractional
derivative. The obtained Volterra singular integral equation has a nonempty spectrum for certain values of the
fractional derivative order. Volterra integral equations of the second kind with singularities in the kernel arising
from the study were considered in [26,27] In the papers [28,29], the loaded term is represented in the form of
the Caputo fractional derivative with respect to the time variable and the spatial variable, and the derivative
order of the loaded term is less than the order of the differential part.

In this paper, a BVP is considered in the open right upper quadrant. The problem is reduced to an integral
equation that, in some cases, belongs to the pseudo-Volterra type, and its solvability depends on the order of
differentiation in the loaded term and the behavior of the load line in a neighborhood of the origin. The BVP
is reduced to a Volterra integral equation of the second kind with a kernel containing a special function. The
solvability of the integral equation in the class of continuous functions is established depending on the nature
of the load for small values of time.

*Corresponding author.
E-mail: svetlanamir578@gmail.com
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The article has 4 sections. Section 1 contains notations some previously known concepts and several auxiliary
assertions. In Section 2, we formulate the problem we are going to solve. In Section 3, the problem is reduced
to an integral equation. In Section 4, we study the resulting integral equation by evaluating its kernel and
formulate the corresponding results on the solvability of the problem.

1 Preliminaries

Let us first recall some previously known concepts and results. The first one is the definition of the Riemann-
Liouville fractional derivative.

Definition 1 ([1]). Let f(t) € Li[a,b]. Then, the Riemann-Liouville derivative of the order J is defined by
the following formula

1 A A 1 C))
TDf,tf(t)zm%/a Wdﬂﬁ,ae}%,n—l<ﬁ<n. (1)

From formula (1) it follows that

PDR () = f(8), D f(t) = (1), neN. (2)

In [30], when considering the limiting cases of the order of the fractional derivative in the loaded term of
the equation, formula (2) is used to investigate the continuity in the order of the fractional derivative.

We study boundary value problems for the loaded heat equation when the loaded term is represented in
the form of a fractional derivative. The considered problem is reduced to an integral equation by inverting the
differential part.

In the domain @ = {(z,t) | >0, t > 0} the solution to the boundary value problem ([31]; 57) of heat
conduction

uy = a*ugy + F (z,1),
u‘tZO :f(-r)a u‘IZO :g(l‘),
is described by the formula

u(x,t)z/oooG(x,f,t) f(g)d§+/o H(z,t— 1) g(r) drt

+ /O /O G (2.6t — 1) F (¢, 7) dédr, (3)

H( t)_é 2
“ _2\/7Tat3/2eXp dat)’

The Green’s function G (z,£,t — 7) satisfies the relation

/Ooo G (x,€,t) dE = erf (2?/5) : (4)

erf (z) = % /OZ 6_52d£. (5)

Fractional calculus can be considered as a “laboratory” for special functions.

We get a reduced integral equation with a kernel containing the Wright function. Accordingly, we determine
the conditions for the solvability of this equation using the kernel estimate from the works [32, 33].

¢ is the Wright function:

where

where

¢ (a,b; z) = kzzom (a>-1). (6)
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The differentiation formula is valid:

d

<dz)n¢(a,ﬂ;z)¢(a,a+n5§2)a”€N' (™)

For all « €]0,1[, 8 € R,z > 0,y > 0 the following inequality holds
‘yﬂ_l(b (—OZ, ﬁ? _my_a) ’ S O‘T—eyﬁ+a9_l7 (8)
where
| -1 (=8) e NU{0}.

2 Statement of the fractionally loaded BVP of heat conduction

In the domain @ = {(x,t) : & > 0,¢t > 0} we consider a BVP

Ut — Ugg + A {ngytu (x,t)} |:Jv:'y(t) = f (I,t) y (9)

u(z,0) =0, u(0,t) =0, (10)

where ) is a complex parameter, TDg ; u(z, t) is the Riemann-Liouville derivative (1) of an order 5, 0 < 8 < 1,
~(t) is a continuous increasing function, v(0) = 0.

The problem is studied in the class of continuous functions.

Let us introduce the notation

S L [P g®d
D ()= 5 / 25 veo

When v =0 D%,g (t) = g (t) then

n

d
Drg(t) = dt—ﬂDZt_"g(t)7 n—1l<v<n, né&N.

a=0,n=1,v=0=

d
+Doyu (z,t) = = Doy u(x,1) (11)
or
d 1 Yz, T)dr
DB (z,t) = — / ’ . 12
but (1) dt(F(l—ﬁ) 0 (t—7‘)’8> 12)
The derivative in the loaded term of equation (9) is determined by the formula (12).
3 Reducing the boundary value problem to an integral equation
According to the formula (3) a solution to BVP (9)—(10) can be represented as
t 00
u@t)==r [ [T G- dedr + fi(w0), (13)
o Jo
where
u(t) = {, D @0} [amrio (14)
t “+o00
fien= [ [ Gwge—n s dern (15)
o Jo
According to the formula (4) and
6752 = \/7?(;5 <_;7 %7 _2§> ’ (16)
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where -
ZI‘L
b, z) = E _ -1, b 1

k=0

is the Wright function (6), we have [34]
# 11 1
erf(z):?/ ¢(—,,—2§> df:l—(b(—,l,—zz). (18)
o 272 2

Indeed, since
P(1-2)-T(z)= =

sinwz
T

Kk 1 0
( 2 2> r E—f—} sin(ﬁ—i—I) r E—&—l cos =
2 2 2 2 2

K 0, if k=2n+1,
(-1)", if k=2n.

0, if k=2n+1,

N 1
k1
F(_*"'?) , if k=2n,

We obtain formula (16).
From (5) we have:

_2 [ e o 11 I 11 _

oit(s) = = [Cede =2 [Co (g g2 )de=— [ o (-g.50)ac
. 2 C’i S <K+1 (=—2z

- ¢ = — ==2 _
nz—;)/o m-r(—“+1> ;(n+1)!.r<—”+1+1> =

2 2 2
[e%e) k+1 oo n
=-> (=22) = - (_227)1-1-1:1—;1)(—1,1,—22).
nzon!~F(f§+1) 2

We get formula (18).
Then, taking into account formulas (16) and (18), representation (13) can be rewritten as:

t
ulet) =2 [ & (= ) uo)dr + i o). (19)
where .

x x

Kl——)=1-¢(-2,1,———— 20

(z=) =12 (-30-7=) 20
and p(t) and f1(t) are defined by formulas (14) and (15), respectively.

7
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For formula (19) we implement the fractional differentiation formula of order § (0 < § < 1) in the sense of
Riemann-Liouville.

x
Denote K | —— ) = g (z,1).
enote (2\/E> g(z,t)
As:

/otK(zﬁ-ﬁ)“<T>df=/0tg<w»t—7>u<7>df=<g<x7t>*u<t>><t>,

G = (%) 0+l no).

then by formulas (11), (7) and (20) we have

Dy, (/OtK<2\/%>u(T)dT> =D, (K (;/z) *u(t)) _

and

=D’ (1—¢<—;,17—\2)> ()+K(2\[> Lb(t). (21)
As , . . y
DOt (1) F(].*/B) t )
then when 0 < 8 < 1 N )
. D+ e
Dot T(n—B+1) ’

From here

B " I'(-2+1) g N (_% ' B
Zn' r —7+1)F(—%+1—ﬂ).t =1 'Zn!.r(— +1-8)

. —tﬁqs(—l B; — \[>. (22)

g (x,t) [1=0 :K(Q:f/i) . - (1_(;5(_;’1;_\2)) —o

Since in the given problem (9), (10) the line along which the load is moving has the form x = ~ (¢), and
v (t) increases and «y (0) = 0 then there are different cases of behavior for \[ | o=y (ry When t — 0.

Let 0 < 2 = ~y(t) ~ t* when t — 0. Then 7 — +oo when t — 0, if w< 3.

Cases w > % and w = % we consider later.

From [12, p. 6] we have an asymptotic expansion for z — +oo:

1
¢ (_27 1; _Z> =

Then if w < £ for formula (23) we get when ¢ — 0

g(x,t) = (1 % (—;,1;—\2)) S (24)

So, applying to (19) the fractional differentiation of the order 8 by formula (11) taking into account the
formula (21)—(24), when @ = v (t), where 7 (t)) ~ t* when t — 0, w < %, we get when A # —1

(23)

ZAJ' L9 m2imL 4 (92m . pm2me L) ]

O+ 545 [ K uGr =50, 5)

where
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A

= 5P (i @)

f3(t) ; (26)

z=y(t)

_ 1 S Y (R S T e A ()
K(tﬂ—)_l“(lfﬁ)(tff)ﬁ (t—7)° (b( 2! Jt?) 0

4 Integral equation research. Main result

Let us estimate kernel (27) of integral equation (25). The Wright function for Vao € (0;1), b€ R, z > 0,y > 0
satisfies the inequality (8) [16]

where 6 > 0, when —b ¢ N | {0}.
Then

1 1
(t—7’).¢(_271_5,_

At 6 = 0 we obtain:

v (1)
V-t

)| <C() (k-1 00

_ ()P
K< (g +1) -0
when 0 < 3 < 1.

From here we get that the kernel of the integral equation has an integrable singularity if 7 (¢)) ~ t* when
1
t—0,w<—.
Thus, the following theorem has been proved.

Theorem. Integral equation (25) with kernel (27) for 0 < 8 < 1 and with (t) ~ t* in the neighborhood of
t = 0 is uniquely solvable in the class of continuous functions for any continuous right-hand side f3(t) defined

1
by formula (26), if 0 <w < 3
This result coincided with the result obtained in [30].

Conclusions

According to the theorem, the integral equation (25) has a kernel with a weak singularity. Therefore, to
find a unique solution to the equation (25) in the class of continuous functions, we can apply the method of
successive approximations. After finding the solution p (7) to equation (25), the solution to the original boundary
value problem is found uniquely by formula (13). For the boundary value problem, the loaded term is a weak
perturbation.

In other cases of values of the parameters 8 and w, the method of successive approximations is not applicable
for solving the integral equation (25). It is possible that the corresponding homogeneous equation will have
nontrivial solutions for some values of the parameter A, i.e. the spectrum of the problem will appear. Then
the load can be interpreted as a strong perturbation. The existence and uniqueness of solutions to the integral
equation depends on the fractional derivative order of the loaded summand. For A\ = —1, BVP (9), (10) is
reduced to The Volterra integral equation of the first kind.
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Puman-JInyBniaab 6e1meK TybIHABICHI TYPIHJET] XKYKTeMeMeH
OeplJireH »KbLIYOTKI3TIMITIK TEeHJeyl YIIiH ITeKapaJiblK, ecemn

Bipiumii kBajpanTTa y37iKCi3 GYHKIMAIAD KJIACBIHIA OOJIIEKTI->KYKTEIreH >KbIIyOTKI3MIITIK TeH eyl
VIIiH IIeKapaJiblK, ecell KapacThIPbLIFaH. 2K yKTeNreH KOCBLUIFBINT YaKbITIA alHBIMAJIbI OoiibiHIIa PuMman-
JInyBuiais GeJIIieK TyBIHABICH TYPiHIe 60IaIbI, aJl }KYKTE/ITeH KOCBUIFBIIITAFBI TYBIHABI PeTi muddepen-
nuasIbIK, 6eJiik iy perineH a3 60s1a/1bl. 3epTTey MeTTiK ecenTti Bojabrepp nHTErpasiblK TeHIeyiHe KeaTipyre
HerizzenreH. AJTBIHFaH WHTETPAJIIBIK, TEHIEY/IiH sIAPOChIHIa apHaiibl (byHKIMsT 6ap, aTam adTkaHga Pair
byuKIHsICH. f1po GaraaHbI, HHTErPAJILIK, TEHIEY/IiH OIPKeIK] MIeMTiTy mapTTapbl aJIbIH/IbL.

Kiam ceadep: ) KyKTereH TeHey, OOJIIIeK TybIH/Ibl, BOIbTEePPIiH, HHTErPAILILIK, TeHeyi, PailT dyHKusaCH,
OipMoOH/II HTenTiMTITIK.
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I'pannynas 3ajiava Jid ypaBHEHUS TEIJIOPOBOIHOCTH
C Harpy3Koii B Bu/ie JpoOHoii mpou3BoaHoii Pumana—J/InyBuiiis

B mepBoMm kBajgpaHTe paccMorpeHa KpaeBas 3ajada Il IPOOHO-HAIPY2KEHHOI'O yPaBHEHUSI TEIIOIPOBOJI-
HOCTH B KJIacCe HempepbIBHBIX GyHKnmit. Harpykennoe ciaaraemoe mmeer popMy ApPOOHOIM MTPOU3BOIHOMN
Pumana—J/InyBusns no BpeMeHHOI IepeMeHHON, U TOPsI 0K ITPOU3BOIHON B HAIPYKEHHOM CJIAraeMOM MEHb-
e mopsizka auddepennuaabaoil yactu. VccenoBanne OCHOBAHO Ha CBEJIEHUU KPAEBOW 3a/1a9M K WHTE-
rpajabHOMY ypaBHeHmiO Bobreppa. L apo mosydeHHOro MHTErpaibHOTO YPABHEHUS COIEPKUT CHEIUATHHY O
dyHKIHUIO, a UMeHHO, dpyHKImMIO Paiira. [Iponsseiena onenka sijipa, 1 Moy Ye€Hbl YCJIOBHSI OJITHO3HAYHOMN pa3-
PEeIIUMOCTH UHTETPAJIBHOTO YPABHEHMUSI.

Karoueswie caosa: HarpyrKeHHOE ypaBHEHHUE, TpOoOHas IPOM3BOAHAsI, HHTErpajbHOe ypaBHeHune Bosbreppa,
dyukmus Paiira, ojHO3HaYHAsT PA3PENIUMOCTD.
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Boundary value problem for fractional diffusion equation
in a curvilinear angle domain

We consider a boundary value problem for the fractional diffusion equation in an angle domain with a
curvilinear boundary. Existence and uniqueness theorems for solutions are proved. It is shown that Holder
continuity of the curvilinear boundary ensures the existence of solutions. The uniqueness is proved in the
class of functions that vanish at infinity with a power weight. The solution to the problem is constructed
explicitly in terms of the solution of the Volterra integral equation.

Keywords: noncylindrical domain, curvilinear angle domain, boundary value problem, fractional diffusion
equation.

Introduction and problem statement

Consider the equation

« 2
(iﬂ_§;>wﬂw—f@wx 0<a<l) (1)

where (%—aa denotes a fractional derivative with respect to y of order o with the origin at the point
z=0.

The fractional diffusion equations and their generalizations have attracted great attention in recent
years. Research of (1) began in works [1-4].

To give an idea of the variety of problems considered for this equation and the multiplicity of
approaches to studying them, we mention [5-33]. An overview is provided in [31]. A more detailed
survey can be found in the article [34]. We also point out the monographs [35-37], which reflect many
of these approaches and contain vast bibliographies concerning the issue.

Interest in the study of fractional differential equations is also fueled by applications in physics and
simulation (see e.g. [38—41]).

Fractional differentiation is given in the Riemann-Liouville sense [38], i.e.

(67

_ «@ _ 8 a—1
@U(Iﬂ,y) - DOyu(‘Tay) - 8yDOy u(x,y)

and
1

y
I‘(1_01)/0 u(t)(y —t)~“ dt.

We will consider the equation (1) in a curivilinear angle domain 2 that is defined by

D, tu(w,y) =

Q={(z,y): y>0, > z2(y)},

where z(y) is a non-decreasing continuous function such that z(0) = 0.

*Corresponding author.
E-mail: gulmanov.nurtay@gmail.com
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A function u(z, y) is called a regular solution of equation (1) in the domain Q if y'~*u(z,y) € C (Q),
and, moreover, u(x,y) has continuous derivatives in 2 with respect to x up to the second order, and
the function Dg‘y_ 1u(w, y) is continuously differentiable as function of y for a fixed = at interior points
of Q, and u(x,y) satisfies equation (1) at all points of €.

Our purpose is to solve the following problem: find a regular solution of the equation (1) in the
domain Q satisfying initial and boundary value conditions

lim DG Mu(ey) = (@) (@ > 0) )

and
u(z(y),y) =¢y)  (y>0) (3)

where 7(z) and ¢(y) are given continuous functions.
The problems in domains with curvilinear boundary were considered in [42], [26]. For the problems
for parabolic equations in angles domains, we refer to [43-46].

1 Notations and preliminaries

In what follows, we use the denotations
wp(w,y) =2~ (=B, ~laly™) (4)

@
w(m,y) :'U)O(x,y), and 5: 5
In (4), ¢ denotes the Wright function [47], [48],
b; z) = _ —1).
¢(a.b; 2) g%mrmk+@ (@>-1)
The asymptotics of the Wright function can be given in the form [48]

O(—B. s —t) = exp (—pt7) AL + 0 (=) (t = o0), (5)

where § € (0,1), 0 = (15, p= (1 - B)BT7, and § = 52,

In particular, formula (5) implies

wu(z,y)| < C |2y, (6)
where (1) ¢ NU (0}
07 —HK U0 ) _
0> { 1, (—p) eNU{O) and C=0C(B,ub).

Here and subsequently, by C' we denote positive constants, which may be different in different cases,
indicating in parentheses the parameters on which they depend, if necessary, C = C(a, 3, ...).
The differentiation formulas for the Wright function [48|

d
and [49]
Dg, [y“_1¢ (—ﬂ, 1; —ycg)] =y <—57 p—v; —y%) (c>0)
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give

0 . v

% w#(xv y) = —szgn(x)wu_g(x, y)v DOy wu(l‘, y) = w,u—l/(x’ y)v
and

(03 82
(Doy - 83:2> wu(z,y) =0 (neR, 2| >0, y>0).

We need later the following two statements.

Lemma 1. Let ¥(t) € L(0,y), let the function 1 (t) be left continuous at the point ¢ = y, and let

0<z(y)—2() <Cly—y)° (6>5, 0<t<y).
Then

z—2(y)
z>2(y)

lim / Yt w(x —2(t),y —t)d /w —2(t),y —t)dt.

Lemma 2. Let t1=%¢(t) € C[0,y], let q(t) be Holder continuous in a left neighborhood of y with an

exponent § > «,
la(t) —a(y)| < Cly—t)°  (y—e<t<y, e>0),

and let
t%(t) <y'%q(y)  forall te(0,y).

Then
(Dgtq)t:y > 0,

and (Dgq),—, = 0 if and only if ¢(t) = ctet.
The proof of Lemma 1 is given in [26]. Lemma 2 is proved in [42] (see also [50]).

2 Existence theorem
Theorem 1. Let
0<2(y2) —2(y) SCl—wm)’  (0<y <y, §> ),
7(z) € C[0,00), ¥ %(y) € C0,00),  7(0) =T(a) [y (¥)] g
y' T f(z,y) € C(Q),
xlgl(’)lo 7(x) exp (—wxﬁ> =0,
xlgrolo y! " f(x,y) exp (—wxﬁ> =0,
for every w > 0, and let the function f(x,y) be representable in the form
f(2,y) = Dy, g(x,y)

for some § > 3 and y'~*Tg(z,y) € C(Q).

Then there exists a solution to problem (1), (2), and (3); it can be represented in the form:

u(z,y) /¢ (x —2(t),y —t)dt + T(z,y) + F(z,y),
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where
1 [ 1 (Y [
T(:an) =35 T(s)wg(m—s,y) dS, F(l’,y) =5 f(S,t)U]/@’(CL‘—S,y—t) deta
2 Jo 2 Jo J.o
and the function 1 (z) is a solution of the integral equation

+ /wa(t)w(Z(y) —2(t),y —t)dt = p(y) — T(2(y),y) — F(2(y),y). (14)

Proof. Consider separately each of three summands on the right side of (13), namely F(z,y),
T(z,y), and ¥(z,y), where

U(z,y) /1/} w(x — z(t),y —t) dt.
Let us start with F'(z,y). By (5), (6), and (7), with (11) and (12), we get
|[F(ay)l < Cy*,

and
—2 F(z,y) = 1o /y/ sign(z — s) g(s, )ws(x — s,y — t)dsdt =
) 2 Y 29 0 «(0) g ; 4 'Y

B Y (y — )01 1 (Y [ -
_—A mg(x,t)det+2A /Z(t) g(Syt)'LU&fﬁ(x_Svy_t)det—

1 voreo
:—f(a:,y)—i—zDg‘y/o /() f(s,t)wg(x — s,y —t) ds dt.
2(1

This means that
11—« e} : a—1 _
y' TF(z,y) € C (Q), 513% D§, F(x,y) =0, (15)

and
L0
(25, - 52z ) Fa) = Fla.0).

Consider now T'(z,y). By (5), (7), and (10), one can check that

Doy - W T(.f,y) = 0.

Rewrite T'(z,y) in the form

T(x,y) = ;/000 [7(s) — 7(x)] wg(z — s,y) ds + 7-(2@ /000 wg(z — s,y) ds.

Using (5), (6), and (7), leads to

/Ooowﬂ(l‘—sy </ / )wﬁ )dS—Qli/;)l—wa(%y)
< ( Jy f) 7(s) — 7(2) wa(w — 5,y) ds +
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+C  sup |7(t) — 7(y)| /::wﬁ(ﬂf —s,y)ds < Cy* [ye + w(s)] )

te(x—e,zr+e)

where 6 > 0 and w(e) — 0 as € — 0. This gives that
yl_O‘T(ac,y) =C (ﬁ\ {0, 0}) and Dgy_lT(:J:, y) = 7(x).

Let us examine the behavior of T'(x, y) in a neighborhood of (0, 0). Assume that o = o(y) is a continuous
function defined in a right neighborhood of the point y = 0 such that (o(y),y) € Q (i.e. o(y) > 2(y))
and o(y) — 0 as y — 0. It is easy to see that

a—1 po/y®
T(o(y),y) = 2 /O T(syﬁ)¢<—ﬁ,ﬁ; S‘;) ds +

2
a—1 o8
_|_y2 /0 T(syﬁ—ka)qb(—ﬁ,ﬁ; —s) ds
and
N 7(0)  7(0) o(v)
llg%yl T(o(y), y)=r(a) _gyﬁoqﬁ( bra P ) 1o

Finally, consider ¥(z,y). By (6) and (8), we have
[w(=(y) — 2(0),y — 8)] < Cla(y) — 2Ol (y — " < Cly — 1,

This means that integral equation (14) has a unique solution ¥ (y). A simple computation gives

o P
Dy, — 922 ¥(z,y) =0,

and

. a—1 _ 11—« _ re)
7}1_% Dg, ¥(z,y) =0 and y' U (z,y) = C (2\ {0,0}).

