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Roughness in Fuzzy Cayley Graphs

Rough set theory is a worth noticing approach for inexact and uncertain system modelling. When rough set
theory accompanies with fuzzy set theory, which both are a complementary generalization of set theory, they
will be attended by potency in theoretical discussions. In this paper a definition for fuzzy Cayley subsets is
put forward as well as fuzzy Cayley graphs of fuzzy subsets on groups inspired from the definition of Cayley
graphs. We introduce rough approximation of a Cayley graph with respect to a fuzzy normal subgroup.
We introduce the approximation rough fuzzy Cayley graphs and fuzzy rough fuzzy Cayley graphs. The last
approximation is the mixture of the other approximations. Some theorems and properties are investigated
and proved.
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1 Introduction and preliminaries

Rough sets have been investigated in many papers. For details we refer to [1-7]. In particular, in [8],
rough approximations of Cayley graphs are studied. It has intended to build up a rational connection
between rough set theory [7], fuzzy set theory [9] and Cayley graphs. Cayley fuzzy graphs are studied
in [10-12|. We present a new definition of fuzzy Cayley sets and so, fuzzy Cayley graphs of generators
of the Cayley graph of a group. For a finite group G and a fuzzy subset p on G, the fuzzy subset y is
called fuzzy Cayley subset, if the subset

Su={acG | ula) <1}

is a Cayley subset of G. It means that 1¢ ¢ S, (where 1¢ represents the identity element of G) and if
s € Sy, then s7le S,.. We define the triple (G; Sy; 1) as a fuzzy Cayley graph. In fact, the fuzzy Cayley
graph (G;Sy,; i) is a Cayley graph where the fuzzy Cayley subset p constructs the Cayley subset of it.

The outline on the paper is as follows. First, we recall some notation and definitions about the simple
graph. We also recall the definitions and concepts of the fuzzy subset, fuzzy subgroup, t-level relation
and lower approximation operator and upper approximation operator for a fuzzy approximation space
that we need for the paper in this section. In Section 2, we present the definitions of fuzzy Cayley subset
and fuzzy Cayley graph for fuzzy subsets of groups and some few results for them. In Sections 3 and 4,
we deal the concept of fuzzy lower and upper approximations of a Cayley graph and lower and upper
approximations of a fuzzy Cayley graph with respect to a fuzzy normal subgroup. Finally, in Section
5, we combine the concept of the lower and upper approximations of a Cayley graph and lower and
upper approximations of a fuzzy Cayley graph and present the fuzzy lower and upper approximations
of a fuzzy Cayley graph with respect to a fuzzy normal subgroup on a finite group.

For the benefit of the reader, we collect in this section some of the basic concepts and facts that
we need in this paper.

Let us introduce some basic notation and definitions about the simple graph. We consider simple
graphs, which are undirected, with no loops or multiple edges.
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Now, we recall the definition’s fuzzy subset, fuzzy subgroup, fuzzy normal subgroup and some
proportion of them [9,13]. Suppose that X is a universe set. A fuzzy subset p on X is a function
p: X — [0, 1] mapping all elements x of X into a real number p(z) in the closed interval [0, 1]. Taking
fuzzy subsets p and X on X. p C X if and only if all z € X satisfying u(z) < A(z). Fuzzy subset v is
called the union of fuzzy subsets p and A, if and only if y(z) = max{u(z), \(x)} for all x € X, and ~
is denoted by p U A. Fuzzy subset ¢ is called the intersection of fuzzy subsets p and A, if and only if
o(z) = min{pu(z), A(z)} for all z € X, and ¢ is denoted by pN A.

A fuzzy subsets p on a group G is called a fuzzy subgroup of G [13], if the following conditions hold:

1 Va,b € G, p(ab) > min{pu(a), u(b)};

2 Vae G, pla™) > p(a);

3 u(le) =1.

For every a in G, p(a~1) = p(a). This follows at once from part 2. A fuzzy subgroup p of G, is called
a fuzzy normal subgroup of G if for any arbitrary elements a and b of G, have to u(ab) = p(ba).

We recall the t-level relation for fuzzy normal subgroups and some properties and theorems 1 and
2, that we need in the work from [4]. Let p be a fuzzy normal subgroup of G. For each ¢ € [0, 1], the
set

p={(a,b) € Gx G | p(ab™") >t}

is called a t-level relation of p. For each t, p; is a congruence relation on G. We denote by [z], the
congruence class of p; containing the element = of G. Let A be a non-empty subset of G. Then the sets

pi-(A) ={z € G | [z, C A},
pr(A) ={z € G | [z], N AF 0}

are called, respectively, the lower and upper approzimations of the set A with respect to u:. The pair
pu(A) = (pue—(A), uen (A)) is called a rough set of A in G. A non-empty subset A of a group G is called
a pun-fuzzy rough (normal) subgroup of G if the upper approximation of A is a (normal) subgroup of
G. Similarly, a non-empty subset A of G is called a py—(A)-fuzzy rough (normal) subgroup of G if lower
approximation is a (normal) subgroup of G. Note that, if ;4 and A are fuzzy normal subgroups of a
group G, then p N A is also a fuzzy subgroup G.

