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Mathematical modeling of the energy consumption problem

The importance of energy-saving and correct design is obvious for energy efficiency. Correct design means
that before construction considerable things, such as orientation or isolation decisions, need to be made.
This study gives a mathematical model of the nonstationary energy consumption calculation problems.
The model is well-posedness in Holder spaces of the mixed one-dimensional parabolic problem with Robin
boundary conditions. In this study, an effective numerical method is also developed for energy consumption
calculation which is related to this mathematical model. The three case problems are taken to test this
numerical method. The dynamic model results have been compared with the previous finite-difference or
steady-state solutions. The study also aims to develop a mathematical model in which the result can be
found at any time.

Keywords: mathematical modeling, heat diffusion equation, difference scheme, stability.

Introduction

An important part of energy consumption occurs in buildings. Energy Efficient Building Design (EEBD) is
a design that reduces energy usage and pollution controlling the criteria. Architectural building design rules are
functionality, stability, and aesthetics. Today, efficiency and healthiness also are added. An efficient design means
not only doing things during operating but also doing correct design before the construction. There are numerous
studies on EEBD all over the world (see [1-7]). A national software, that calculates the energy consumption of
buildings according to the Turkish Standards Institute (TS EN 13790), exists in Turkey. Note that the problem
is complicated because the energy consumption calculation depends on many variables, such as nonstationary
external temperature and solar radiation, building materials, heat losses and gains and energy consumption
change with time. Energy consumption numerical calculations take a lot of time because of the stability criterion.
It is not easy to check hour by hour for the whole year. For these reasons, the mathematical model and theoretical
solution are valuable. In this article, the mathematical model of a building’s outer wall consisting of an opaque
wall is obtained by taking as a boundary value problem for the annual energy consumption calculation. The heat
conduction differential equation and the boundary equations of the one-dimensional nonstationary boundary
value problem are given. This study also gives a one-dimensional nonstationary general solution for some energy
consumption calculation problems. Finally, the dynamic model results were compared with the numerical results.

Theoretical background
In this section, we consider the theoretical background of the mathematical model of energy-saving problems.

The well-posedness of differential and difference heat problems with third boundary conditions in Holder spaces
is established. Numerical results are provided.
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Stability and coercive stability of differential problem
We study the initial-boundary value problem

2ultn) — 2 (a(2) 24D 4 Sut,x) = f (t,2), tE€ (0,T), w € (0,1),
u(0,2) = ¢ (x), = €l0,1], (1)
u(t,0) —(t) = buy (¢,0), —u (t,1) —w(t) = cuy (t,1), t € 0,7,

for the one-dimensional heat equation with Robin boundary conditions. Here 0 < a < a (z) and b, ¢, § are positive
constants. Under compatibility conditions problem, (1) has a unique solution (¢, z) for smooth functions a (),

z € (0,1), p(x), z € [0,1], ¥(t), w(t), t € [0,T], f(t,z), (t,z) € (0,1) x (0,1).
Assume that H be a Hilbert space and A be the self-adjoint positive-definite operator defined by the formula

Az = —% (a(m) dz(;)) +02(x) 2)

with domain ; ) )
D(A)={z:2,z € Ly(0,1), 2(0) =bz (0), —z(l) =cz (I)}.

Here and in the rest of this paper, C§ ([0, 7], H) (0 < a < 1) stands for Banach spaces of all abstract continuous
functions ¢(t) defined on [0,7] with values in H satisfying a Holder condition with weight ¢* for which the
following norm is finite

t+1)" et +71) — @)
lelleg or,m = lelloqom,m +  sup - £,
0<t<t+r<T T

Here, C ([0,T], H) stands for the Banach space of all abstract continuous functions ¢(t) defined on [0, T] with
values in H equipped with the norm

= t .
ooy i = mas, ()

Let the Sobolev space WZ(0,1) be defined as the set of all functions v(x) defined on (0,1) such that both
v(x) and v”(z) are locally integrable in L2(0,1), equipped with the norm

/2 .
| [ i
0

Theorem 1. Assume that f(t,z) and ¥(t), w(t) are continuous functions and satisfying a Holder condition
with weight ¢®. Then the problem (1) has a unique solution u € C§ (L2(0,1)) and for the solution of problem
(1) the following stability estimates

