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Connection between the amalgam and joint embedding properties

The paper aims to study the model-theoretic properties of differentially closed fields of zero and positive
characteristics in framework of study of Jonsson theories. The main attention is paid to the amalgam and
joint embedding properties of DCF theory as specific features of Jonsson theories, namely, the implication of
JEP from AP. The necessity is identified and justified by importance of information about the mentioned
properties for certain theories to obtain their detailed model-theoretic description. At the same time,
the current apparatus for studying incomplete theories (Jonsson theories are generally incomplete) is not
sufficiently developed. The following results have been obtained: The subclasses of Jonsson theories are
determined from the point of view of joint embedding and amalgam properties. Within the exploration of
one of these classes, namely the AP-theories, that the theories of differential and differentially closed fields
of characteristic 0, differentially perfect and differentially closed fields of fixed positive characteristic are
shown to be Jonsson and perfect. Along with this, the theory of differential fields of positive characteristic
is considered as an example of an AP-theory that is not Jonsson, but has the model companion, which is
perfect Jonsson theory, and the sufficient condition for the theory of differential fields is formulated in the
context of being Jonsson.

Keywords: Jonsson theory, perfect Jonsson theory, differential field, differential closed field, differentially
perfect field, amalgam property, joint embedding property, AP-theory, JEP-theory, strongly convex theory.

In Model Theory, when studying various examples of theories, information about the amalgam and joint
embedding properties for considered theories is useful. The amalgam property and the joint embedding property
are independent of each other. There are many examples of this fact. In particular, one can find some of them
in [1; 270].

In this article, we examine the case when these two cases are dependent on each other. We call a theory
AP-theory if the joint embedding property for this theory is a consequence of the amalgam property of this
theory, i.e. when JEP follows from AP. At the same time, the amalgam property and the joint embedding
property are necessary attributes of a class of Jonsson theories.

We consider a classic example of differentially closed fields of zero and positive characteristic within the
study of AP-Jonsson theories.

As for differential algebra, the first works where differential algebra was separated into an independent
branch of mathematics are the books of Ritt [2-3]. There are formulated many significant problems, many of
them have not yet been solved. At the Moscow Congress of Mathematicians in 1966, Kolchin presented a report
where the author formulated open problems that have determined the direction of differential algebra in recent
years. The monograph [4] details the state of most of these sections. As Kaplansky wrote in his monograph [5],
“differential algebra consists mostly of the works of Kolchin and Ritt”.

We begin by presenting the basic facts about differential rings, whose special case is namely differential
fields, that will help us to reveal the algebraic essence of the theories and classes of their models considered in
this article.

The differentiation of the ring R is a map

D:R— R, (1)

that satisfies the following conditions:
1) the mapping D is additive;
2) for any two elements x,y of the ring R, D(zy) = xDy + yDz is executed.
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The element D(x) will be called the derivative of the element a, whereas z itself is called the integral element
D(z). For derivatives D?(x), D3(x), ..., D"(x), the Leibniz rule can be written as

D™(xy) = D™(z)y + ... + C. D" (z)D*(y) + ... + D™ (y).

If the commutation property is observed for the element x and the derivative D(x), we have D™ (x) = nz" "1 D(x).
In the case when the ring R has the unit and an inverse element 2! for x,

D(z™) = —z7'D(x)z™!

holds. Moreover, D(1) = 0.

The following theorem is known:

Theorem 1 [5; 7]. For any differentiation in an arbitrary domain of integrity, there is a single extension to
the corresponding field of relations.

Let a commutative ring with the unit be given and the differentiation D be introduced on it. Such a ring is
called a differential ring. Here are some examples that reflect the essence of the differential ring.

1) Any commutative ring with the unit can be represented as differential by considering zero differentiation
onit (Vx € R D(z) = 0). We can conclude by this that the rings theory is a special case of the differential rings
theory. It is worth mentioning that on the ring of integers and the field of rational numbers, it is impossible to
introduce any differentiation other than zero.