Theorem 1. Suppose that g and A are fuzzy normal subgroups of a group G and ¢ € [0,1]. Let A
and B be any non-empty subsets of G. Then
(1) pe—(A) € A C pun(A),
(2) pe—(ANB) = pu—(A) N u—(B),
(3) pern (AU B) = pupn (A) U pun (B),
(4) A C B implies p;—(A) € pu—(B),
(5) A C B implies pn(A) C uen (B),
(6) pe—(AUB) 2 pu—(A) U u—(B),
(7)
(8)
(9)
10)
)
12)

=% EE

7 AN B) C pur(A) N pn (B),
A, implies A~ (A) C —(4),

A, implies g (A) C M (A),

PN = pre N A,

10 A (4) D (A) N A (4),

(,U, NA)r(A) C pn (A) N Agn (A)

-
>
—~

8
9
(10
(11

7:1:1:“;
N 1N

~~

Theorem 2. Let p be a fuzzy normal subgroup of a group G and ¢t € [0,1]. If A is a (normal)
subgroup of G, then p(A) is a (normal) subgroup of G. Moreover, if the lower approximation of A is
non-empty, then it is a (normal) subgroup of G.
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Given a continuous triangular norm 7" on the unit interval I = [0, 1]. A fuzzy binary relation R on

X is called a T-similarity relation if for all x,y, z € X, R satisfies the following conditions:

(1) Riz,a) = 1;

(2) R(z,y) = R(y,z);

(3) R(z,2)TR(z,y) < R(z,v).
The pair (X, R) is called a fuzzy approximation space (see, for example [14| and [6]). Morsi and
Yakout in [6] define the lower approximation operator and upper approximation operator for a fuzzy
approximation space (X, R), respectively, for p € [0,1]%, as follows:

App(z) = in§( U1 (R(u, x), u(u)) for every z € X,
ue

Agpu(z) = sup(R(u, z)Tu(u)) for every x € X,
ueX

when J7(a,b) = sup{f € [0,1] | aT0 < b}, for every a,b € [0,1]. Let G be a group and C € Ig. If C
satisfies the following conditions:

(1) C(zy) > C(x)TC(y);

(2) C(z™!) = C(2);

(3) Cle) =1,
then C is called a T-fuzzy subgroup of G. If C(zy) = C(yzx) for every z,y € G, then C is called a
T-fuzzy normal subgroup of G. It easily can be verified that the binary relation,

B:GxG—10,1],

B(z,y) = C(xy™'), for every z,y € G

is T-similarity relation. Jiashang, Congxin and Degang in [14] define the upper approximation operator
Ap and the lower approximation operator Ap with respect to B on G. In this paper, we limited the
triangular norm 7', the simplest triangular norm, Min. Let p be a fuzzy subset and § be a fuzzy normal
subgroup on G. We call the fuzzy subsets Agu, A as respectively, the lower and upper approzimations
of the fuzzy subset i on G with respect to the fuzzy normal subgroup B.

AB/’L(x) = lng 0min(B(u7$)nu’(u))7 for every x € G7
ue

App(z) = sup{min{B(u, x), p(u)}}, for every = € G.
ueG

The pair(Agu, App) is called a rough fuzzy set of u. The fuzzy subset p on a group G is called a Ag
rough fuzzy (normal) subgroup, if the upper approximation of y is a fuzzy (normal) subgroup on G.
Similarity, the fuzzy subset p on a group G is called a Ag rough fuzzy (normal) subgroup, if the lower
approximation of p is a fuzzy (normal) subgroup on G.

Note that Ymin(a,b) = 1, if and only if a < b, if not it is equal to b.

The next proposition follows at once from [14; Proposition 2.4].

Theorem 3. Let G be a finite group, p and A be fuzzy subsets. Let B and C' be fuzzy normal
subgroups on G. Then

(1) App C pu C App,

BApn = ApApp = Ag%

pit = pif and only if Agp = p,
B(LUA) = AppU Ap,
s(pNX) C Agun A,
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) Ap(pUX) 2 App U ApA,
) Ap(pnA) =Agun AgA,
) B C C then Agu C Acp,
)

7
8
9
0) B C C then A-p C App.

(
(
(
(1

The next corollary easily can be verified based upon the parts (6) and (7) of Theorem 3.

Corollary 1. Let G be a finite group, pu and A be fuzzy subsets. Let B be a fuzzy normal subgroup
on G. If 4 C A, then
(1) App C ApA,
(2) App C ApA.

The fuzzy subset BMinC'is defined based on fuzzy subsets B and C' as BMinC'(z) = min{B(z), C(z)},
Va € G. The next theorem follows from [14; Lemma 3.4, Propositions 3.5, 3.6, 4.1 and 4.2].

Theorem 4. Let G be a finite group. Suppose that B and C are fuzzy normal subgroups of G. The
following properties hold.
(1) The fuzzy set BMinC is a fuzzy normal subgroup.
(2) ABMMlnAC,u C ApMinch-
(3) AgMinct € ApuMinAcp.
(4) If u is a fuzzy (normal) subgroup of G, then Agp is a fuzzy (normal) subgroup of G.
(5) If p is a fuzzy (normal) subgroup of G and B C pu, then Apu is a fuzzy (normal) subgroup of G.

Throughout the paper, we will make frequently use of the above mentioned results.

2 Fuzzy Cayley subsets and graphs

In this section, we present the definitions of fuzzy Cayley subset and fuzzy Cayley graph for fuzzy
subsets on groups.