1 1/2

L
2
oz = | [ 1o da
0

lullcs 0,77, L200,0) < M (456) (Il py0,0 + 1 g o,11,200,0) T 1PNl cgom + HWHC(‘;[O,T]}

and coercive stability estimates

lutll e 0,77, L2 (0,0)) T+ ||“Hcg([o,T],W;(o,z)) < M (q,0) [||<P||w22(o,l)

+ sy 1 log (0.1, ooy + ¥l ooz + llcgo.m

are satisfied.
Proof. Denote by
z? x?
t = t 1— —-o t) — ———wl(t 3
wlte) =) + (1= gy ) 000~ e 0, Q

where w (t, x) is the solution of the following initial-boundary value problem:
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wy (t,z) — (a(x) wy (¢, ), + dw(t, )
= f () + u(t) (1 ﬁ) S —0)
+5 (0(t) (1 - wla ) - e ) + () (a(@)2), @
() (a(@)a),, te (0.7), T e (0,0),
w(0,2) = ¢ (&) + (0 >( i) — e (0), @ € (L1,
w (t,0) = bw, (¢,0), —w (t,1) — cw, (¢,1) =0, t €[0,7].

Applying (3), we get

el (o1, 2a0.y < Nlos 021,220 + K1 O [Illesiom + wlospom]
||“Hcg([o,T],W22(o,z)) < ||w||cg([o,T],L2(0,l)]) + K> (1) [”wHCS‘[O,T] + ”w”Cg[O,T]} :

Therefore, the following theorem will be complete the proof of Theorem 1.
Theorem 2. Under assumptions of Theorem 1, the problem (4) has a unique solution in C ([0, T], L2(0,1))
and the following stability estimate:

lwll e 0,17, L500,0) < M (a,6) [||<P||L2[o,z] + 1f les (o, L210,) T 1PNl e o + ”wHCg[O,T]}

and coercive stability estimate

lwellce (0,77, L2(0.0)) + ||w||cg([o,T},W§(o,z)) < M(q,9) [”‘PHW(O nt (1 a) Hf”C" ([0,71],L2(0,1))
¥l egom + HWHC{,‘[O,T]}

are satisfied.
Proof. Problem (4) can be written in the following abstract form

{ w'(t) + Aw(t) = f(t) + Ye(t)qr + () g2 + P (t)gs +w(t)qu, 0 <t < T,
w(0) = p +1¥(0)q1 +w (0) g2

in a Hilbert space H = L2(0,1) with the space operator A = A* defined by the formula (2). Here, f(¢) = f(¢, )
is the given abstract function, w(t) = w(t, «) is unknown function and

(5)

2 2 2
an=q)=1- ﬁ,(h =q(x) = *ﬁ,% =q3(x) =0 ( lz+2k) + lz+21p (a(x) x)xa

2
qs = qa(x) = —0piae + IQ%ZC (a(x)x),

are known elements of L3(0,1). The proof of Theorem 2 is based on theorems on stability and coercive stability
of the abstract problem (5) (see, [1,2]), the self-adjointness and positive definiteness of the space operator A*
defined by formula (2).

Stability and coercive stability of difference problem

Let a € (0,1) is a given number and C¢ (H) = Cg ([0,T]. ,H]),C; (H) = C([0,T]. , H) be Banach spaces
of all H-valued mesh functions w, = {wy}1_, defined on

0,T), = {tx = k7,0 <k < N,N7 =T}

with the corresponding norms

el e = mas, el
hoellosn = 5w (N =)™ (6) wnen — willm + sl
T 1<k<k+n<N
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Moreover, let Lop = Lo [0,1], and W3, = W3(0,1), be normed spaces of all mesh functions
h M
Y (x) = {¥n},—o defined on
0,1, ={xn =nh,0<n < M,Mh =1}

equipped with norms
1/2

2
V"l =1 D W@k
wE[O,l]h
and

1/2
2

R e P D D (GO

z€(0,1)n

respectively. Furthermore, we introduce the difference operator A7 defined by the formula

Awuh(l_) { ]. <a U'n,Jrl — Unp a Unp — unl) + 5U }le (6)
=N 7 n+1 — Un n )
h h h h .

acting in the space of mesh functions u” (z) = {Un}nM:() defined on [0, 1], satisfying the conditions (h + b) ug —