Now we investigate the behavior of ¥(x,y) in a neighborhood of (0,0). It follows from formulas
(9), (14), (15), (16) that

Y € C0e)  and Ty o) = o

(17)
Set Yo(y) = y = (y), (0(y),y) € Q (o(y) > 2(y)), and o(y) — 0 as y — 0. It is easy to see that

/ v) —2(t),y —t) —w(o(y) — 2(y),y — )] dt+
+ /Oy £ o (t) — Yo(y)] wlo(y) — 2(y),y — t) di+

Y
‘HZ)O(?J)/ t " w(o(y) — 2(y),y — t) dt.
0
This yields that
iy 0o (0).) = 0 (0) Ty~ —

y—0

Taking into account (16), (17), and
lim ¢ (_»B,Oz; _J(y)y—ﬁz(y)> = hmgf)( B, o —if?) ,

y—0 y—0

G(y)y—ﬁ Z(y)> .
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we get B
y' W (2, y) + Tla,y)] € C(Q)
and, consequently,

y %z, y) € C(Q).

To complete the proof, it remains to show that the function (13) satisfies (3). Indeed, by Lemma 1
we have

u(z(y),y) = lim W(z,y)+T(2(y),y) + F (2(y),y) =

x—z(y)

=Y(y) + V(2(v),y) + T (2(y),y) + F (2(y),y) -

Due to (14) we get
V() + ¥ (z),y) =(y) =T (2(v),y) — T (2(y),y) -

Combining the last two equations leads to (3).
& Solution uniqueness

Theorem 2. Let z(y) € C[0,00). There exists at most one regular solution to the problem (1), (2),
and (3), satisfying

lim sup }ylfau(x,y)‘ =0 (18)
=0 0<y<T

for every T > 0.

Proof. Let u(x,y) be a solution of the homogeneous problem

aa 62 a—1

(5 = oz ) ue) =0 (D& M) =0 ate)n) =o. (19)
Set

Qr=Qn{y<T} forsome T >0, and v(z,y) =y "ulz,y).
By (18), (19), and the equality (Dgy_lu) = I'(a)v(z,0), we can conclude that there is a point

y:
(&,m) € Qp such that
v(&n) Zv(z,y)  forall (z,y) € Qr. (20)

Lemma 2, with (19) and (20), yields that
[Dgyu(ﬁ,y)]y:n >0 and (&) <O0.

This means that [Df)"yu(ﬁ,y)]y:?7 = 0, and consequently u(¢,y) = Cy®~!. Taking into account that
v(x,0) = 0, this implies that C' = 0. Thus, we get

u(z,y) <0 for all (z,y) € Qr.
Similarly, considering the function v(z,y) = —y'~%u(z,y) gives
u(z,y) >0  forall (z,y) € Qr.

Thus, we can conclude that u(z,y) = 0 for all (z,y) € Qp. The arbitrary choice of the number T
implies that u(z,y) =0 in .
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A.B. Iexy!, M. Pamasanos?, HK. I'yapmanos?, C.A. Vckakos?

L Kordanbano, mamemamura ocone asmomammaHobpy WHCmMUmymL,
PFA Kabapdun-Baaxap eoviivimu opmanvievs, Harvuuk, Pecet;
2 Axademux E.A. Boxemos amuvmodaes, Kapazandv ynusepcumemi, Kapazandw, Kazaxcman

KuchIK CBIBBIKTHI OYPBIINTHIK ODJIBICTAaFbI OOJINIEK PETTIi
andpPy3usabIK TeHJley YIIiH IMeTTIK ecern

MakaJjiaja KUCBIK, ChI3BIKTBI OYPBIIITHIK, O0JIbICTAFbI 66JImeK peTTi Auddy3usiblK TeHIeyIiH MeTTiK ecebi
3epTTesreH. KapacTbIpbLIbIIT OTBIPFaH OOJIBICTAFbl €CEITiH, MIeniMiHiH 6ap 60JIybl MEH YKAJFBI3JbIFbl TY-
paJibl TeopeMaJsiap Jpjaeaaen . [éabaep OOMbIHINA KUCHIK ChI3BIKTHI MeKAPAHBIH Y3IIKCI3/Iir MIeIiMaepIiH
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bap 6oJIybIH KaMTaMachl3 eTeTiHairin kepcerkeH. [lemnmiMHiH KaJFBI3BIFBI MEKCI3IIKTE TOPEXKENTIK caMaK-
[eH HOJITe aifHAJAThIH (DYHKIUSIAp KIAChIHIA T eaen . Kcenrin mernryi BosbTeppaHblH HHTErpasIbIK,
TEHJIEYIHIH IIenTyi apKblIbl affKbIH TYypJe KYpPbLIa/ Ibl.

Kiam cesdep: nMIMHAPIIK eMeC 00JIBbIC, KUCHIK, CBI3BIKTBI OYPBIIITHIK, OOJIBIC, IIETTIK €Cel, OeJIIEeK PeTTi
T Y3USITBIK, TEHIEY.

A.B. Tlexy!, M. Pamazanos?, H.K. I'yapmanos?, C.A. Vckakos?

L Mnemumym npukiadnoti Mamemamuky u aemomamusayul,
Kabapouro-Baarxapekuti mwayunoud yuenmp PAH, Harvuuk, Poccus;
2 .
Kapazandurckuti ynusepcumem umenu axademuxa FE.A. Bykemosa, Kapazanda, Kazaxcman

KpaeBas 3ajada a5 apodbHoro anddpy3noHHOro
ypaBHEHHUsSI B KPUBOJIMHEIHOI yIJIOBOI1 obJiacTn

B crarbe paccmoTpena n mokazaHa TeoOpeMa CyIIECTBOBAHUS U €IMHCTBEHHOCTH PACCMATPUBAEMON KPaeBOit
3agaun. [lokazaHo, YTO HEIPEPHIBHOCTH KPUBOJIMHENHON rpaHuIibl 1o ['€1pnepy obecriednBaeTr CymecTBOBa-
HUe pereHnii. KInHCTBEHHOCTD pelleHns 3aa49n JOKa3aHa B Kiiacce OYHKIUH, 0OpaIaomuXcs B HYJIb Ha
OECKOHEYHOCTH CO CTEIIEHHBIM BeCOM. BhIdmcienne oTBeTa 3a/1a4u MOCTPOCHO B sIBHOM BH/IE Uepe3 pelreHne
WHTEIPAJIbHOrO ypaBHeHHsI BosbTeppa.

Karoueswie crosa: HempmHIputIecKas 00IacTh, KPUBOJINHEHAs yIyioBasl 00JIacTh, KpaeBas 3ajada, Jpoo-
HOoe M dy3nOHHOE ypABHEHUE.
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Semi-integration of certain algebraic expressions

The theory of fractional calculus developed rapidly as the applications of this branch are extensive nowadays.
There is no discipline of modern engineering and science that remains untouched by the techniques of
fractional calculus. In fact, one could argue that real world processes are fractional order systems in general.
In this article, we obtain the semi-integrals of certain algebraic functions in terms of difference of two
complete elliptic integrals of different kinds by using series manipulation technique.

Keywords: hypergeometric functions, complete elliptic integrals, Pochhammer symbol, semi-integration.

1 Introduction, definitions and preliminaries

Fractional Calculus is the integration and differentiation of non-integer (fractional) order. The concept of
fractional operators has been introduced almost simultaneously with the development of the classical ones. The
idea of differentiation (and integration) to a non-integer order has appeared surprisingly early in the history
of the Calculus. It is mentioned in a letter dated September 30, 1695, from G.W. Leibniz to G.A. L’Hépital,
and in another letter dated May 28, 1697, from Leibniz to J. Wallis. This consequently attracted the interest
of many well-known mathematicians, including Euler, Liouville, Laplace, Riemann, Griinwald, Letnikov, and
many others [1; 284].

In 1731, L. Euler extended the derivative formula in general form ([2; 80, Eq.(2.37)], [1; 285, Eq.(5)]):

Dt {2} = Ao I'A+1) A
dat F'A+1—p)
where p is not restricted to integer values and p may be an arbitrary complex number and T'(14+)X), T(1+A—p)
are well-defined. When p is positive real number, then above formula stands for fractional differentiation and
when g is negative real number, then above formula represents fractional integration.
In this paper, we shall use the following standard notations:

N:i= {1,2,3,---}; No:=N[J{0}; Z5 =2z [J{0} ={0,-1,-2,-3,---}.

The symbols C, R, N, Z, Rt and R~ denote the sets of complex numbers, real numbers, natural numbers,
integers, positive and negative real numbers, respectively.

The classical Pochhammer symbol («), (a,p € C) is defined by ([3; 22, Eq.(1), p.32, Q.N.(8) and Q.N.(9)],
see also [1; 23, Eq.(22) and Eq.(23)]).

A natural generalization of the Gaussian hypergeometric series o Fi [, 3;7; 2] is accomplished by introducing
any arbitrary number of numerator and denominator parameters [1; 42, Eq.(1)].

Each of the following results will be needed in our present study.
Some complete elliptic integrals [4; 321, Eq.(25)]:

s l l.
2 cos? 6 27 2
B(x) :/0 = 2 o 22 | jxl <1,

do
\/(1 — 22 sin? ) 2;
*Corresponding author.
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3 3.
B : 20 20 27 929
Cl)= [T g Fon 2 |5 el <1,

0 < (1 — 22 sin29)) 3
2 1 3.
20 2

/ sin 2F1 22 3 ‘.’E| < 1.

\/(1 =22 sin? ) 2;

Complete elliptic integral of second kind [4; 317, Eq.(2)]:

3 S 2 P 3 3 )
x):-/o v/ (1 — 22 sin 9)d9:§2F1 x| Jx) <1

Complete elliptic integral of first kind [4; 317, Eq.(1)]:

] do m
:/ :§2F1
0 /(1 — 22 sin?0)

See [3; 70, Q.N.(10)]:

where |z| < 1 and 2a € C\Z, .

o, o+ 3; 1

2a—1
%0 RV =) <1+\/lz> ’

where |z] < 1 and 2a € C\Z, .

Special value of the hypergeometric function [5; 474, Entry(100)]:

2. 1.
s 2 4
oF x ZE{Q—@—Fx)\/l—x}.
3;

Considering the work of Abramowitz et al. [6], Andrews [7, 1|, Gradshteyn et al. [8], Magnus et al. [9],
Srivastava et al. [10] and Qureshi et al. [11], we aim at obtaining the semi-integrals of certain algebraic functions.
In Section 2, semi-integrals of some algebraic functions are mentioned in terms of difference of two complete
elliptic integrals of different kinds. In Section 3, their proofs are given by using series manipulation technique.

2 Some results involving semi-integration

In this section, we obtain the semi-integration of some algebraic expressions in terms of difference of two
complete elliptic integrals of different kinds.

d—s T _2 (g
; = — {B(vx) -D(a)}. (3)
de™2 | /g (1—|—\/1—m) ﬁ{ }

-z [ -1{20-172+2? 2
At {m (M - 20+7:c> } -2 (B -1cm)}. (1
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a3 [2-(2+2)/0-2
dz—3 T3

()
d—3 —\T _ 4 g 1
T = —= {B(V2) - ;K({\a2) . (6)
o {m(Hmf} 3 )
d—3 3V _ 38 Jq 1
— =—= 1CW2) - D). (7)
b {m(umf’} - g
d-z 3 2 73+3\2/E7 7373@? 8 1
LRy N v | p= 2= {ewvn - gewa) ®
dx~3 4, ALLYIG  41-VII5, T
d—z x ByV(l-—2)—z+8) | _ 16 —_ 1 -
dz~—2 { (1 —CE> (1_|_ (1 —a:))4 } VT {C(\F) K(\[)} ©)
d-% xz—x+2(1— (1—95)) 4
. { i - {owa - jE(va (10
U NG _ 4[5
—= 1DWz) - JK(Vr) (11)
o { 1—2) (1+m)2} ”{ }
- { (= x)} -2 {KWD) - B (12
3 Demonstration of the semi-integrals
Proof of the result (3):
d=s N -1 d® ~ 1 2 ?
dx=32 {\/1—x (1+\/1—x)2} 4 dr3 {f Vi—z <1+\/1—x> } (13)
Using equation (2) in equation (13), we get

N

d-
dr~

N

1 3 9.
-z -1 d: - » 5
{\/1_(5(1“"\/1—33)2}_ 4 dx—% {fQFll ]}
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—x/T
8

2F1

From right-hand side of equation (3), we have

1 1 1 3.
2 T 27 29 27 2
NG {B(vz) -D(Va)} = 2{ 2 F , x| — oF ) T ] } =
2 (L) (1) gn = (L) (3) on
_ \Zf{ T;) (2)712():)7;1‘ _nz:;) (2)n2()i)7»7| } _
)

From equations (14) and (15), we arrive at the result (3).
Proof of the results (4) to (8):

The proof of the results (4) to (8) follow the same steps as in the proof of the result (3). So we omit the
details.

Proof of the result (9):

d-% {\/ z (8\/1x:r+8)} d-% {\/5 ( 8YI—z— (z—8) )}
da—% Iz (1+yI-a) da—3 (1+vi—a)'Vvi—z
a3 {\/E (8\/1—33(1-1—\/1—96)—1—73:)}_
dz~% 1+vVi—a)' Vi—z

:ﬁ {\/3? ( 8 + w >}
do3 1+vi-2) (1+vi-2)'vi-=
4

d—> 2 ’ Ta 2
_ + , 16
do—3% {\/E (1—&—\/1—3:) 16\/1—x(1+\/1—x) } (16)
Using equations (1) and (2) in equation (16), we get

_1 _1 22 33
3 . — 3 25 . PRI
d 1 \/ r 8VI—-z-—=x +4 8) d AN . Tx JF, .
dr—2 1—=x (]_+ /1—.’E) dr—2 16
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LS L@ T et 7 S (3,0 Dt ) e
— 1), Thm+2) nl 16 =~ (5), TM®+3) nl
VT (2), (), 2" | 2127 ﬁi (3), (3, 2" _
2~ (4, 128 (5, !
3 3. 9 5 5.
PREGE 21 25 929
= 1'27(' 2F1 X mng/E 2F1 €T . (17)
4 5;
From right-hand side of equation (9), we have

3 3. 11,
16 1 27 2 27 2
VT 8 3: 1:

Replacing n by n + 1, we get

% {cwa;K(ﬁ)} e > 2, 0 (”E) -

2~ (4, n! 128 — (5),, n!
3 3. w 5 5.
T/ 20 2 21z s 20 2
= 2F1 2F1 X (18)
2 A: 128 5

From equations (17) and (18), we arrive at the result (9).

Proof of the results (10), (11) and (12):

The results (10), (11) and (12) are obtained in a similar manner by following the same steps as in the proof
of the result (3) and making use of the equation (2). So we omit the details here.

4 Concluding remarks and observations

In this paper, we have obtained the semi-integrals of certain algebraic functions in terms of difference
of two complete elliptic integrals of different kinds by using series manipulation technique. We conclude this
paper with the remark that the semi-integrals of various other functions can be derived in an analogous manner.
Moreover, the results deduced above are expected to lead some potential applications in several fields of Applied
Mathematics, Statistics and Engineering Sciences.

Conflicts of interest: The authors declare that there are no conflicts of interest.
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M.U. Kypermmu, /Ix. Majeku

torcamus Musiua Heaamusn (Opmanve, yrusepcumem), Horo-Zleau, Yndicman

Keiibip aaredpablK epHEKTEP/i >KapThLIail THTErpaaaay

BeuiekTi ecenrey Teopusichbl T€3 JaMbBII KeJieli, cebebi Kasipri yaKbITTa OChl O0JIBICTBIH, KOCBIMITIAJIAPHI 6T
keH. Ka3zipri 3aMaHfbl TEXHUKA MEH FHIIBIMHBIH 6ip/ie-6ip MmoHI GOJIIIEKTI ecenTey oiCTEPIHEH THIC KAJFaH
koK. [IIbrH MoHiHZE, HAKTHI 9JeM MpoIecTepi GesImeKTi peTTi XKyitemep aen aiityra Gosramasl. Makasia-
na arebpaJsiblK, PYyHKIUAIAPIBIH XKapThLIail HHTerpaJIapblH KaTapjapMeH MaHUIYJIAIUIIaY TEXHUKACHIH
KOJIZIaHa OTBIPBII, 9P TYPJI €Ki TOJIBIK, JINITUKAJIBIK, HHTETPAJIIAP/IbIH, ABIPHIMbI TYPFBICHIHAH AJIbIHFAH.

Kiam ce3dep: rumiepreoMeTpusiIbIK, (DYHKITASIIIAP, TOJBIK, SJLUITHIITHKAJBIK, HHTerpajaap, lloxraMmmep cumMBo-
JIBI, YKapThLIANUHTETr PAJIIAY.

M.U. Kypermmu, /Ix. Majzku

torcamus Mussua Heaamus (Lenmparorodi yrnusepcumem,), Horo-Zlesu, Hnous

ITonyunTerpupoBaHe HEKOTOPbHIX aJITeOpandecKnx BbIpayKeHUid

Teopust 1poOHOIO UCUKUCTIEHUS OBICTPO PA3BUBAETCSI, TAK KaK IPUJIOYKEHUS ITOMU 00JIACTH B HACTOSAIIEE BPEMsI
ovyenb mupoku. Hu omgHa aucnuninHa COBPEMEHHOM TEXHUKU M HAYKH, B I[€JIOM, HE OCTAETCS HETPOHYTOU
MeTOo/IaMu JIPOOHOro mcumciaeHus. Ha camMoMm [iesle MOXKHO yTBEPKIATb, YTO IPOIECCHI PEATHHOTO MDA
ABJISIOTCSI CHCTEMaMHM JIPOOHOIO Mopsijika. B craTbe 1oy YeHbl ToJlynHTerpaJibl HEKOTOPBIX aJredpandecKux
GYHKIUN B TEPMUHAX PA3HOCTU JABYX IMOJHBIX SJUIANTUYECKUX HHTETPAJIOB Pa3HBIX BHUIOB C MTOMOIIBIO
TEeXHUK W MaHUIIYJIUPDOBAHUSA PAJAMU.

Karouesvie caosa: runepreoMerpudeckne (pyHKIINN, TOJHBIE JIANTHYECKHE HHTEerpabl, cuMBos Iloxram-
Mepa, HOJIyUHTEeIDUPOBaHUE.
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The Schrodinger equations generated
by ¢-Bessel operator in quantum calculus

In this paper, we obtain exact solutions of a new modification of the Schrédinger equation related to the
Bessel g-operator. The theorem is proved on the existence of this solution in the Sobolev-type space Wq2 (R;’)
in the g-calculus. The results on correctness in the corresponding spaces of the Sobolev-type are obtained.
For simplicity, we give results involving fractional g-difference equations of real order a > 0 and given real
numbers in g-calculus. Numerical treatment of fractional g¢-difference equations is also investigated. The
obtained results can be used in this field and be supplement for studies in this field.

Keywords: g-integral, g-Jackson integral, ¢g-difference operator g-derivative, the g-Bessel Fourier transform,
the Sobolev type space,the Schrédinger equation, ¢-Bessel operator.

Introduction

The origin of the g-difference calculus plays an important role due to their numerous applications and its
importance in mathematics and other scientific fields. This calculus can be traced back to the works in [1,2]
by F. Jackson and R.D. Carmichael [3] from the beginning of the twentieth century, while basic definitions and
properties can be found e.g. in the monographs [4, 5]. Recently, the q-difference calculus has been proposed by
W. Al-Salam [6] and R.P. Agarwal [7]. Today, maybe due to the explosion in research within the fractional
differential calculus setting, new developments in this theory of fractional g-difference calculus have been
addressed extensively by several researchers.

The Schrodinger equation is the fundamental equation of the science of submicroscopic phenomena known as
quantum mechanics. This equation studied by the Austrian physicist Erwin Schrodinger in 1926 [8]. Moreover,
it is widely used in modern science in such areas as quantum information and econophysics [9,10].

Nowadays, the several methods and techniques have been developed to study exact and approximate
analytical solutions to the modern models of the Schrédinger equation for a better understanding of its dynamical
behavior [11,12]. The Exact solutions of the Schrédinger equation play an important role not only from a pure
mathematical point of view but also for the conceptual understanding of the physical phenomena.

The paper is organized as follows: The main results are presented and proved in Section 2. To not disturb
these presentations we include some necessary Preliminaries in Section 1.

1 Preliminaries
Throughout this paper, we assume that 0 < ¢ < 1. We start by recalling some basic notation in the

g-calculus, see e.g. the books [4] and [13].
Let @ € R. Then a g-real number [a], is defined by

. 1—g®
where lim 4% = a.
g—1 74

*Corresponding author.
E-mail: shaimardan.serik@gmail.com
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‘We introduce for k € N:

(@0 =1, (@ahn = [ (1 - ") (@) = I (a,q)n (aiq)e =~

P n—co (405 q)oc

The g-analogue of the binomial coefficients [n],! are defined by

in],! = 1, ifn=20
T [y x [2]g X -+ X [n]y, f nEN.
The ¢>-differential operator is defined by (see [14] and [15])

flato) + f(—q"'z) — f(a@) + f(—qz) — 2f(—=)

aqf(x) = 22(1— q) )

where z # 0.
Note that if f is differentiable at x, then 1irri 0gf(x) = f'(z).
q—

A repeated application of the g2-analogue differential operator n times is denoted by:
0p n+lp n
0, f =1, 9 f—aq(aqf).