Let G be a finite group and p be a fuzzy subset on G. The fuzzy subset p is called fuzzy Cayley
subset, if the subset

Su=facG | ua)<1)

is a Cayley subset of G. It follows that p(1,) = 1 and if u(a) < 1, then u(a™!) < 1. Obviously, every
fuzzy group is a fuzzy Cayley subset. Since S, is a Cayley set, (G;S,) is a Cayley graph. When ug
is a fuzzy Cayley subset, we define the triple (G;Sy; 1) and called it fuzzy Cayley graph. In fact, the
fuzzy Cayley graph (G;Sy; i) is a Cayley graph where the fuzzy Cayley subset p constructs the Cayley
subset of it.

The next lemma yields that if u(a) # p(b), then p(ab) = min{u(a), u(b)}, for some a,b € G, when
p is a fuzzy subgroup on G.

Lemma 1. Suppose that p is a fuzzy subgroup on G. If u(a) # u(b) then p(ab) = min{u(a), u(b)},
for every a,b € G.

Proof. Without less of generahty, suppose that p(b) > p(a). Since p is a fuzzy subgroup, we get
p(a) = p(abb=t) > min{u(ab), u(b=1)}. Since u(b=1) = u(b) and u(b) > u(a), the last argument yields
that p(a) > w(adb). On the other hand, u(ab) > min{u(a), u(b)} = p(a). Therefore, u(ab) = p(a) =
min{u(a), u(b)}. Similarity, if 4(b) < p(a), then p(ab) = p(b). Thus, we have pu(ab) = min{u(a), u(b)}.

Lemma 2. Suppose that u; and po are fuzzy Cayley subsets on a group G. The following properties
hold.
(1) If i1 C po, then Sy, €Sy,
(2) The fuzzy subset p1 U pg is a fuzzy Cayley subset and Sy uu, = Suy N Sy,
(3) The fuzzy subset p1 N po is a fuzzy Cayley subset and Sy, = Su U Sp,.
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Proof. (1) If © € Sy, then py(x) = 1. Since p1 < po, we have po(x) = 1, and, thus, x € S,,.
Therefore, S, € Sy,.

(2) It easily can be verified that S,,uu, = Su N Su,. Now, suppose that z € S,,uu,. Then
z € S, NSy, Since pp and pg are fuzzy Cayley subsets, we have 271 € S,, NS, and, thus,
z71 € Su,up,. Similarly, if 1 € S, Uy, then 1 € Sy, NS,,, a contradiction. Therefore, py U pg is

a fuzzy Cayley subset.

(3) In a similar way as last part.

Lemma 3. Let X1 = (G;S1) and Xy = (G; S3) be Cayley graphs. The following properties hold.
(1) X1UXy = (G, S U SQ)
(2) Xi1NXe = (G, S1N 82)
(3) X1 g X2 if and only if Sl g SQ.

Proof. (1) Let e be an edge of (G;S; U S2). Then there exist ¢ € G and s € S U Sy such that
e is an edge between two vertices ¢ and gs. Since s € S1 U .Se, we have s € S; or s € Sy and, thus,
e € E(X1) or e € E(X2). Therefore, e € E(X; U X2). Similarly, any edge of E(X; U X3) is an edge of
(G; 51U S2). The result follows.

(2) In a similar way as last part.

(3) Suppose that S; C Ssy. If e € E(X7), then there exist elements g € G and s; € S; such that
e = (g,9s1). Since s; € S; and S; C Sy, we obtain e € E(X3). Therefore, X; C X5. Now, suppose
that E(X;) C E(X3). Let g € G. If 51 € Sy, then (g, gs1) € E(X1). Therefore, (g,gs1) € E(X3). Then
(g9,981) = (¢',¢'s}) for some ¢’ € G and s} € Sy. Since g = ¢/, we obtain s; = §| and, thus, s; € Ss.
The result follows.

Notice that, if V/(X;) = V(X3) then X;UX5 and X;N X9 are obviously Cayley graphs. The Lemma
2 follows us to define subgraph, union and intersection of fuzzy Cayley graphs.
Definition 1. Suppose that X = (G;Sy; 1) and Y = (G; Sy; A) are fuzzy Cayley graphs. Then
(1) X CY if and only if A C pu;
(2) XUY = (G;5,USx;nNA);
(3) XNY =(G;S8, NSx;nUN).
Lemma 4. Suppose that G is a finite group and p is a fuzzy Cayley subset on G. If p is a fuzzy
subgroup and S, # () then S, generates G.

Proof. Suppose that g € G. If g € S, then pu(g) = 1. Now, if a € S, then p(a) < 1. By Lemma 1,
p(ga™t) = p(a). It follows that ga~! € S, and, thus, g = ga—'a € (S,,). Therefore, G = (S,,).

The following theorem is easily verified by Lemma 4.

Theorem 5. Suppose that X = (G;Sy; ) is a fuzzy Cayley graph. If p is a fuzzy subgroup, then
the Cayley graph (G;S,) is connected.

8 Fuzzy rough Cayley graphs

Suppose that G is a finite group with identity 1¢, u is a fuzzy normal subgroup, 0 <t < 1, and
X = (G;S) is a Cayley graph. Then the following graphs (we will prove these graphs are Cayley
graphs)
X = (G pn(S)) (e (5)" = per () \{lg}) and X, = (G5 - (5))
are called, respectively, fuzzy upper and lower approximations of the Cayley graph X with respect to
the fuzzy normal subgroup p and integer ¢.
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Theorem 6. X, and Ym are Cayley graphs.