—buy =0, —cupr—1 + (h+ ¢) ups = 0. For the numerical solution {u}! (a:)};jzo of problem (1), we present DS of
the first order of approximation

-1 ko —uk uk —uk
uﬁfuﬁ _ % <an+1un+;b no__ an n n—1 + 5Uk
=[5 fE = f(txn), th €T, 2y =nh, k€ LN, ne€ M —1
u%chn, on =@ (v,), n€0,M, (7)

(h +b)uf — bul = hpy, cuk, | — (h+c)uk; = hwy,
Y = P(tk), wp =w(tk), k€0, N

and of the second order of approximation

WP —uF1 1 wF gk e 1 Wkl gkt Wkl gkt
n Tn 7% an+1 71+}L n — an, n hn 1 7% an+1 n+1h n —an n - n—1
ko k—1
+oletn = fk ok = f (4 — T 2,), tp € kT, p =nh, k€N, ne€1,M — 1,
0 _ —
g@n, gpn—ap(xn),nEOM ®
wbml_y k-1
U +u uf —uk —u
otug — =D ( 1Y + » 0 ,
1 k k k—1_ k—1
uZVI+UM _ Upnr —Upr—1 Upng  —“Upr—1
2 —WE=C¢C 2h + 2h )
wk = ¢(tk), W = w(tk), ke 0, N.

Let us give the following results on the stability and coercive stability of DSs (7) and (8).
Theorem 3. For the solution of DSs (7) and (8) the stability estimates

N
H{UZ}kzl‘ c

< M (,8) [||l¢"],,,

(L2n)

C@[QT]T]

i

+ [ty

+[ |

and coercive stability estimates

N
-
k=1

C2(Lap) cglo,1),

o [ T [

C2 (Lan) #=tllos(wz,)
1 W N
T (1-a) H{fk }’“:1’ Ce(Lan) * "{¢k}1 ‘ cgl0,1], + H{ e ‘ cg[o,T]T]
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hold. Here,
N ul ,  for first order DS,
uz - uh+uh
b—*=L  for Crank-Nicolson DS.

Proof. We will use
h)? — nh? h)? — nh?
u£w§+(1 ) —n )wk DR — 9)

242lc+(c—1)h 242lc+(c—1)h

where {w}! (x)}kN:O is the solution of the following DSs

wk—wk71 k _wk ’ka—wk
-4 (anJrl n+;1 n o an, n hn—l _’_5wa
fk ( (nh)®>—nh? Ye—tPr_1 _ _(nh)’—nh® wp—wp_3
- 1242lc+(c—1)h T 1242lc+(c—1)h T
(nh)?—nh? (nh)?—nh?
+6 [( Z2lct (e l)h) Uk~ Taier (e l)hwk} (10)
+m(nan+l (n—l)an)['l/)k—i—u)k],kel,N,ne].,M—].
_ (nh)%—nh? (nh)%—nh? NAT
=¢nt (1 21 2lct (c— l)h) Yo — Eraterec—nrwo, 7 € 0, M,
(h +b)wk —bwh =0,cwk, | — (h+c)wh, =0, 9k €0, N

and
wp—wp Tt Wy =Wy wy—wy 1 wp—wy ! wy —wp Ty
T — 35 (anﬂ s T an g, 1) — a5 | @1 —On T

+6M — fk — (1= (nh)z_nhz Yie—Yr—1 _ (nh)z—nhz Wr—Wk—1
2 —Jn 1242lc+(c—1l)h T 1242lc+(c—l)h T
__(nh)*—nh? Yetr—1 __ (nh)?-nh® wptwp_i

+0 [(1 P2l (c—Dh 2k Pt2lcf(c—Dh 2 (11)
2

0 _ B (nh)2—nh? nh)Q—nh
Wy, = ¢ + (1 12+210+(c oh ) Yo = Erstere—pawo, 1 €0, 0,M,

(h+b)wf —bwk =0,cwh, | — (h+c)wh, =0, k€0, N
for (7) and (8), respectively. Applying (9), we obtain

