
Bulletin of the Karaganda University. Mathematics Series, No. 4(112), 2023, pp. 105–118

DOI 10.31489/2023M4/105-118

UDC 512

M.H. Shahzamanian1, B. Davvaz2,∗

1CMUP, Faculdade de Cincias, Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal;
2Department of Mathematical Sciences, Yazd University, Yazd, Iran

(E-mail: m.h.shahzamanian@fc.up.pt, davvaz@yazd.ac.ir)

Roughness in Fuzzy Cayley Graphs
Rough set theory is a worth noticing approach for inexact and uncertain system modelling. When rough set
theory accompanies with fuzzy set theory, which both are a complementary generalization of set theory, they
will be attended by potency in theoretical discussions. In this paper a definition for fuzzy Cayley subsets is
put forward as well as fuzzy Cayley graphs of fuzzy subsets on groups inspired from the definition of Cayley
graphs. We introduce rough approximation of a Cayley graph with respect to a fuzzy normal subgroup.
We introduce the approximation rough fuzzy Cayley graphs and fuzzy rough fuzzy Cayley graphs. The last
approximation is the mixture of the other approximations. Some theorems and properties are investigated
and proved.
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1 Introduction and preliminaries

Rough sets have been investigated in many papers. For details we refer to [1–7]. In particular, in [8],
rough approximations of Cayley graphs are studied. It has intended to build up a rational connection
between rough set theory [7], fuzzy set theory [9] and Cayley graphs. Cayley fuzzy graphs are studied
in [10–12]. We present a new definition of fuzzy Cayley sets and so, fuzzy Cayley graphs of generators
of the Cayley graph of a group. For a finite group G and a fuzzy subset µ on G, the fuzzy subset µ is
called fuzzy Cayley subset, if the subset

Sµ = {a ∈ G | µ(a) < 1}

is a Cayley subset of G. It means that 1G 6∈ Sµ (where 1G represents the identity element of G) and if
s ∈ Sµ, then s−1 ∈ Sµ. We define the triple (G;Sµ;µ) as a fuzzy Cayley graph. In fact, the fuzzy Cayley
graph (G;Sµ;µ) is a Cayley graph where the fuzzy Cayley subset µ constructs the Cayley subset of it.

The outline on the paper is as follows. First, we recall some notation and definitions about the simple
graph. We also recall the definitions and concepts of the fuzzy subset, fuzzy subgroup, t-level relation
and lower approximation operator and upper approximation operator for a fuzzy approximation space
that we need for the paper in this section. In Section 2, we present the definitions of fuzzy Cayley subset
and fuzzy Cayley graph for fuzzy subsets of groups and some few results for them. In Sections 3 and 4,
we deal the concept of fuzzy lower and upper approximations of a Cayley graph and lower and upper
approximations of a fuzzy Cayley graph with respect to a fuzzy normal subgroup. Finally, in Section
5, we combine the concept of the lower and upper approximations of a Cayley graph and lower and
upper approximations of a fuzzy Cayley graph and present the fuzzy lower and upper approximations
of a fuzzy Cayley graph with respect to a fuzzy normal subgroup on a finite group.

For the benefit of the reader, we collect in this section some of the basic concepts and facts that
we need in this paper.

Let us introduce some basic notation and definitions about the simple graph. We consider simple
graphs, which are undirected, with no loops or multiple edges.
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Now, we recall the definition’s fuzzy subset, fuzzy subgroup, fuzzy normal subgroup and some
proportion of them [9, 13]. Suppose that X is a universe set. A fuzzy subset µ on X is a function
µ : X → [0, 1] mapping all elements x of X into a real number µ(x) in the closed interval [0, 1]. Taking
fuzzy subsets µ and λ on X. µ ⊆ λ if and only if all x ∈ X satisfying µ(x) ≤ λ(x). Fuzzy subset γ is
called the union of fuzzy subsets µ and λ, if and only if γ(x) = max{µ(x), λ(x)} for all x ∈ X, and γ
is denoted by µ ∪ λ. Fuzzy subset ϕ is called the intersection of fuzzy subsets µ and λ, if and only if
ϕ(x) = min{µ(x), λ(x)} for all x ∈ X, and ϕ is denoted by µ ∩ λ.

A fuzzy subsets µ on a group G is called a fuzzy subgroup of G [13], if the following conditions hold:
1 ∀a, b ∈ G, µ(ab) ≥ min{µ(a), µ(b)};
2 ∀a ∈ G, µ(a−1) ≥ µ(a);
3 µ(1G) = 1.

For every a in G, µ(a−1) = µ(a). This follows at once from part 2. A fuzzy subgroup µ of G, is called
a fuzzy normal subgroup of G if for any arbitrary elements a and b of G, have to µ(ab) = µ(ba).

We recall the t-level relation for fuzzy normal subgroups and some properties and theorems 1 and
2, that we need in the work from [4]. Let µ be a fuzzy normal subgroup of G. For each t ∈ [0, 1], the
set

µt = {(a, b) ∈ G×G | µ(ab−1) ≥ t}

is called a t-level relation of µ. For each t, µt is a congruence relation on G. We denote by [x]µ the
congruence class of µt containing the element x of G. Let A be a non-empty subset of G. Then the sets

µt−(A) = {x ∈ G | [x]µ ⊆ A},
µt∧(A) = {x ∈ G | [x]µ ∩A 6= ∅}

are called, respectively, the lower and upper approximations of the set A with respect to µt. The pair
µ(A) = (µt−(A), µt∧(A)) is called a rough set of A in G. A non-empty subset A of a group G is called
a µt∧-fuzzy rough (normal) subgroup of G if the upper approximation of A is a (normal) subgroup of
G. Similarly, a non-empty subset A of G is called a µt−(A)-fuzzy rough (normal) subgroup of G if lower
approximation is a (normal) subgroup of G. Note that, if µ and λ are fuzzy normal subgroups of a
group G, then µ ∩ λ is also a fuzzy subgroup G.