Proof. By Theorem 1(1), we have pu;—(S) C S, and, thus, 1¢ & p—(S). Suppose that s € py—(95).
Then [s], C S. If z € [s7!], then (z,s™!) € u and, thus, (z71,s) € u, because u is a fuzzy normal
subgroup. Thus 7! € [s], C S. Since S is a Cayley set, we obtain z € S and, thus, [s7!], C S. Hence,
s7v € g (S). Therefore, y;(S) is a Cayley set, and X, is a Cayley graph.

Now, suppose that s € p2(S)*. Then [s], NS # @ which implies that there exists a € [s], N S.
Since a € [s], NS, we obtain (a,s) € u. As p is a fuzzy normal subgroup, (a=1,s7!) € p. Then
a~t € [s71,. Since S is a Cayley set, we have [s7!], NS # 0 and, thus, s™* € p(S). Therefore,
pen (S)* is a Cayley set, and X, is a Cayley graph.

Let G be a group congruence modulo 16 integral number Z. Let B be a fuzzy normal subgroup
of G presented in Table, and ¢ be 0.3. Let X = (G S) be a Cayley graph such that S equals to

Table

B(1)=01 | B(2)=02 | B3)=01 | B(4)=04
B()=0.1 | B(6)=02 | B(7)=0.1 | B(8) =038
B(9)=0.1 | B(10)=02 | B(11)=0.1 | B(12) =0.4
B(13)=0.1 | B(14) =02 | B(15)=0.1 | B(0) =1

Theorem 7. Suppose that p and A\ are fuzzy normal subgroups of a group G and t € [0, 1]. Let
= (G;95), X1 = (G;S1) and Xy = (G; S2) be Cayley graphs. The following properties hold.

1) X, CXCX

( ) e

(2) X1UX2m _Xl,U«tUX2,U«t’
(3) leXQ —X1 ﬂ&ut
(4) X1 CX2:>X1 CXQ
(5) X1 CX2:>X1,ut CXQuta
(6) X1UX2 DXl UX2
(7) leXQ#t CleﬂXQuf,
(8) Htc)\thuthAta
(9) ,U/tc)\t:X)\tCX

10)

11) X

(
(

Proof. (1) By Theorem 1(1), p—(S) € S C un(S). Then py—(S) € S C pugn (S)*. It follows that
X,U«t cXc Yﬂt

(2) Based on Lemma 3, X7 U X5 = (G; pn (S1)* U pga (S2)*). By Theorem 1(5), we have jugn (Sp)*
and g (S2)* C pgn (S1US2)*. Now, by Lemma 3(3), we have le UXQW CXiUXy Xa,,,. Conversely, by
Theorem 1(3), puer (S1)* U pen (S2)* = pun (S1 U S2)*. Suppose that (g, gs) is an edge of E(X; U X3,,).
It follows that s € g (S1US2)*. Then s € pgn (S1)* U pga (S2)* and, thus, s € g (S1)* or s € puyn (S2)*.
Therefore, (g, gs) is an edge of le or sz Finally, we have X; U Xo Xoy, = XlMt U qut
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(3) By Theorem 1(2), the proof is similar to part (2).
(4) Assume that X1 C X5. Then S; C Sy and, thus, p;—(S1) C pe—(S2). Hence, &M C &m
(5) By Theorem 1(5), the proof is similar to part (4).
(6) By Theorem 1(6), we have p;—(S1) U py—(S2) € py—(S1US2). Then py—(S1) C pyp—(S1US2) and
t—(S2) C pe—(S1 U S2). Therefore, we obtain X; U Xgut D &Mt and X; U Xgut D &ut' And finally,
XiUXy 2% UXy

(7) By Theorem 1(7), the proof is similar to part (6).

(8) Assume that g C Ap. Theorem 1(9) yields pn (S) € M\a(S). Then pya (S)* € Aa(S)* and, thus,
Yﬂt - Y)\t'

(9) By Theorem 1(8), the proof is similar to part (8).
(10) By Theorem 1(12), we have

(G; (0 M) ()

(G5 pen (5) N A (5))
(G5 er (5)) N (G5 A ()
X ﬂX)\t

X (urn

N

(11) By Theorem 1(12), the proof is similar to part (11).

Remark 1. A subset S of G is a minimal Cayley set if it generates G and if S\ {s, s !} generates
a proper subgroup of G for all s € S.

The pair (X, , X ,i;) is called a fuzzy rough set of the Cayley graph X. A Cayley graph X = (G; S)
is called a pa fuzzy rough generating, if the subset us (S)* is a generating set for G. Similarly, a Cayley
graph X = (G} S) is called an p;—-fuzzy rough generating, if the subset p;—(S) is a generating set for
G. A Cayley graph X = (G;S) is called a pun-fuzzy rough optimal connected, if the subset p(S)* is
a minimal Cayley set for G. Similarly, a Cayley graph X = (G;S) is called a u;—-fuzzy rough optimal
connected, if the subset p;—(S) is a minimal Cayley set for G.

Theorem 8. Suppose that X = (G;.5) is a Cayley graph.
(1) If X is a uyr-fuzzy rough generating, then X, is connected.
(2) If X is a p—-fuzzy rough generating, then X, is connected.
(3) If X is a pyr-fuzzy rough optimal connected, then X, is optimal connected.
(4) If X is a p—-fuzzy rough optimal connected, then X, is optimal connected.