Bl < 105 ey, 5 {005 (CoR
H{Uk}k=1 Co(Lan) }k 1 C2(Lapn) {ujk}k:l Ce 0,7~ N {Wk}k ! Ccglo,1],
and
N B £ PR [ LS B (7
U oo (W3, =1l ca (w2,) k=1 ga 0,7, Wk S k=1 coor], |
Therefore, the following theorem will be complete the proof of Theorem 3.
Theorem 4. For the solution of DSs (10) and (11) the stability estimates
h
H k}k 1’CQ(L < Ksfa [H(‘O HLzh
g, + ol o, + o]
k=1]|ca k=l ceto,1), k= ceto,1),
and coercive stability estimates
1 N
H{ (wy — w;’i_l)} < K3(q) [Hs@hHWz
T k=1 2h
C2(Lan)
=l = [ty
) H{f’“}’“zl‘cs +H{¢k}’“zl s, T {erd s cglo.1),

hold.
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Proof. Problems (10) and (11) can be written in the following abstract forms

wi—wp_, Ah h h e —Yr—1 h Wk — wk 1 1<k<N,
p + wk i+ a1 p + g2 +Q31/1k+(J4wk7 12)
12

wi = " + qpo + ghwo
and Crank-Nicolson

h_ . h ho o h _ _ ‘ .
Wy j_”k71 +Ahwk+;‘uk‘71 _ f;? Jrq{zi/)k 71_111%1 Jrqgwk :17%1 +q§1'¢'k+;bk—1 +qi7,wk+‘;k—1’ 1<k<N,
'wQ:SO +q1¢o+CI2W0,

in a Hilbert space H = Loy, with the space operator A" = A% defined by the formula (6). Here, f* = f}! (x) is
given abstract mesh function, w? = w} (x) is unknown mesh function and

h _ _h o (nh)27nh2 h _ h o (nh)gfnh2 h _ h o (nh)gfnh2
¢ =g (z) = (1 - l2+2lc+(c—l)h) » 42 = 43(2) = — piierre—nny 68 = ¢3(%) =0 (1 - l2+2lc+(c—l)h)
nh)“—nh
+ l2+2lc-12-(c—l)h (nani1 — (n—1)an), ¢ = di(x) = *5125r21)c+(c—z)h + l2+2lc-i2-(c—l)h (nant1 — (n—1)ay) are

known elements of Loj. The proof of Theorem 4 is based on theorems on stability and coercive stability of the
abstract problem (12) (see [1,2]), the self-adjointness and positive definiteness of the difference operator A7

defined by the formula (6).

Numerical results

Now, the numerical results for the solution of the initial boundary value problem

ue(t, ) — Ugy (t, ) = —%e cos 3,
O0<t<l, O0<z<m,
u(0,2) =cos§, 0 <z <m, (13)

u(t,0) — et = uy, (t,0),
—u(t,m)— et =u, (t,m), 0<t <1

for the parabolic equation with Robin conditions are presented. The exact solution of this problem is

u(t,r) = e 'cos g

For the approximate solution of problem (13), the set [0,1]; x [0, 7] of a family of grid points depending on

the small parameters 7 and h
[Oa 1]7’ X [Ov’ﬂh

={(tg,xn) ty =kr, 0< k<N, Nr=1, 2, =nh, 0<n< M, Mh=m}

is defined. For the numerical solution of problem (13), we present the first order of accuracy Rothe DS:

k k—1 k _92
unfun Uni1 u +un 1 3 —t Tn
- n = fu,fn = —fe" " cos i,
1§k<N 1<n<M-1,
0 _
u, =cos -, 0<n< M, (14)
k k
k _ —tp _ U3 —Ug
uy —e k=~
k 1 —t uﬁl*“ﬁf 1
e Uk — — —
Uy + 5€ = - =0, 0<k<N
and second order of accuracy Crank-Nicolson DS
uﬁ—urlffl L upg—2ubul o upiy 2w et g
T 212 212 = Jns
fh=-3eTicosie, 1<k<N, 1<n<M-1,
uo—cos -, OSnSM,
. o . 15)
T T S S e (
2 2h 2h J
— k—1 k—1
“XIJFUI;\/[ ! + lo—trtd — _uiﬁu*“?u—l Uy UM
2 2 - 2h 2h J
1<kE<N.
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For the computer implementation of DS (14), we can apply two approaches.
First, for obtaining the solution of difference scheme (14), we rewrite it as the initial value problem for the
first order difference equation with respect to & and matrix coefficients

AT L BuF = Tf* 1<k <N, u°=¢ (16)

where A, B are (M + 1) x (M + 1) square matrices and f* is (M + 1) x 1 column matrix. Here,