2) The usual differentiation on the ring of infinitely differentiable functions on the real axis is also an example
of the map (1). Moreover, infinitely differentiable functions form a ring closed with respect to differentiation.

3) On the ring of integer functions, it is also possible to introduce differentiation in the usual sense. There
are no zero divisors available in the ring of infinitely differentiable functions, which makes it possible to form a
field of relations.

4) If R is a differential ring, then there exists a ring of R[x] polynomials formed with coefficients of R in
variable z. If R is a field, then R(z) denotes the field of rational functions of z. Using Theorem 1, we can
continue differentiating the ring (field) A into the ring of polynomials R[z] and the field R(z). At the same
time, we assume D(2™) = n2z" 1 D(x) and then continue this mapping linearly.

5) If R is a differential ring, then in under R[z;] we mean the ring of polynomials in infinite number of
variables xg, x1, ..., and each subsequent element x; ;1 is a derivative of the previous x;. Thus, some differentiation
in the ring R{xz;} is uniquely determined. Let us replace the designations with more suitable ones

xo=x, x, =D"(x).

The described process is called the adjunction of a differential indeterminate and gives us, as a result, a
differential ring, the elements of which we call differential polynomials. These are ordinary polynomials from x
and its derivatives.

In the case when R is a field, then the ring R{z} is a differential domain of integrity, and Theorem 1 gives
us the opportunity in the only way to continue differentiating into the corresponding field of relations R{x),
whose elements are called differential rational functions of x.

In any differential ring R, the elements whose derivative is zero form a subring C called the ring of constants.
Moreover, if R is a field, then C, respectively, is also a field. In addition, the constant field C' contains within
itself a subfield generated by the unit element R.

The characteristic of differential rings is of considerable importance. As the structure of the ring becomes
more complex and gradually turns into a field, the characteristic plays an increasingly significant role. Differential
fields with zero characteristic are well-studied, while the case with positive characteristic remains more
sophisticated. One of them is described below.

Next, we consider the fields of the characteristic p = 0 and p > 0. We present important information about
differential fields of characteristic 0 and consider some of their model-theoretic properties.

D. Marker [6] described differential and differentially closed fields as follows.

Definition 1 [6]. A differential field is a field K with the given differentiation operator D : K — K, such
that

VaVyD(z +y) = D(z) + D(y), (2)

VaVyD(z,y) = Dy + yDzx,
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where z,y € K. The language used to study differential fields is the language L = {+,—,-, D,0,1}. Here the
differentiation operator D plays the role of a single functional symbol.

Thus, the theory DF, of differential fields of characteristic 0 is given by the axioms of field theory and
axioms (2).

As mentioned before, each differential field has a so-called subfield of constants C' consisting of all elements
x of the field for which D(x) = 0.

Let K be a differential field. Then, over K, the ring K{Xy, ..., X,,} of differential polynomials can be defined
as the ring of polynomials in infinite number of variables as follows:

K[X1, . Xn, D(X1), ..., D(X0), .. D™(X1), ..., D™(X), ...,

where D(D"(X;)) = D"1(X;).

If f[{X1,..., X, }\K, the order of f is the largest m such that D™ (X") occurs in f for some i. If f is a
constant, we say that f has order -1.

Definition 2 [6]. A differential field K is called differentially closed if whenever f, g € K{X}, g has a nonzero
value and the order of f is greater than the order of g, there exists a € K such that f(a) =0 and g(a) # 0.

In 1959, A.Robinson [7] showed that the theory of differential fields has a model completion. Robinson also
introduced the concept of a differentially closed field. However, as noted by Mikhalev A.V. and Pankratiev
E.V. in their review [8], in Robinson’s works the theory DCFy received a specific description in the sense of
axiomatization, which was corrected by L. Blum. In her PhD thesis [9], she formulates two missing axioms (in
addition to the DF axioms) for the theory of differentially closed fields of characteristic zero as follows:

1) Each nonconstant polynomial in one variable has a solution.