Theorem 1. Suppose that µ and λ are fuzzy normal subgroups of a group G and t ∈ [0, 1]. Let A
and B be any non-empty subsets of G. Then
(1) µt−(A) ⊆ A ⊆ µt∧(A),
(2) µt−(A ∩B) = µt−(A) ∩ µt−(B),
(3) µt∧(A ∪B) = µt∧(A) ∪ µt∧(B),
(4) A ⊆ B implies µt−(A) ⊆ µt−(B),
(5) A ⊆ B implies µt∧(A) ⊆ µt∧(B),
(6) µt−(A ∪B) ⊇ µt−(A) ∪ µt−(B),
(7) µt∧(A ∩B) ⊆ µt∧(A) ∩ µt∧(B),
(8) µ ⊆ λ, implies λt−(A) ⊆ µt−(A),
(9) µ ⊆ λ, implies µt∧(A) ⊆ λt∧(A),
(10) (µ ∩ λ)t = µt ∩ λt,
(11) (µ ∩ λ)t−(A) ⊇ µt−(A) ∩ λt−(A),
(12) (µ ∩ λ)t∧(A) ⊆ µt∧(A) ∩ λt∧(A).

Theorem 2. Let µ be a fuzzy normal subgroup of a group G and t ∈ [0, 1]. If A is a (normal)
subgroup of G, then µt∧(A) is a (normal) subgroup of G. Moreover, if the lower approximation of A is
non-empty, then it is a (normal) subgroup of G.
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Given a continuous triangular norm T on the unit interval I = [0, 1]. A fuzzy binary relation R on
X is called a T -similarity relation if for all x, y, z ∈ X, R satisfies the following conditions:
(1) R(x, x) = 1;
(2) R(x, y) = R(y, x);
(3) R(x, z)TR(x, y) ≤ R(z, y).

The pair (X,R) is called a fuzzy approximation space (see, for example [14] and [6]). Morsi and
Yakout in [6] define the lower approximation operator and upper approximation operator for a fuzzy
approximation space (X,R), respectively, for µ ∈ [0, 1]X , as follows:

ARµ(x) = inf
u∈X

ϑT (R(u, x), µ(u)) for every x ∈ X,

ARµ(x) = sup
u∈X

(R(u, x)Tµ(u)) for every x ∈ X,

when ϑT (a, b) = sup{θ ∈ [0, 1] | aTθ ≤ b}, for every a, b ∈ [0, 1]. Let G be a group and C ∈ IG. If C
satisfies the following conditions:
(1) C(xy) ≥ C(x)TC(y);
(2) C(x−1) ≥ C(x);
(3) C(e) = 1,

then C is called a T -fuzzy subgroup of G. If C(xy) = C(yx) for every x, y ∈ G, then C is called a
T -fuzzy normal subgroup of G. It easily can be verified that the binary relation,

B : G×G→ [0, 1],

B(x, y) = C(xy−1), for every x, y ∈ G

is T -similarity relation. Jiashang, Congxin and Degang in [14] define the upper approximation operator
AB and the lower approximation operator AB with respect to B on G. In this paper, we limited the
triangular norm T , the simplest triangular norm, Min. Let µ be a fuzzy subset and β be a fuzzy normal
subgroup onG. We call the fuzzy subsets ABµ,ABµ as respectively, the lower and upper approximations
of the fuzzy subset µ on G with respect to the fuzzy normal subgroup B.

ABµ(x) = inf
u∈G

ϑmin(B(u, x), µ(u)), for every x ∈ G,

ABµ(x) = sup
u∈G
{min{B(u, x), µ(u)}}, for every x ∈ G.

The pair(ABµ,ABµ) is called a rough fuzzy set of µ. The fuzzy subset µ on a group G is called a AB
rough fuzzy (normal) subgroup, if the upper approximation of µ is a fuzzy (normal) subgroup on G.
Similarity, the fuzzy subset µ on a group G is called a AB rough fuzzy (normal) subgroup, if the lower
approximation of µ is a fuzzy (normal) subgroup on G.

Note that ϑmin(a, b) = 1, if and only if a ≤ b, if not it is equal to b.
The next proposition follows at once from [14; Proposition 2.4].

Theorem 3. Let G be a finite group, µ and λ be fuzzy subsets. Let B and C be fuzzy normal
subgroups on G. Then
(1) ABµ ⊆ µ ⊆ ABµ,
(2) ABABµ = ABABµ = ABµ,
(3) ABABµ = ABABµ = ABµ,
(4) ABµ = µ if and only if ABµ = µ,
(5) AB(µ ∪ λ) = ABµ ∪ABλ,
(6) AB(µ ∩ λ) ⊆ ABµ ∩ABλ,
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(7) AB(µ ∪ λ) ⊇ ABµ ∪ABλ,
(8) AB(µ ∩ λ) = ABµ ∩ABλ,
(9) B ⊆ C then ABµ ⊆ ACµ,
(10) B ⊆ C then ACµ ⊆ ABµ.

The next corollary easily can be verified based upon the parts (6) and (7) of Theorem 3.

Corollary 1. Let G be a finite group, µ and λ be fuzzy subsets. Let B be a fuzzy normal subgroup
on G. If µ ⊆ λ, then
(1) ABµ ⊆ ABλ,
(2) ABµ ⊆ ABλ.
The fuzzy subsetBMinC is defined based on fuzzy subsetsB and C asBMinC(x) = min{B(x), C(x)},

∀x ∈ G. The next theorem follows from [14; Lemma 3.4, Propositions 3.5, 3.6, 4.1 and 4.2].

Theorem 4. Let G be a finite group. Suppose that B and C are fuzzy normal subgroups of G. The
following properties hold.
(1) The fuzzy set BMinC is a fuzzy normal subgroup.
(2) ABµMinACµ ⊆ ABMinCµ.
(3) ABMinCµ ⊆ ABµMinACµ.
(4) If µ is a fuzzy (normal) subgroup of G, then ABµ is a fuzzy (normal) subgroup of G.
(5) If µ is a fuzzy (normal) subgroup of G and B ⊆ µ, then ABµ is a fuzzy (normal) subgroup of G.

Throughout the paper, we will make frequently use of the above mentioned results.

2 Fuzzy Cayley subsets and graphs

In this section, we present the definitions of fuzzy Cayley subset and fuzzy Cayley graph for fuzzy
subsets on groups.