[(1++ -4+ 0 - 0 0 0
a b a 0 0 0
0 a b 0 0 0
A= . . P . . ,
0 0O 0 - b b 0
0 0 0 a b a
1 1
L 0 0 0 0 % —1—7] (M+1)x (M+1)
[0 0 00 0]
0 ¢ 0 0 O
0 0 ¢ 0 0 O
B = . .
0 0O c 0 0
0 00 -0 ¢ O
100 0 - 00 O_(M+1)><(M+1)
here and in future
1 1 2
R
and
5
fE —0.75e ™" cos &
fF= ) = )
fJICIk—l —O.75e;t’“_(;os L
far (M+1)x1 2¢ " (M+1)x1

From (16) it follows that

uf = —inv(A)BuF "t +inv(A)If*, k=1,--- N, v’ =o.
for DS (14) and

[ 1+ -4 0 0 0 0
a b a 0 O 0
0 a b 0 0 0
A= . . . ;
0 0 0 b a 0
0 0 a b a
1 1 1
L 0 0 0 0 25 2 2h d(M41)x(M+1)
[(14+L —2% 0 -0 0 0 ]
a c 0 O 0
0 c 0 0 0
B = . . .
0 0 0 c a 0
0 0 0 a c a
1 1 1
L 0 0 0 0 25 —2~an | (M+1)x(M+1)
and
1 1 1 1 1
T 190 _7+77 - )
2h2 T  h? T  h?
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and 4T
(’)f e~ tht3
i —0.75¢ =2 cos &
fF= =
T C M —
o —0.75e "2 cos T
k 1 —tp+Z
Y g€ "t

(M+1)x1 2 (M+1)x1
for DS (14). From (16) it follows that

ub = —inv(A)Bu* ! + inv(A)If* k=1,--- N, u’=¢.

Now, we will give the results of the numerical analysis. We recorded the numerical solutions u* of these
difference schemes at (tg,z,) for different N and M values. For their comparison, here and future errors are
computed by

— k
E, =  max, |u(tk,xn) — un’ .
0<n<M

Table 1 demonstrates the error analysis between the exact solution and the solutions derived by the difference
scheme. The error of Crank-Nicolson DS is E, = O(7% + h). It is constructed for N = M = 20, 40 and 0.

Table 1
Error analysis of first order Rothe DS (14)

Error N=M=20 | N=M=40 | N=M =80
E, 0,0076 0,0038 0,0019

Table 2 illustrates the error analysis between the exact solution and the solutions derived by Crank-Nicolson.
It is constructed for N2 = M = 100, 400 and 1600.

Table 2
Error analysis of Crank-Nicolson DS (15)

Error N=10 | N=20 | N =40
E, 0,0020 | 0,00046 | 0,00011

As it is seen in Tables 1 and 2, if N is multiplied by 2, the value of errors decreases approximately 1/2 for
the DS (14) and 1/4 for the Crank-Nicolson DS (15). This shows that DS (15) has the second order of accuracy

in time.
Mathematical modeling of the energy consumption problem

The importance of energy-saving and correct design is obvious for energy efficiency. Correct design means
that before construction of something as orientation or isolation decisions needs to be made. The energy-saving
means things to do during operation as automatic control. An important part of energy consumption occurs
in buildings. For decision making, there are numerous studies on this subject all over the world. A national
software calculates the energy consumption of buildings according to the TS EN 13790 standard.

The problem is complicated because the energy consumption calculation depends on many variables, such
as the external temperature and the heat losses and gains, including the sun radiation change over time. Energy
consumption numerical calculations given by the standard is time-consuming. Thus, the mathematical model
and theoretical solution are valuable.

In this article, the annual energy consumption mathematical model of a house’s room assumed heat loss
and gain through the opaque outer wall. The heat conduction differential equation and boundary equations of
the one-dimensional, nonstationary boundary value problem are obtained for the outer wall. This study aims
at a dynamic model to compare the results of the numerical calculations ([7]). The study also aims to develop
a mathematical model in which the result can be found at any time.

