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Solvability of an initial-boundary value problem for a nonlinear
pseudoparabolic equation with degeneration

This article is devoted to the solvability of degenerate nonlinear equations of pseudoparabolic type. Such
problems appear naturally in physical and biological models. The article aims to study the solvability in
the classes of regular solutions of (all derivatives generalized in the sense of S.L. Sobolev included in the
equation) initial-boundary value problems for differential equations. For the problems under consideration,
We have found conditions on parameters ensuring the existence of solutions and we have proved existence
and uniqueness theorems. The main method for proving the solvability of boundary value problems is the
regularization method.
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Introduction

In the modern theory of partial differential equations, an important place is occupied by the study of
degenerate hyperbolic and elliptic equations, as well as equations of mixed type. The increased interest in this
class of equations is explained both by the great theoretical significance of the obtained results and by their
numerous applications in gas dynamics, hydrodynamics, in the theory of infinitesimal bending of the surface,
in the momentless theory of shells, in various branches of mechanics of continuous media, acoustics, and in the
theory of electron scattering and many other areas of expertise. Degenerate equations are a good model for
physical and biological processes. Such equations have become an actual formulation and solution of various
boundary value problems. Consequently, degenerate equations are currently the subject of fundamental research
by many mathematicians.

Boundary value problems for pseudo parabolic equations were investigated in the works of D. Colton [1],
A.M. Nakhushev [2], A.I. Kozhanov [3], M.S. Salakhitdinov [4], T.D. Dzhuraev [5], and others.

One of the important sections of the theory of partial differential equations is the formulation and study of
well-posed boundary value problems for degenerate parabolic equations of the second, third, and higher orders.

Boundary value problems for second-order degenerate parabolic equations are considered in the works
of M. Gevrey [6], O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uralczeva [7], C.D. Pagani, G. Talenti [§],
Yu.P. Gorkov [9].

In this article, we consider boundary value problems for differential equations of the following type:

o(t)uy — vAu — xAuy + |[ulP?u+ c(z, t)u = f(x,t) (t€QC R, n>3,0<t<T) (1)

where v = const > 0 and f (z,t) is the external force. In these equations, the function ¢ (¢) and x (¢) can
arbitrarily change sign on the segment [0,7], and it can vanish on subsets of the segment [0,7] of positive
measure.

In article [3] I.A. Kozhanov and E.E. Maczievskaya in a cylindrical domain @ = Q x (0,7) (0 < T < +o0,
Q C R"™ — bounded area with smooth border T') considered the solvability of a boundary value problem for
differential equations:

eu+y ) Autc(z,t)u=f(z,t) (e QCR",0<t<T). (2)
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In articles [10], [11] for equation (2), a statement of the first boundary value problem is proposed, and the
existence of its generalized solutions is proved.
G. Fichera [10] considered an equation of the following type:

Lu = aijuwm + by, +cu = f(z,t)

and for the first boundary value problem the existence of its generalized solutions is proved.
O.A. Olejinik and E.V. Radkevich [11] proved the existence of generalized solutions to the first boundary
value problem for the following type of equation:

Lu = a"ug, ., + by +c(z)u=f(z).

L. A. Kozhanov [12] proved the uniqueness of solutions to the first boundary value problem for the following
type of equation:

0
Utt+a()8t

The purpose of this work is to study the solvability of the first boundary value problem for doubly degenerate
differential equations (1) in classes of regular solutions — solutions that have all derivatives generalized in the
sense of Sobolev entering the equation.

In [13], A. Benaissa and Ch. Aichi considered a one-dimensional degenerate wave equation with a boundary
control condition of fractional derivative type

(Au) + Bu = f (x,t).

ug (z,t) — (a(x) ug (2,t)), =0in (0,1) x (0,00), (3)

where the coefficient a is a positive function on [0, 1] but vanishes at zero. The degeneracy of (3) at x = 0 is
measured by the parameter u, defined by

|’ (z)|
fg = SUp —————.
0<z<1 G(I)

The researchers pointed out that the problem is not uniformly stable by a spectrum method and they studied
the polynomial stability using the semigroup theory of linear operators.