Let G be a finite group and µ be a fuzzy subset on G. The fuzzy subset µ is called fuzzy Cayley
subset, if the subset

Sµ = {a ∈ G | µ(a) < 1}

is a Cayley subset of G. It follows that µ(1g) = 1 and if µ(a) < 1, then µ(a−1) < 1. Obviously, every
fuzzy group is a fuzzy Cayley subset. Since Sµ is a Cayley set, (G;Sµ) is a Cayley graph. When µS
is a fuzzy Cayley subset, we define the triple (G;Sµ;µ) and called it fuzzy Cayley graph. In fact, the
fuzzy Cayley graph (G;Sµ;µ) is a Cayley graph where the fuzzy Cayley subset µ constructs the Cayley
subset of it.

The next lemma yields that if µ(a) 6= µ(b), then µ(ab) = min{µ(a), µ(b)}, for some a, b ∈ G, when
µ is a fuzzy subgroup on G.

Lemma 1. Suppose that µ is a fuzzy subgroup on G. If µ(a) 6= µ(b) then µ(ab) = min{µ(a), µ(b)},
for every a, b ∈ G.

Proof. Without less of generality, suppose that µ(b) > µ(a). Since µ is a fuzzy subgroup, we get
µ(a) = µ(abb−1) ≥ min{µ(ab), µ(b−1)}. Since µ(b−1) = µ(b) and µ(b) > µ(a), the last argument yields
that µ(a) ≥ µ(ab). On the other hand, µ(ab) ≥ min{µ(a), µ(b)} = µ(a). Therefore, µ(ab) = µ(a) =
min{µ(a), µ(b)}. Similarity, if µ(b) < µ(a), then µ(ab) = µ(b). Thus, we have µ(ab) = min{µ(a), µ(b)}.

Lemma 2. Suppose that µ1 and µ2 are fuzzy Cayley subsets on a group G. The following properties
hold.
(1) If µ1 ⊆ µ2, then Sµ2 ⊆ Sµ1 .
(2) The fuzzy subset µ1 ∪ µ2 is a fuzzy Cayley subset and Sµ1∪µ2 = Sµ1 ∩ Sµ2 .
(3) The fuzzy subset µ1 ∩ µ2 is a fuzzy Cayley subset and Sµ1∩µ2 = Sµ1 ∪ Sµ2 .
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Proof. (1) If x 6∈ Sµ1 , then µ1(x) = 1. Since µ1 ≤ µ2, we have µ2(x) = 1, and, thus, x 6∈ Sµ2 .
Therefore, Sµ2 ⊆ Sµ1 .

(2) It easily can be verified that Sµ1∪µ2 = Sµ1 ∩ Sµ2 . Now, suppose that x ∈ Sµ1∪µ2 . Then
x ∈ Sµ1 ∩ Sµ2 . Since µ1 and µ2 are fuzzy Cayley subsets, we have x−1 ∈ Sµ1 ∩ Sµ2 and, thus,
x−1 ∈ Sµ1∪µ2 . Similarly, if 1 ∈ Sµ1∪µ2 , then 1 ∈ Sµ1 ∩ Sµ2 , a contradiction. Therefore, µ1 ∪ µ2 is
a fuzzy Cayley subset.

(3) In a similar way as last part.

Lemma 3. Let X1 = (G;S1) and X2 = (G;S2) be Cayley graphs. The following properties hold.
(1) X1 ∪X2 = (G;S1 ∪ S2).
(2) X1 ∩X2 = (G;S1 ∩ S2).
(3) X1 ⊆ X2 if and only if S1 ⊆ S2.

Proof. (1) Let e be an edge of (G;S1 ∪ S2). Then there exist g ∈ G and s ∈ S1 ∪ S2 such that
e is an edge between two vertices g and gs. Since s ∈ S1 ∪ S2, we have s ∈ S1 or s ∈ S2 and, thus,
e ∈ E(X1) or e ∈ E(X2). Therefore, e ∈ E(X1 ∪X2). Similarly, any edge of E(X1 ∪X2) is an edge of
(G;S1 ∪ S2). The result follows.

(2) In a similar way as last part.
(3) Suppose that S1 ⊆ S2. If e ∈ E(X1), then there exist elements g ∈ G and s1 ∈ S1 such that

e = (g, gs1). Since s1 ∈ S1 and S1 ⊆ S2, we obtain e ∈ E(X2). Therefore, X1 ⊆ X2. Now, suppose
that E(X1) ⊆ E(X2). Let g ∈ G. If s1 ∈ S1, then (g, gs1) ∈ E(X1). Therefore, (g, gs1) ∈ E(X2). Then
(g, gs1) = (g′, g′s′1) for some g′ ∈ G and s′1 ∈ S2. Since g = g′, we obtain s1 = s′1 and, thus, s1 ∈ S2.
The result follows.

Notice that, if V (X1) = V (X2) then X1∪X2 and X1∩X2 are obviously Cayley graphs. The Lemma
2 follows us to define subgraph, union and intersection of fuzzy Cayley graphs.

Definition 1. Suppose that X = (G;Sµ;µ) and Y = (G;Sλ;λ) are fuzzy Cayley graphs. Then
(1) X ⊆ Y if and only if λ ⊆ µ;
(2) X ∪ Y = (G;Sµ ∪ Sλ;µ ∩ λ);
(3) X ∩ Y = (G;Sµ ∩ Sλ;µ ∪ λ).
Lemma 4. Suppose that G is a finite group and µ is a fuzzy Cayley subset on G. If µ is a fuzzy

subgroup and Sµ 6= ∅ then Sµ generates G.

Proof. Suppose that g ∈ G. If g 6∈ Sµ, then µ(g) = 1. Now, if a ∈ Sµ, then µ(a) < 1. By Lemma 1,
µ(ga−1) = µ(a). It follows that ga−1 ∈ Sµ and, thus, g = ga−1a ∈ 〈Sµ〉. Therefore, G = 〈Sµ〉.

The following theorem is easily verified by Lemma 4.
Theorem 5. Suppose that X = (G;Sµ;µ) is a fuzzy Cayley graph. If µ is a fuzzy subgroup, then

the Cayley graph (G;Sµ) is connected.

3 Fuzzy rough Cayley graphs

Suppose that G is a finite group with identity 1G, µ is a fuzzy normal subgroup, 0 ≤ t ≤ 1, and
X = (G;S) is a Cayley graph. Then the following graphs (we will prove these graphs are Cayley
graphs)

Xµt = (G;µt∧(S)
∗) (µt∧(S)

∗ = µt∧(S) \ {1G}) and Xµt = (G;µt−(S))

are called, respectively, fuzzy upper and lower approximations of the Cayley graph X with respect to
the fuzzy normal subgroup µ and integer t.
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Theorem 6. Xµt and Xµt are Cayley graphs.