2) If f(z) and g(z) are differential equations, such that the order of f(x) is higher in the order of g(z), then
f(z) has a solution, not a solution of g(x). B. Poizat, in his work [10], proved that DCF} is complete and is the
model completion of the DFy.

To study the model-theoretic properties of the theories DF,, and DCFy, we need the following definitions:

Definition 3 [11; 99]. The theory of T has the joint embedding property(JEP), if for any models U, B of
the theory T there exists a model M of the theory T and isomorphic embeddings f: U — M, g: B — M.

Definition 4 [11; 99]. The theory of T has the amalgam property (AP), if for any models U, By, Bz of the
theory T' and isomorphic embeddings fi : U — By, fs : U — By there are M = T and isomorphic embeddings
gz 2B1 —)M, B2 —>M, such that g1 Ofl :g20f2.

We will consider the theories of DFy and DCF{y from the point of view of Jonssonness.

To begin with, let us recall the definitions of the Jonsson theory and some related concepts.

Definition 5 [11; 144]. The theory of T is called a Jonsson theory if:

1. The theory T has infinite models;

2. T is an inductive theory;

3. The theory T has the amalgam property (AP).

4. The theory T has the joint embedding property (JEP).

Examples of Jonsson theories are:

1) group theory;

2) abelian groups theory;

3) boolean algebras theory;

4) linear order theory;

5) the theory of fields of characteristic p, where p is zero or a prime number;
6) ordered fields theory;

7) modules theory.

One can found the proofs in [12-13].

Definition 6. [14] It is said that Cr is a semantic model of the Jonsson theory of T' if Cr is a w'-homogeneous
wT-universal model of the theory T

Theorem 2 [11; 152]. The theory T is Jonsson if and only if it has the semantic model Cr. Many facts
concerning semantic models and related concepts of cosemanticity and similarity of the Jonsson theories are
described in [15].

Definition 7 [16]. A Jonsson theory T is called perfect if its semantic model Cr is saturated.

Definition 8 [16]. An elementary theory of the semantic model of Jonsson theory T is called to be the center
of this theory. Denoted through 7%, i.e. Th(C) = T*.

Mathematics series. Ne 1(105) /2022 129



A R. Yeshkeyev, [.O. Tungushbayeva, M.T. Kassymetova

Theorem 8 [11; 155]. Let T be an arbitrary Jonsson theory. Then the following conditions are equivalent:

1) The theory T is perfect;

2) T* = Th(C) is a model companion of the theory T. More information about the concept of Jonsson
perfection can be found in [17].

We define the following subclasses of Jonsson theories. Focusing on AP and JEP properties for certain
theories, we distinguish the following four types of theories:

Definition 9. A theory T is called to be

1) AP-theory if in theory T amalgam property entails joint embedding property;

2) JEP-theories if in theory T joint embedding property entails amalgam property;

3) AJ-theories if in theory T both properties are equivalent.

Otherwise, we say that for the theory of T, the properties of AP and JEP are independent of each other.

The described types form corresponding subclasses in the class of Jonsson theories, on which our interest is
focused. However, there are theories relating to some of the types 1-3, which are not Jonsson. An example of
such a theory will be discussed later in this paper.

We need the following definition.

Definition 10 [18]. A theory T is called convex if for any model of A and any family {A;|¢ € I} submodels A
which are models of the theory T the intersection [ is also a submodel of T', if it is nonempty. If the intersection

iel
is never empty, T is said to be strongly convex. )

It is important to note that, according to this definition, the theory of differential fields of any characteristic
is strongly convex. Based on this fact the theory can be attributed to AP-theories.

As for Definitions 3 and 4, B. Jonsson [19] was engaged in the study of “amalgam properties”, who cited
DFy as examples of theories with these properties. The proof in [5] was presented by I. Kaplansky. Robinson
[7] noted that this is the result of the existence of a model companion for the considered theory:

Theorem 4 [20; 157]. The theory of T admits the amalgam property if and only if it has a model completion.