Proof. 1t is straightforward.

4 Rough fuzzy Cayley graphs

Let G be a finite group with identity 1g, B a fuzzy normal subgroup on G and X = (G;S,; 1) be a
fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these are fuzzy Cayley graphs)

Xp = (G; Sayu-; App*) and X = (G;57,,; App)
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are called, respectively, lower and upper approximations of the fuzzy Cayley graph X with respect to B.
In the above definition, Agp*(z) is similar to Agpu(z) in all elements, except for 1, where Agp*(1g)
is 1.

Theorem 9. The triples X 5 and X g are fuzzy Cayley graphs.

Proof. Suppose that Agp(z) =1 for some z € [0,1]. Thus
infyeq Omin(B(u, x), pu(u)) = 1.

Therefore, for all elements u € G, Umin(B(u, ), p(u)) = 1 and, thus, B(ur~!) < p(u) for every u € G.
On the other hand, y is a fuzzy subgroup, and we have p(u=!) = p(u). Then B(uxr=!) < p(u~1). Since
B is a fuzzy normal subgroup, we obtain B(uz~!) = B(z~'u) and consequently, are equal to B(u~'z).
So B(u~tx) < p(u~1). Hence for all u of G, Ypin(B(u™t, 271), u(u=1)) = 1 and, thus,

inquG ﬁmin(B(u_la x_l)v :u(u_l)) =1
Then
inquG ﬂmin(B(ua x_l)a /,L(U)) =L

So Agu(x~!) = 1. Therefore, Agu* is a fuzzy Cayley subset and X g is a fuzzy Cayley graph.
Theorem 3(1) leads p C Apgpu. Since u(lg) = 1, we obtain Agu(lg) = 1. Now suppose that
App(z) = 1. Then

supyeq{min{B(uz~), p(u)}} = 1.

Since G is finite, there exists an element u of G such that min{B(ux~!), u(u)} = 1. Then B(uz~!) =
p(u) = 1. Since p is a fuzzy subgroup, we obtain u(u™!) = p(u). Now as B is a fuzzy normal
subgroup, B(uz~!) = B(x~!u) and since B is a fuzzy subgroup, we obtain B(uz~!) = B(u~'x). Thus
min{B(u~'z), u(u1)} =1, and Agu(x~!) = 1. Consequently, App is a fuzzy Cayley subset and, thus,
X p is a fuzzy Cayley graph.

Lemma 5. Suppose that G is a finite group and B is a fuzzy normal subgroup of G. If X = (G;S,,; i)
and Y = (G; Sy; \) are fuzzy Cayley graphs, then:

Proof. (1) Suppose that € Sy, (uuny+- Then Ag(pUA)*(z) < 1 and x # 1g. By Theorem 3(7),
App(z), AgpA(z) < 1. Hence, © € Sa;x N Sa

According to Theorem 3, items (2), (3) and (4) are straightforward.

Theorem 10. Suppose that G is a finite group and B and C' are fuzzy normal subgroups of GG. Let
X = (G;Su; 1) and Y = (G; Sy; A) be fuzzy Cayley graphs. Then
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Proof. (1) By Theorem 3(1), we have Agu C p C Agu. Hence Agpu* C u C App. Lemma 2(1)
implies that X5 C X C X5

(2) By Definition 1(2), X UY = (G; Synx; £ N A). Then we have
XUYp = (G;Sa, s Appn ).
By Theorem 3(8), Ag(nNA) = Agun Ag) and, thus,
XUYp=(G; Sapurnagh; App N Ag\™).
Now by 1(2), X UY g = X UY g. The result follows.
(3) By Theorem 3(7), the proof is similar to part (2).
(4) By Theorem 3(6), the proof is similar to part (2).
(5) By Theorem 3(5), the proof is similar to part (2).
(6) If w C A, then by Corollary 1(1), Agu € Ag). Now, by Definition 1(1), Y5 C X .
(7) By Corollary 1(2), the proof is similar to part (6).
(8) Assume that B C C. By Theorem 3(9), Agu C Acp. Therefore, we have X C X .

(9) According to Theorem 3(10), the proof is similar to part (8).

Theorem 11. Suppose that G is a finite group. If B and C' are fuzzy normal subgroups and p is a
fuzzy subset on G, then the following statement hold.
(1) (Ga SABMmcﬂ;ABMinCH) < (Gv SABHMinAcH;ABMMinACM)a
(2) (G587, umtindgs ABpMinAcu) € (G; 53 s ABMinc i)

ABMinctt’

Proof. According to Theorem 4, the proof of both parts are clear.

The pair (X 5, Xp) is called a rough set of a fuzzy Cayley graph X = (G;S,;p). A fuzzy Cayley
graph X = (G;Sy;p) is called an Ap rough generating, if the subset SZB ., generates G. Likewise a
fuzzy Cayley graph X = (G;S,; p) is called an Ap rough generating, if the subset S, generates G.
A fuzzy Cayley graph X = (G;Sy; ) is called an Ap rough optimal connected, if the subset SZBM is a
minimal Cayley set of G. Similarly a fuzzy Cayley graph X = (G;Sy,; i) is called an Ag rough optimal
connected, if the subset S4,,, is a minimal Cayley set of G.