Proof. By Theorem 1(1), we have µt−(S) ⊆ S, and, thus, 1G 6∈ µt−(S). Suppose that s ∈ µt−(S).
Then [s]µ ⊆ S. If x ∈ [s−1]µ then (x, s−1) ∈ µt and, thus, (x−1, s) ∈ µt, because µ is a fuzzy normal
subgroup. Thus x−1 ∈ [s]µ ⊆ S. Since S is a Cayley set, we obtain x ∈ S and, thus, [s−1]µ ⊆ S. Hence,
s−1 ∈ µt−(S). Therefore, µt−(S) is a Cayley set, and Xµt is a Cayley graph.

Now, suppose that s ∈ µt∧(S)∗. Then [s]µ ∩ S 6= ∅ which implies that there exists a ∈ [s]µ ∩ S.
Since a ∈ [s]µ ∩ S, we obtain (a, s) ∈ µt. As µ is a fuzzy normal subgroup, (a−1, s−1) ∈ µt. Then
a−1 ∈ [s−1]µ. Since S is a Cayley set, we have [s−1]µ ∩ S 6= ∅ and, thus, s−1 ∈ µt∧(S). Therefore,
µt∧(S)

∗ is a Cayley set, and Xµt is a Cayley graph.

Let G be a group congruence modulo 16 integral number Z. Let B be a fuzzy normal subgroup
of G presented in Table, and t be 0.3. Let X = (G;S) be a Cayley graph such that S equals to
{1, 2, 6, 10, 14, 15}. The congruence relation B0.3 partitions G to four classes {0, 4, 8, 12}, {1, 5, 9, 13},
{2, 6, 10, 14} and {3, 7, 11, 15}. Then we have

XB0.3 = (G; {1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15}) and XB0.3
= (G; {2, 6, 10, 14}).

T a b l e

The fuzzy normal subgroup B

B(1) = 0.1 B(2) = 0.2 B(3) = 0.1 B(4) = 0.4

B(5) = 0.1 B(6) = 0.2 B(7) = 0.1 B(8) = 0.8

B(9) = 0.1 B(10) = 0.2 B(11) = 0.1 B(12) = 0.4

B(13) = 0.1 B(14) = 0.2 B(15) = 0.1 B(0) = 1

Theorem 7. Suppose that µ and λ are fuzzy normal subgroups of a group G and t ∈ [0, 1]. Let
X = (G;S), X1 = (G;S1) and X2 = (G;S2) be Cayley graphs. The following properties hold.
(1) Xµt ⊆ X ⊆ Xµt ,
(2) X1 ∪X2µt = X1µt ∪X2µt ,
(3) X1 ∩X2µt

= X1µt
∩X2µt

,
(4) X1 ⊆ X2 ⇒ X1µt

⊆ X2µt
,

(5) X1 ⊆ X2 ⇒ X1µt ⊆ X2µt ,
(6) X1 ∪X2µt

⊇ X1µt
∪X2µt

,
(7) X1 ∩X2µt ⊆ X1µt ∩X2µt ,
(8) µt ⊆ λt ⇒ Xµt ⊆ Xλt ,
(9) µt ⊆ λt ⇒ Xλt ⊆ Xµt ,
(10) X(µ∩λ)t ⊆ Xµt ∩Xλt ,
(11) X(µ∩λ)t ⊇ Xµt ∩Xλt .

Proof. (1) By Theorem 1(1), µt−(S) ⊆ S ⊆ µt∧(S). Then µt−(S) ⊆ S ⊆ µt∧(S)
∗. It follows that

Xµt ⊆ X ⊆ Xµt .

(2) Based on Lemma 3, X1 ∪X2 = (G;µt∧(S1)
∗ ∪ µt∧(S2)∗). By Theorem 1(5), we have µt∧(S1)∗

and µt∧(S2)∗ ⊆ µt∧(S1∪S2)∗. Now, by Lemma 3(3), we have X1µt ∪X2µt ⊆ X1 ∪X2µt . Conversely, by
Theorem 1(3), µt∧(S1)∗ ∪ µt∧(S2)∗ = µt∧(S1 ∪ S2)∗. Suppose that (g, gs) is an edge of E(X1 ∪X2µt).
It follows that s ∈ µt∧(S1∪S2)∗. Then s ∈ µt∧(S1)∗∪µt∧(S2)∗ and, thus, s ∈ µt∧(S1)∗ or s ∈ µt∧(S2)∗.
Therefore, (g, gs) is an edge of X1µt or X2µt . Finally, we have X1 ∪X2µt = X1µt ∪X2µt .
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(3) By Theorem 1(2), the proof is similar to part (2).

(4) Assume that X1 ⊆ X2. Then S1 ⊆ S2 and, thus, µt−(S1) ⊆ µt−(S2). Hence, X1µt
⊆ X2µt

.

(5) By Theorem 1(5), the proof is similar to part (4).

(6) By Theorem 1(6), we have µt−(S1)∪µt−(S2) ⊆ µt−(S1∪S2). Then µt−(S1) ⊆ µt−(S1∪S2) and
µt−(S2) ⊆ µt−(S1 ∪ S2). Therefore, we obtain X1 ∪X2µt

⊇ X1µt
and X1 ∪X2µt

⊇ X2µt
. And finally,

X1 ∪X2µt
⊇ X1µt

∪X2µt
.

(7) By Theorem 1(7), the proof is similar to part (6).

(8) Assume that µt ⊆ λt. Theorem 1(9) yields µt∧(S) ⊆ λt∧(S). Then µt∧(S)∗ ⊆ λt∧(S)∗ and, thus,
Xµt ⊆ Xλt .

(9) By Theorem 1(8), the proof is similar to part (8).

(10) By Theorem 1(12), we have

X(µ∩λ)t = (G; (µ ∩ λ)t∧(S))
⊆ (G;µt∧(S) ∩ λt∧(S))
= (G;µt∧(S)) ∩ (G;λt∧(S))

= Xµt ∩Xλt .

(11) By Theorem 1(12), the proof is similar to part (11).

Remark 1. A subset S of G is a minimal Cayley set if it generates G and if S \ {s, s−1} generates
a proper subgroup of G for all s ∈ S.