The definite g-integral or the g-Jackson integral of a function f is defined by the formula (see [1] and [2])

[0 = - 0a Y- st we 0.
0 k=0

and the improper g-integral of a function f(z) : [0,00) — R, is defined by the formula

[rodt=a-0 Y 1@,

k=—oc0
We denote RY = {¢", k € Z} and define

P

L (B]) = A fllpa = | [ IF@P2 e | < o).
0
Definition 1. (see [16] and [14], [17]) The ¢-Bessel Fourier transform is defined for f € L}, ,(Rf), by

FoalHHA) = cqa /f x)ja(Ax;q ) 2O"qu:lc7 0<z<oo (1)
0

and its inverse F, Lg(x) is given by
o0

Fpdo@) = cp [ Frn@)WiaOa @A 0 <0< o, 2)
0
1 —
for g € Lé}q(R(}*‘), where ¢4 = F(qj((2+1).
Definition 2. (See [18]) For 1 < p < 0o, we define the Sobolev type space associated with the g-Bessel Fourier
transform W2 (R;") equipped with the norms

l ) = / L+ AR)E |F o (0)(N) Py
0
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Let 0 < T < co. We also introduce the spaces C* ([0, T]; WP(R])) and C* ([0,T]; LE(R])) defined by the
finiteness of the norms

k
Ilon oy e * 22 o 198 g
n—
and
k
H“Hck([o,T];Lg(R;)) = Oogl&x 107 u(t ')HL@(R;y
n—
respectively.

For A € C, the function j,(\z;¢?) is the unique even solution of the problem

{ Aq,ozf(x) = _)‘Qf(x)a
f0)=1,

where

1
Agaf(r) = W%Hl‘lm“@qﬂx)}

Moreover, if f and A, o f are in L}, ,(Rq ), then (see e.g. [14] and [17]):

FaalBgaf)N) = =N2Fga(f)(N). 3)
Theorem 1. 1) (Plancherel formula [17]) For all f € 9, .(R), we have
1Fg.0(Fll2,000 = [[fll2,00- (4)

2) (Plancherel theorem) The g¢-Bessel transform can be uniquely extended to an isometric isomorphism on
L2 (RF) with F 2 = Fya

2 Main problem
We consider the Schrédinger equation generated by the g-Bessel operator A, o f in the following form:
Opu(t, ) — ilg o zu(t,x) = f(t, ), (t,x)€[0,T] % R;‘, (5)

u(0,z) = p(x), = eR}. (6)

where the function ¢ is given functions listed above.
Theorem 2. Let 0 < a < 1. Suppose that f € C! ([0,T],L2 ) and ¢ € W(JQ(R(‘;). Then the problem

(5)-(6) has a unique solution u € C* ([0,T], L*(R])) N C ([0, T], W, ( +)) and can be represented by formula

u(t,r) = //exp —iANt)p(2) 70 (Ax; ) 2?0 (x5 )N d 2 d A
0

t
—I—cg/
0

Proof. We assume that

[=)

/exp (=i (t — 8)) f (5, 2)ja(A7; @) 2T 0 (A2; )N d 2 d Ads.
0
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for fixed A. Let us prove the existence first. Taking the g-Bessel Fourier transform F, , (see (1)) on both sides
of (5)—(6) we have a simple initial value problem (IVP) of linear ODE:

U'(t) +iN2U(t) = F(t) (7)

U0) =\ (®)
and 0 < t < T. The solution of the problem (7)—(8) is given by

t

U(t) = @\ exp(—i\*t) + /exp(—i)\2(t —5))F(s)ds. ©))
0

Now by using the inverse ¢-Bessel Fourier transform F, } in (2) to (9), we obtain the formula for the solution
of the problem (5)—(6), given by

exp(—iN*t)p(@)ja (A5 ¢°)a* T jo (Az; ¢*)N*H dgwd A

<
=
8
S~—"
Il

o
SN
Q

- 0\8

0\8 0\8

oo

/exp(—i)\z(t —35))f(s,z)ja(Az; q2)x2a+1ja()\x; q2))\20‘+1dqxdq)\ds.
0

2
o
0

Let o € W2(R}) and f € C ([0,T]; W2(R])). Using |exp (—2)| < 1 for z € C, Parseval’s identity(see (4))
and the relation (9) in the following form:

2

Faoo (u(t, D < B exp(—ia?h)]* + /eXp(—MQ(t—S))F(S)dS
0

IN

B+t / Fr (1)) ) ds.
0

Hence, using the Parseval’s identity (4) and (3)

lut, N30y = 1Faa (ult,)) 130,

N /IF a (ult ) ()P AZ* 1A
0

IN

t
1Faen () B+t [ 1Fpe (7050 By
0
t

A

ds

2 2
= ||w||2,a,q +1 / OISHSaSXT ||f(87 ) 2,a,q
0

||¢||%,a,q + TQHfHQC([O,T];Lg(Rqu)) < 0. (10)

IN
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Then,

lutt Mwaesy = [ (140 P (e, ) V) dgA

0\8 0\8

t oo
< @HN) BN oA +1 / /(1 + A2 [ Fga (f(s.9) (V)] dygAds
0 0
t
< H‘PHW(?(R;) + ohax, 1£(s, ')||W§(Rq+)d3
0
< H‘)OHW(?(RJ) + Hf”C([(),T],WqZ(Rqu)) < 00. (11)

From this, ||u\|c([07T])W3(R;)) < 00.
Finally, using the relation (9) and the Parseval’s identity (4) we have

0t Mhzry < [+ Fua () O A+ [ 1Fpa (78D O A
0 0
< llellwemsy + 17 )l L2 @)
< ||90||W3(Rq+) + ||ch([o,T}7Lg(Rq+)) < oo. (12)

From (10), (11) and (12) we conclude that the solluation u € C ([0,T], W2(R
unique. Assume that there are two different solutions u(¢, x) and v(t, z) of Problem

$)) U C ([0.T], Ly(R)) is
(5) and (6) such that
{ atu(tax) - iAq,a,mu(tﬂ :ZJ) = f(tvx)v (t71') € [OvT] X Rqua
u(0,z) = o(z), z €RY,
e { Duv(t, 1) — iBgaar(t,2) = f(t,2), (t,2) € [0,T) x RY,
v(0,2) = p(z), r e RS

Denote W (t,z) = u(t,x) — v(t,x). Then the function W (¢, z) is the solution of the following problem.

AW (t,2) — il W(tx) =0, (t,z)€[0,T] xRy,
W(0,z) =0, z € R

From (10) it follows that W (¢,x) = 0. Hence, u(¢,z) = v(t, ). This contradiction shows that our assumption is
wrong so the solution is unique. The proof is complete.
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YILH. Nymunes amovmdaess Eypasus yammu yrusepcumemi, Hyp-Cyaman, Kasaxeman;
2 Axademur E.A. Boxemos amuwmdaes. Kapaeandv ynusepcumemi, Kapaeandw, Kazaxcman

KBaHTTBIK ecenrteyle ¢-Beccesib onepaTropbIMeH aJIbLIHFAH
IHIpeannarep Tenaeyepi

Maxkanana g-Beccens omepartopsiven Oaitnanpictel [llpemnnrep TenpeyiniH KkKaHa MOINMUKAINASICHIHBIH
HaKTHI mentimaepi ajgpiarad. Byut memivuin CobosieB Tuirrec Wq2 (]R(J{) KeHicTirinmeri g-ecenreyze 6ap ekeH-
Jiri TypaJibl TeopeMa jasesaerred. CoboJIeB TUNITEC TUICTI KEHICTIKTEP/Ieri YPBICTHIFBI TYyPaJibl HOTUKE-
Jiep anbiHapl. KapamafibIMapuiblK, YImH a > 0 HaKTBl PeTTi OOJIeK ¢-afbIPBIM/IBIK TEHJIEYJIEPIH YKOHE
g-ecenTeyneri OepiireH HaKTHI CAHIAP/AbI KAMTUTBHIH HOTHXKeJep Oepinren. Besek g-aibIpbIMIBIK, TeH1e-
yJIepiH CAHIBIK OHJEY e 3ePTTE . AJIBIHFAH HOTHUXKEIEP *KaHa *KoHe 91ebueTrTepieri 6e/riji HoTuKeTepIi
2KAKCAPTAbl 2KOHE TOJIBIKTBIPAIBL.

Kiam cesdep: g-unrerpad, g-/1>KeKCOH UHTErpaJIbl, g-albIPMAIIBLIBIK, OIIEPATOPbI, ¢-TybIH b, g-Pypbe Bec-
cesib Typaenaipyi, Cobosnes tunrec Kenicrik, IlIpeaunrep Tenmeyi, g-Beccennb omeparopsr.

Mathematics series. Ne 1(105)/2022 107



S. Shaimardan, N.S. Tokmagambetov

C. Maitmapaan!, H.C. Toxkmaramberos!?

! Bepasutickuti nayuonarvnod yrusepcumem umenu JI.H. Dymuaesa, Hyp-Cyaman, Kasazcman;
2 Kapazandurckuti yrnusepcumem umenu axademura B.A.Byxemosa, Kapazanda, Kaszazcman

YpaBuenud Illpenunrepa, mopoxkJieHHbIE ¢-OIMEPATOPOM
Beccesist B KBAaHTOBOM MCYUCJIEHUN

B crarbe mambl mosrydennl TOUHBIE peleHus HOBOM Mommdukanuu ypaBHenusi [llpeauurepa, cBsS3aHHBIE
¢ g-oneparopoM bBeccens. lokazana TeopemMa O CyIIECTBOBAHHU ITOrO DEIIEHUs B IIPOCTPAHCTBE CODOJIEB-
CKOr'O THIIA qu (Rf{) B g-ucuucyieHuu. [loyrydeHbl pe3yibTaTbl O KOPPEKTHOCTA B COOTBETCTBYIOIIUX ITPO-
cTpaHCcTBaxX cOO0eBCKOro Tuta. st MpOCTOTHI aBTOPaMU IPUBE/IEHBI PE3Y/IbTATHI, CBSI3aHHBIE C APOOHBIMHU
Q-Pa3HOCTHBIMHM YPaBHEHUSIMU JIEHCTBUTEJILHOIO NOpsJKa a > 0 M 3a/laHHBIMU BEIIECTBEHHBIMHU YHCJIaMU
B g-ucuucyenuu. Mccnenopana dnciieHHasi oOpaboTKa JPOOHBIX ¢-pPasHOCTHBIX ypapHeHuil. [losyueHHble
pe3y/IbTaThl ABJIAIOTCA HOBBIMU U JOIOJHSAIOT U3BECTHBIE paHee B JIUTepaType.

Kmoueswvie cnosa: g-maTerpas, g-mHTerpaa J»KeKcoHa, ¢-pasHOCTHBIN oOIeparop, ¢-IPOU3BOIHAS, (-
npeobpazosanne beccens—Pyprbe, mpocTpaHcTBO cOH60IEBCKOrO THIA, ypaBHenue IlIpeaunrepa, g-oneparop
Becces.
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Separability of the third-order differential
operator given on the whole plane

In this paper, in the space La2(R?), we study a third-order differential operator with continuous coefficients
in R(—o00,+00). Here, these coefficients can be unlimited functions at infinity. In addition under some
restrictions on the coefficients, the bounded invertibility of the given operator is proved and a coercive
estimate is obtained, i.e. separability is proved.

Keywords: resolvent, third-order differential operator, separability.

1 Introduction

Third-order partial differential equations are the basis of mathematical models of many phenomena and
processes. Significant literature is devoted to the solvability of boundary value problems for third-order
differential equations [1-6] and cited papers there.

Consider the differential operator

PBu 0

ou u
Lu+ A = 87/-*—32(19)@4‘1{1(9)% + Ro(y)u + \u (1)

initially defined on Cg% (R?), A > 0.

g% is a set consisting of infinitely differentiable finite functions in R2.

We assume that the coefficients of operator (1) Ro(y), R1(y), R2(y) satisfy the conditions:

i) Ro(y) > do) > 0, R1(y) > 61 > 0, —Ra(y) > d2 > 0 are continuous functions in R(—oco, +00);

ii) o = sup 1;[;((?)) < oo,pu1 = sup gll(("i)) < 00,2 = Sup 1;22(('1‘{)) < oo.

ly—t|<1 ly—t|<1 ly—t|<1

It is easy to verify that the operator L + A admits closure in Lo(R?), which we also denote by L + AI.

It should be noted that the issue of the existence of a bounded operator (L + AI)? of a closed operator
L+ in Ly(R?) is equivalent to the following problem: Find a unique solution of (L + A )u = f(x,y) € La(R?)
belonging to La(R?), i.e. u € La(R?). In this case, the closed operator L + A generates a problem without
initial conditions ([7], Chapter III, Section 4).

Recently, there has been an increased interest in differential operators with unbounded coefficients [8-14].

In [15], the linearized Korteweg-de Vries operator was studied, which generates the so-called periodic problem
without initial conditions on the strip.

In contrast to [15], we study the separability of the third-order differential operator defined on the whole
plane.

Theorem 1. Let the condition i) be fulfilled. Then the operator L + AI is continuously invertible in Lo(R?)
for A > 0.

Following the papers [8, 9], we introduce the following definition.

Definition 1. We called the operator L is separable in Lo(R?) if the estimate

du
dy

holds for u € D(L), where C is independent of u(x,y), || - ||2 is the norm of Lo(R?).

o
Ox3

ou

ma 55| +|mw:

"
2

+ 1 Ro(y)ull, < C([Lully + [[ully),
2

*Corresponding author.
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Theorem 2. Let conditions i) - ii) be fulfilled. Then the operator L is separable.
Example. Let Ro(y) = |y|? + 1, Ri(y) = ' Ry(y) = —e'0%W 00 < y < o00. Tt is easy to verify that
all the conditions of Theorem 2 are satisfied. Consequently, the operator L is separable, i.e.

100]y| OU Ou

3

1000|y|a u
—e g
ox

923 + H(|y|2 + 1)U||L2(Rz) < CILull g, g2y + lull py (r2)),

2(R?)

La(R2) ’

H@y Ly(R?) ‘

where C' is a constant.
2 Auziliary lemmas and inequalities
Lemma 2.1. Let the condition i) be fulfilled and A > 0. Then the inequality
1L+ ADull L, g2y = (S0 + ) llull L, (2 » (2)

holds for all w € D(L), where d¢ > 0.

The proof follows from the functional < (L + Al)u,u >, where < -,- > is the scalar product in Ly(R?),
u € D(L).

Consider the operator

(e + M)z = 2'(y) + (—it"Ro j(y) + itRy;(y) + Ro;(y))2(y), (—o0 <t < o)

where Rs ;(y), Ri1;(y), Ro,;(y) are bounded periodic functions of the same period A; = (j — 1,5+ 1),
J=0,£1,£2, z(y) € C§°(R), —o0 < t < 00, z(y) = uly) + i (y).

It is easy to verify that the operator l; ; admits closure in Lo(R), which we also denote by I; ;.

Lemma 2.2. Let the condition i) be fulfilled. Then the estimate

1.5+ AD)2lly = (d0 + A) [|2]l, 3)

holds for all z(y) € D(ly; + AI), || - ||2 is the norm of La(R).

Proof. Lemma 2.2 is proved in the same way as estimate (2) of Lemma 2.1.

Lemma 2.3. Let the condition i) be fulfilled. Then the operator (I; ; + AI) has a continuous inverse operator
(It,; + AI)~! defined on the whole Ly(R).

Proof. By the estimate (3) it suffices to show that the range is dense in Ly(R).

Let us prove it by contradiction. Let us assume that the range is not dense in Lo(R). Then there exists an
element ¥ € Ly(R) such that < (I; ; + Al)u, ¥ >= 0 for all u € D(l; ;). This follows that

(It + A0 = =9 + (it® Ry j(y) — it Ry ;(y) + Ro;(y))9 = 0. (4)

in the sense of the theory of generalized functions. Now, using the periodicity of the functions Ro(y), Ri(y),
Rs(y), we have that (it>Rs ;(y) — itR1 ;(y) + Ro;(y))9 € La(R). Given this and from (4) it follows that
9 € W2 (R), where W3 (R) is the Sobolev space. The general theory of the embedding theorems implies that

lim J(y) = (5)

ly|—o0
Taking into account equality (5) and repeating the arguments used in the proof of the estimate (3), we obtain
[(e.g + A0, = do |19l - (6)

From estimates (4), (6) it follows that ¢ = 0. Lemma 2.4 is proved.
Let {152, € C5°(R) is a set of functions such that o;(y) > 0, suppp; € A;(j € Z), > ¢3(y) =

j=—00
Here we note that any point y € R can belong to no more than three segments from the system of segments
{suppg;} 9, 10].

Assume that
o0

Kxf= Y @i+ 0 f,

j=—o00
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o0

Byf= > i) +A)""eif, feCF(R), A>0.
j=—o00
It is easy to verify that
e+ ADESf = f+ > @)y + M) s, (7)

J
where

(Iy + X))z = —2'(y) + (—it*Ra(y) + itR1(y) + Ro(y))z, z € D(1y).

Lemma 2.4. Let the condition i) be fulfilled. Then there exists a number \g > 0 such that ||By||,_,, < 1 for
all A > Xo. -
Proof. Only functions ¢;_1, ¢;, ¢j4+1 are nonzero in the interval A;(j € Z) , consequently

j+1
IIBAin(R):/ | Z @) e+ AD) s fPdy < Z /| > k@) e+ AD on f]Pdy.
- j=—00 ]——OOA k=j—1

From the last inequality and by using the obvious inequality (a + b+ ¢)? < 3(a? + b* + ¢?) and estimate (3), we
have

oo Jj+1
1B\l < D /\ 3" [l + M) rf][Pdy < 9 Z 165 es + AD 1051 ) <
j:_OOAj k=j—1 j=—00

(oo}
<9 Z [ (11 + M)~ ‘PJJCHL2 <9-c Z (e + /\I)_lHiz(RHMm) : H‘ij”iQ(R) <

j=—o00 Jj=—00
< e / (Pl = 15 U
(50 + A B 80‘7 y (5 + A) L2(R)
Hence 9.
C
IBA Ly ()= La(r) < ot 02 (8)

From (8) it follows that there exists a number Ao > 0, such that A > Xo, |Ballp,(g)—1,(r) < 1. Lemma 2.4
is proved.
Now consider the initial operator

(e + M)z = 2'(y) + (—it*Ra(y) + itRi(y) + Ro(y))z(y),

where z(y) = u(y) + i(y), 2(y) € CF(R), —o0 < t < 00, (R = (—00,0)).
Lemma 2.5. Let the condition i) be fulfilled. Then the estimate

1+ ADzlly = (0 + A) [|2]] 9)

holds for all z € D(I}).

Proof. The proof follows from the functional < (I; + Al)z,z >, z € D(I}).

Lemma 2.6. Let the condition i) be fulfilled. Then there is a number )¢ such that operator l; + A is
boundedly invertible for A > g and the equality

(It + X)) = Kx\(I - By)™! (10)

holds for the inverse operator (I; + AI)~1
Proof. Using estimates (7), (9) and Lemma 2.4, we obtain the proof of Lemma 2.6.
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On the existence of the resolvent. Proof of Theorem 1.

In this subsection, we prove Theorem 1. Firstly, we define the following definition:
Definition 2. The function u € Ly(R?) is called a solution of the equation (L + Al)u = f in Lo(R?) if there
exists a sequence {u, }5°; C C§°(R?) such that

lun —ully =0, [[(L+X)u— f|ll, =0, as n— oc.

Consider the equation

o & o
(L4 Mu= 50+ Raly) 55+ Raly) 5+ Roly)u -+ u = [ € CF(R?) (11)

Applying the Fourier transform to the equation (11) with respect to the variable x, we obtain

(I + A1)u = = (1, y) + (=it* Ro(y) + it Ra (y) + Ro(v)) = f(t,y), (12)

where @(t,y), f(t,y) are the Fourier transform of functions u(xz,y) and f(z,y) with respect to the variable .
Further, we denote the Fourier transform by F,_,; and the Fourier inverse formula by F,_}!, .
Hence, the problem of solving of the equation (11) turns into the problem of solving of the equation (12).

Therefore, according to Lemma 2.6, we have
U=+ M)f = Kx\(I—B\'J.

By using the inverse operator F,_} , we find

u(e,y) = Fy L = Frly (o + M)V, (13)

The set C5°(R?) is dense in La(R?). From here and passing to the limit, through the boundedness and continuity
of the Fourier transform, we obtain a proof for any f(x,y) € La(R?). The uniqueness follows from Lemma 2.1.
Theorem 1 is proved.

On the separability of the operator. Proof of theorem 2

To prove separability, first, we give the following lemmas.

Lemma 2.7. Let z(y) € D(ls; + M) and z(y) = u(y) + id(y), then it>Ra(y)z(y) € L2(R) if and only if
t3Ro(y)u(y) € L2(R) and t3Ry(y)9(y) € L2(R).

Proof. The proof of Lemma 2.7 is obvious.

Remark. This Lemma is also true for it>Ry ;(y)z(y).