Theorem 12. Suppose that G is a finite group, and B is a fuzzy normal subgroup of G. Let X =
(G; Su; 1) be a fuzzy Cayley graph. The following properties hold.

(1) If u is a fuzzy subgroup of G, then X is a Ap rough generating.
(2) If B C p and p is a fuzzy subgroup of G, then X is a Ay rough generating.

Proof. According to Theorems 4 and 4, the proof is straightforward.
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5 Fuzzy rough fuzzy Cayley graphs
In this section, we get the t-level relation puy, for each t € [0,1), as follows:
pe = {(a,b) € Gx G | plab=t) >t}

Similarly, all results related to the t-level relation u; are same. Let B be a fuzzy normal subgroup on G
and X = (G;Sy; ) be a fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these
are fuzzy Cayley graphs)

s = (G; By, _(Su): Appf) and X = (Gy B)\(S,)* App)

are called, respectively, fuzzy lower and upper approximations of the fuzzy Cayley graph X with respect
to B. The definitions of t,, A ppf and Agpf are as follows:

t, = max{u(z) |z € S,},
if v € B{L(Su)* then Appf(z) = Apu*, otherwise Appf(z) =1 and
if z € By, (S,) then Appt(x) = App(z), otherwise Aput(x) = 1.
Theorem 13. The triples X5 and ng are fuzzy Cayley graphs.

Proof. In the proof Theorem 6, it proved that the subsets By, (S,) and B{L (Su)* are Cayley sets.

To prove that the X5 and ng are fuzzy Cayley graphs, it is sufficient to show that By, (S,) = S5
and By (Su)* = Sa .-
Suppose that =z € By, (S,). Then Appt(z) = Agp(x). If Agu(x) =1, then

BK

supyee{min{Bluz"), u(u)}} = 1.

Since G is finite, there exists an element u in G where min{B(uz~1'), u(u)} = 1 and, thus, B(uz™!) =
p(u) = 1. As B(uz™!) = 1, we h obtain u € [z]p and, thus, u € S,. Therefore, u(u) < 1, a
contradiction. Then Apu(x) # 1 and, as a result, Aguf(z) # 1. Now, suppose that = & By, (Su).
Based on the definition, Agu®(x) = 1. Therefore, By, (Su) = Sa,,.:-

Let « be in B} (S,,)*. Then Agp?(z) = App*. Since € BY) (S,)*, there exists an element y € S,
such that y € [z]p. If we have Appu(z) = 1, then

inf Ymin(B(uz™b), p(u)) = 1.

ueqG
Therefore, we have B(uz™!) < p(u) for every u € G. Then B(yz™') < u(y). Since u(y) < t,, we
obtain B(yz™') <t,. As y € [z]g, B(yz~!) > t,, a contradiction. Now, suppose that = ¢ B,{;(S“)*.
(z

Based on the definition, Apuf(x) = 1. Hence, by above B L (Su)* = Saut(a)-

Lemma 6. Let G be a group and t1, t2 and t3 be integers in the closed interval [0, 1]. Suppose that

i is fuzzy normal subgroups of G. Let A and B be two non-empty sets. Then

(1) if t3 < 1,12, then pyp (AU B) 2 pyp (A) U pyy (B),
2) if t3 > t1,ta, then pyp (AU B) C ,utA( )U,utA( ),
3) if t3 > t1,ta, then pyp (AN B) C ’Ut/\(A) N /.LtA( )

)

)

)

(
(
(4
(
(

if t3 < t1,to, then Mts—(A N B) - Mty — (A) N Hity— (B)
5) if t3 Z tl,tQ, then Mt3_(A N B) :_) Mt — (A) N Mty — (B)
6) if t3 > tl,tg, then Mt3—(A U B) :_) Mt — (A) U Mty — (B)
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Proof. (1) Let « € pyn(A) U pyy (B). Then z € pyn(A) or x € pyp(B). Suppose that x € pyn(A).
Thus, [z],,, N A # () and consequently, there exists a € A such that p(xa™t) > t1. Since t; > t3, we
have p(za™') > t3 and, thus, [x],,, N A # 0. The result gives us that z € pep (AU B). Similarity, if
T € fizp (B), the same result can be gained.

(2) Let z € pyy (AU B). Thus, [z],, N (AU B) # 0. Then [z],,, N A # 0 or [z],, N B # 0.
Suppose that [2],,, N A # 0. Hence, there exists a € A such that pu(za™") > t3. Since t3 > t, we have
p(ra~t) > t; and, thus, (], N A # 0. The result gives us that = € ;2 (A). The result follows.

(3) Let @ € p;p (AN B). Then, [z],,, N (AN B) # 0 and, thus, [z],,, N A # 0 and [z],,, N B # 0.
Hence, there exist elements a € A and b € B such that u(xa™1) > t3 and p(xb~1) > t3. Since t3 > t1, to,
we have p(za™t) >t and p(xb~') >ty and, thus, [z],, N A # 0 and [2],, N B # 0. The result gives
us that s (A) N pgy (B). The result follows.

(4) Let © € py;— (AN B). Then [z],, € ANB. If y € [z],, , then u(yz™') > t; and, thus,
p(yz~t) > t3. Then y € A. It follows that = € uy, —(A). Similarly, we have = € uy,(B).

(5) Let « € gy~ (A) N gy (B). Then [2],, C A and [z],,, € B. If y € [z],,,, then p(yz™") > 3
and, thus, u(yx=1) > t; and u(yz~!) > to. Then y € AN B. It follows that = € py, (AN B).