The pair (Xµt , Xµt) is called a fuzzy rough set of the Cayley graph X. A Cayley graph X = (G;S)
is called a µt∧-fuzzy rough generating, if the subset µt∧(S)∗ is a generating set for G. Similarly, a Cayley
graph X = (G;S) is called an µt−-fuzzy rough generating, if the subset µt−(S) is a generating set for
G. A Cayley graph X = (G;S) is called a µt∧-fuzzy rough optimal connected, if the subset µt∧(S)∗ is
a minimal Cayley set for G. Similarly, a Cayley graph X = (G;S) is called a µt−-fuzzy rough optimal
connected, if the subset µt−(S) is a minimal Cayley set for G.

Theorem 8. Suppose that X = (G;S) is a Cayley graph.
(1) If X is a µt∧-fuzzy rough generating, then Xµt is connected.
(2) If X is a µt−-fuzzy rough generating, then Xµt is connected.
(3) If X is a µt∧-fuzzy rough optimal connected, then Xµt is optimal connected.
(4) If X is a µt−-fuzzy rough optimal connected, then Xµt is optimal connected.

Proof. It is straightforward.

4 Rough fuzzy Cayley graphs

Let G be a finite group with identity 1G, B a fuzzy normal subgroup on G and X = (G;Sµ;µ) be a
fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these are fuzzy Cayley graphs)

XB = (G;SABµ? ;ABµ
?) and XB = (G;SABµ;ABµ)
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are called, respectively, lower and upper approximations of the fuzzy Cayley graph X with respect to B.
In the above definition, ABµ?(x) is similar to ABµ(x) in all elements, except for 1G, where ABµ?(1G)
is 1.

Theorem 9. The triples XB and XB are fuzzy Cayley graphs.

Proof. Suppose that ABµ(x) = 1 for some x ∈ [0, 1]. Thus

infu∈G ϑmin(B(u, x), µ(u)) = 1.

Therefore, for all elements u ∈ G, ϑmin(B(u, x), µ(u)) = 1 and, thus, B(ux−1) ≤ µ(u) for every u ∈ G.
On the other hand, µ is a fuzzy subgroup, and we have µ(u−1) = µ(u). Then B(ux−1) ≤ µ(u−1). Since
B is a fuzzy normal subgroup, we obtain B(ux−1) = B(x−1u) and consequently, are equal to B(u−1x).
So B(u−1x) ≤ µ(u−1). Hence for all u of G, ϑmin(B(u−1, x−1), µ(u−1)) = 1 and, thus,

infu∈G ϑmin(B(u−1, x−1), µ(u−1)) = 1.

Then

infu∈G ϑmin(B(u, x−1), µ(u)) = 1.

So ABµ(x−1) = 1. Therefore, ABµ? is a fuzzy Cayley subset and XB is a fuzzy Cayley graph.
Theorem 3(1) leads µ ⊆ ABµ. Since µ(1G) = 1, we obtain ABµ(1G) = 1. Now suppose that

ABµ(x) = 1. Then

supu∈G{min{B(ux−1), µ(u)}} = 1.

Since G is finite, there exists an element u of G such that min{B(ux−1), µ(u)} = 1. Then B(ux−1) =
µ(u) = 1. Since µ is a fuzzy subgroup, we obtain µ(u−1) = µ(u). Now as B is a fuzzy normal
subgroup, B(ux−1) = B(x−1u) and since B is a fuzzy subgroup, we obtain B(ux−1) = B(u−1x). Thus
min{B(u−1x), µ(u−1)} = 1, and ABµ(x−1) = 1. Consequently, ABµ is a fuzzy Cayley subset and, thus,
XB is a fuzzy Cayley graph.

Lemma 5. Suppose that G is a finite group and B is a fuzzy normal subgroup of G. IfX = (G;Sµ;µ)
and Y = (G;Sλ;λ) are fuzzy Cayley graphs, then:
(1) SAB(µ∪λ)? ⊆ SABµ? ∩ SABλ? ,
(2) SAB(µ∩λ)? = SABµ? ∪ SABλ? ,
(3) SAB(µ∪λ) = SABµ ∩ SABλ,
(4) SAB(µ∩λ) ⊇ SABµ ∪ SABλ.

Proof. (1) Suppose that x ∈ SAB(µ∪λ)? . Then AB(µ ∪ λ)?(x) < 1 and x 6= 1G. By Theorem 3(7),
ABµ(x), ABλ(x) < 1. Hence, x ∈ SABµ? ∩ SABλ? .

According to Theorem 3, items (2), (3) and (4) are straightforward.

Theorem 10. Suppose that G is a finite group and B and C are fuzzy normal subgroups of G. Let
X = (G;Sµ;µ) and Y = (G;Sλ;λ) be fuzzy Cayley graphs. Then
(1) XB ⊆ X ⊆ XB,
(2) X ∪ Y B = XB ∪ Y B,
(3) X ∩ Y B ⊆ XB ∩ Y B,
(4) X ∪ Y B ⊇ XB ∪ Y B,
(5) X ∩ Y B = XB ∩ Y B,
(6) µ ⊆ λ⇒ Y B ⊆ XB,
(7) µ ⊆ λ⇒ Y B ⊆ XB,
(8) B ⊆ C ⇒ XC ⊆ XB,
(9) B ⊆ C ⇒ XB ⊆ XC .
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Proof. (1) By Theorem 3(1), we have ABµ ⊆ µ ⊆ ABµ. Hence ABµ? ⊆ µ ⊆ ABµ. Lemma 2(1)
implies that XB ⊆ X ⊆ XB.

(2) By Definition 1(2), X ∪ Y = (G;Sµ∩λ;µ ∩ λ). Then we have

X ∪ Y B = (G;SAB(µ∩λ)? ;AB(µ ∩ λ)?).

By Theorem 3(8), AB(µ ∩ λ) = ABµ ∩ABλ and, thus,

X ∪ Y B = (G;SABµ?∩ABλ? ;ABµ
? ∩ABλ?).

Now by 1(2), X ∪ Y B = XB ∪ Y B. The result follows.

(3) By Theorem 3(7), the proof is similar to part (2).

(4) By Theorem 3(6), the proof is similar to part (2).

(5) By Theorem 3(5), the proof is similar to part (2).

(6) If µ ⊆ λ, then by Corollary 1(1), ABµ ⊆ ABλ. Now, by Definition 1(1), Y B ⊆ XB.