Using this lemma, we consider the operator

(lej + M)u=/(y) + (—it* Ry ; (y) + itR1 ; (y) + Ro(y) + Nu(y)

on the set of infinitely differentiable, finite and real-valued functions.
Lemma 2.8. Let the condition i) be fulfilled. Then the estimates:

I1(L,; + )\I)u(y)H2 > Ro(y;) |ully, n=0,%£1,£2..., where Ry(y;) = miAAROJ-(y); (14)
HISTA
l(Le; + ADu(y)ll, > [tR1(F5) [[ully, n = 0,£1,£2..., where Ri(7;) = neliAARl,j(y); (15)
Yy J
[Ty + ADu)|ly > [#PRo(T5) |lully 7 = 0,1, £2..., where Ry(T;) = ngiAg\Rg,j(y)\ (16)
Yy J

hold for any uw € D(l;; + AI).
Proof. Let u(y) € C§°(R). It is easy to verify that fix;o u'(y)u(u)dy = 0 and reproducing the computations
used in the proof of Lemma 2.1, we have

| < (lej +ADu,u> | = |/ (—it’ Ry j(y) + itRy,;(y) + Ro;(y) + Nu’dyl. (17)
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From (17) we obtain

| < (g + M)u,u>| > I/ (Roj(y) + A)|u*dy| > HeliALRo(y) el - (18)
—00 Yy 3

Using the Cauchy-Bunyakovsky inequality, from (18) we obtain
10,5+ AD)ully = Ro(y;) [[ull, (19)

where Ry(y;) = min Ry(y).
ST
From (19) we obtain the proof of inequality (14) of Lemma 2.8. Inequalities (15) and (16) can be proved in
the same way as inequality (14). Lemma 2.8 is proved.
Lemma 2.9. Let the condition i) be fulfilled and A > A, « = 0,1,2,3, p(y) is a continuous function defined
on R. Then the estimate

oIt o+ AD T iy gy < €89 [P +AD )10 (20)

holds, where —oo < t < 00
Proof. Let f € C5°(R). From the representation (10), considering the properties of the functions ¢; (j € Z)
we have

P G+ AD T FS, gy = PO KA = BT ]2,

/ IS o5le; + D Yos (T — By) L f2dy.
{7}

From the construction it follows that on the intervalA;(j € Z), only functions ¢;_1, ¢;, @41 are nonzero,
therefore

o] Jj+1

(W)t (1 + AT) 1fHL <y /|p(y)|t|a2¢j(5t,j+)\1)_1s0j(I—BA)_1f|2dy§
]——OOAJ. Jj—1
<95upHp Mt %p (U, + M) 1HL /Z(p] |(I — By)~"'f|*dy. (21)

As is known (3 %) = 1, then from (21) we obtain
J

[Pl + AD TS, iy < 950 [ 05 +AD T 1 0a, / (1= By fPdy <
J

o 12 112 2
<9sup oWl e+ A 0,17 = B0 o115 (22)
j
From Lemma 2.4 it follows that || — BAHSaz < ¢(N). From this and (22), we obtain

[p(y)lt] ](ltvj+>\I)71HL2(R)—>L2(R)Sg (A f‘épHp YL @5l + M)~ HLQ(A)

Lemma 2.9 is proved.
Lemma 2.10. Let the conditions i)-ii) be fulfilled. Then the estimates

HRQ(y) (lt + /\I Cy < oQ; (23)

- HLQ(RHLZ(R)

- HLQ(R)—>L2(R)
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HR2 |t‘ (lt + /\I < (05 < o0, (25)

- HLQ(R)HLQ (R)

hold, where Cy, Cy, Cy are independent of t (n = 0,+1, £2...).
Proof. (10) shows that the operator Ro(l; + AI) is bounded if sup || Ro(y)ep; (Is,; + M)~ HLz(A s bounded.
jez 3

Therefore, we will estimate the last expression

[Ro@)ei (e + AN M2 s zamy < COV sup 1Ro);(les + AD M]3,
J

IN

12
gC(A)sgg;n%ﬂRo ()e;1? ||ty + M) lHL <C’( )SlelgéIéEZXRo y) || (lej + M) 1||LQ(A]_).

From the last inequality and taking into account inequality (14) and the condition ii), we obtain

< C(A) sup ()

-1
||R0 )l +AD) HL R)—L2(R) = ytl<1 R3(t)

<O\ -p2 <02 < .

This estimate proves inequality (23) of Lemma 2.10.
Now we prove inequality (24). By virtue of estimate (20), we have

| Ra(y)It(1: + M) <C(A supHRl el (L,; + M) 1”1;

12
HL2(RHL2(R) i)—La2 () <

< C(\) sup max Rf (y)[t|* [|(le,; + M)~

'
JEZ yeR; L2(Aj)—L2(A5)

From the last inequality, Lemma 2.8 and condition ii), we obtain

| Ry (y)[t|(1e + AI) 1|\L <C(\)-p3 < CF < .

A)LQ(R) -

The inequality (24) is proved.
The inequality (25) is proved in the same way as the inequality (24). Lemma 2.10 is proved completely.

Proofs of Theorem 2.

According to Theorem 1 and equality (13), we obtain
— —17 1 > —17 itx
Ro(y)u(z,y) = Ro(y)F, (e + M) f(ty) = E/ Ro(y)(le + AT f(t,y) - e®dt =

t—)zRO( )(lt + AI)il.}‘v(ta y)

Hence, using the unitarity property of the operator Ft__}z, we find

IRotwpute)ld = [ ([ oot + A0 (b)) it =

— 00 — 00

[ s o [ oty ol a

From the last inequality and using Parseval’s equality in Lo (R), we obtain
112 BT 2
[Ro(w)uCe. )3 < sup|[Ra(w)t + 2D, [ [Few)| ar<
S —00

12
< sup|[ Ro(w) e + 2D |, - 1/ ()3 -
From the last inequality and estimate (23) it follows that

1Ro(y)u(z, y)lls < C3 |1 (x93 .
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i.e.
| Ro(y)u(z, y)l5 < Co |(L + A)ul3, (26)
where (L + A)u = f(z,y).

Further, using estimate (24) and repeating the computations and arguments that were used in the proof of
(26), we have

ou
RG] <z anu,. (27)
2
Similarly, we have
u
RQ(ZJ)% < Co (L + ADull, - (28)
2
Now from inequalities (26)—(28) we have
du ou
(L+ I gu_ v _ _ <
15 =]+ an - mwEs - mw G - R <

< [I(L+ )‘I)U‘HQ + Co[[(L+ ADully + Cy (L + Aully + Co [[(L + Alull, +

FANL A ADully, < C) (L A+ AD)ull, - (29)
From (26)—(29) it follows that
ou Pu ou
— <
15+ |G|+ megs| + 1ot < coviza, + )

where C' > 0 is constant number independent of u(x,y). Theorem 2 is proved.
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A.O. CyneitmbexoBa

JI.H. lymunes amvndazor Bypasusa yammows yrnusepcumemsi, Hyp-Cyaman, Kazaxcman

Bykin »ka3bIKTHIKTA OepijreH yimiHir perTi muddepeHnnanabik,

onepaTopbIH, OOJIIKTEeHY1 TypaJibl

Maxkanama Lo (R?) xenicriringe kosddumuentrepi R(—00, +00)-ma yaimiccis yrinmi perti qudbdepernmumarr-
JIBIK orepaTop KapacTeipbuirald. Mysma 6y koaddunmenTrep mekcizikre mekreycis GyHKusap 60J1ybl
mymKiH. CoHBIMEH KaTap, KO dUImeHTTePre KATHICTHI YKOFAPBIIAFbI MapTTapiAaH 6ejeK Keil [MeKTey KO
apKbUIbI OEPlJINeH OIepaTOP/IbIH, MEKTEYI KARTHIMIBLIBIFBL JIJIEJJIEHI€H YKOHE KOIPIUTUBTI Harasiay ajbl-
HFaH, SIFHU OOJIIKTEHY aHBIKTAJIFaH.

Kiam cosdep: pesosibBeHTa, yIIiHII perTi guddepeHuaiabK, onepaTop, 6eIiKTeHy.

A.O. CyneitmbexoBa

Espasuiickutl nayuonarvorul yrusepcumem umeny JI.H. Dymuaesa, Hyp-Cyaman, Kasaxcman

Paznenmumocth anddepeHnmaabHOro oneparopa TpPeThbero mopsjakKa,

116

3aJJaHHOI'0 HA BCEMl IIJIOCKOCTU

B craTbe B mpocTpancTse L2(R2) u3yder auddepeHInaibHbIi OepaTop TPETHEero MOPsiIKa C HEelPePhIB-
HpIMu KO3 durmentamu B R(—00,+00). 31ecy naHHble KO9(DOUIUEHTH MOIYT OBITH HEOIDAHMIEHHLIMU
dbyHKIIAMEI HA GECKOHEIHOCTH. ABTOPOM IIPU HEKOTOPBIX OMPAHUYEHUAX HA KOIMDMUIUEHTHI, TOMUMO YKa-
3aHHBIX BBIIIE yCJIOBUIA, JIOKa3aHa OrpaHUYeHHAsT OOPATUMOCTD 3aJAHHOTO OIIEPATOPA U IIOJIYyY€HA KO3PIIH-
TUBHAsl OIEHKA, T.€. Pa3IeIUMOCTb.

Karouesvie caosa: pe3onbBeHTa, AuddepeHIuaIbHble yPDABHEHUS TPETHErO IOPSIKa, Pa3JdeIMOCTb,
HeOTpaHUYEeHHbIE (DYHKIIVH.
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Construction of the differential equations system
of the program motion in Lagrangian variables
in the presence of random perturbations

The classification of inverse problems of dynamics in the class of ordinary differential equations is given
in the Galiullin’s monograph. The problem studied in this paper belongs to the main inverse problem
of dynamics, but already in the class of second-order stochastic differential equations of the Ito type.
Stochastic equations of the Lagrangian structure are constructed according to the given properties of motion
under the assumption that the random perturbing forces belong to the class of processes with independent
increments. The problem is solved as follows: First, a second-order Ito differential equation is constructed
so that the properties of motion are the integral manifold of the constructed stochastic equation. At this
stage, the quasi-inversion method, Erugin’s method and Ito’s rule of stochastic differentiation of a complex
function are used. Then, by applying the constructed Ito equation, an equivalent stochastic equation of
the Lagrangian structure is constructed. The necessary and sufficient conditions for the solvability of the
problem of constructing the stochastic equation of the Lagrangian structure are illustrated by the example
of the problem of constructing the Lagrange function from a motion property of an artificial Earth satellite
under the action of gravitational forces and aerodynamic forces.

Keywords: stochastic differential equation, stochastic basic inverse problem, stochastic equation of
Lagrangian structure, integral manifold, quasi-inversion method.

Introduction. Problem statement

At present, the theory of inverse problems of dynamics has been developed fully in the class of ordinary
differential equations (ODE) [1-9]. This theory originates from the fundamental Erugin’s work [10], in which a
set of ODEs with a given integral curve is constructed. A generalization of methods for solving inverse problems
of dynamics to the class of Ito stochastic differential equations is given in [11-18].

Using the given set

A(t) : Mz, 2,t) =0, € R™, z € R", (1)

it is required to construct stochastic equations of the Lagrangian structure

d (0L oL , .
dt(ajzy)_axy =0,;(z,2,t)¢, (uzl,mj:l,r), (2)
so that the set A(t) (1) is an integral manifold of equation (2).

Here {&1(t,w), ..., & (t,w)} is a system of random processes with independent increments, which, following
[19], can be represented as a sum of Wiener processes and Poisson processes: £ = &y + fc(y)Po (t,dy). & is a
Wiener process. PP is a Poisson process. P(t, dy) is a number of process P° jumps in the interval [0, ¢] that fall
on the set dy. c(y) is the vector function mapping space R?" to value space R" of process £(t) for any ¢.

*Corresponding author.
E-mail: v_ gulmira@mail.ru
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The assigned problem was considered in the class of ordinary differential equations in [20]. The stochastic
Helmbholtz problem (the problems of constructing stochastic equations of the Lagrangian structure equivalent
to the given second-order stochastic Ito equation) was considered in [21]. In [22, 23] the above problem was
considered under the assumption that the system {&;(t,w),....& (t,w)} is a system of independent Wiener
processes which are a particular case of processes with independent increments.

The scheme for solving the problem is as follows: First, the second-order Ito differential equation

&= f(z,@,t) +o(x,4,1)¢ 3)
is constructed so that the given properties of motion are the integral manifold of the constructed stochastic
equation (3). At this stage, the quasi-inversion method [3], Erugin’s method [10], and Ito’s rule of stochastic

differentiation of a complex function in the case of processes with independent increments [19] are used. Then,
using the constructed Ito equation, an equivalent stochastic equation of the Lagrangian structure is constructed.

1 Construction of Ito equation by the given properties of motion (1)

Previously, the equation of perturbed motion

. O0X 0O\ o\ o .
A= —+—F+ — S1+ S+ Ss+ — 4
ot Tant T gg! T TSt Sat pret )
. . . L . 162\ T 0%\
is compiled according to the Ito stochastic differentiation rule, here S; 3952 : oo’ , and by 952 . D,
fs i
D = ool following [19], we mean a vector whose elements are the traces of the products of the
matrices of the second derivatives of the corresponding elements \,(x,#,t) of the vector A\(z,#,t) with
, _ 92\ 9%\, P?xn \1"
respect to the components @ on the matrix D — : D = |tr —D|,... . tr| —5D ; Sy =
02 02 02

o\
f {)\(LIJ, z+ O'C(y),t) - A<xvx7t> + aZEUC(y)} dy7 S; = f[)\(.’l),.f + 0'C(y>,t) - )\(.’I},.’I},t)]PO(t, dy) FOHOWng
Eerugin’s method [1], we introduce arbitrary vector-function A and matrix B with the properties A(0, z, %, t) = 0,
B(0,z,2,t) = 0 such that
A=A\ z,&,t) + B\ z,&,t)E. (5)

Comparing equations (4) and (5), we obtain the relations

92 =A oA @x'—Sl—Sg—Sg,

RO VR 6
giazB. ©

To determine the required functions f and o from equalities (6) we need the following statement:
Lemma 1 [4, p.12-13]. The set of all solutions of a linear system

Hv=yg,H = (hu),v= (&), 9= (gu), p=1,m, k=1,n,m<n, (7)

here H is the matrix of rank m, is determined by the expression

v=avl +°. (8)
Here « is scalar,
€1 €n
h11 hin
T
v =[HC] = [h1-hmCms1Cno1] =| hBm1 o hmn
Cnl+1,1 Cm—i—l,n
Cp—1,1 v Cp—1n
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is the cross product of vectors h,, = (h,) and arbitrary vectors ¢, = (cpr), p = m + 1,n — 1; e}, are unit vectors

of space R™, vT = (v]')

0 1 0
hll hlk hln
T
vi=| hmi o hmk o hmn |, V" =HTg,
Cm+1,1 -+ Cm+ln -+ Cm+ln
Cn—1,1 Cn—1,k Cn—1,n

H*=HT(HHT)"!, HT is the matrix transposed to H.
By Lemma 1, using (7), (8) we define the vector function f and the matrix o in the form

)\ oA\ " ON 0N,
f = §1 |:85L'C:| + <ax> <A — ot — %Z‘ —S1 — 8y — 53) (9)
O\ oA\ "
o = 82 [&CC} + (31‘) B;, (10)
here o; = (014, 02iy - .-, crm-)T is the i-th column of the matrix o = (0,;),(v="1n, j=17);

B; = (Bi;,Bai, ..., Bmi)" is the i-th column of the matrix B = (Buj), (n=T1,m, j=1,7), s1,s2 are the
arbitrary scalars.

Consequently, it follows from (9), (10) that the set of the second-order Ito differential equations containing
a given integral manifold (1) has the form

i} 2\ N " N 0N,
x281|:a$0:|+(8$> (A—at_&ﬂx_51_52_53>+

oA oA\ T X AN\ T :
+ <821 |:8Z‘C:| + <8x> Bl, . Sop |:8$C:| + (83}) Br> f

2 Construction of the Lagrangian structure equation (2) according to the Ito equation (3)

d (0L
W d th ssion —
e expan e expression 7 ( 0,

processes with independent increments [19]:

) according to the Ito stochastic differentiation rule in the case of

d (0L %L 0%’L 0L N - .
d (oL _ . _o°L 1
dt (8IEV) al’yat + ai’yaxkl‘k‘i‘ ai‘yai}kwk—i_SlV +SQV+S3V) ( )
x 1 0L ~ OL(z,& + oc(y),t) OL(x,,t)
h e 47 .= ) . ) _ .7 ) ,
ere S1 = 3 g om0k S =] i, i, }dy
~ OL(x, & + oc(y),t OL(x,a,t
5y, = OB LoD OLEE Dy )
Therefore, equation (2), taking into account (11), can be written in the following form:
d(OLY_OL _ e L PL L
At \oi,) oz, TPV T Gi0t T w0z, ¢ 0d,0m ¢
3 _ 3 oL , L
+51, + S2u + Sz, — e oz, &, )¢ (12)
Or, taking into account (12) and equation (3), we have
9*L 9*L *L . - 5 oL .
3 i v v v - j ’ .at )=
D, 0t " By 0mn kT B0,k TSt Sa S = g = o (@ & 00
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=i, — fol@,@,t) + o (2, &, )¢ (13)
Relation (13) implies the equalities
0*L v O0°L 0*L

~ ~ ~ oL /

a. a. 5 3y 5 { SV Sl/ Su_ = Jvy Oyj 7.7t: vj- 14
Ji,0r O Beyat T B, omy kT TS S = 5 = o oy (08 0) = o (14)
Thus, the following theorem is proven.

Theorem 1. To construct the stochastic equation of the Lagrangian structure (2) by the given set (1), so that

set (1) is the integral manifold of the constructed equation, it is necessary and sufficient to satisfy conditions
(14).

8 An example

Let us consider the stochastic problem of constructing a Lagrange function for a given property of motion
by the example of the motion of an artificial Earth satellite under the action of gravitational and aerodynamic
forces [24].

Consider the properties of motion in the following form:

At): A=0%+a10* + s =0, A€ R (15)
Then the perturbed motion equation (4) takes the form
A =200+ 20100 + Sy + Sy + Sz = 200 + 2010f + S1 + Sy + Ss + 20100, (16)

here S = aj02, 52 = [ {2alac(y)[4é + ac(y)]} dy, Ss = [ {2alac(y)[49 + Uc(y)}} PO(t,dy).

Let us introduce Erugin’s functions a = a(}, 0, 0, t), b= b()\,e,é,t) with the property a(O,G,é,t) =
=0(0,6,0,t) = 0 and such that the relation

A =a\(8,6,t) +bA0,0, )¢ (17)
takes place. From relations (16), (17) it follows that the set of equations (3), in our example is having the form
0= 1(0,0,t)+0(0,0,t)E,

possesses the integral manifold (15) if f and o have, respectively, the forms
92+a192+a2)—299—51 — S5 — S5 b(92—|—a192+a2)
. , o= . . (18)
2010 20110

The equation of motion of an artificial Earth satellite under the action of gravitational and aerodynamic forces,
following [24], can be written in the form

y=

here 6 is a pitch angle, functions f, & have the forms
f = Qlsin20 — Qlg(0) + b, & = Qdlg(6) +nd). (20)

Let us construct the Lagrangian using equation (19). In equation (19), we take into account relations (18).
These relations give the integrality of the given set (15). It follows from the equalities f = f, 0 = & that four
parameters @, 9,7, [, determining the dynamics of the satellite motion (20), must satisfy the following relations

b(602 + 01 6% + o) = 2a,0Q8[g(0) + nd).

Then, by definition from [25], (19) admits an indirect analytical representation in terms of the stochastic
Lagrangian equation if there exists a function h such that the identity

oL\ oL ... . .
0(%) - 5%~ o0, =i - ot

{ a(0? + 010 + az) — 200 — Sy — Sy — S5 = 2016 {Ql sin 20 — Q[g(0) + ne’]} ,

takes place.
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Let us find the function h = h(t) so that the necessary and sufficient Helmholtz conditions |25, p.107] for
the existence of the Lagrangian are satisfied for the scalar equation 1;(6,0,t)0 + 12(0,0,t) = 0:

% all 0({%1

00 ot a8’

In particular, a function h = e~®"* satisfies this condition. Substituting h in (19), we obtain

.. . 2 . 2 . 2
ot p_ g = Py, PL; L 0L

— P /.
062" T 2a0e” T aear ~ a° ¢

Thus, the required Lagrangian is constructed in the form

1. 1
L= e*W[§92 —Q(Gleos20+ )], here G = /g(e)de,

which provides a representation of the equation (19) in the form of the Lagrangian structure equation:
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Kezneiicok TypTKijiep 6oaranaaa JlarpaHKabIH aifHbIMAaJIbLIaPbIHIAFbI

OargapJiaMaliblK KO3FAJBICTBHIH, U depeHImanabik
TeHJieyJiep >KyieciH Kypy

Maxkanaga VTo TunTi ekiHII PeTTi CTOXACTUKAJBIK, AuMMEPEHIINAIIBIK TEHIEYIEP KIAChIHIAFBl JTUHA-
mukanbd, Herizri (A.C. Tanmysmn xikremeci Goiibiama) Kepi ecenTepinin HYCKAIapBIHBIH 6ipi KapacThI-
pourrad. Mto Tumingeri croxacTukasibk, auddepeHIuaiablK, TeHaeyIep KaackiHaa Jlarpan:x tesaeysepi
GepinreH KO3FajbIC KaCHETTEepiHe ColiKec KypbLIaabl. By XKaFmaiiia KYIITiH Ke3IeHCOK, TYPTKLIepl Toyesi-
ci3 ecimimesi yaepicrep KJACBIHAH Jien GOJIKAJIBIHAILI. AJIIBIMEH €CelTi MIeNnty YIMH KBa3uKalTapy aici
OoibIHIIIA KO3FAJIBICTBIH OepijireH KacueTTepine coiikec Epyrun oicimen »koHe ToyeJici3 eciMmiesi yiepicrep
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JKaFTafbIHIa Kyp/aed pyHKIMSHBIH CTOXaCTUKAJBIK, auddepennuasaay dpopmyrackiMen ekinmri perti to
muddepeHnnaIbIK, TeHAeyl OeplireH KO3FaJIbiCc KACHeTTEpi CAJIbIHFAH CTOXACTUKAJIBIK, TEHJIEYIiH WHTE-
rpaJiIbIK, KeroeitHeci OoaThIHIal eTinn KypbLiaabl. EKiHII Ke3eH e, aabiaran VITo TeHeyine coiikec, oraH
9KBUBAJIEHTTI JlarpaH:k KypBIIBIMBIHBIH CTOXaCTHKAJIBIK TeH 1€y Iepi KypbLIaabl. OChLIalna, Toyesaci3 eciM-
resti yiepicrep KIachlHIa Ke3/IecoK TYPTKiep Oosran Ke3jie OepisireH Ko3raJbic KacuerTepinen Jlarpamxk
KYPBLIBIMBIHBIH, TEHJEYIH KYPY MOCeseCiHiH MeniMIiIir yImH KayKeTTi )KoHe KEeTKIJIKTI mapTTapbl ajiblH-
ran. Anbiaran mormkesep 2KepiiH kKacaHbl CepiriHiH TapTHIILIC KYIITEPl MEH adpPOJIUHAMUKAJIBIK, KYIII-
TepaiH ocepinen OepisireH KO3FaJbIC KacueTiHe coiikec Jlarpamk yHKIUSCHIH KYPYIbIH CTOXACTHKAJIBIK,
eceDiHiH, MBICAJIBIH/Ia KOPCETLITeH.

Kiam cesdep: VIto Tunti croxacTukaibik, auddepeHnmuaiiblK, TeHIeyl, CTOXaCTUKAIBIK, Heri3ri kepi ecebi,
JlarpaHX KypbLIBIMBIHBIH CTOXaCTUKAJIBIK, TEHIIEY1, MHTErPAJIBLIK, KObeliHe, KBasuKaiTapy o9Iici.

M.U. Trey6eprenos?, I' K. Bacmmmmal?, JI.T. Axbimbaes?