Property 1. [9; 130] DCF, allows quantifier elimination.

Property 2. |9; 131] DF} has the joint embedding and the amalgam properties.

Note that originally [9] in the formulation and proof of these properties, L. Blum refers to Theorem (0.3.7),
which states that if a universal theory 7" has a model companion, the theory 7" has “amalgam properties”, which
mean both the amalgam property and the joint embedding property in our sense.

Theorem 5 [9; 128]. The DCFj theory is a model completion of the DFy theory.

Finally, we proceed to consider the model-theoretic properties of the described fields from the point of view
of Jonssonness. Let DFjy be the theory of differential fields of characteristic 0.

Theorem 6. DFy is a Jonsson theory.

Proof. (1) It is easy to see that DFy has infinite models.

(2) Since DFj is a V-axiomatizable theory, it is also V3-theory. Hence, it is inductive.

(3),(4) As already noted in [9] Blum, DFj has the amalgam property (AP) and the joint embedding property
(JEP) due to the presence of a model replenishment of DCFy. Moreover, in the case under consideration, the
property JEP follows from AP: Two differential fields F; and F5 always have a nonempty intersection, which
will also be a differential field, isomorphically embedded in both of these fields. Then, by virtue of AP, there are
isomorphic embeddings of F} and F5 in some differential field F'. The role of F' can be played, for example, by a
composite of fields F} and F; — the intersection of all differential fields of characteristic 0 containing F; and Fy,
on which differentiation is continued accordingly. Thus, the result of having JFE P follows from posession of AP
in the theory of differential fields of characteristic 0. This is a consequence of the fact that DFj is a strongly
convex theory.

Theorem 7. DF} is a perfect Jonsson theory.

Proof. The proof follows from the fact that DFy has a model completion, which is DCFy. Let us conduct
it in detail. According to Theorem 5, the theory of differential fields of characteristic 0 has a model completion
— the theory of differentially closed fields of characteristic 0, which is also its model companion. In addition,
as Theorem 2 states, DF due to its Jonssonness, there must be the semantic model Cr and, accordingly, the
center DF} = Th(Cr). It DFy = DCFy, then, by virtue of Theorem 3, DFy will be perfect. Let us show it.

The proof will be carried out from the opposite: let us say DFj # DCFj. In this case, since DF{ is complete
and DC'Fy is model complete, for any sentence 1) of the signature in question, either

Y € DF, and —) € DCF,, (3)
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or

1,[) S DFO and 1,[) ¢ DCFQ, _ﬂ/J ¢ DCFO (4)

However, DFy, DCFy, and DFj are obviously model consistent, and, at the same time, are be embedded into
the semantic model of the theory of DFy. Using this fact, we can easily get a contradiction for both cases (3)
and (4), which means that DF} = DCFy. Therefore, DFy is a perfect Jonsson theory.

Theorem 8. DCFy is a perfect Jonsson theory.

Proof. To begin with, let us show the Jonssonness of DC'Fy theory.

(1)DCFy has infinite models;

(2) DCFy is a V3-theory, and therefore it is inductive;

(3) DCFy is a model-complete theory, which means that by the Theorem 4 has AP;

(4) From (3) it follows JEP, since the nonempty intersection of two differentially closed fields of
characteristic 0 always exists and is their submodel embedded into both fields. This fact is confirmed by the
well-known Robinson criterion (Theorem 8).

The perfectness of DCFy follows again from the fact that the theory in question is model complete, which
means it represents a model companion for itself.

Here again, it is important to note that due to the strong convexity of DC'Fy, we have the result obtained,
namely, that DCFy (along with the DFy described above) is an AP-Jonsson theory.

Now consider the differential fields of characteristic p > 0. To define such a field, we, similarly, add axiom
(2) to the axiomatics of the field theory of characteristic p again, thus obtaining the theory of DF},.

For differential fields of characteristic p, the relation F? C C is fulfilled, where FP are all elements of the
field raised to the power of p, C is a subfield of constants. The relation is true because D(a?) = pa?~'D(a) for
any a € F.