(7) By Corollary 1(2), the proof is similar to part (6).

(8) Assume that B ⊆ C. By Theorem 3(9), ABµ ⊆ ACµ. Therefore, we have XC ⊆ XB.

(9) According to Theorem 3(10), the proof is similar to part (8).

Theorem 11. Suppose that G is a finite group. If B and C are fuzzy normal subgroups and µ is a
fuzzy subset on G, then the following statement hold.
(1) (G;SABMinCµ;ABMinCµ) ⊆ (G;SABµMinACµ;ABµMinACµ),
(2) (G;SABµMinACµ

;ABµMinACµ) ⊆ (G;SABMinCµ
;ABMinCµ).

Proof. According to Theorem 4, the proof of both parts are clear.

The pair (XB, XB) is called a rough set of a fuzzy Cayley graph X = (G;Sµ;µ). A fuzzy Cayley
graph X = (G;Sµ;µ) is called an AB rough generating, if the subset SABµ generates G. Likewise a
fuzzy Cayley graph X = (G;Sµ;µ) is called an AB rough generating, if the subset SABµ generates G.
A fuzzy Cayley graph X = (G;Sµ;µ) is called an AB rough optimal connected, if the subset SABµ is a
minimal Cayley set of G. Similarly a fuzzy Cayley graph X = (G;Sµ;µ) is called an AB rough optimal
connected, if the subset SABµ is a minimal Cayley set of G.

Theorem 12. Suppose that G is a finite group, and B is a fuzzy normal subgroup of G. Let X =
(G;Sµ;µ) be a fuzzy Cayley graph. The following properties hold.
(1) If µ is a fuzzy subgroup of G, then X is a AB rough generating.
(2) If B ⊆ µ and µ is a fuzzy subgroup of G, then X is a AB rough generating.

Proof. According to Theorems 4 and 4, the proof is straightforward.
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5 Fuzzy rough fuzzy Cayley graphs

In this section, we get the t-level relation µt, for each t ∈ [0, 1), as follows:

µt = {(a, b) ∈ G×G | µ(ab−1) > t}.

Similarly, all results related to the t-level relation µt are same. Let B be a fuzzy normal subgroup on G
and X = (G;Sµ;µ) be a fuzzy Cayley graph. The following fuzzy Cayley graphs (we will prove these
are fuzzy Cayley graphs)

X ′B = (G;Btµ−(Sµ);ABµ
]) and X

′
B = (G;B∧tµ(Sµ)

?;ABµ
])

are called, respectively, fuzzy lower and upper approximations of the fuzzy Cayley graph X with respect
to B. The definitions of tµ, ABµ] and ABµ] are as follows:

tµ = max{µ(x) | x ∈ Sµ},

if x ∈ B∧tµ(Sµ)
? then ABµ

](x) = ABµ
?, otherwise ABµ

](x) = 1 and

if x ∈ Btµ−(Sµ) then ABµ](x) = ABµ(x), otherwise ABµ](x) = 1.

Theorem 13. The triples X ′B and X ′B are fuzzy Cayley graphs.

Proof. In the proof Theorem 6, it proved that the subsets Btµ−(Sµ) and B∧tµ(Sµ)
? are Cayley sets.

To prove that the X ′B and X ′B are fuzzy Cayley graphs, it is sufficient to show that Btµ−(Sµ) = SABµ]
and B∧tµ(Sµ)

? = SABµ] .
Suppose that x ∈ Btµ−(Sµ). Then ABµ](x) = ABµ(x). If ABµ(x) = 1, then

supu∈G{min{B(ux−1), µ(u)}} = 1.

Since G is finite, there exists an element u in G where min{B(ux−1), µ(u)} = 1 and, thus, B(ux−1) =
µ(u) = 1. As B(ux−1) = 1, we h obtain u ∈ [x]B and, thus, u ∈ Sµ. Therefore, µ(u) < 1, a
contradiction. Then ABµ(x) 6= 1 and, as a result, ABµ](x) 6= 1. Now, suppose that x 6∈ Btµ−(Sµ).
Based on the definition, ABµ](x) = 1. Therefore, Btµ−(Sµ) = SABµ] .

Let x be in B∧tµ(Sµ)
?. Then ABµ](x) = ABµ

?. Since x ∈ B∧tµ(Sµ)
?, there exists an element y ∈ Sµ

such that y ∈ [x]B. If we have ABµ(x) = 1, then

inf
u∈G

ϑmin(B(ux−1), µ(u)) = 1.

Therefore, we have B(ux−1) ≤ µ(u) for every u ∈ G. Then B(yx−1) ≤ µ(y). Since µ(y) ≤ tµ, we
obtain B(yx−1) ≤ tµ. As y ∈ [x]B, B(yx−1) > tµ, a contradiction. Now, suppose that x 6∈ B∧tµ(Sµ)

?.
Based on the definition, ABµ](x) = 1. Hence, by above B∧tµ(Sµ)

? = SABµ](x).

Lemma 6. Let G be a group and t1, t2 and t3 be integers in the closed interval [0, 1]. Suppose that
µ is fuzzy normal subgroups of G. Let A and B be two non-empty sets. Then
(1) if t3 ≤ t1, t2, then µt∧3 (A ∪B) ⊇ µt∧1 (A) ∪ µt∧2 (B),
(2) if t3 ≥ t1, t2, then µt∧3 (A ∪B) ⊆ µt∧1 (A) ∪ µt∧2 (B),
(3) if t3 ≥ t1, t2, then µt∧3 (A ∩B) ⊆ µt∧1 (A) ∩ µt∧2 (B),
(4) if t3 ≤ t1, t2, then µt3−(A ∩B) ⊆ µt1−(A) ∩ µt2−(B),
(5) if t3 ≥ t1, t2, then µt3−(A ∩B) ⊇ µt1−(A) ∩ µt2−(B),
(6) if t3 ≥ t1, t2, then µt3−(A ∪B) ⊇ µt1−(A) ∪ µt2−(B).
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Proof. (1) Let x ∈ µt∧1 (A) ∪ µt∧2 (B). Then x ∈ µt∧1 (A) or x ∈ µt∧2 (B). Suppose that x ∈ µt∧1 (A).
Thus, [x]µt1 ∩ A 6= ∅ and consequently, there exists a ∈ A such that µ(xa−1) > t1. Since t1 ≥ t3, we
have µ(xa−1) > t3 and, thus, [x]µt3 ∩ A 6= ∅. The result gives us that x ∈ µt∧3 (A ∪ B). Similarity, if
x ∈ µt∧2 (B), the same result can be gained.