L Mnemumym mamemamusy, U Mamemamuieckozo modeauposanus, Aamamol, Kasaxcman;
2 Kasazcrutl HayuoHaivmod yrusepcumem ument atv-Papabu, Aimamo, Kazaxcman;
3 Anmamuncruti yrnueepcumem anepeemuru u ceéazu umeny I. Jayxeesa, Aamamol, Kazaxcman;
4 Axmiobuncruti pezuonasviol ynusepcumem umernu K. XKybanosa, Axmobe, Kasaxcman

ITocTpoenne cucrembl auddpepeHTUaIbHBIX YPAaBHEHUIH
MIPOrPaMMHOIO ABU2KEHNS B JIArPAH>KEBBIX II€PEMEHHBIX
NpU HAJUYUU CJIIYyYaNHBIX BO3MYIIEHUN

B crarbhe paccMOTpeH ofmH U3 BapuaHTOB OCHOBHOU (1o Kaaccudukammm A.C. Tamnymmaa) obpaTHOi 3a-
JladM JUHAMUKU B KJIACCE CTOXaCTUYeCKuX JuddepeHInaJlbHbIX YPABHEHNNH BTOPOro Mnopsijika Tuma MTo.
IlocTpoensr ypaBuenusi Jlarpan:ka 1mo 3aJaHHBIM CBOWCTBaM JBHXKEHUS B KJIACCE CTOXACTUYECKUX Jnd-
depenmmabHbIx ypaBaennit Tuna Uro. Ilpu sTom ciydaiiable BO3MYIIAIONINE CHAJIBI TMPEIOIATAIOTCS U3
KJIACCA MPOIIECCOB C HE3ABUCUMBIMU IPUPAIeHUsAMHA. [lJIs1 periennsi HOCTABJIEHHOM 3a/1a91 Ha TIEPBOM dTaIle
10 3aJI@HHBIM CBOHCTBAM JIBUXKE€HUSI METOJIOM KBa3MOOpaIleHusI B COYETaHUU ¢ MEeTOJA0M EpyruHa u B cuiry
CTOXaCTUIECKOTO b depeHITNPOBAHNS CIIOKHON (DYHKIINY B CJTy9Iae MPOIECCOB ¢ HE3aBUCUMBIMU TIPUPAIIIE-
HUSIMH TIOCTPOEHO JnddepeHrmaabioe ypaBuenre VITo BTOporo mnopsijika Tak, 9To0ObI 3aJaHHbIE CBOMCTBA
JIBUKEHUsl SIBJISUINCH MHTErPaJbHBIM MHOIM00Opa3sueM IIOCTPOEHHOIO CTOXaCTUYECKOro ypasHenusi. U, ma-
Jiee, HA BTOPOM 3Talle IO TMOCTPOEHHOMY ypaBHEHHIO VITO CTPOSTCS SKBUBAJEHTHBIE €My CTOXACTUIECKUE
YPABHEHUsI JIATDAHXKEBOM CTPYKTYpbI. TakuM 06pa3oM, MoJrydeHbl HEOOXOIUMBIE U JOCTATOYHBIE YCJIOBUS
Pa3pelMMOCTH 3aJla49U TIOCTPOEHUs] YPABHEHUS JIAUPAHYKEBOW CTPYKTYPbI 110 3aJIaHHBIM CBOWCTBAM JIBH-
KEHUsI TPU HAJUYIAU CJIydaiHbIX BO3MYIIEHUIH W3 KJacca MPOIECCOB C HE3aBUCUMBIMU MPUPAICHUSIMUA.
Tlony4dennble pe3ysabTaThl TPOUJIIOCTPUPOBAHBI HA MPUMEPE CTOXACTUYECKOH 3a/1adM MOCTPOEHUsT (DYHK-
nuu Jlarpamka 1o 3aJaHHOMY CBOWCTBY JIBUYKEHHsI MCKYCCTBEHHOTO CITyTHUKA 3€MJIM TIOJ JEHCTBUEM CHJI
TATOTEHUs] U A3POJIUHAMUIECKUX CHUJL.

Karoueswie caosa: croxacrudeckoe auddepeHimaibioe ypasaenne Mo, croxacTuaeckass OCHOBHasi 0bpaT-
Hasl 3aJada, CTOXaCTUYIECKOe ypaBHEHHE JIarDaHKeBOH CTPYKTYDBI, HHTErPAJILHOE MHOrooOpasue, MEeTO/T
KBa3uOOpAaIeHHsI.
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Connection between the amalgam and joint embedding properties

The paper aims to study the model-theoretic properties of differentially closed fields of zero and positive
characteristics in framework of study of Jonsson theories. The main attention is paid to the amalgam and
joint embedding properties of DCF theory as specific features of Jonsson theories, namely, the implication of
JEP from AP. The necessity is identified and justified by importance of information about the mentioned
properties for certain theories to obtain their detailed model-theoretic description. At the same time,
the current apparatus for studying incomplete theories (Jonsson theories are generally incomplete) is not
sufficiently developed. The following results have been obtained: The subclasses of Jonsson theories are
determined from the point of view of joint embedding and amalgam properties. Within the exploration of
one of these classes, namely the AP-theories, that the theories of differential and differentially closed fields
of characteristic 0, differentially perfect and differentially closed fields of fixed positive characteristic are
shown to be Jonsson and perfect. Along with this, the theory of differential fields of positive characteristic
is considered as an example of an AP-theory that is not Jonsson, but has the model companion, which is
perfect Jonsson theory, and the sufficient condition for the theory of differential fields is formulated in the
context of being Jonsson.

Keywords: Jonsson theory, perfect Jonsson theory, differential field, differential closed field, differentially
perfect field, amalgam property, joint embedding property, AP-theory, JEP-theory, strongly convex theory.

In Model Theory, when studying various examples of theories, information about the amalgam and joint
embedding properties for considered theories is useful. The amalgam property and the joint embedding property
are independent of each other. There are many examples of this fact. In particular, one can find some of them
in [1; 270].

In this article, we examine the case when these two cases are dependent on each other. We call a theory
AP-theory if the joint embedding property for this theory is a consequence of the amalgam property of this
theory, i.e. when JEP follows from AP. At the same time, the amalgam property and the joint embedding
property are necessary attributes of a class of Jonsson theories.

We consider a classic example of differentially closed fields of zero and positive characteristic within the
study of AP-Jonsson theories.

As for differential algebra, the first works where differential algebra was separated into an independent
branch of mathematics are the books of Ritt [2-3]. There are formulated many significant problems, many of
them have not yet been solved. At the Moscow Congress of Mathematicians in 1966, Kolchin presented a report
where the author formulated open problems that have determined the direction of differential algebra in recent
years. The monograph [4] details the state of most of these sections. As Kaplansky wrote in his monograph [5],
“differential algebra consists mostly of the works of Kolchin and Ritt”.

We begin by presenting the basic facts about differential rings, whose special case is namely differential
fields, that will help us to reveal the algebraic essence of the theories and classes of their models considered in
this article.

The differentiation of the ring R is a map

D:R— R, (1)

that satisfies the following conditions:
1) the mapping D is additive;
2) for any two elements x,y of the ring R, D(zy) = xDy + yDz is executed.

*Corresponding author.
E-mail: intng@mail.ru
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The element D(x) will be called the derivative of the element a, whereas z itself is called the integral element
D(z). For derivatives D?(x), D3(x), ..., D"(x), the Leibniz rule can be written as

D™(xy) = D™(z)y + ... + C. D" (z)D*(y) + ... + D™ (y).

If the commutation property is observed for the element x and the derivative D(x), we have D™ (x) = nz" "1 D(x).
In the case when the ring R has the unit and an inverse element 2! for x,

D(z™) = —z7'D(x)z™!

holds. Moreover, D(1) = 0.

The following theorem is known:

Theorem 1 [5; 7]. For any differentiation in an arbitrary domain of integrity, there is a single extension to
the corresponding field of relations.

Let a commutative ring with the unit be given and the differentiation D be introduced on it. Such a ring is
called a differential ring. Here are some examples that reflect the essence of the differential ring.

1) Any commutative ring with the unit can be represented as differential by considering zero differentiation
onit (Vx € R D(z) = 0). We can conclude by this that the rings theory is a special case of the differential rings
theory. It is worth mentioning that on the ring of integers and the field of rational numbers, it is impossible to
introduce any differentiation other than zero.

2) The usual differentiation on the ring of infinitely differentiable functions on the real axis is also an example
of the map (1). Moreover, infinitely differentiable functions form a ring closed with respect to differentiation.

3) On the ring of integer functions, it is also possible to introduce differentiation in the usual sense. There
are no zero divisors available in the ring of infinitely differentiable functions, which makes it possible to form a
field of relations.

4) If R is a differential ring, then there exists a ring of R[x] polynomials formed with coefficients of R in
variable z. If R is a field, then R(z) denotes the field of rational functions of z. Using Theorem 1, we can
continue differentiating the ring (field) A into the ring of polynomials R[z] and the field R(z). At the same
time, we assume D(2™) = n2z" 1 D(x) and then continue this mapping linearly.

5) If R is a differential ring, then in under R[z;] we mean the ring of polynomials in infinite number of
variables xg, x1, ..., and each subsequent element x; ;1 is a derivative of the previous x;. Thus, some differentiation
in the ring R{xz;} is uniquely determined. Let us replace the designations with more suitable ones

xo=x, x, =D"(x).

The described process is called the adjunction of a differential indeterminate and gives us, as a result, a
differential ring, the elements of which we call differential polynomials. These are ordinary polynomials from x
and its derivatives.

In the case when R is a field, then the ring R{z} is a differential domain of integrity, and Theorem 1 gives
us the opportunity in the only way to continue differentiating into the corresponding field of relations R{x),
whose elements are called differential rational functions of x.

In any differential ring R, the elements whose derivative is zero form a subring C called the ring of constants.
Moreover, if R is a field, then C, respectively, is also a field. In addition, the constant field C' contains within
itself a subfield generated by the unit element R.

The characteristic of differential rings is of considerable importance. As the structure of the ring becomes
more complex and gradually turns into a field, the characteristic plays an increasingly significant role. Differential
fields with zero characteristic are well-studied, while the case with positive characteristic remains more
sophisticated. One of them is described below.

Next, we consider the fields of the characteristic p = 0 and p > 0. We present important information about
differential fields of characteristic 0 and consider some of their model-theoretic properties.

D. Marker [6] described differential and differentially closed fields as follows.

Definition 1 [6]. A differential field is a field K with the given differentiation operator D : K — K, such
that

VaVyD(z +y) = D(z) + D(y), (2)

VaVyD(z,y) = Dy + yDzx,
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where z,y € K. The language used to study differential fields is the language L = {+,—,-, D,0,1}. Here the
differentiation operator D plays the role of a single functional symbol.

Thus, the theory DF, of differential fields of characteristic 0 is given by the axioms of field theory and
axioms (2).

As mentioned before, each differential field has a so-called subfield of constants C' consisting of all elements
x of the field for which D(x) = 0.

Let K be a differential field. Then, over K, the ring K{Xy, ..., X,,} of differential polynomials can be defined
as the ring of polynomials in infinite number of variables as follows:

K[X1, . Xn, D(X1), ..., D(X0), .. D™(X1), ..., D™(X), ...,

where D(D"(X;)) = D"1(X;).

If f[{X1,..., X, }\K, the order of f is the largest m such that D™ (X") occurs in f for some i. If f is a
constant, we say that f has order -1.

Definition 2 [6]. A differential field K is called differentially closed if whenever f, g € K{X}, g has a nonzero
value and the order of f is greater than the order of g, there exists a € K such that f(a) =0 and g(a) # 0.

In 1959, A.Robinson [7] showed that the theory of differential fields has a model completion. Robinson also
introduced the concept of a differentially closed field. However, as noted by Mikhalev A.V. and Pankratiev
E.V. in their review [8], in Robinson’s works the theory DCFy received a specific description in the sense of
axiomatization, which was corrected by L. Blum. In her PhD thesis [9], she formulates two missing axioms (in
addition to the DF axioms) for the theory of differentially closed fields of characteristic zero as follows:

1) Each nonconstant polynomial in one variable has a solution.

2) If f(z) and g(z) are differential equations, such that the order of f(x) is higher in the order of g(z), then
f(z) has a solution, not a solution of g(x). B. Poizat, in his work [10], proved that DCF} is complete and is the
model completion of the DFy.

To study the model-theoretic properties of the theories DF,, and DCFy, we need the following definitions:

Definition 3 [11; 99]. The theory of T has the joint embedding property(JEP), if for any models U, B of
the theory T there exists a model M of the theory T and isomorphic embeddings f: U — M, g: B — M.

Definition 4 [11; 99]. The theory of T has the amalgam property (AP), if for any models U, By, Bz of the
theory T' and isomorphic embeddings fi : U — By, fs : U — By there are M = T and isomorphic embeddings
gz 2B1 —)M, B2 —>M, such that g1 Ofl :g20f2.

We will consider the theories of DFy and DCF{y from the point of view of Jonssonness.

To begin with, let us recall the definitions of the Jonsson theory and some related concepts.

Definition 5 [11; 144]. The theory of T is called a Jonsson theory if:

1. The theory T has infinite models;

2. T is an inductive theory;

3. The theory T has the amalgam property (AP).

4. The theory T has the joint embedding property (JEP).

Examples of Jonsson theories are:

1) group theory;

2) abelian groups theory;

3) boolean algebras theory;

4) linear order theory;

5) the theory of fields of characteristic p, where p is zero or a prime number;
6) ordered fields theory;

7) modules theory.

One can found the proofs in [12-13].

Definition 6. [14] It is said that Cr is a semantic model of the Jonsson theory of T' if Cr is a w'-homogeneous
wT-universal model of the theory T

Theorem 2 [11; 152]. The theory T is Jonsson if and only if it has the semantic model Cr. Many facts
concerning semantic models and related concepts of cosemanticity and similarity of the Jonsson theories are
described in [15].

Definition 7 [16]. A Jonsson theory T is called perfect if its semantic model Cr is saturated.

Definition 8 [16]. An elementary theory of the semantic model of Jonsson theory T is called to be the center
of this theory. Denoted through 7%, i.e. Th(C) = T*.
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Theorem 8 [11; 155]. Let T be an arbitrary Jonsson theory. Then the following conditions are equivalent:

1) The theory T is perfect;

2) T* = Th(C) is a model companion of the theory T. More information about the concept of Jonsson
perfection can be found in [17].

We define the following subclasses of Jonsson theories. Focusing on AP and JEP properties for certain
theories, we distinguish the following four types of theories:

Definition 9. A theory T is called to be

1) AP-theory if in theory T amalgam property entails joint embedding property;

2) JEP-theories if in theory T joint embedding property entails amalgam property;

3) AJ-theories if in theory T both properties are equivalent.

Otherwise, we say that for the theory of T, the properties of AP and JEP are independent of each other.

The described types form corresponding subclasses in the class of Jonsson theories, on which our interest is
focused. However, there are theories relating to some of the types 1-3, which are not Jonsson. An example of
such a theory will be discussed later in this paper.

We need the following definition.

Definition 10 [18]. A theory T is called convex if for any model of A and any family {A;|¢ € I} submodels A
which are models of the theory T the intersection [ is also a submodel of T', if it is nonempty. If the intersection

iel
is never empty, T is said to be strongly convex. )

It is important to note that, according to this definition, the theory of differential fields of any characteristic
is strongly convex. Based on this fact the theory can be attributed to AP-theories.

As for Definitions 3 and 4, B. Jonsson [19] was engaged in the study of “amalgam properties”, who cited
DFy as examples of theories with these properties. The proof in [5] was presented by I. Kaplansky. Robinson
[7] noted that this is the result of the existence of a model companion for the considered theory:

Theorem 4 [20; 157]. The theory of T admits the amalgam property if and only if it has a model completion.

Property 1. [9; 130] DCF, allows quantifier elimination.

Property 2. |9; 131] DF} has the joint embedding and the amalgam properties.

Note that originally [9] in the formulation and proof of these properties, L. Blum refers to Theorem (0.3.7),
which states that if a universal theory 7" has a model companion, the theory 7" has “amalgam properties”, which
mean both the amalgam property and the joint embedding property in our sense.

Theorem 5 [9; 128]. The DCFj theory is a model completion of the DFy theory.

Finally, we proceed to consider the model-theoretic properties of the described fields from the point of view
of Jonssonness. Let DFjy be the theory of differential fields of characteristic 0.

Theorem 6. DFy is a Jonsson theory.

Proof. (1) It is easy to see that DFy has infinite models.

(2) Since DFj is a V-axiomatizable theory, it is also V3-theory. Hence, it is inductive.

(3),(4) As already noted in [9] Blum, DFj has the amalgam property (AP) and the joint embedding property
(JEP) due to the presence of a model replenishment of DCFy. Moreover, in the case under consideration, the
property JEP follows from AP: Two differential fields F; and F5 always have a nonempty intersection, which
will also be a differential field, isomorphically embedded in both of these fields. Then, by virtue of AP, there are
isomorphic embeddings of F} and F5 in some differential field F'. The role of F' can be played, for example, by a
composite of fields F} and F; — the intersection of all differential fields of characteristic 0 containing F; and Fy,
on which differentiation is continued accordingly. Thus, the result of having JFE P follows from posession of AP
in the theory of differential fields of characteristic 0. This is a consequence of the fact that DFj is a strongly
convex theory.

Theorem 7. DF} is a perfect Jonsson theory.

Proof. The proof follows from the fact that DFy has a model completion, which is DCFy. Let us conduct
it in detail. According to Theorem 5, the theory of differential fields of characteristic 0 has a model completion
— the theory of differentially closed fields of characteristic 0, which is also its model companion. In addition,
as Theorem 2 states, DF due to its Jonssonness, there must be the semantic model Cr and, accordingly, the
center DF} = Th(Cr). It DFy = DCFy, then, by virtue of Theorem 3, DFy will be perfect. Let us show it.

The proof will be carried out from the opposite: let us say DFj # DCFj. In this case, since DF{ is complete
and DC'Fy is model complete, for any sentence 1) of the signature in question, either

Y € DF, and —) € DCF,, (3)
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or

1,[) S DFO and 1,[) ¢ DCFQ, _ﬂ/J ¢ DCFO (4)

However, DFy, DCFy, and DFj are obviously model consistent, and, at the same time, are be embedded into
the semantic model of the theory of DFy. Using this fact, we can easily get a contradiction for both cases (3)
and (4), which means that DF} = DCFy. Therefore, DFy is a perfect Jonsson theory.

Theorem 8. DCFy is a perfect Jonsson theory.

Proof. To begin with, let us show the Jonssonness of DC'Fy theory.

(1)DCFy has infinite models;

(2) DCFy is a V3-theory, and therefore it is inductive;

(3) DCFy is a model-complete theory, which means that by the Theorem 4 has AP;

(4) From (3) it follows JEP, since the nonempty intersection of two differentially closed fields of
characteristic 0 always exists and is their submodel embedded into both fields. This fact is confirmed by the
well-known Robinson criterion (Theorem 8).

The perfectness of DCFy follows again from the fact that the theory in question is model complete, which
means it represents a model companion for itself.

Here again, it is important to note that due to the strong convexity of DC'Fy, we have the result obtained,
namely, that DCFy (along with the DFy described above) is an AP-Jonsson theory.

Now consider the differential fields of characteristic p > 0. To define such a field, we, similarly, add axiom
(2) to the axiomatics of the field theory of characteristic p again, thus obtaining the theory of DF},.

For differential fields of characteristic p, the relation F? C C is fulfilled, where FP are all elements of the
field raised to the power of p, C is a subfield of constants. The relation is true because D(a?) = pa?~'D(a) for
any a € F.

In the works [21, 22], C. Wood obtained the following results regarding differential fields of characteristic p:

Theorem 9 [21]|. The theory DF), of differential fields of characteristic p does not admit the amalgam
property.

The author notes that the main reason is the absence of the p-th roots for some constant elements of the
field.

The consequence of the absence of AP C. Wood also highlights the following important theorem: Theorem
10 [21]. The DF, theory has no model completion.

In fact, to prove it, it is enough to refer to the Theorem 9.

To obtain a theory that allows the elimination of quantifiers, which has the amalgam property and model
completion, C. Wood [21, 22] modifies the theory of DF},, supplementing it with the axiom

Vady (D(z) =0 — P = x),

and obtains the so-called theory DPF of differentially perfect fields:

Definition 11. A differentially perfect field F' is a differential field such that F? = C.

The DPF models are the D F}, models in which the fields of constants are closed with respect to the operation
of extracting p-th root. Thus, the following theorem holds:

Theorem 11 [21]. The theory of differentially perfect fields of characteristic p admits the amalgam property.

Let us now define the theory of DCF,, differentially closed fields of characteristic p: To the axioms of DF},
we will add the following definition of a differentially closed field.

Definition 12. A differential field of characteristic p is called differentially closed if for each positive integer
n in the language L we can determine the sentence ¢,, stating that there is a solution for f(x) =0, g(x) # 0 for
each pair of differential polynomials in one differential variable such that f and g have order and total degree
at most n, and the order of f is higher than the order of g.

The most important model-theoretic properties of DC'F), are completeness and model completeness. The
key place is occupied by the following statement:

Theorem 12 [21|. DCF, is a model companion for DF)}, and a model completion for DPF.

The following results demonstrate the behavior of the theories DF),, DPF and DCF, from the point of
view of studying the Jonsson theories.

Theorem 13. DF), is not a Jonsson theory.

Proof. According to Theorem 9, since, DF,, does not have the amalgam property, it, following the Definition
5, is not a Jonsson. In addition, DF), does not have JEP since it is AP-theory.
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This fact is noteworthy because, as mentioned earlier, the fields theory F), in case of characteristic p is a
Jonsson, whereas the introduction of the functional symbol D into the signature F}, deprives D F}, of this property.
At the same time, the Jonssonness appears when the differential field of characteristic 0 is transformed into a
differentially perfect:

Theorem 14. DPF is a Jonsson theory.

Proof. Again, we will carry out the proof following the definition of Jonsson theory.

(1) DPF has infinite models;

(2) DPF is V3-axiomatizable, which means it is inductive;

(3) DPF has model completion, hence has AP;

(4) As mentioned before, any field of constants in a differential field contains a subfield generated by a unit
element. Such a field is differentially perfect by definition and can serve as a DPF model that is embedded in
any two differentially perfect fields F; and Fy. Further, by property (3), there is a model DPF' in which F; and
Fy5 are embedded.