In this study, an effective numerical method is developed for energy consumption calculation. The three
case problems are taken to test this method.
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Case 1. Outer wall with different convection boundary problems; outer wall of a building which is initially
20°C, is suddenly subjected to the convection boundary condition from the outer surface with air at 0°C' and the
convection coefficient 25 W/m? K while inner temperature 20°C' and inner convection resistance 0.13m2K /W are
constant. Time-dependent temperature distribution and how long it will take to reach steady-state conditions
are needed to be determined. Thermo-physical properties of the wall; p = 2000 kg/m3, k = 1W/mK,
¢ =1000J/kgK.

ug(t, ) — 5.10 Tug, (t, ) =0, 0 <t < 3600, 0 <z < 0.2,
w(0,2) =0, 0<x<0.2

ug (£,0) = 25u (¢,0), 0 <t < 3600,

ug (¢,0.2) = 140 — 7u (¢,0.2), 0 <t < 3600.

Case 2. Time-dependent on outer temperature problem; outer wall of a building which is initially 20°C),
is suddenly subjected to the convection boundary condition from the outer surface with time-dependent air
temperature with the convection coefficient 25 W/m?K while inner temperature 20°C’ and inner convection
resistance 0.13m?K /W are constant. Time-dependent temperature distribution and energy consumption are

needed to be determined. Thermo-physical properties of the wall; p = 2000 kg/m3, k = 1W/mK,
¢ =1000J/kgK.

u(t,x) —5.10" Ty, (t, ) =0, 0 <t < 3600, 0 < x < 0.2,
uw(0,2) =20, 0 <x<0.2,

25 (u (t,0) — 20| sin(7t/86400)|) = u, (¢,0), 0 <t < 3600,
—1.438u (¢,0.2) + 28.76 = u, (¢,0.2), 0 <t < 3600.

Case 3. Time-dependent on outer temperature and solar radiation problems; An outer wall of a building
which is initially 20°C), is suddenly subjected to the convection boundary condition from the outer surface with
time-dependent air temperature with the convection coefficient 25 W/m?2K while inner temperature 20°C' and
inner convection resistance 0.13m2K /W are constant and time-dependent (constant) solar energy gain. Time-

dependent temperature distribution and energy consumption are needed to be determined. Thermo-physical
properties of the wall; p = 2000 kg/m3, k = 1W/mK, ¢ = 1000 J/kgK.

ug(t, ) — 510" Tug (t, ) = f(t), 0 <t < 86400, 0 < x < 0.2,
uw(0,2) =20, 0 <x<0.2,

25 (u (t,0) — 20 sin®(7t/86400)) = u, (¢,0), 0 <t < 3600,
7[20 — u (£,0.2)] = u, (t,0.2), 0 <t < 3600,

0, t < 21600,
f(t) =< 5.10"*sin®(7t/43200), 21600 < t < 64800,
0, 64800 < ¢ < 86400.
Results

The results are compared with the previous finite-difference or steady-state solutions [7].

Case 1. One layer residence outer wall composed of one material initially is at the homogenously 20°C.
Then suddenly outside air temperature falls 0°C' and stays stable. Wall is 20 cm thick. Wall material properties
are wall conduction coefficient 1W/mK and specific heat 1000.J/kgK, density 2000 kg/m3. Heat convection
coefficients inner and outer temperatures are 7.69 and 25 W/m?2K respectively. This method’s time-dependent
results for the wall inner temperature distribution are given in Table 3.
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Table 3
Temperature distribution for Case 1
Time(h) Temperature q(W/m?K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 0 5.48 14.33 17.53 20 17
12 0 3.50 10.92 15.36 20 35
24 0 2.43 8.26 13.52 20 49
48 0 2.11 7.38 12.55 20 57

The limit of this time-dependent solution for ¢ — oo is the steady-state solution, which is shown in Table 4.
Steady-state temperature distribution goes to the linear line. Integrating heat loss over time we can get energy
consumption rate approximation 2000 Wh/m?.

Table 4
Steady state temperature distribution for Case 1
Time(h) Temperature q(W/m?*K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 0 2.16 7.57 12.97 20 54

If we compare Table 3 results with Table 4, steady-state solutions are reasonable.

Case 2. Similar wall with Case 1, subjected this time with variable outer temperature according to
Uoutside(t) = 20 sin2(t/ 24) function. The temperature distribution of this wall is found by this method in Table
5 and compared with finite difference solution, Table 6.