(2) Let x ∈ µt∧3 (A ∪ B). Thus, [x]µt3 ∩ (A ∪ B) 6= ∅. Then [x]µt3 ∩ A 6= ∅ or [x]µt3 ∩ B 6= ∅.
Suppose that [x]µt3 ∩A 6= ∅. Hence, there exists a ∈ A such that µ(xa−1) > t3. Since t3 ≥ t1, we have
µ(xa−1) > t1 and, thus, [x]µt1 ∩A 6= ∅. The result gives us that x ∈ µt∧1 (A). The result follows.

(3) Let x ∈ µt∧3 (A ∩ B). Then, [x]µt3 ∩ (A ∩ B) 6= ∅ and, thus, [x]µt3 ∩ A 6= ∅ and [x]µt3 ∩ B 6= ∅.
Hence, there exist elements a ∈ A and b ∈ B such that µ(xa−1) > t3 and µ(xb−1) > t3. Since t3 ≥ t1, t2,
we have µ(xa−1) > t1 and µ(xb−1) > t2 and, thus, [x]µt1 ∩A 6= ∅ and [x]µt2 ∩B 6= ∅. The result gives
us that µt∧1 (A) ∩ µt∧2 (B). The result follows.

(4) Let x ∈ µt3−(A ∩ B). Then [x]µt3 ⊆ A ∩ B. If y ∈ [x]µt1 , then µ(yx−1) > t1 and, thus,
µ(yx−1) > t3. Then y ∈ A. It follows that x ∈ µt1−(A). Similarly, we have x ∈ µt2−(B).

(5) Let x ∈ µt1−(A) ∩ µt2−(B). Then [x]µt1 ⊆ A and [x]µt2 ⊆ B. If y ∈ [x]µt3 , then µ(yx
−1) > t3

and, thus, µ(yx−1) > t1 and µ(yx−1) > t2. Then y ∈ A ∩B. It follows that x ∈ µt3−(A ∩B).
(6) Let x ∈ µt1−(A) ∪ µt2−(B). Hence, x ∈ µt1−(A) or x ∈ µt2−(B). Suppose that x ∈ µt1−(A).

Hence, [x]µt1 ⊆ A. If y ∈ [x]µt3 , then µ(yx
−1) > t3 and, thus, µ(yx−1) > t1. Then y ∈ A. It follows

that x ∈ µt3−(A ∪B). The result follows.

Theorem 14. Let G be a finite group. Taking any fuzzy normal subgroups B and C on G. If
X = (G;Sµ;µ) and Y = (G;Sλ;λ) are fuzzy Cayley graphs. The following properties hold.
(1) X ′B ⊆ X ⊆ X

′
B,

(2) X ∩ Y ′B ⊆ X
′
B ∩ Y

′
B,

(3) X ∪ Y ′B ⊇ X
′
B ∪ Y

′
B,

(4) X ∩ Y ′B ⊆ X ′B ∩ Y ′B,
(5) µ ⊆ λ⇒ Y ′B ⊆ X ′B,
(6) µ ⊆ λ⇒ Y

′
B ⊆ X

′
B,

(7) B ⊆ C ⇒ X ′C ⊆ X ′B,
(8) B ⊆ C ⇒ X

′
B ⊆ X

′
C .

Proof. (1) By Theorems 3(1) and 1(1), we have, respectively, ABµ ⊆ µ ⊆ ABµ, Btµ−(Sµ) ⊆ Sµ ⊆
B∧tµ(Sµ). If x ∈ B

∧
tµ(Sµ)

?, then ABµ](x) = ABµ(x) and, thus, ABµ](x) ≤ µ(x). If x 6∈ B∧tµ(Sµ)
?, then

x 6∈ Sµ and, thus, µ(x) = 1. So we have ABµ](x) ≤ µ(x). Now by Definition 1, we have X ⊆ X ′B.
If x ∈ Btµ−(Sµ), then ABµ

](x) = ABµ(x) and, thus, µ(x) ≤ ABµ
](x). If x 6∈ Btµ−(Sµ), then

ABµ
](x) = 1 and again µ(x) ≤ ABµ](x). Then, we have X ′B ⊆ X.
(2) We have

X ∩ Y ′B = (G;Sµ∪λ;µ ∪ λ)
′
B = (G;B∧tµ∪λ(Sµ ∩ Sλ);AB(µ ∪ λ)

]),

X
′
B ∩ Y

′
B = (G;Sµ;µ)

′
B ∩ (G;Sλ;λ)

′
B

= (G;B∧tµ(Sµ);AB(µ)
]) ∩ (G;B∧tλ(Sλ);AB(λ)

])

= (G;B∧tµ(Sµ) ∩B
∧
tλ
(Sλ);AB(µ)

] ∪AB(λ)]).

Since tµ∪λ ≥ tµ, tλ, by Theorem 6(3), we haveB∧tµ∪λ(Sµ∩Sλ) ⊆ B
∧
tµ(Sµ)∩B

∧
tλ
(Sλ). Also, by Theorem 3(7),

we have AB(µ ∪ λ) ⊇ ABµ ∪ABλ. If x ∈ B∧tµ(Sµ) ∩B
∧
tλ
(Sλ) then

ABµ
](x) = ABµ(x), ABλ

](x) = ABλ(x)
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and, thus,
ABµ

](x) ∪ABλ](x) ≤ AB(µ ∪ λ)(x).

Since AB(µ∪λ)(x) ≤ AB(µ∪λ)](x), we obtain ABµ](x)∪ABλ](x) ≤ AB(µ∪λ)](x). If x 6∈ B∧tµ(Sµ)∩
B∧tλ(Sλ), then x 6∈ B

∧
tµ∪λ

(Sµ∩Sλ) and, thus, AB(µ∪λ)](x) = 1. Therefore, AB(µ∪λ)](x) ≥ ABµ](x)∪
ABλ

](x) and Definition 1 yields X ∩ Y ′B ⊆ X
′
B ∩ Y

′
B.