Here again we see the manifestation of the property of being A P-theory: Possession of the amalgam property
allowed DPF to also have the joint embedding property .

Moreover,

Theorem 15. DPF is a perfect Jonsson theory.

Proof. The proof is similar to the proof of Theorem 7 and follows from the fact that DPF has a model
complement (and, accordingly, a model companion), which is the theory of DCF), as stated by Theorem 11.

Theorem 16. DCF), is a perfect Jonsson theory.

Proof. Let us show the Jonssonness of the DC'F}, theory.

(1) DCF, has infinite models;

(2) DCF, is V3-axiomatizable, hence inductive;

(3) DCF,, by Theorem 13, the model complete and, therefore, has AP.

(4) From [21] we can find out that theory DF), has the prime model F,, which is unique. Since every
differentially closed field is differential, this means that for any two models F; and Fy of DCF),, there exists a
model F' that can be embedded into F; and F3, and, further by (3), there is a model F’ such that F; and F;
are embedded into F’.

Although DF,, is not a Jonsson theory, note that, it has a Jonsson model completion DCF}, (which is perfect
in Jonsson sense). At the same time, another important remark that we can make based on the results obtained
is the following fact: The perfectness (in the field sence) based on the differential field is a sufficient condition
for the theory of differential fields of characteristic p to be perfect Jonsson theory.
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Axademur E.A. Boxemos amuvindazv, Kapazandv ynusepcumemi, Kapazanodwv, Kasaxcman

Amaabrama MeH yiijieciMl €eHri3y KacueTTepiHiH O0aillaHbICHI

3epTTeyaiH MakcaThl — HOHCOH/IBIK, TEOPUSLIIAP/IbI 3€PTTEY AsICHIHIA HOJIJIIK YKOHE OH, curarraMaMeH audde-
PEHIMAJIIBIK TYIBIK, ©PICTEp TEOPUSICHIHBIH, MOJE/Ib/Ii-TEOPETUKAJIBIK, KACHeTTEPIH aHbIKTay. Herisri Hazap
aMaJjbramMa MeH YiyleciMIli eHri3y KacHheTTepiH 3epTTeyre K9He OChl TEOPUSHBI MOHCOHIBIK TeOpHsIaphl-
HBIH, MaHBI3bI Gesrisiepi perinmae 6ipikTipyre, aran aitkanna AP-ten JEP kacueriniy 6osysina GaitiaHbi-
crel. KaxkerTimik Gesristi 6ip Teopusiiap/IblH, 2KOFaphIJa aTaJIFaH KACHETTEP] TyPaJIbl aKIAPATTHI HEFYPJIBIM
TOJIBIK, MOJIEJIb/i-TEOPETUKAJIBIK, CUIATTAYIbIH MAHBI3AbLIbIFbIHA OaiianbicTbl. COHBIMEH Karap, Oyrinri
TaHJIa KAJIbl YKaFgal1a WOHCOHMBIK OOJBIN TabbLIATBHIH TOJIBIK, €MEC TEOPUSIAPIbl 3€PTTEY AIMMapPaAThI
KeTKITIKCI3 gambrrad. MblHAa HoTHXKeTEp aJbIHABLL: yileciMi eHridy MeH aMajbrama KacHeTTepiHiH 06o-
JIybl TYPFBICBIHAH HOHCOH/IBIK, TEOPUsIAP/IbIH IMIKi KiacTapbl aHbIKTasIbl. Ocbl KiacTapibiy 6ipiH, aTar
afitkanga AP-TeopusiiapIbIH KiIackliH 3epTTey asicbiuaa 0 cunmarramamed quddOepeHuaIabl TYHbIK KoHe
muddepeHmaNIbIK, epicTepinin, 6ekiTiaren oH cumarramaMeH AudOEPEHITNANIBIK, TYWBIK kKoHe audde-
PEHIUAJIIBIK, KEMeJI OPiCTepiHiH, TeopHsiyIapbIHbIH HOHCOHBIIBIFBI MEH KeMeJiiiiiiri kepceriiired. CoHbiMeH
KaTap, MOHCOHJIBIK, eMec, Hipak KeMeJl HOHCOHJIBIK, MOJEJbII KOMITaHbOHBI 6ap AP TeopusiCBIHBIH, MBICAJIBI
perinze oH cunarTamMaMeH TudOEPEHITNATIBIK, OPICTED TEOPUICHl KAPACTHIPBLIIBI, COHTAN-aK, HOHCOHIBIK,
00JIy KacueTi TypFrhIChIHAH i DePEeHITNAIbIK OPICTED TEOPHUSICHI YIIIH YKETKIJIKTI MapT TY>KBIPBIMIAJIBI.
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Kiam cosdep: HOHCOHIABIK TEOPHUSsT, HOHCOHIBIK, KEMEJI TeOpus, TuddepeHIuaIIbIK opic, muddepeHimai bk,
TYHBIK epic, nuddepeHnuanabK, KeMesa epic, aMaabramMma KacuerTi, yitecimai enrisy kacueri, AP-reopusicer,
JEP-Teopusichbl, KATTBI JOHEC TEOPUSI.

A.P. Emikeen, 11.0. Tynrymobaesa, M.T. Kacsimerona

Kapazandunckutl ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kasaxcman

CBs3b CBOIICTB aMaJjibraMbl 1 COBMECTHOI'O BJIO2KEHUS

Ilens mccrenoBanusa — u3ydeHUE TEOPETHKO-MOJIETBbHBIX CBOHCTB Teopuu AuddepeHnaaIbH0 3aMKHYTHIX
MoJIeil HyJIEBOH U MOJIOYKUTEJILHOM XapaKTEPUCTUK B paMKaX MCCJIeI0BaHUs HOHCOHOBCKUX Teopuii. OCHOB-
HOE BHUMAHWE YAJIEHO CBONCTBAM aMaJibIaMbl I COBMECTHOMY BJIO2KEHUIO JAHHON TEOPUM KaK BAYKHEUIITNX
0CODEHHOCTE HOHCOHOBCKUX TEOPWUIA, 8 MMEHHO CJIeACTBUs Hajauuus ceoiictBa JEP uz AP. HeobxomumocTs
006yCJIOBJIEHA BayKHOCTBIO BJIaIeHUsT HHPOpMAaIueir 06 YIIOMSIHYTHIX BBIIIE CBOUCTBAX y TEX WJIM WHBIX T€O-
puit 115t ux 6oJiee MOJTHOTO TEOPETHKO-MOJIEILHOTO onucanusi. 1Ipu 9TOM Ha CeromHSIIHMI eHb amnmapaT
U3yU€eHNs HEIOJIHBIX TeOPHil, KOTOPHIMU B OOIIEM CJIydae sIBJISIOTCS HOHCOHOBCKHE, PA3BUT HEIOCTATOYHO.
Tlosmyuensr cnemyroime pe3yabTaThI: OMPEIETIEHbI MTOAKIACCH HOHCOHOBCKMX TEOPHUI C TOUKU 3PEHUST HAJIU-
4rsi CBOWCTB COBMECTHOT'O BJIOYKEHMs U aMaJjibraMbl. B pamkax paccMmorpenus Kiacca AP-teopuit mokazanbl
MOHCOHOBOCTb U COBEPIIEHHOCTh Teopuil fuddepeHnnaabHpIX U TuddePeHIIaIbHO 3aMKHY THIX ITOJIEH Xa-
pakrepuctuku 0, quddepeHnaIbLHO COBEPIEHHBIX U ArdDEepeHITNATBHO 3aMKHYTHIX TTOJIell (DUKCHPOBAH-
HOM ITOJIOXKUTEJILHON XapakTepucTuku. Hapsiiy ¢ atuM, B kadecrBe npumepa AP-reopun, e sBjsromeics
MOHCOHOBCKOM, HO MMEIOIEHl COBEPIIEHHbI HOHCOHOBCKUI MOJEIbHBI KOMIIAHBOH, U3yUYeHa TEeOPHUs JTud-
(depeHInaTbHBIX MOJIEH TOJIOXKUTETBHOM XapaKTEPUCTUKH, & TAKXKe CPOPMYTIMPOBAHO JTIOCTATOTHOE YCIOBUE
nist Teopun TuddepeHInaIbHbIX MT0JIel B KOHTEKCTE CBOMCTBA OBITH HOHCOHOBCKOIA.

Karoueswie cao6a: MOHCOHOBCKasi T€OPHUsl, COBEPIIIEHHASI IOHCOHOBCKas Teopus, nuddepeHnnuaabHoe moJre,
nuddepeHImaIbHO 3aMKHYTOE oI, AuddOEPEHITNATFHO COBEPIIIEHHOE TI0JI€, CBOWCTBO aMaJjbraMbl, CBOM-
CTBO COBMeCTHOTrO ByioxkeHust, AP-reopusi, JEP-Teopus, cuibHO BbllyKjast Teopus.
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An inverse problem for Hilfer type differential
equation of higher order

In three-dimensional domain, an identification problem of the source function for Hilfer type partial
differential equation of the even order with a condition in an integral form and with a small positive
parameter in the mixed derivative is considered. The solution of this fractional differential equation of a
higher order is studied in the class of regular functions. The case, when the order of fractional operator is
0 < a < 1, is studied. The Fourier series method is used and a countable system of ordinary differential
equations is obtained. The nonlocal boundary value problem is integrated as an ordinary differential
equation. By the aid of given additional condition, we obtained the representation for redefinition (source)
function. Using the Cauchy—Schwarz inequality and the Bessel inequality, we proved the absolute and
uniform convergence of the obtained Fourier series.

Keywords: fractional order, Hilfer operator, inverse source problem, Fourier series, integral condition, unique
solvability.

Introduction

The theory of the inverse boundary value problems is currently one of the most important fields of the
modern theory of differential equations. Consequently, a large number of research works are devoted to study
the different kind of inverse problems for differential and integro-differential equations (see, for example, [1-10]).
In cases where the boundary of the flow domain of a physical process is unavailable for measurements, nonlocal
conditions in an integral form can serve as additional information sufficient for unique solvability of the problem.
Therefore, researches on the study of nonlocal boundary value problems for differential and integro-differential
equations with integral conditions have been intensified (see, for example, [11-20]). In addition, we note that
studies of many problems of gas dynamics, theory of elasticity, theory of plates and shells are described by
higher-order partial differential equations.

Fractional calculus plays an important role for the mathematical modeling in many natural and engineering
sciences [21]. In [22], it is considered problems of continuum and statistical mechanics. In [23] is studied the
mathematical problems of Ebola epidemic model. In [24] and [25], it is studied the fractional model for the
dynamics of tuberculosis infection and novel coronavirus (nCoV-2019), respectively. The construction of various
models of theoretical physics by the aid of fractional calculus is described in [26, Vol. 4, 5], [27], [28]. A detailed
review of the application of fractional calculus in solving problems of applied sciences is given in [29, Vol. 6-8|,
[30]. In [31], the unique solvability of boundary value problem for weak nonlinear partial differential equations
of mixed type with fractional Hilfer operator is studied. In [32], the solvability of nonlocal problem for a mixed
type fourth-order differential equation with Hilfer fractional operator is studied. In the direction of applications
of fractional derivatives to solving partial differential equations the interesting results were also obtained in
[33-42].

We recall some basic terms of fractional integro-differentiation, which have been used during the study.
Let (to; T) € Rt = [0; 00) be an interval on the set of positive real numbers, where 0 < ¢ty < 7" < oco. The
Riemann-Liouville 0 < a-order fractional integral of a function n(t) is defined as follows:

1

IS n(t) = (o) /(t —5)* " In(s)ds, a>0, te(t;T),

*Corresponding author.
E-mail: tursun.k.yuldashev@gmail.com
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where T'(a) is the Gamma function.
Let n—1 < a <n, n € N. The Riemann-Liouville a-order fractional derivative of a function 7(¢) is defined

as follows: .

(e} d n—«
Dyin(t) = dTnItﬁ n(t), te (to;T).

The Gerasimov-Caputo a-order fractional derivative of a function 7(t) is defined by

t
_ 1 n™(s)ds
D) = 15" () = / te (to; T).
t0+77( ) to+ n ( ) F('I’L— OZ) (t— S)O‘_"'H’ S ( 0 )
to

These derivatives are reduced to the n-th order derivatives for « = n € N:

d"L
= !

Dy yn(t) =« Di;n(t) (t), te (to; T).
The Hilfer fractional derivatives of a-order (n —1 < a < n, n € N) and S-type (0 < 8 < 1) are defined by the
following composition of three operators:

mn
Dt = Itfi"‘“%It?;ﬂ“"‘“nu), Le (to; T).
For 8 = 0, this operator is reduced to the Riemann-Liouville fractional derivative D;Zf = D/}, and the case
[ = 1 corresponds to the Gerasimov—Caputo fractional derivative D;gf =« D, Lety = a+Bn—af. It is easy
to see, that @ < v < n. Then it is convenient to use another designation for the operator D * Yn(t) = D‘;f n(t).
The generalized Riemann-Liouville operator was introduced by R. Hilfer based on time evolutions that arise
during the transition from the microscopic scale to the macroscopic time scale (see [26]).

In this paper, for 0 < o < v < 1 we study the regular solvability of an inverse boundary value problem for
a Hilfer type partial differential equation of even order with positive small parameter. The source function is
in the integral condition containing the Riemann-Liouville 0 < a < 1-order fractional integral. The stability of
the solution from the given functions is proved.

In the three-dimensional domain Q = {(¢, z, y) |0 <t < T, 0 < z, y < I} a partial differential equation of
the following form is considered

D& Ul =a(t)b(z, y) (1)

with a nonlocal condition on the integral form containing the Riemann—Liouville 0 < a < l-order fractional
integral
U(T, z,y)+ (I6, U (t, 2, ) li=r = ¢(z,y), 0<=z,y<lI, (2)

where p, T and [ are given positive real numbers,

o o oy 64k a4k a4k 84k
l)6 [U]: D +eD m"ﬁ‘m +w m‘i‘m U(t,ﬂ%y)»

w is a positive parameter, € is a positive small parameter, 0 < o < v < 1, k is a given positive integer,
a(t) e C(Qr), Qr=1[0; T), @, =[0; 1], b(z, y) € C (27F) is a known function, ¢(z, y) is a source (redefinition)
function, Q7 = Q; x ;. We assume that for given functions are true the following boundary conditions
00, y) = ¢, y) = oz, 0) = ¢ (z,1) =0,
b(0,y)=b(,y)=b(z,0)=0b(x,1)=0.

Problem Statement. We find the pair of unknown functions {U (¢, z, y); ¢ (x, y)}, first of them satisfies
differential equation (1), nonlocal integral condition (2), zero boundary value conditions

U, 0,9)=Ut1l,y)=U(t z,0=U(t )=
92 2 2 2

0 0 0
—@U(t 0,y) = @U(t’ [ ZJ)—@U(K r,0) = @U(t’ z, )=
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92 2 2 2
—U(t, 0, —U(t,1 =—U(t 0O)==—7=U(t,z,)=...=
= 5 (t,0,y) = 97 (t, 1, v) RYE (t, x, 0) RIE (t, =, 1)
9 4k—2 9 4k—2 94k—2 9 4k—2
:WU(t 0,y) = WU(E L y):WU(ta z, O):WU(t, z, 1) =
84k—2 a4k—2 a4k—2 84k 2
ZWU(tOy) WU(t,l,y):WU(t,x,O) By - SU(t, 2, 1) =0, (3)
properties of the class of functions
tIU (¢, z, y) € C(Q), )
) k, k k
DU (t, x, y) € Cly ™ (Q) N CEF(Q) N CREH(Q)
and the additional condition
U(thxa y):¢($, y)7 O<t1<T7 OS%ySl, (5)

v (x) € C'[0; ], where ¢(z, y) are given smooth function and
¥(0,y) =9(l, y) = ¥(z, 0) =¢(z, 1) =0,

4k
CaRr0(€) is the class of continuous functions ULy on Q, while COTA%(Q) is the class of continuous

814k
4k . — — R
functions % on €, (ffyi%U(t7 x, I) we understand as %U(t, x, y) ) Q={t, z,y)]0<t<T,
y=

0<uzy<l}
1 Expansion of the solution in a Fourier series

We seek nontrivial solutions of the problem in the form of Fourier series

t Z, y Z Un,m n m(l'v y)a (6)
n, m=1
where

1l
U, m (t) ://U(t Z, Y) O nm(x, y)dady, (7)

0 0

2 . wn . T™m
D, m(x, y) = 7 sin = sin ——y,n, m = 1,2,...

We also suppose that the following function is expand in a Fourier series

1

n7

:/l/lb In,m(z, y)dzdy. 9)
00

Substituting Fourier series (6) and (8) into given partial differential equation (1), we obtain the countable
system of ordinary differential equations of a fractional 0 < «, v < 1-order

where

b
Doca"‘/ nmt )\2/6 nmt _ a’( n,m 10
s 8) + N3 €)1 (1) = L (10)
where "

2% Hn,m k :<E)k,/ 2k 2k

nﬂ’n() ]-+E/Jn’ ’ :unm l n +m :
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The general solution of the countable system of differential equations (10) has the form [30]
Un,m() = Crnmt " " Eqy (A ()wt®) + by mbn,m(t), (11)

where
k

Banl®) =2 Tar iy

z,a,7y€C, Re(a) >0

is the Mittag—Leffler function [26, 269-295] and

t

L /(tfs)aflEa,a (f/\ffm(e)w(tfs)o‘) a(s)ds,

hnm(t) = —F——
- Ltepnslim J

C,m is an arbitrary constant.
By Fourier coefficients (7), we rewrite integral condition (2) for the countable system (10)

I
Un,m(T) + (I, m () =1 = // (UT, 2, y)+ (ILUE 2,9) li=1) nym(, y)dady =
00

l
/sa 2, Y)Vn,m (2, y)dzdy = ©p,m. (12)
0

o\(\

To find the unknown coefficients C'y, ,,, in (11), we use condition (12) and from (11) we have

1
Cn,m: [@n,m_bn,maln,m}v (13)
00n,m

where

Tonm =TT [Bay (AL € 0T ) 4 T By (A2 () T?)]
Oln,m = hn,m(T) + (Ioz‘hmm(t))U:T .

Hereinafter, we use the following properties of the Mittag—Lefller function:
1) The function E,, 5 (—t) with a € (0; 1], 8 > « is completely monotonic for ¢ > 0, i.e.

(~1)"[Ea (=)™ >0, n=0,1,2,...

2) For all « € (0; 2), § € R and arg z = 7 there takes place the following estimate

M,

E, <

where 0 < M = const does not depend on z.
Then, from here follows that there exists numbers Ms, M3 > 0 such that 0 < My < 0gp,m < Ms.
Further, substituting the defined coefficients (13) into representation (11), we derived that

un,m(t):Son,mAn,m(t)+bn,mBn,m(t)a (14)
where
1 n
Apn(t) = ———t7 B (A2 () wt®) ) Bm(t) = hp () — 22" L (<A () wt®)
O0n,m ’ / O0n,m ’

Substituting the representation of Fourier coefficients (14) of main unknown function into Fourier series (6),
we obtain

n, m=1

Fourier series (15) is a formal solution of the direct problem (1)—(4).
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2 Determination of source function

Using additional condition (5) and taking into account (12), we obtain from Fourier series (15) following
countable system for Fourier coeflicients of the source function

@n,mAn, m(tl) + bn,m Bn,m(tl) = wn,ma (16)

where

)
0 0

From relation (16) we find the source function as
@n,m:Qpn,len,m'f'bn,mXQn,m» (18)
where

1 _ _Bam(t)
lem_An,m(tl)’ X2n,m = An,m(tl).

tY_lE ( )\2]{2

n,m

An,nl(tl): ( )wtf);é(), 0<ty <T.

On,m

Since ¢, m are Fourier coefficients (see (12)), we substitute representation (18) into the Fourier series

n, 1

We prove absolutely and uniformly convergence of Fourier series (19) for the source function. We need to
use the concepts of the following Banach spaces:

the Hilbert coordinate space {2 of number sequences { ¢, m } with norm

[’}
n,m=1

L1
19 ) 102y = //|19(m, y) [P dwdy < .
0 0

Conditions of smoothness. Let for functions

U(z, ), blz, y) € C*(Q)

there exist piecewise continuous 4k + 1 order derivatives. Then by integrating in parts the functions (9) and
(17) 4k + 1 times over every variable z, y, we obtain the following relations

[\ Bk+2 ‘1/,(8’”2) [\ 8k+2 p(Bk+2)
[ nm | = (W> gty aRe | Onm| = (W> AR R (20)
H 1/}(8k;+2 ‘ < g a8k+2w(‘%‘7 y) (21)
0 = 1 || 9+ g gkt La(02) ;
H b(8k)+2) < g 68k+2b (.’17, y) (22)
n,m 05" l 8x4k+13y4k+1 LQ(QZQ)’
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where .
88k+2¢(.r y)
8k—+2 )
P = //Wﬁn,m(m> y)dxdy,
0 0
Lo 88k+2b )
8k+2) _ (z,y
bT(L,m - // ax4k+1 ay4k+1 ﬁn,m(xa y) dl'dy
0 0

In obtaining estimates for the solution, we have used these formulas (20)—(22) and the above indicated
properties of the Mittag—LefHler function. Then it is easy to see that

02 = max {IX1n,ml; | X2n,m|} < oo, (23)
where . B (t )
X1ln,m = m7 X2n,m = _ﬁ(ti)’ 0<t <T,
A m(t) = Joi’mt'y_lEaﬂ(—/\fl’fm(e)wt“), Bu () = h () — Z;ﬁt” By (<A () wi) |

Theorem 1. Suppose that the conditions of smoothness and (23) are fulfilled. Then Fourier series (19)
convergence absolutely and uniformly in the domain Q2.

Proof. We use formulas (20)—(22) and estimate (23). Using the Cauchy—Schwartz inequality for series (19),
we obtain the estimate

oo
| Z n, m x ) | |¢n,mX1n,m+bn,mX2n,m‘§

n, m=1
[§:|%m-+§: nmﬂg
n 1 n, m=1
9 /1 Bk+2 ‘ws’““‘ % pBE+)
< N (w) e Z n Ak+1yy, 4k+1 T Z n k+1yy, 4k+1
n,m=1 n,m=1
9 71\ 52
<? (ﬂ) o5Co1 [H P (Bh+2) ‘ b Bk2) ‘ <

J

- Maw“wuw» || Dt ]<m, (24
9 gk +19 yh+1 La(?) O k19 yAh+1 La(2?)
where
9 2 l 8k+2 0 1
71202001<l) <W> , Co1= 21W<m'

From estimate (24) the absolutely and uniformly convergence of Fourier series (19) implies. The Theorem
1 is proved.