In the works [21, 22], C. Wood obtained the following results regarding differential fields of characteristic p:

Theorem 9 [21]|. The theory DF), of differential fields of characteristic p does not admit the amalgam
property.

The author notes that the main reason is the absence of the p-th roots for some constant elements of the
field.

The consequence of the absence of AP C. Wood also highlights the following important theorem: Theorem
10 [21]. The DF, theory has no model completion.

In fact, to prove it, it is enough to refer to the Theorem 9.

To obtain a theory that allows the elimination of quantifiers, which has the amalgam property and model
completion, C. Wood [21, 22] modifies the theory of DF},, supplementing it with the axiom

Vady (D(z) =0 — P = x),

and obtains the so-called theory DPF of differentially perfect fields:

Definition 11. A differentially perfect field F' is a differential field such that F? = C.

The DPF models are the D F}, models in which the fields of constants are closed with respect to the operation
of extracting p-th root. Thus, the following theorem holds:

Theorem 11 [21]. The theory of differentially perfect fields of characteristic p admits the amalgam property.

Let us now define the theory of DCF,, differentially closed fields of characteristic p: To the axioms of DF},
we will add the following definition of a differentially closed field.

Definition 12. A differential field of characteristic p is called differentially closed if for each positive integer
n in the language L we can determine the sentence ¢,, stating that there is a solution for f(x) =0, g(x) # 0 for
each pair of differential polynomials in one differential variable such that f and g have order and total degree
at most n, and the order of f is higher than the order of g.

The most important model-theoretic properties of DC'F), are completeness and model completeness. The
key place is occupied by the following statement:

Theorem 12 [21|. DCF, is a model companion for DF)}, and a model completion for DPF.

The following results demonstrate the behavior of the theories DF),, DPF and DCF, from the point of
view of studying the Jonsson theories.

Theorem 13. DF), is not a Jonsson theory.

Proof. According to Theorem 9, since, DF,, does not have the amalgam property, it, following the Definition
5, is not a Jonsson. In addition, DF), does not have JEP since it is AP-theory.
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This fact is noteworthy because, as mentioned earlier, the fields theory F), in case of characteristic p is a
Jonsson, whereas the introduction of the functional symbol D into the signature F}, deprives D F}, of this property.
At the same time, the Jonssonness appears when the differential field of characteristic 0 is transformed into a
differentially perfect:

Theorem 14. DPF is a Jonsson theory.

Proof. Again, we will carry out the proof following the definition of Jonsson theory.

(1) DPF has infinite models;

(2) DPF is V3-axiomatizable, which means it is inductive;

(3) DPF has model completion, hence has AP;

(4) As mentioned before, any field of constants in a differential field contains a subfield generated by a unit
element. Such a field is differentially perfect by definition and can serve as a DPF model that is embedded in
any two differentially perfect fields F; and Fy. Further, by property (3), there is a model DPF' in which F; and
Fy5 are embedded.

Here again we see the manifestation of the property of being A P-theory: Possession of the amalgam property
allowed DPF to also have the joint embedding property .

Moreover,

Theorem 15. DPF is a perfect Jonsson theory.

Proof. The proof is similar to the proof of Theorem 7 and follows from the fact that DPF has a model
complement (and, accordingly, a model companion), which is the theory of DCF), as stated by Theorem 11.

Theorem 16. DCF), is a perfect Jonsson theory.

Proof. Let us show the Jonssonness of the DC'F}, theory.

(1) DCF, has infinite models;

(2) DCF, is V3-axiomatizable, hence inductive;

(3) DCF,, by Theorem 13, the model complete and, therefore, has AP.

(4) From [21] we can find out that theory DF), has the prime model F,, which is unique. Since every
differentially closed field is differential, this means that for any two models F; and Fy of DCF),, there exists a
model F' that can be embedded into F; and F3, and, further by (3), there is a model F’ such that F; and F;
are embedded into F’.