(6) Let = € py;—(A) U pugy—(B). Hence, z € py,—(A) or x € py,—(B). Suppose that x € s, —(A).
Hence, [z]y, C A.Ify € [z],,, then pu(yx=1) > t3 and, thus, u(yx=1) > t;. Then y € A. It follows
that = € py,— (AU B). The result follows.

Theorem 14. Let G be a finite group. Taking any fuzzy normal subgroups B and C on G. If

X = (G;S,; 1) and Y = (G; Sx; A) are fuzzy Cayley graphs. The following properties hold.
(1) X3 C X C X,

(2) XNY CXpNYh,
(3) XUY 2 XpUYp,
(4) XNYs C XpnYy,
(5) nCSA=Yp C X},
(6)
(7)
(8)

6) t C A= 735 C ng,
7) BCC= Xy CXb,
=/ </
8) BCC=XyC X,
Proof. (1) By Theorems 3(1) and 1(1), we have, respectively, Agu C u € Agp, By, (S,) € S, C
B (Su)- If x € By (Su)*, then Aput(z) = Agu(z) and, thus, Agpf(z) < p(z). If = ¢ B} (Su)*, then
z ¢ S, and, thus, u(x) = 1. So we have Appf(z) < pu(z). Now by Definition 1, we have X C X
If # € By, (Su), then App(z) = App(z) and, thus, u(z) < Appb(z). If @ € By, (S,), then
Appf(x) =1 and again pu(z) < Agu®(x). Then, we have X3 C X.
(2) We have

XY = (G umnUN 5 = (G B (S, N Sy); Ap(p U N,

tuU/\

’
/

G S ) N (GiSx Ny
G; B (Su); Ap(1)®) N (G; B (S)); Ag(M)F)
G; B} (S,) N B (S2); Ap(1)f U Ag(W)F).

-/ ~/

~ o~ o~ —~

Since t,, ) > tu, tx, by Theorem 6(3), we have B{LM (SuNSy) < B{:L (5,)NDBY, (Sx). Also, by Theorem 3(7),
we have Ag(pUA) 2 AguU Ap). If € B[ (S,) N B, (Sx) then

ABNﬁ(ﬂf) = ABM(x)véB)‘ﬁ(x) = ApA(z)
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and, thus,
App(z) U ApNi(z) < Ap(pU ) ().
Since Ap(nUN)(z) < Ag(nUN)¥(z), we obtain Aguf(z) UAgN(z) < Ag(uUNi(z). Ifz ¢ B (Su)N
B{\ (5)), then z ¢ B} »ox (SuNS5)) and, thus, Ap(pUNE(x) = 1. Therefore, Ag(pUN)¥(z) > Agut(z)U
Ap)(x) and Definition 1 yields X N Y;; C Y/B N ?33.
(3) We have

G Surmi NN g = (G B (S, US)): Ap(pnn V),
G: 8 1) U (G Sxi N g

G; B (S,): Ap(1)*) U (G: BY\ (S2); Ap(\)F)

G; B, (S,) U BY) (52); Ap(p) N Ap(A)P).

XUYg=

X U?jg

—_~ o~ o~ —~

Since tunx < ty, ta, by Theorem 6(1), we have B! | (S,US)) 2 B} (Su)UBY, (S3). Also, by Theorem 3(8),
we have Ag(uNA) = Agun A If € By (S,) U B, (S)) then a € B{:LM(SM U Sy) and, thus,
Ap(u NN (a) = Ap(pn A)(z) = Agu(z) N Ap)(e) < App(z) N AN ().

Now, suppose that @ ¢ B}, (Sy,) U By} (Sx). Then

ABMﬂ(ﬂf) = AB)‘u(x) =

and, thus,
Ap(un Vi (@) < Appi(a) N Aph(x) =

Therefore, X U Y;g ) Y’B U?’B.
(4) We have
XY= (G Suuai nUN), = (G5 B, (SN S3); Ap(U ),
XpNYs = (G;Sy; ) N (G; SA,)\)
= (G; By, _(8); Ap()") N (G; By, _(S2); Ap(A)F)
= (G; Bi,,_(Su) N Bi,_(S2); Ap(p)f U Ap(M)F).

Since t,uxn > tu,ty, by Theorem 6(5), we have By, (S, NSy) 2 By, (Su) N By,_(Sx). Also, by
Theorem 3(5), we have Ap(nUX) = Ag(p) UAp(N). If 2 € By, (S,) N By,_(S») then

Appf(x) = Agp(z), ApMi(z) = AgA(z)

and, thus,
Apph(x) U ApA(z) = Ap(pUN)(z) < Ap(pUN)i(z).

If o & By, (Su) N Bi,_(Sy), then = & By, (S, N Sy) and, thus, Ap(uU M\¥(z) = 1. Therefore,
Appf(x) U Ap\i(z) < Ap(uUN)¥(2) and, thus, X N Y’ € X5 NY.

(5) If uw € A, then by Corollary 1(1), Agu € AgX. In the other hand, by Lemma 1, we have S\ C S,
and, thus, by Theorem 1(4), By, (S)) C By (Sy). Then Y5 C X'5.

(6) The proof is similar to part (5).

(7) Since B C C, by Theorem 3(9) we have Agpu € Acp. Also, Theorem 1(8) gives Cy,_(S) C
By, (). The result follows.