8 Determination of main unknown function

We determined the source function as a Fourier series (19). So, the source function is known. Using
representation (16), Fourier series (15), we can present the main unknown function as

t x, y Z ﬂn,m [wn mPn m(t) +bn,an,m(t)}7 (25)
m=1

n7

where

Pn,m(t) = Xln,mAn,m(t)y Qn,m(t) = X2n,mAn,m(t) +Bn,m(t)
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To establish the uniqueness of the function U (¢, x, y) we suppose that there are two functions U; and Us
satisfying given conditions (1)—(5). Then their difference U = U; — U; is a solution of differential equation
(1), satisfying conditions (2)—(5) with the function ¥ (z, y) = 0. By virtue of relations (9) and (16), we have
Yn, m = 0. Hence, from formulas (7) and (25) in the domain © we obtain the zero identity

11

/tl_”U(t, z, Y) U n,m(z, y)drdy =0.
0 0
2

By virtue of the completeness of the systems of eigenfunctions { 7 sin &7 x}, { %sin o y} in Lo (Q%)

we deduce that U (¢, , y) =0 for all x € Q7 = [0; []? and t € Qr = [0; 7.

Since t' U (¢, z, y) € C (Q) then t' U (¢, z, y) = 0 in the domain €. Therefore, the solution to problem
(1)—(5) is unique in the domain €.

Theorem 2. Let the conditions of the Theorem 1 be fulfilled. Then the series (25) converges in the domain
Q. At the same time, in this domain their term-by-term differentiation is possible.

Proof. By virtue of conditions of the theorem 1 and properties of Mittag—Leffler function, as in the case
of (23), the functions t'=7P, ,,(t), t'77Q,, m(t) are uniformly bounded on the segment [0; 7). So, for any
positive integers n, m there exists a finite constant o 3, that there takes place the following estimate

1—v . 1—v <
max {ogl%XT [ t' Py () |5 Jnax [t 77Qn, m(t) |} <o3. (26)

Using estimates (20)—(22) and (26), analogously to estimate (24), for series (25) we obtain

o0

UGz y) [ <D 19nm(@ 0) || Ynmt T Prm() + bt T Qu m (1) | <

n,m=1

88k+2b(1‘7 y)
o x4k+18 y4k+1

- U‘ 0829z, y)

O p¥hH1g Ak +1

4

] < 00, (27)
L2(QLZ) Lz(ﬂlz)

2
where Yo = 0010'3 (%) (ﬂ_
From estimate (27) the absolutely and uniformly convergence of Fourier series (25) implies. We differentiate

the required number of times function (25)

1 8k+2

RN > Tn\ 4k _ _

st UGy = Y (5 Vam(@ ) [Brmt T Pan(®) + bt T Qun(®] (28)
n, m=1

94k o Tm\ 4k _ _

8y4kt1 ’YU(ta €, y) = Z (T) ﬁn,m(xv y) [wn,mtl A/Pn,m(t) +bn,mt1 ’YQn,m(t)] . (29)
n, m=1

The expansions of the following functions in a Fourier series are defined in a similar way

4k N 4k
— a,
ax4kt ’YD ’YU(t7 $7 y)? ay4k

t'IIDU (o, y), tITYDU(t, 2, y).

We show the convergence of series (28) and (29). As in the case of estimate (27), applying the Cauchy—
Schwarz inequality, we obtain:

9% e TN 4k B
’81‘4kt1 ’YU(t, xZ, y)‘ S Z (T) |t1 7un7m(t)|"’l9n,m(x, y)|§
n, m=1
9 s 4k [e'S) 9]
<7 (7) "3[2 P D0 0 bl <
n,m=1 n, m=1
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5 /1 Ak42 . )w(smz ’ ’b8k+2)
Sl(ﬂ) 73 Z nm4k+1 + Z nm 4k+1 =
n, m=1 n, m=1
2 l 4k+2
<z<7r) 73C02 [HW’“” [, + o H<
2
H 88k+2w .Z‘ y) +H 88k+2b(x, y) > (30)
ax4k+18 y4k+1 LQ(QLQ) 8x4k+18 y4k+1 LQ(QZQ)
2 4k+2 [ &
where Y3 = (%) (%) 0'30027 Coo = Z m < 005
n, m=1
a4k B Tm\ 4k _
‘ 9 4kt1 A/U(ta €z, y)‘ < (T) |t1 A/Un,m(t) | : |19n,m($a y)| <
Yy n, m=1
(0 [ S il 5 ] <
n, m=1 n, m=1
o /12 0 ’¢(8k+2) 00 ’ (8’€+2>
< 7 <7r> g3 Z 01y, Z n Ak,
n, m=1 n,m=1
2 I 4k+2
<3 ()" e[tz + o],
s 2 EQ
a8k+2 aSkJrQb
é V4 H 4k+11/J(x;1:i)1 + H 4k+1 (x:;/f/jl < 09, (31)
0 k19 y4k L2(27) 0zt +ioy L2(97)

where

oo

2

n, m=1

o\ 2 /] 4+
’74(l> <7r> 03C03, Coz =

It is easy to prove the convergence of Fourier series for functions

4k 4k

t!ITIDXU(t, 2, y), 4ktl_”*D“’"*U (t, z, y), 3 4ktl_"YD"""’U (t, z, y),
Y

since the necessary estimates can be obtained by a similar way as for the cases of estimates (29), (30) and (31).
Therefore, the function U (¢, z, y) belongs to the class of functions (4). Theorem 2 is proved.

4 Stability of the solution U(t,x,y) with respect to the given functions and the source function

Theorem 3. Suppose that all the conditions of Theorem 2 are fulfilled. Then, the function U (¢, x, y) as a
solution to problem (1)—(5) is stable with respect to a given function ¥ (x, y).

Proof. We show that the solution U (¢, x, y) of differential equation (1) is stable with respect to a given
function ¢(z, y). Let U4 (¢, x, y) and Us (¢, x, y) be two different solutions of the inverse boundary value problem
(1)—(5), corresponding to two different values of the function 11 (z, y) and 2 (z, y), respectively.

We put that |14, m —Y2n,m| < dn,m, where 0 < §,, ,,, is a sufficiently small positive quantity and the

oo
series Y. |dp,m | is convergent. Then, considering this fact by virtue of the conditions of the theorem, from
n, m=1
Fourier series (25), it is easy to obtain that

Htl_’y[Ul(tvx7y)_U2(t7x7y HC < 03 Z |w1nm w2nm‘< 03 Z nm‘<OO

n,m=1 n,m=1
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&)
Weput e =203 Y. |6n,m| < oc. Then, from last estimate we finally obtain assertions about the stability of
n,m=1

the solution of the differential equation (1) with respect to a given function ¢ (z, y) in (5). The Theorem 3 is
proved.

By a similar way we have have proved that there hold the following two theorems.

Theorem 4. Suppose that all conditions of Theorem 2 are fulfilled. Then, the function U (¢, z, y) as a solution
to problem (1)—(5) is stable with respect to the given function b (z, y) in the right-hand side of equation (1).

Theorem 5. Suppose that all conditions of Theorem 2 are fulfilled. Then, the function U (¢, z, y) as a solution
to problem (1)—(5) is stable with respect to the source function ¢ (z, y).

Remark. Tt is easy to study the stability of function U (¢, z, y) with respect to asmall parameter € (see [43]).

Conclusions

In three-dimensional domain, an inverse problem of identification of a source function for Hilfer type partial
differential equation (1) of the higher even order with integral form condition (2) and a small positive parameter
in mixed derivative is considered. Suppose that the conditions of smoothness are fulfilled. Then the solution
to this fractional differential equation of the higher order for 0 < o < 4 < 1 is studied in the class of regular
functions. The Fourier series method have been used and a countable system of ordinary differential equations
has been obtained (10). The nonlocal inverse boundary value problem is integrated as an ordinary differential
equation. By the aid of given additional condition, we obtained the representation for the source function. Using
the Cauchy—Schwarz inequality and the Bessel inequality, we proved the absolute and uniform convergence of
the obtained Fourier series (19) for the source function ¢ (x, y) and (25) for the unknown function U (¢, z, y)
and its derivatives. It is proved that solution of problem (1)—(5) U (¢, x, y) is stable with respect to the given
functions ¥ (z, y), b(x, y) and the source function ¢ (z, y).
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43 HOumames T.K. CMmemannas 3ajia49a 11 HEJIMHEHHOTO IICEBI0NAPabOJNIECKOr0 YPABHEHUST BHICOKOTO 110~
panka / T.K. FOunames, K.X. [Ma6agukos // Uroru nayku u rexuuku. Cep. CoBpeMeHHAsT MaTEMATUKA
7 ee mpuiokeHus. Temaruaeckue 063opel. — 2018. — 156. — C. 73-83.

T.K. FOnnames!, B.2K. Kagupkynos?, X.P. Mameos?

L @sbexcman yammun ynusepcumemi, Tawxenm, Osbexcman;
2 . .
Tawxenm memaekemmix woebicmany yrusepcumemi, Tawxenm, O3bexcman;
3 Bledwip yrusepcumemi, blzowp, Typrus

2Korapsl perti Xuiabdep THUNIHIH >KapThLJIail Ty bIHIbLITbI
anddepeHIInaAIABIK, TeHJIEYdiH Kepi ecedi

Yiesmemi 06JibICTa WHTErpaablK (hOpMaIaFrbl *KOHE apaJiac TYBIHIBLIBI Killli OH, MmapameTpi bap KyIl
perti Xwibdep TumiHiH KapThuTail TYBIHIBLIBI TEHIEY YIITiH MYHKINS KO3iH aHbIKTAY ecebi KapacThIPbLI-
raH. Byt xkorapsl perTi 6estekTi quddepeHnuaIbK TeHIey/iH MenliMi TypakThl (DYHKIUsLIap KJIAChIHIA
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zeprrenred. BesmekTi omepaTopabiH peti 0 < oo < 1 GostaThIH YKaFgail KapacThIPbLIIbl. Dyphe KaTapaapbl
9JIiCI KOJIAHBLIIBI XKoHE KapamnaibiM JrddepeHInaaIblK, TeHIeyIepIiH, ecenTey *Kyieci aabinabl. Jlokas-
Bl eMec IIeTTIK ecebi KapanaiibiM 1ud depeHImaIblK TeHIey peTiHe nurerpasganaabl. Kocbivina mapr
apKBLIBI KaifiTa aHBIKTAY (DYHKIUSICHI Typasbl TyciHik Gepinren. Kommu-IlIBaprr Tencizmiri men Beccenn
TEHCI3rH KOJI/IaHa OTBIPHII, ajbiHFaH Oypbe KaTapaapblHbIH a0COIOTTI KoHE OIPKAJIBIITHI XKUHAKTHILJIbI-
FBI I2JIEJIIEH/I].

Kiam coesdep: GenmekTi per, Xundep omneparopbl, (pyHKINS K3l TypaJbl Kepi ecen, Pypbe KaTapaapsl,
MHTErPAJIIBIK MIApT, OIpMOH/I IIeNiIyi.

T.K. FOnnames!, B.2K. Kagupxymnos?, X.P. Mameos®

! Hayuonanvnwdl yrusepcumem Yabexucmana um. Mupso Yayebexa, Tawxenm, Yabexucman;
2 Tawxenwmeruti 2ocydapemeenmuili ynusepcumem eocmoxosedenus, Tawkenm, Yabexucman;
3 Hzduperuii yrusepcumem, Hezdup, Typuyus

Ob6parnas 3aga4a aisa AndepeHImaabHOr0 ypaBHEeHUS
B YACTHBIX ITPOM3BO/IHBIX TUIIA XMJIb(depa BBICIIIEro MOPSIKA

B Tpexmepnoii obsracTu paccMoTpeHa 3a1a4a HACHTUMUKAIUN (DYHKIIUA UCTOYHUKA, JJIsT YPABHEHUS B 9aCT-
HBIX [POM3BOJHBIX THIA XMibdepa YeTHOro HOpSAKA C yCJIOBHEM B HHTErPAJIbHON (opMe M MaJjbIM I10-
JIOXKUTEJBLHBIM TIApaMETPOM B CMEIIAHHON mpom3BoaHOi. Permenne sToro apobHoro muddepeHmasbrHOro
YPABHEHUsI BBICIIErO IMOPSJIKA IIOJIYYEeHO B KJIACCE PEryJIspHBIX (DyHKIW. ABTOpaMu u3ydeH Ciydail Jis
nopsifka apobroro omeparopa 0 < a < 1. IIpumenen meron psimoB Pypbe, W MOJydeHa CUETHAS CHUCTE-
Ma OOBIKHOBEHHBIX AuddepeHIna bHbIX ypaBHeHnil. HemokambHast KpaeBas 3ajJada WHTETPHPOBAHA KakK
obbikHOBeHHOE juddepennuaabaoe ypaBHerre. C IOMOIIBIO JOMOJHUTEIBHOIO YCIOBHS IIOJIYYE€HO IPeJi-
craBsenue i GyHKnun nepeornpeesenns. C momomnpio HepasencTs Komu—IIsapra n Beccesst nokasana
abCOTIIOTHAST M pAaBHOMEPHAs CXOAUMOCTD MOJYJIeHHBIX psioB Dypoe.

Karoueswie caosa: JpobHBIN HOPSAIOK, onepaTop Xuibdepa, obparHast 3agada 06 ucrounnke, psansl Pypbe,
MHTErPaJIbHOE YCJIOBUE, OJITHO3HAYHAS PA3PENINMOCTD.
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ANNIVERSARY

75th anniversary of Doctor of Physical and Mathematical Sciences,
Professor M.T. Jenaliyev

On January 25, 2022, a well-known specialist in the field of the theory
of partial differential equations and its applications, Chief Researcher of the
Institute of Mathematics and Mathematical Modeling of the Committee
of Science of the Ministry of Education and Science of the Republic of
Kazakhstan, Doctor of Physical and Mathematical Sciences, Professor
Muvasharkhan Tanabaevich Jenaliyev, turned 75 years old.

M.T. Jenaliyev was born in a family of rural workers in Aktobe (now
the Tole-bi farm) of the Shu district of the Zhambyl region. His father,
Zhienaliev Tanabai, worked for many years as a shepherd, his mother,
Zhienalieva Tenge, helped her husband in this difficult shepherd business,
until his death. Before retiring, she worked in various jobs. The shepherd’s
hard work was not alien to Muvasharkhan either, during the summer
holidays he helped his parents.

In 1953, Muvasharkhan Jenaliyev entered the seven-year Kazakh
school of the Aktobe district, where he graduated from the first grade
with a commendable diploma. Since his parents’ move to the settlement
Mikhailovka (in the subsequent settlement Chatyrkul) in 1954, he again
entered the first grade of the now seven-year-old Russian school, since he
did not speak Russian. In a year, he manages to learn Russian and finishes
the first grade with a commendable diploma. Then he continues to study in Russian and in 1965 he graduated
from the 10th grade of the Gorky Secondary School in the settlement Novotroitskoye (now Tolebi). Back in the
9th grade, Muvasharkhan became interested in mathematics and this passion was instilled in him by his teacher
Kutuzov Alexander Yakovlevich. In 1964-1965, he participated in the republican Olympiads of schoolchildren
in Almaty. At the 3rd Kazakhstan Mathematical Olympiad, he was awarded a special prize and a diploma of
the second degree.

In 1965, M.T. Jenaliyev entered the Kazakh Polytechnic Institute named after. V.I. Lenin at the Faculty
of Automation and Computer Engineering and in 1971 he graduated from it with a degree in Automation and
Telemechanics with the qualification of an “Electrical Engineer”. In 1971-1976, he worked as an engineer, senior
engineer, and head of the design team at the Kazakh branch of the SDI "Projectmontazhavtomatika" (Almaty),
engaged in the design of dispatching systems for power supply facilities using telemechanical devices.

In 1976-1980, he is a full-time postgraduate student at Kazakh State University under the supervision
of Professor S.A. Aisagaliyev. In 1982, M.T. Jenaliyev defended his candidate’s and in 1994, his doctoral
dissertations, in 1996, he was awarded the academic title of professor.

Since 1980 M.T. Jenaliyev has been working at the Institute of Mathematics and Mechanics of the Academy
of Sciences of the Kazakh SSR (now the Institute of Mathematics and Mathematical Modeling of the CS
MES RK). Muvasharkhan Tanabaevich goes through all the stages of the positions of an academic institution:
Junior researcher, senior researcher, leading researcher, chief researcher, head of the laboratory of equations of
mathematical physics, deputy director for scientific work, from January 1, 2007 - acting, and from August 2008
to 2011 director of the Institute of Mathematics.

Scientific achievements of M.T. Jenaliyev published in journals “Differential equations”, “Siberian
Mathematical Journal”, “Boundary value problems”, “Advances in difference equations”, “Mathematical Journal”
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(Almaty), “Proceedings of the Institute of Mathematics of the NAS of Belarus”, “Reports of NAS RK”, “Non-
classical equations of mathematical physics” (S.L. Sobolev Institute of Mathematics SB RAS), “Reports of the
ATAS”, “Proceedings of the NAS of the RK. Physico-mathematical series” and others. We list the results of his
scientific research:

— M.T. Jenaliyev proved a theorem on sufficient optimality conditions and, on its basis, developed an
algorithm for the approximate solution of the problem of optimal control of a parabolic equation. This result is
a development of V.F. Krotov’s optimality principle for partial differential equations, which takes into account
their solvability in the corresponding Sobolev classes (in the sense of an integral identity). An innovation was the
introduction of an auxiliary functional and special constructions, which made it possible to remove the restriction
on the reduction of partial differential equations to normal form, which facilitated to reduce the original problem
for a conditional extremum to the problem for an unconditional extremum in Sobolev functional spaces. The
results of these studies formed the basis of M.T. Jenaliyev’s candidate dissertation.

— For boundary value problems with time derivatives on the boundary for parabolic and hyperbolic
equations, M.T. Jenaliyev discovered the effect of "overdetermination"at setting initial conditions in the domain
and on its boundary from the class of square summable functions (which are not consistent with the trace
theorem). The solvability of boundary value problems for linearly loaded equations with irregular coefficients is
established. A symmetrizing operator for a loaded parabolic equation, a Hilbert space of the type of K. Friedrichs
space and a quadratic functional are constructed, and the Euler equation is also posed, for which also a
generalized statement of the original boundary value problem was given. Based on these results M.T. Jenaliyev
defended his doctoral dissertation.

— In terms of the (complex) spectral parameter, which is the coefficient of the loaded term, a description
of the resolvent set and spectrum for a spectrally loaded parabolic operator is found, a characteristic of the
multiplicity of eigenfunctions in the space of bounded and continuous functions depending on the value of the
spectral parameter is given (together with M.I. Ramazanov).

— For boundary value problems for multidimensional linear and nonlinear heat conduction equations in
non-cylindrical domains with a power law of degeneracy: Uniqueness classes are found; In the case of a power
law of domain degeneracy, the dimensions of the kernel and cokernel of operators of multidimensional boundary
value problems are determined and the solvability of the boundary value heat conduction problem with time
derivatives under boundary conditions is proved; Algorithms for solving boundary value problems for a heat
equation loaded by multidimensional manifolds with control functions on the boundary have been developed.

In recent years, M.T. Jenaliyev, together with his collaborators, has been researching one-dimensional and
multidimensional boundary and inverse problems for nonlinear equations, including the Burgers, Boussinesq,
and Navier-Stokes equations. In Sobolev classes, the solvability of boundary value problems with nonlinear
Neumann-type conditions and boundary value problems with dynamic conditions for the Burgers equation
in degenerating domains is proved. Theorems on the solvability of the inverse problem for a linearized two-
dimensional Navier-Stokes system in a cylindrical domain with a final overdetermination are proved and a
computational algorithm for solving the inverse problem using the optimization method is proposed. Also, for
a circle, a solution of the generalized spectral problem for a biharmonic operator is given.

M.T. Jenaliyev is actively engaged in the training of scientific personnel. Under his scientific supervision,
3 doctoral, 11 candidate dissertations and 4 PhD dissertations were defended. Since 1980 the scientist has
also been teaching special courses at the Mechanics and Mathematics Faculty of Al-Farabi Kazakh National
University.

Muvasharkhan Tanabaevich Jenaliyev is distinguished by a businesslike, principled and creative attitude,
diligence, professionalism and a high sense of responsibility. He enjoys well-deserved respect in the staff of the
Institute of Mathematics and Mathematical Modeling.

The editorial board of the scientific journal cordially congratulates Muvasharkhan Tanabaevich on his 75th
birthday and wishes him good health and creative longevity.

Editorial board of the journal
«Bulletin of the Karaganda University. Mathematics seriess
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110th anniversary of the outstanding scientist corresponding member
of the Academy of Sciences of the Republic of Kazakhstan
ENGVAN INSUGOVICH KIM (1911-1994)

In November 2021 it was the 110th anniversary of the birth of the
outstanding Scientist, Doctor of Science in Physics and Mathematics,
Professor E.I. Kim, who made a significant contribution to the development
of mathematical science in Kazakhstan, created a school for the study of
equations of mathematical physics and raised many students who continue
his research.

Yengvan Insugovich Kim was born on November 12, 1911 in the village of
Ust-Sidimi, Khasansky District, Primorsky Territory, into a Korean family,
the family of Insug Kim (who came from peasants, then became a railway
worker).

In 1929, after graduating from a seven-year school, he entered the
Nikolsko-Ussuri Korean Pedagogical Technical College in the mathematical
department. After graduating with honors in 1932 from the College, he, on
the advice of a teacher (according to E.I., who noticed the mathematical
abilities of a young man), decided to continue his studies at Moscow State
University. As Yengvan Insugovich later recalled, the road to Moscow took
about a month, and on the way, he ate mainly fried grain taken from home. Arriving in Moscow, Yengvan, almost
not knowing Russian, but having received excellent marks in mathematics and physics, entered the Faculty of
Mechanics and Mathematics of Moscow State University. Years of hard study, language learning, attendance
at scientific seminars began under the guidance of scientists, well-known to all mathematicians: A.N. Tikhonov
and S.L. Sobolev.