Although DF,, is not a Jonsson theory, note that, it has a Jonsson model completion DCF}, (which is perfect
in Jonsson sense). At the same time, another important remark that we can make based on the results obtained
is the following fact: The perfectness (in the field sence) based on the differential field is a sufficient condition
for the theory of differential fields of characteristic p to be perfect Jonsson theory.
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Amaabrama MeH yiijieciMl €eHri3y KacueTTepiHiH O0aillaHbICHI

3epTTeyaiH MakcaThl — HOHCOH/IBIK, TEOPUSLIIAP/IbI 3€PTTEY AsICHIHIA HOJIJIIK YKOHE OH, curarraMaMeH audde-
PEHIMAJIIBIK TYIBIK, ©PICTEp TEOPUSICHIHBIH, MOJE/Ib/Ii-TEOPETUKAJIBIK, KACHeTTEPIH aHbIKTay. Herisri Hazap
aMaJjbramMa MeH YiyleciMIli eHri3y KacHheTTepiH 3epTTeyre K9He OChl TEOPUSHBI MOHCOHIBIK TeOpHsIaphl-
HBIH, MaHBI3bI Gesrisiepi perinmae 6ipikTipyre, aran aitkanna AP-ten JEP kacueriniy 6osysina GaitiaHbi-
crel. KaxkerTimik Gesristi 6ip Teopusiiap/IblH, 2KOFaphIJa aTaJIFaH KACHETTEP] TyPaJIbl aKIAPATTHI HEFYPJIBIM
TOJIBIK, MOJIEJIb/i-TEOPETUKAJIBIK, CUIATTAYIbIH MAHBI3AbLIbIFbIHA OaiianbicTbl. COHBIMEH Karap, Oyrinri
TaHJIa KAJIbl YKaFgal1a WOHCOHMBIK OOJBIN TabbLIATBHIH TOJIBIK, €MEC TEOPUSIAPIbl 3€PTTEY AIMMapPaAThI
KeTKITIKCI3 gambrrad. MblHAa HoTHXKeTEp aJbIHABLL: yileciMi eHridy MeH aMajbrama KacHeTTepiHiH 06o-
JIybl TYPFBICBIHAH HOHCOH/IBIK, TEOPUsIAP/IbIH IMIKi KiacTapbl aHbIKTasIbl. Ocbl KiacTapibiy 6ipiH, aTar
afitkanga AP-TeopusiiapIbIH KiIackliH 3epTTey asicbiuaa 0 cunmarramamed quddOepeHuaIabl TYHbIK KoHe
muddepeHmaNIbIK, epicTepinin, 6ekiTiaren oH cumarramaMeH AudOEPEHITNANIBIK, TYWBIK kKoHe audde-
PEHIUAJIIBIK, KEMeJI OPiCTepiHiH, TeopHsiyIapbIHbIH HOHCOHBIIBIFBI MEH KeMeJiiiiiiri kepceriiired. CoHbiMeH
KaTap, MOHCOHJIBIK, eMec, Hipak KeMeJl HOHCOHJIBIK, MOJEJbII KOMITaHbOHBI 6ap AP TeopusiCBIHBIH, MBICAJIBI
perinze oH cunarTamMaMeH TudOEPEHITNATIBIK, OPICTED TEOPUICHl KAPACTHIPBLIIBI, COHTAN-aK, HOHCOHIBIK,
00JIy KacueTi TypFrhIChIHAH i DePEeHITNAIbIK OPICTED TEOPHUSICHI YIIIH YKETKIJIKTI MapT TY>KBIPBIMIAJIBI.
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Kiam cosdep: HOHCOHIABIK TEOPHUSsT, HOHCOHIBIK, KEMEJI TeOpus, TuddepeHIuaIIbIK opic, muddepeHimai bk,
TYHBIK epic, nuddepeHnuanabK, KeMesa epic, aMaabramMma KacuerTi, yitecimai enrisy kacueri, AP-reopusicer,
JEP-Teopusichbl, KATTBI JOHEC TEOPUSI.