Table 5

Temperature distribution for Case 2 variable outside temperature with sin function

Time(h) Temperature q(W/m?*K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 13.93 15.49 17.08 20 22
12 20 18.88 17.05 16.91 20 28
24 0 5.12 13.42 15.87 20 32
48 0 491 12.25 14.58 20 41

Table 5 temperatures are over Table 3 temperatures as expected. Energy consumption rate is approximately
1200 Wh/m?.

Table 6
The finite difference temperature distribution for Case 2
Time(h) Temperature q(W/m?*K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 6.05 12.60 16.56 20 26
12 20 17.91 14.80 16.42 20 38
24 0 3.81 11.50 15.89 20 32
48 0 3.77 11.37 15.80 20 32

If the heat losses are integrated over a time period, heat energy consumption can be found.

The finite-difference numerical results of the article [7] for Case 2 are illustrated in Table 6. If we compare
this study result of Table 5 with Table 6, then time-dependent solutions are reasonable.

Case 3. Similar wall with Case 1, subjected this time with variable outer temperature according
10 Uoutside(t) = 20 sin2(t/ 24) function and variable sun radiation with a periodic sin function 6 < ¢ < 18,
q" = 20sin*(t/24) function. The temperature distribution of this wall is found by this method in Table 7 and
compared with finite difference solution in Table 8.
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Table 7

Temperature distribution for Case 3 variable outside temperature and sun radiation with sin function

Time(h) Temperature q(W/m?*K)
Outside temp. Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 11.65 16.02 18.20 20 13
12 20 19.00 18.11 18.80 20 13
24 0 5.43 11.53 15.65 20 24
48 0 5.34. 11.27 15.44 20 24

Table 7 temperatures exceed Table 3 and Table 5 temperatures as expected. The finite-difference numerical
result of the article 7] for Case 3 is pointed out in Table 8. If we compare this study results of Table 7 with
Table 8, then time-dependent solutions are reasonable.

Table 8

The finite-difference temperature distribution solution for Case 3 variable outside temperature and sun
radiation with sin function for a window and an opaque wall [7]

Time(h) Temperature q(W/m?K)
Outside temp.  Outer surface Mid point Inner surfce Inner Temp.  Heat Loss
0 20 20 20 20 20 0
6 7 6 12.43 16.24 20 32
12 20 18.10 15.65 16.92 20 24
24 0 3.85 11.58 15.74 20 36
48 0 4.13 10.95 13.26 20 36
Conclusions

The energy consumption problem is complicated because the energy consumption calculation depends on
many variables, such as the external temperature and the heat losses and gains, including the sun radiation
change over time. Energy consumption numerical calculations given by the standard take a lot of time. In the
present paper, we have examined the model of the nonstationary energy consumption calculation problems. The
theoretical background of this model has been provided. The well-posedness of the mixed problem for parabolic
equations with Robin conditions has been studied. The first and second-order accuracy single-step absolute
stable difference schemes have been constructed. Well-posedness in Holder spaces on time of these differential
and difference parabolic problems has been established. Finally, these difference schemes have been applied for
the energy consumption problems for the heat equations. The developed results are justified.
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A. Ampansiest??, M. Ypyn?®, 1.1, Ilapmakcusorty®

! Bazuewezup yrusepcumemi, Cmambya, Typrus;
2 Peceti zaavxmap docmwiene yrusepcumemi, Mockey, Peced;
3 Mamemamura sicone mamemamuraivr, modesvoey uncmumymot, Aivamo, Kazaxcman;
4 Tasy wevic yuusepcumems, Hukocus, Typrus;
5 Tanamacapati yrusepcumemi, Cmambya, Typrus;
5 Cmambya mexruxavs yrnusepcumemi, Cmambya, Typrua;