In 1937, Kim graduated from the University with honors and was sent to work at the Vladivostok Korean
Pedagogical Institute, where he arrived with his wife. But unfortunately, in the same 1937, almost the entire
Korean diaspora was resettled from the Far East to Central Asia (mainly Kazakhstan, Uzbekistan, Kyrgyzstan).

Yengvan Insugovich also left Vladivostok for Kazakhstan and was hired by the Kyzyl-Orda Pedagogical
Institute (KPI), where from 1937 to 1945 he held both teaching and administrative positions and also spent
a lot of time doing mathematical research. The first field of his scientific researches (suggested to him by S.L.
Sobolev) was the determination of solvability conditions for general boundary value problems for harmonic
functions.

For the results obtained, E.I. Kim, after defending his dissertation in 1942 on the topic: "The Hilbert problem
for a multi-connected domain", awarded the degree of Candidate of Science in Physics and Mathematics. The
defence took place in the Academic Council of the United Ukrainian University, which was evacuated in the
Kyzyl-Orda at that time. In 1943, he received the academic title of Associate Professor.

In 1945, E.I. Kim went to work at the S.M. Kirov Kazakh State University in Alma-Ata, as the head of the
Department of Geometry, and supervises the scientific work of graduate students. In 1951, he moved to Rostov-
on-Don, where he worked as the head of the Department of Geometry and Dean of the Faculty of Physics and
Mathematics of the Pedagogical Institute.

From 1953 to 1956 he was a postdoc student at the Mathematical Institute of the USSR Academy of Sciences
named after V.A. Steklov in Moscow. His scientific adviser was the outstanding mathematician I.N. Vekua, later
Academician of the AS USSR.

In 1956, after completing his doctoral studies, E.I. Kim moved to Ukraine, where he has maintained good
scientific contacts since defending his PhD thesis. He was the head of the Department of Higher Mathematics
at the Kharkov Polytechnic Institute, and still devotes a lot of time to scientific research.

In 1959, he defended his thesis for the title of Doctor of Science in Physics and Mathematics "On a class
of singular integral equations and some problems for piecewise homogeneous materials". Such equations arise,
in particular, when solving boundary value problems for the heat equation with piecewise constant coefficients
by the method of thermal potentials. As Yengvan Insugovich himself notes in his dissertation, similar integral
equations were studied earlier, in particular, in the works of A.B. Datsev and G. Mintz, where it was stated that
they can be solved by the method of successive approximations, since they are similar to Volterra equations
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of the second kind. However, in a work published in the DAN USSR back in 1953, E.I. Kim showed, that this
is a special class of singular equations for which successive approximations do not converge to a solution. In
the following works, which became the basis of the dissertation, he proposed and substantiated regularization
methods, and also determined the exact upper bounds for the spectrum of the main integral operator of these
equations. These studies are a significant contribution to the theory of Voltaire integral equations, since they
define a special class of equations that have the properties of the Fredholm’s equations.

In 1960, E.I. Kim received the academic title of Professor. Being in Kharkov, he along with teaching and
scientific work, maintained close ties with Kazakhstan, supervised postgraduate students from the Kazakh
State University. Among his first students, who then defended Candidate of Science dissertations, were
B.B. Baimukhanov, L.P. Ivanova, Sh.T. Irkegulov, K.K. Kabdykairov, S.A. Usoltsev. The next group included
A.A. Askarov, L.Zh. Zhumabekov, V.H. Ni, M.O. Orynbasarov, S.N. Kharin. After returning to Kazakhstan,
many of them worked as teachers in various universities and continued their scientific research.

In 1964, E.I. Kim was elected a corresponding member of the Academy of Sciences of the Kazakh SSR,
moved to Alma-Ata, and from that time the Kazakhstan period in his life began, which lasted until its end. The
main part of this time was devoted to scientific work, teaching and training of scientists. Basically, owing to his
efforts, in 1964 the Laboratory of Equations of Mathematical Physics (EMPh) was created at the Institute of
Mathematics and Mechanics of the Academy of Sciences of the Kazakh SSR, as well as Department of EMPh at
the Kazakh State University. For a number of years he headed both of these divisions. Then he worked in them
as a leading researcher and professor. At the same time, E.I. Kim organized a citywide weekly scientific seminar
on the equations of mathematical physics, which played an important role in the training of mathematical
scientists in the country. He was a brilliant lecturer. At his lectures, there were always many participants and
visitors, who also reported the results of their works. These were not only graduate students but also students
of Kazakh State University, and teachers from other universities in Alma-Ata and other regions of Kazakhstan,
scientists.

These initiatives of E.I.LKim and the results achieved by the graduates of the EMPh department, members
of the EMPh laboratory, participants of the seminar, made a significant contribution to the development of
mathematical researches on partial differential equations in Kazakhstan, as well increasing their level. For
instance, an member of the EMPh laboratory Dr M.T. Jenaliyev, after defending his doctoral dissertation, for
a number of years was the head of the Institute of Mathematics (IM) of the National Academy of Sciences
(NAS) of RK in Almaty. The graduate of the Department of EMPh, Doctor of Sci. in Physics and Mathematics
E.S. Smailov headed the Institute of Applied Mathematics in Karaganda. One of the first students of E.I. Kim,
who also worked at KazSU and in the laboratory of the EMPh — S.N. Kharin became an academician of the NAS
RK, other students and employees of E.I. Kim worked as teachers in universities in many cities of Kazakhstan.

It can be noted that at Karaganda University, in addition to Dr. E.S. Smailov, (and are working) Doctor
of Sci. in Physics and Mathematics M.I. Ramazanov, Candidates of Sci. in Physics and Mathematics —
T.E. Omarov, S. Mataev, M.A. Pervertun also worked. Candidate of Sci. K.K. Kabdykairov was the vice-rector
of the Semipalatinsk University (at that time — the Pedagogical Institute), etc.

The E.I.Kim’s followers continued researches related to the above singular integral equations. Significant
results in the theory of partial differential equations and their applications are associated with their names. These
are singular integral equations, initial-boundary value problems for parabolic equations and for equations with
discontinuous coefficients, nonlinear problems with free boundaries, and problems in angular and degenerate
domains.

Of especial interest to E.I. Kim has always been challenged by tasks to which ordinary research methods
are not applicable, which do not fit into a general theory, and for their solution it is necessary to show ingenuity
and apply non-standard approaches.

The results of E.I. Kim in the theory of singular integral Volterra-Fredholm’s equations were further
developed and have got numerous applications in his joint work with students, while the research topics
were significantly expanded. In particular, together with B.B. Baimukhanov, L.P. Ivanova, K.K. Kabdykairov,
V.H. Ni, L.Zh. Zhumabekov, S.E. Bazarbaeva and others have studied various initial boundary value problems
for equations and systems of equations of parabolic type; with E.M. Khairullin, T.V. Nekrasova studied boundary
value problems with boundary conditions containing high-order derivatives of the sought functions; methods for
solving problems for parabolic equations with discontinuous coefficients were developed, M.A. Abdrakhmanov,
Sh.A. Kulakhmetova, V.H. Ni, F.G. Biryukova, K.D. Kulekeev, R.N. Kantaeva and others. then were effectively
used in solving problems of conjugation of various types of equations.

A special class of singular integral equations generated by boundary problems for degenerate domains with
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moving boundaries. In this direction E.I. Kim and his students S.N. Kharin, G.I. Bizhanova, , M.I. Ramazanov,
M.T. Jenaliyev, T.E. Omarov, A.A. Kavokin, U.K. Koylyshov, S.S. Domalevsky obtained a number of complete
results on the solvability of such problems.

It should also be noted the significant results obtained by Doctor of Sci M.O. Orynbasarov in the
investigations of boundary value problems for equations of parabolic type in domains with corner points or
edges (in the multidimensional case).

E.I. Kim paid great attention to nonlinear problems, problems with free boundaries, in particular, the
Stefan problem with the domain degenerating at the initial moment of time, for which asymptotic, as well as
analytical methods of solution were developed. worked with him in this direction S.N. Kharin, A.A. Kavokin,
Ya.A. Krasnov, G.I. Bizhanova.

In the laboratory of EMPh of the Institute of Mathematics of the AS of the Kazakh SSR, apart from
fundamental research, another direction of research was formed — applied, which originated in the years of E.I.
Kim at KhPI. It was headed by S.N. Kharin, now an academician of the NAS of RK. Developed methods
for solving boundary value problems for heat equations are widely used in applied problems, in particular, in
the theory of electrical contacts have been published in monographs. In this direction significant results were
obtained in joint work with D.U.Kim, M.A. Perevertun, S.P. Gorodnichev, A.T. Kulakhmetova, Yu.R. Shpadi,
S.S. Domalevsky and other students of E.I. Kim and S.N. Kharin.

In total E.I. Kim personally published and co-authored about 130 scientific articles, many of which
were published in central mathematical journals, as well as two monographs (co-authored), made reports
at International, All-Union, Republican conferences. He prepared 36 candidates of science in physics and
mathematics, 7 of his students received the degree of Doctor of science in Physics and Mathematics.

E.I. Kim did a lot of additional public work. He was a member of the NAS RK Problem Council on physical
and mathematical sciences, member of the Specialized Council for the defense of dissertations, the editorial
council of the All-Union "Engineering-Physical Journal the journal "Proceedings of the Academy of Sciences of
the Kazakh SSR. Series of Physics and Mathematics".

For great merits in the development of mathematics in Kazakhstan, as well as for fruitful public-pedagogical
activity, E.I. Kim was awarded the title "Honoured Worker of Science of the Kazakh SSR awarded the Certificate
of Honour of the Presidium of the Supreme Council of the Kazakh SSR, and inscribed in the "Golden Book of
Honour"of the Kazakh SSR.

E.I. Kim passed away on December 14, 1994 due to a serious illness. Until the last minute, his wife Claudia
Semenovna Kim and their daughter Evgenia looked after him. He lived a wonderful life filled with work, creative
searches. The affair he served all his life lives and continues to develop by his students and followers.

More detailed information about the remarkable mathematician E.I. Kim can be found in publications:

1. AH Kas3CCP. Eursan Uucyrosuu Kum. (Marepuasnst k 6ubimorpadun ydennix Kazaxcrana / Cocr.
C.H.Xapun, M.A.A6apaxmanos u ap.). — Auma-Ara: Feureiv, 1991.

2.Buxkanosa I"U. Yien-koppecnonnenr AH KazCCP Enrsan Uucyrosuuy Kum // Mar. xypu. — 2011. —
T. 11. — No. 2 (40). — C. 12-16,

Editorial board of the journal
«Bulletin of the Karaganda University. Mathematics series»

List of the main published works of E.I. Kim
Books
1 Maremarudeckue MOJIE/IH TEIJIOBBIX IIPOIECCOB B JIEKTPUIECKUX KOHTakTax. — Asima-Ara: Hayka, 1977. — 236 c.

(coBmectno ¢ B.T. Omenpuenko u C.H. Xapunbim).

2 Teopusi TEmIONPOBOIHOCTH B OTHOPOAHBIX cpenax. — Anmarer: Komurer mayku MOH PK; Uu-T mar. u mat.
mogenup., 2020. — 230 c¢. (Cosmectno ¢ C.H. Xapunbim).
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The key publications in scientific journals and collections

O6o6uennas 3anada I'ypca // Yuenbie 3amncku Kas['y. — 1948. — T. 12. — C. 28-37.

06 obmeit rpanmaHOl 3amade rapmonmdeckoit dyukunu // Ilpuknangnas mareMaTwka W MexaHWKa. — 1952. —
T. 16. — Ne 2. — C. 18-24.

06 omHOM Kjacce MHTErpaJbHBIX ypasHeHuil I poga ¢ cunrynsapubiv sapom // JAH CCCP. — 1953. — T. 16. —
Ne 2. — C. 1014-1019.

PacnpocTpanenue Tenia B 66CKOHETHOM HEOIHOPOIHOM TeJe B AByX m3Mepenusx // Ilpukiagnas MareMaTuka u
mexanmka. — 1953. — T. 17. — Ne 2. — C. 43-47.

06 omuoii 3amave renoobmena cucremsl Ten // Ilpuknannaa maremarnka u Mexanuka. — 1957. — T. 21. — Ne 5.
— C. 19-25.

Perienne ofHOroO KJjiacca CUHIYJISIPHBIX MHTErPaJIbHBIX YpaBHEHWH ¢ KOHTYypHbIM uHTerpasom // JAH CCCP. —
1957. — T. 113. — Ne 1. — C. 24-27

O6 oHOM KJTacCce CHHTYIAPHBIX HHTEerpanbubix ypasaennit // JIAH CCCP. — 1957. — T. 113. — Ne 2. — C. 268-
271.

JByxmMepHas npobiema Terio- u Maccoobmena B npornecce cymku // M3s. AH CCCP. DQuepreruka u aBroMaTrka.
— 1959. — Ne 3. — C. 79-85. (Cosmecrno c JLII. MBaHoBOif).

O6 yCJI0BHsIX Pa3pelMMOCTH OJHOIO Kiacca uHTerpo-auddepennnanbueix ypasaennit // JJAH CCCP. — 1959.
— T.125. — Ne 4. — C. 723-726.

CMemannas TpaHUYHASA 387294 JJIs OJHOM cucTeMbl quddepeHantbHbIX yPABHEHUH TapaboJInIecKoro Tuma //
JAH CCCP. — 1959. — T. 126. — C. 1183-1186. (Cosmecrro c JLII. Banosoit).

O6 ycsioBHsIX Pa3penImMOCTH HEKOTOPOH TPAHIYHOI 3a4a4u /11 o/(HO# napaboauaeckoii cucremst // JTJAH CCCP.
—1961. — T. 139. — Ne 4. — C. 795-798. (Cosmecrro ¢ JI.II. VIBaHoBOIt).

O pacnpesiesieHun TEMIIEPATyPhl B KyCOYHO-OJHOPOIHOM Tosty6eckoneunoit mnacrune // JIAH CCCP. — 1961. —
T. 140. — Ne 2. — C. 333-336. (ComecrHo ¢ B.B. Baiimyxanosbim).

Pemenne ypaBHeHUsI TEIIONPOBOHOCTH ¢ pa3pbiBHbIME KO0 dunmentamu // JTAH CCCP. — 1961. — T. 140. —
Ne 3. — C. 451-454. (Cosmectso ¢ B.B. BajiMmyxaHoBbIM).

O6 ycsioBHsIX Pa3pelIMMOCTH OJHON IpaHMYHOM 3aja4u ypasHenus remionposoxuocta // JAH CCCP. — 1961.
— T. 140. — Ne 3. — C. 553-556. (Cosmectro ¢ B.B. BaiimyxaHoBbiM).

Pemenne ypaBHeHUsT TEILIOMPOBOHOCTH € PA3PBIBHBIM KOY(MDMUIIMEHTOM U €10 MPUIOKEHUS K BOIIPOCY JIEKTPHU-
4yecknx KoHTakToB // MDPXK. — 1963. — Ne 6. — C. 763-768.

06 ycsioBuax paspemmmocTu obrieil rpaHnYHO 3aza49n ypasaenuii. Tensio- u macconepenoc // MOK. — 1964.
— Ne 5. — C. 122-126.

K Bompocy pacnpocrpaHeHusl Temsia B KyCOYHO-OJHODO/JHBIX CpeZiaXx B MHOroMepHOM npocrpadcrse // Vse. AH
KazCCP. Cep. duz.-mar. — 1965. — Ne 3. — C. 3-18.

Pemenne cucrempr nuddepeHnmaibHbIX ypaBHEHNH TapabOJIMIeCKOTO TUIA, KOT/Ia XapaKTEPUCTUIECKOE YPaBHE-
uue nMmeer kparuele kopuu // Mss. AH KaszCCP. Cep. dusz.-mar. — 1965. — Ne 1. — C. 19-29. (CosmecTHO C
B.X. Hn).

Pemenne YpaBHEHUS TEIJIOIIPOBOJHOCTU C PAa3PbIBHBIM KOS(i)(l)I/ILII/IeHTOM7 KOr'Jla Ha4daJIbHbIC JJTaHHbIE HE COIVIaCy-

1ores // Uss. AH KaszCCP. Cep. dwus.-mar. — 1967. — Ne 5. — C. 3-15.

YpaBHEHUsT TEILIOMPOBOJAHOCTH C PA3PBIBHBIME KO3(hMUIMEHTOM, KOI/Ia HAYAJIbHBIE JAHHBIE HE COIIACYIOTCA //
Wss. AH KasCCP. Cep. dusz.-mar. — 1967. — Ne 5. — C. 56-61. (Comecrro ¢ ®@.I. Bupiokosoit).

Haxozxk genne opuruaasia oguoro nzobpaxenus // 3. AH KasCCP. Cep. dus.-mar. — 1968. — Ne 3. — C. 83-86.
(CoemectHo ¢ @.I". Buprokosoit).

O HEKOPPEKTHOCTH MPOCTPAHCTBEHHBIX 3anad tuna Komm-ypca // Uss. AH KasCCP. Cep. dwus.-mar. — 1970.
— Ne 1. — C. 70-71. (CoBmecrro ¢ JIu).

O Hepa3permmuMoCTi METOJIOM OCIeJ0BATEIbHBIX TPUOJINKEHNI OJJHOIO KJIACCa MHTErPAJILHBIX ypaBHeHU Bosib-
repa // Tp. UMM AH KaszCCP. — 1971. — T. 2. — C. 27-35. (Cosmectro ¢ C.H. Xapunbim).

TlepBas rpanuyHas 3aja4a 6e3 yCJIOBUI COIJIACOBAHUS JIJIsi YPABHEHUS TEILIOIPOBOIHOCTY C PAa3PbIBHBIMU KO-
dunmenToM, KOra IMHUSA pa3pbiBa BRIXOAWT Ha rpanury // Mar. u mex. — 1972. — Bpm. 1. — C. 51-52.
Pemenne 3a/1a9m TENIONMPOBOJHOCTH € TIOIBUKHON IPAHUIIEH C TIOMOMIBIO CrienuaabHbix dbynkmmii // Mar. u mex.
— 1972. — Bpm. 1. — C. 128-130.

O6 oHOM KJIacce CHHTYIISIPHBIX MHTErpaibHbix ypasuenuii I poga // Uss. AH KasCCP. Cep. dus.-mar. — 1975.
— Ne 1. — C. 39-45. (Cosmectro ¢ P.Y. Aprem6aesoii u @.I'. Buprokosoit).
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Pemrenne B majom 3aJa4 C HEJIMHENHBIM TPaHUYIHBIMU YCJIOBUAMU JJIgd YPABHEHUA TEIIJIOIIPOBOJHOCTU B PaCIIUA-

psitowteiicst obiactu // Uss. AH KazCCP. Cep. dus.-mar. — 1977. — C. 41-46. (CoBmectro ¢ A.A. KaBOKUHBIM).

Pemenne ypasaenus: napabojudecKoro THUIA C NEPEMEHHBIMM M pa3pbiBHbIME Kodddunuentamu // Uss. AH

KasCCP. Cep. dus.-mar. — 1977. — C. 71-75. (CoBmectHo ¢ P.Y. Aprein6aesoit).

Maremaruyeckue MO/IeJI TEeIlJIOBBIX IIPOIECCOB B 3JICKTPUYIECKUX KOHTaKTaX // N3s. BY30B. S.J'IQKTpOMeXaHI/IKa7

1978. — Ne 1. — C. 5-28. (Coemecrro ¢ C.H. Xapunbim u ap.).

Pemenne omaoro kinacca memmuednbx Kpaesbrx 3a1aa // Nss. AH KasCCP. Cep. dwus.-mar. — 1979. — Ne 1. —
C. 23-29. (Cosmecrno ¢ fA.A. Kpacuossmm. — C. H. Xapunbim).

O6 oxmoMm mHTErpasbHOM ypasHeHunu tuna Bosabsreppa II pona // Uss. AH KazCCP. Cep. dus.-mar. — 1980. —
Ne 1. — C. 42-48. (Cosmecto ¢ M.JI. PamazaHoBBIM).

06 ogaoM KJacce maTErpo-auddepennmanbanpix ypasaenuit // Becrn. AH KasCCP. — 1982. — Ne 5, C.38-48.
(CoBmectHo ¢ I'.V1. BuxxaHnosoit).

ITocTpoenune pemeHnst OAHOrO CHUHTYJISIPHOTO MHTErPAJIBHOTO ypaBHeHHs Tuna Bombreppa-Ppearonsma // U3s.

AH KasCCP. Cep. dpusz.-mar. — 1983. — Ne 3. — C. 54-58. (Cosmecrro ¢ M.O. OpsiabacapoBbim).

Pemmenne 3a1a4u TeOPUH TEILIONPOBOJIHOCTH C PA3PBIBHBLIM KO3(P(MUIMEHTOM U BLIPOXKIAIOMIMMUCA MOIBUKHBIM
rpanunavu // Uss. AH KasCCP. Cep. dusz.-mar. — 1984. — Ne 3. — C. 35-39. (Cosmectno ¢ V.K. Koinbimosbmm).

O6 omHOI TMHEHHO-HEKIACCUIECKON 3a/1ade JJIsi By MEPHOTO YPaBHEHUST TEILIOIIPOBOIHOCTU C Pa3PBIBHBIM KO-
dunnenrom // Uss. AH KasCCP. Cep. dus.-mar. — 1986. — Ne 3. — C. 18-22. (Cosmecrro ¢ M.K. AGenosbim).

YpaBHEHHE TEIIONPOBOIHOCTH C PA3PHIBHBIM KO3MMUIIMEHTOM B 00JIACTH, BBIPOXKIAIOIIEHCs B HAYAIbHBIH MOMEHT

Bpemenu // Becrn. AH KasCCP. — 1986. — Ne 9. — C. 39-45. (CoemectHo ¢ Y.K. Koitnbimossim).

O 3azade ¢ KOCOH IPOU3BONHON Il JBYMEPHOIO ypaBHEHMsI TEIIONPOBOAHOCTH B mosymosoce // Uzs. AH
KasCCP. Cep. dus.-mar. — 1987. — Ne 5. — C. 17-22. (CoBmectro ¢ M.K. AGenoBbiM).

Pemenne oHOrO KJ1acca CHHTYIAPHBIX MHTErpaabbix ypasuennit. 4. 1 // Uss. AH KasCCP. Cep. dwus.-mar. —
1991. — Ne 5. — C. 31-34.
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