A.P. Emikeen, 11.0. Tynrymobaesa, M.T. Kacsimerona

Kapazandunckutl ynusepcumem umeny axademura E.A. Byxemosa, Kapazanda, Kasaxcman

CBs3b CBOIICTB aMaJjibraMbl 1 COBMECTHOI'O BJIO2KEHUS

Ilens mccrenoBanusa — u3ydeHUE TEOPETHKO-MOJIETBbHBIX CBOHCTB Teopuu AuddepeHnaaIbH0 3aMKHYTHIX
MoJIeil HyJIEBOH U MOJIOYKUTEJILHOM XapaKTEPUCTUK B paMKaX MCCJIeI0BaHUs HOHCOHOBCKUX Teopuii. OCHOB-
HOE BHUMAHWE YAJIEHO CBONCTBAM aMaJibIaMbl I COBMECTHOMY BJIO2KEHUIO JAHHON TEOPUM KaK BAYKHEUIITNX
0CODEHHOCTE HOHCOHOBCKUX TEOPWUIA, 8 MMEHHO CJIeACTBUs Hajauuus ceoiictBa JEP uz AP. HeobxomumocTs
006yCJIOBJIEHA BayKHOCTBIO BJIaIeHUsT HHPOpMAaIueir 06 YIIOMSIHYTHIX BBIIIE CBOUCTBAX y TEX WJIM WHBIX T€O-
puit 115t ux 6oJiee MOJTHOTO TEOPETHKO-MOJIEILHOTO onucanusi. 1Ipu 9TOM Ha CeromHSIIHMI eHb amnmapaT
U3yU€eHNs HEIOJIHBIX TeOPHil, KOTOPHIMU B OOIIEM CJIydae sIBJISIOTCS HOHCOHOBCKHE, PA3BUT HEIOCTATOYHO.
Tlosmyuensr cnemyroime pe3yabTaThI: OMPEIETIEHbI MTOAKIACCH HOHCOHOBCKMX TEOPHUI C TOUKU 3PEHUST HAJIU-
4rsi CBOWCTB COBMECTHOT'O BJIOYKEHMs U aMaJjibraMbl. B pamkax paccMmorpenus Kiacca AP-teopuit mokazanbl
MOHCOHOBOCTb U COBEPIIEHHOCTh Teopuil fuddepeHnnaabHpIX U TuddePeHIIaIbHO 3aMKHY THIX ITOJIEH Xa-
pakrepuctuku 0, quddepeHnaIbLHO COBEPIEHHBIX U ArdDEepeHITNATBHO 3aMKHYTHIX TTOJIell (DUKCHPOBAH-
HOM ITOJIOXKUTEJILHON XapakTepucTuku. Hapsiiy ¢ atuM, B kadecrBe npumepa AP-reopun, e sBjsromeics
MOHCOHOBCKOM, HO MMEIOIEHl COBEPIIEHHbI HOHCOHOBCKUI MOJEIbHBI KOMIIAHBOH, U3yUYeHa TEeOPHUs JTud-
(depeHInaTbHBIX MOJIEH TOJIOXKUTETBHOM XapaKTEPUCTUKH, & TAKXKe CPOPMYTIMPOBAHO JTIOCTATOTHOE YCIOBUE
nist Teopun TuddepeHInaIbHbIX MT0JIel B KOHTEKCTE CBOMCTBA OBITH HOHCOHOBCKOIA.

Karoueswie cao6a: MOHCOHOBCKasi T€OPHUsl, COBEPIIIEHHASI IOHCOHOBCKas Teopus, nuddepeHnnuaabHoe moJre,
nuddepeHImaIbHO 3aMKHYTOE oI, AuddOEPEHITNATFHO COBEPIIIEHHOE TI0JI€, CBOWCTBO aMaJjbraMbl, CBOM-
CTBO COBMeCTHOTrO ByioxkeHust, AP-reopusi, JEP-Teopus, cuibHO BbllyKjast Teopus.
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