(3) We have

X ∪ Y ′B = (G;Sµ∩λ;µ ∩ λ)
′
B = (G;B∧tµ∩λ(Sµ ∪ Sλ);AB(µ ∩ λ)

]),

X
′
B ∪ Y

′
B = (G;Sµ;µ)

′
B ∪ (G;Sλ;λ)

′
B

= (G;B∧tµ(Sµ);AB(µ)
]) ∪ (G;B∧tλ(Sλ);AB(λ)

])

= (G;B∧tµ(Sµ) ∪B
∧
tλ
(Sλ);AB(µ)

] ∩AB(λ)]).

Since tµ∩λ ≤ tµ, tλ, by Theorem 6(1), we haveB∧tµ∩λ(Sµ∪Sλ) ⊇ B
∧
tµ(Sµ)∪B

∧
tλ
(Sλ). Also, by Theorem 3(8),

we have AB(µ ∩ λ) = ABµ ∩ABλ. If x ∈ B∧tµ(Sµ) ∪B
∧
tλ
(Sλ) then x ∈ B∧tµ∩λ(Sµ ∪ Sλ) and, thus,

AB(µ ∩ λ)](x) = AB(µ ∩ λ)(x) = ABµ(x) ∩ABλ(x) ≤ ABµ](x) ∩ABλ](x).

Now, suppose that x 6∈ B∧tµ(Sµ) ∪B
∧
tλ
(Sλ). Then

ABµ
](x) = ABλ

](x) = 1

and, thus,
AB(µ ∩ λ)](x) ≤ ABµ](x) ∩ABλ](x) = 1.

Therefore, X ∪ Y ′B ⊇ X
′
B ∪ Y

′
B.

(4) We have

X ∩ Y ′B = (G;Sµ∪λ;µ ∪ λ)′
B
= (G;Btµ∪λ−(Sµ ∩ Sλ);AB(µ ∪ λ)

]),

X ′B ∩ Y ′B = (G;Sµ;µ)
′
B
∩ (G;Sλ;λ)

′
B

= (G;Btµ−(Sµ);AB(µ)
]) ∩ (G;Btλ−(Sλ);AB(λ)

])

= (G;Btµ−(Sµ) ∩Btλ−(Sλ);AB(µ)
] ∪AB(λ)]).

Since tµ∪λ ≥ tµ, tλ, by Theorem 6(5), we have Btµ∪λ−(Sµ ∩ Sλ) ⊇ Btµ−(Sµ) ∩ Btλ−(Sλ). Also, by
Theorem 3(5), we have AB(µ ∪ λ) = AB(µ) ∪AB(λ). If x ∈ Btµ−(Sµ) ∩Btλ−(Sλ) then

ABµ
](x) = ABµ(x), ABλ

](x) = ABλ(x)

and, thus,
ABµ

](x) ∪ABλ](x) = AB(µ ∪ λ)(x) ≤ AB(µ ∪ λ)](x).

If x 6∈ Btµ−(Sµ) ∩ Btλ−(Sλ), then x 6∈ Btµ∪λ−(Sµ ∩ Sλ) and, thus, AB(µ ∪ λ)](x) = 1. Therefore,
ABµ

](x) ∪ABλ](x) ≤ AB(µ ∪ λ)](x) and, thus, X ∩ Y ′B ⊆ X ′B ∩ Y ′B.
(5) If µ ⊆ λ, then by Corollary 1(1), ABµ ⊆ ABλ. In the other hand, by Lemma 1, we have Sλ ⊆ Sµ

and, thus, by Theorem 1(4), BtX−(Sλ) ⊆ BtX−(Sµ). Then Y ′B ⊆ X ′B.
(6) The proof is similar to part (5).
(7) Since B ⊆ C, by Theorem 3(9) we have ABµ ⊆ ACµ. Also, Theorem 1(8) gives Ctµ−(S) ⊆

Btµ−(S). The result follows.
(8) The proof is similar to part (7).
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Conclusion

This paper has intended to build up a rational connection between rough set theory, fuzzy set
theory and Cayley graphs. First, formal definitions for fuzzy Cayley sets and fuzzy Cayley graphs have
been suggested.

Some illustrative examples have also been presented. Fuzzy Cayley graphs and related approximations
might be received attentions in some distributed and networked systems challenges.
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Дәл емес Кейли графтарындағы шамадан ауытқу

Шамамен алынған жиындар теориясы бұл жүйелердi дәл емес және анықталмаған модельдеу үшiн
лайықты әдiс. Шамамен алынған жиындар теориясы жиындар теориясының одан әрi жалпылауы
болып табылатын дәл емес жиындар теориясымен толықтырылғанда, олар теориялық талқылаулар-
да жарамды болады. Мақалада Кэйли графтарының анықтамасынан туындайтын дәл емес Кэйли
iшкi жиындарының анықтамасы, демек группалардағы дәл емес iшкi жиындардың дәл емес Кэйли
графтары ұсынылған. Авторлар Кэйли графының дәл емес нормаль iшкi группасына қатысты шама-
мен жуықтауды, сонымен қатар аппроксимацияланатын шамамен алынған дәл емес Кейли графтары
және дәл емес шамамен алынған дәл емес Кейли графтарын енгiзген. Соңғы жуықтау басқа жуықта-
улардың бiрiгуi болып табылады. Кейбiр теоремалар мен қасиеттерi зерттелген және дәлелденген.

Кiлт сөздер: анық емес жиын, шамамен алынған жиын, Кейли графы, анық емес Кейли графы,
төменгi және жоғарғы жуықтаулар.
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Грубость в нечетких графах Кэли

Грубая теория множеств — заслуживающий внимания подход для неточного и неопределенного моде-
лирования систем. Когда грубая теория множеств дополняется теорией нечетких множеств, причем
обе являются дополнительным обобщением теории множеств, они будут иметь силу в теоретических
дискуссиях. В настоящей статье предложено определение нечетких подмножеств Кэли и, следова-
тельно, нечетких графов Кэли нечетких подмножеств на группах, вдохновленное определением гра-
фов Кэли. Авторами введены грубая аппроксимация графа Кэли относительно нечеткой нормальной
подгруппы, а также аппроксимационные грубые нечеткие графы Кэли и нечеткие грубые нечеткие
графы Кэли. Последнее приближение представляет собой смесь других приближений. Исследованы
и доказаны некоторые теоремы и свойства.
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