DHEepPTUugHbI TYThIHY MOCeJeJIepiH MaTeMaTUKAJBbIK MOJEJIbJey

OHeprusiHbl YHEM/IEy MeH JyPBIC »Ko0aJjiay SHeprust THIMAUINr yimH MaHb3ael. Jlypeic nusaiin gereHimisz
— KYPBLIBICKA Jeiiin OGarmapiay HeMece OKIIayJsay »KYMBICTAPBIH Kacay KepeK. Bys 3eprreyze Geitcramm-
OHAPJIBIK SHEPIUSIHbI TYTHIHYIbI €CENTEY €CENTepiHiH MaTeMaTHKAJIbIK MOJEJ YCBIHBIIFaH, ssFHU lebuep
kenicriringeri PoGen maprrapsr 6ap apajac 6ip eJem i mapabosiaJiblK, ecenTiy, KoppekTiairi. ABropiap
OCBhI MATEMATHUKAJIBIK MOJE/Tbre OalJIaHbICThI SHEPTUSTHBI TYTHIHYIBI €CENTEYIIH THIMI CAH/IBIK O/IICIH Ka-
caraH. ByJ1 caHIBIK 9/1icTi TEKcepy VIIH YIII ecen aJbIHIAbI. JInHaMUKAJIBIK, MOAEIbIIH HOTUKEIePi aJIIbIHFbI
aMBIPBIM/IBIK, HEMECE CTAI[MOHAPJIBIK, MIEIIMIepMeH CaJIbICThIPbLIAbl. COHBIMEH KaTap, 3epTTey HOTHKEHI
Ke3 KeJI'eH yaKbITTa Tabyra 60aThiH MaTeMaTHKAJILIK MOJEJIbIl JKacayra OarbITTaaIraH.

Kiam cesdep: MaTeMaTUKAJIBIK, MOJEbIEY, KBITYOTKI3TIINITIK TEHIEY1, Al BIPBIMIBIK, CXEMAChI, TYPAKTHLIBIK,

A. Amrpansiest??, M. Ypyn?®, 1. /1. Ilapmakcusoriy®

! Viueepcumem Bazuewezup, Cmambya, Typuus;
2 Poceutickuti yrusepcumem dpyoicbu napodos, Mockea, Poccua;
3 Mncmumym mamemamusy v Mamemamuseckozo modesuposarus, Armamo, Kazazcman;
4 Bausicnesocmownuiti yrusepcumem, Huxocus, Typuus;
5 Mauramacapatickud yrnusepcumem, Cmambya, Typuus;
5 Cmambyaverut mexnuveckul ynusepcumem, Cmambyas, Typyus

MareMaTndeckoe MOdeJIMPOBaHNe NPo0JieMbl dHEProInoTpedIIeHns

Baknocts sHEprocbeperkeHnsi M IPaBUJILHOIO IIPOEKTUPOBAHUS OYEBUIHA JJIsI dHEProddEKTUBHOCTH.
IIpaBunbHBI gu3aiiH O3HAYAET, YTO IIepe]] CTPOUTEIHbCTBOM HYXKHO CJHIEJIaTh YUTO-TO BPOJIE€ PEIIeHUs IO
OPUMEHTAIUN WMJIM U30JISIIUA. B JIaHHOM MCC/IeIOBaAaHUM MPEJJIOKEHA MaTeMaTHIeCKash MOJE/Ib 3a/1ad pacde-
Ta HECTAIIMOHAPHOI'O SHEProNOTPeOsIEHUsI, KOTOPas MPEeICTaBIsieT co00il KOPPEKTHOCTh B MPOCTPAHCTBAX
Ténpaepa cMmemanHoOl OMHOMEPHON MapaboMiecKoil 3aa4dn ¢ yciaopusmu Pobena. ABropamu pazpaboTaH
3 PEKTUBHBIN YUCTEHHBIA METO pacyeTa dHEPronoTped/IeH s, CBI3aHHbINA C JJAHHONH MaTeMaTUIeCKONR MO-
JHenbio. JIjisi TpOBEPKU 9TOr0 YKMCJIEHHOI'O METOJa B3sIThl TPU 3aJa4u. Pe3y/brarhl JUHAMUYIECKON MOIe/n
CPaBHUBAJIUCH C NPEABIAYINUAMUA KOHEIHO-PA3HOCTHBIMU WJIA CTAIIMOHAPHBIMHU PEHNICHUAMU. KpOMe TOrO,
HCCJIeIOBaHNE HAIIPABJIEHO Ha Pa3pabOTKy MaTeMaTHYeCKON MOEsN, B KOTOPOM pPe3yJibTaT MOXKET ObITh
HaiijieH B j11000€e BpeMmsl.

Karouesvie crosa: mareMaTHdeCKOe MOJIEIMPOBAHUE, YPaBHEHHE TEIJIONPOBOJSHOCTH, PAa3HOCTHAS CXEMA,
YCTOUYIUBOCTbD.
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