(8) The proof is similar to part (7).
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Conclusion

This paper has intended to build up a rational connection between rough set theory, fuzzy set
theory and Cayley graphs. First, formal definitions for fuzzy Cayley sets and fuzzy Cayley graphs have
been suggested.

Some illustrative examples have also been presented. Fuzzy Cayley graphs and related approximations
might be received attentions in some distributed and networked systems challenges.
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M.X. Hlax3amanan', B. /laBBa3z®

 Mopmy yrusepcumeminiy, mamemamura opmanavies, TTopmy ynueepcumems,
Pya-dy Kamno-Aneepu, Ilopmy, Ilopmyearus;
2 Hes0i ynusepcumemi, Hesdi, Hpan

o emec Keiiiu rpadTapblHAaFrbl IMaMa/IaH aybITKY

I[ITamaMeH ajbIHFaH >KUBIHJAP TEOPUSICHI OYJI KyHeaepi Jo1 eMec KoHe aHBIKTAJIMAFaH MOJIEbIeY VIIiH
smaitbikThl ofic. 1llamamen asbIHFAH YKUBIHIAD TEOPUSCHI YKUBIHIAP TEOPUSICHIHBIH, OJAH Opi YKaJIbLIAYbI
GOJIBII TAOBLIATHIH JDJ1 €MEC YKUBIH/IAD TEOPUICHIMEH TOJIBIKTHIPBLIFAH/IA, 0JIaD TEOPUSJIBIK, TAJIKbLIAYJIAD-
a kapamabl 6osanbl. Makasama Kaitn rpadTapblHbIH, aHBIKTAMACBIHAH TYBIHIAWTBIH J19J1 eMec Kaiiim
iKi KUBIHIAPBIHBIH, aHBIKTAMACH, JIEMEK TPYIIAJIapIaFbl 9/ eMeC 1Kl *KUBIHIAPIBIH 1971 eMmec Kaitan
rpadrapsl yebiaburad. Apropiap Ksiiyin rpadbsiHbIH 1971 eMec HOpMaJb iIKi TPYIIAChIHA KATHICTDI [IIaMa-
MeH KYBIKTay/Ibl, COHBIMEH KATap allIPOKCUMAIMSIIAHATHIH [IIaMaMeH aJIbIHFaH 1191 emec Keityin rpadrapbl
2KOHE JI9JT eMeC IaMaMeH aJiblHFaH a1 emec Keisin rpadrapbia enrizren. COHFBI XKYBIKTay 0acKa KybIKTa-
yaapaeiy 6ipiryi 6osbin TabbLtaabl. Keitbip Teopemasiap MeH KaCHETTEpPl 3epTTE/ITeH »KoHe J19JIeJIIeHIeH.

Kiam cesdep: aHBIK eMec »KUBIH, [IaMaMeH aJjblHFaH »KublH, Keitnu rpadsbl, anbik emec Keitau rpadewr,
TOMEHTI >KOHE YKOFaPFbI >KYBIKTAYIaP.

M.X. Hlaxzamanan', B. /lassasz?

! Mamemamuseckut yenmp Yrnusepcumema IHopmy, Ynusepcumem ITopmy,
Pya-dy-Kamny-Aaseepu, [lopmy, [lopmyeanus;
2 Viusepcumem Hesda, Hesd, Hpan

I'pyb6octh B HeueTkux rpadax Kaam

T'py6ast Teoprsi MHOKECTB — 3aCJIyKUBAIONIUN BHUMAHUS TIOJIXO/, JIJIsi HETOYHOTO U HEOIIPEJIEJIEHHOTO MOJIe-
JsmpoBanus cucreM. Korma rpybast Teopusi MHOXKECTB JIONIOJIHSIETCS TEOPUEHl HEYeTKUX MHOXKECTB, IIPUYeM
0be SIBJISTFOTCS JTOTIOJTHUTEIBHBIM 0O00IEHNEeM TEOPUU MHOXKECTB, OHU OYIYT MMETH CHJIY B TEOPETUIECKUX
JMCKyccusX. B HacTosIell crarbe MpeJjIoyKEeHO OIpeeieHre HeYeTKuX moaMuoxkects Kau u, cienosa-
TeJIbHO, HeueTKnuxX rpados Kaim HedeTKuX MOJMHOXKECTB Ha IpyIIax, BJOXHOBJIEHHOE OIPe/IeJIEHUEM Ipa-
dos Kamm. ABropamu BBeneHb! rpybast anmpokcumanus rpada Kaanm oTHOCHTETBHO HEYeTKON HOPMAaIBLHOMN
[IO/INPYTIIIBI, & TAKKe allIPOKCUMAIMOHHBbIE ITpyOble HedeTKue rpadbl Konu u Hederkue rpybble HedeTKHe
rpadnt Kanu. Ilocnennee nmpubimzkenune mnpeacTaBisgeT coboit cMech Apyrux npubsmkennii. VccaemoBasbr
¥ JIOKa3aHBI HEKOTOPBIE TEOPEMBI U CBONCTBA.

Kmouesvie cr06a: HEIeTKOE TIOIMHOXKECTBO, Tpyboe MHOXKeCTBO, rpad Kamu, nHeuerkuit rpad Komn, amkusas
U BEPXHsisl alllIPOKCAMAIIIH.
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