In [14], the authors considered the following modelization of a flexible torque arm controlled by two feedbacks
depending only on the boundary velocities:

g (2,1) — (a (2) ug (2,1)), + aue (2,1) + By (2,) =0, 0 <z <1, t >0,
(a(x)ug) (0) = kyue (0 t), t>0,
(a(x)ug) (1) = —kouy (1,8), t >0,

where
a >0, ﬁ>07 kl, k‘QZO, k‘1+k‘2750,
a€Wt=(0,1), a(x) > ag, Vo €[0,1].

They proved the exponential decay of the solutions.
In [15], the authors considered a biharmonic regularization to the following nonlinear degenerate elliptic
equation:

Qu:Zle {am (Z;i 1 @ij (2, Du) Oy u 4+ by zuDu)) ¢i (x,u, Du) O, u| +d(x)u
=+ 20,000, €QCRY, Du=Vu=(84,,...,0,),

where the coefficients will be specified later. By degenerate ellipticity, we imply that the coefficients a;;,
i,7 =1, ...,d, satisfy degenerate ellipticity conditions

0 < A(z,p) €] < ayj (z,p) &&j, 2 €Q, pe RY,

for all £ = (&1,...,&4) € RY\0. Under appropriate assumption on the coeffcients, we prove that a sequence of
biharmonic regularization to a nonlinear degenerate elliptic equation with possibly rough coeffcients preserves
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certain regularity as the approximation parameter tends to zero. In order to obtain the result, they introduced
a generalization of the Chebyshev inequality. They also presented numerical example.

In [16], the author considered degenerate quasilinear pseudoparabolic equations with memory terms and
variational inequalities:

O (u) =V - (a (2) V) = V- (t,2,u, V) + M7 (u) = 7 (u),
uw/ =0on (0,T) x 09,
W (u(0,2)) =¥ (uo (x)) in Q,

where the memory operator M is defined by
(M7 (t) (u) ,07) / / KI(t,s) ¢’ (s,2,Vu (s,x)) dsVo? (t,z) da

for all functions u, v € LP <O,T; Hé’p (Q)l), for almost all ¢t € (0,T).

The existence of solutions of degenerate quasilinear pseudoparabolic equations, where the term O;u is
replaced by O;b(u), with memory terms and quasilinear variational inequalities is shown. The existence of
solutions of equations is proved under the assumption that the nonlinear function b is monotone and a gradient
of a convex, continuously differentiable function. The uniqueness is proved for Lipschitz continuous elliptic parts.
The existence of solutions of quasilinear variational inequalities is proved under stronger assumptions, namely,
the nonlinear function defining the elliptic part is assumed to be a gradient and the function b to be Lipschitz
continuous.

Statement of the problem

Let Q C R", n > 3 is a bounded domain with the smooth border 9Q, Qr is a cylinder Q x (0,7T) of finite
height T, S = 02 ® (0,T) is a side boundary. Further, let v > 0, x, p are constants, ¢ (t),c(x,t) and f (z,t)
be the given functions defined at t € [0, 7], x € Q, L is a differential operator whose action on a given w (x,t)
is determined by the equality

Lw = o(t)w; — vAw — xAw; + |w\pi2 w + c(z, t)w

where 2 < p < 4, A is the Laplace operator in the variables x1, xo, ..., T,
Boundary problem I. Find a function u (x,t) that is a solution of the equation:

Lu = f(x,1) (4)
in the Qr = Q x (0,7) and such that condition:
ulg =0, ()

u(z,0) =0,z € Q.

Boundary problem II. Find a function u (x,t) that is a solution of equation (4) in the Q7 = 2 x (0,T") and
such that conditions (5) and
w(z,0) =u(z,T)=0, z € Q.

Solvability of boundary value problems I-11

Theorem 1. Let the conditions
o(t) € CH0,T], c(z,t) € C*(Qr); (6)
2c(x,t) — @' (t) > c1 >0, 2c(x,t) + ' (t) > co >0at (x,t) € Qr; (7)
¢(0) <0, ¢(T) > 0; (8)
fla,t) e Wyl (Qr), flz,t) =0 at (z,t) €S, f(z,0)=0. (9)
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0 0
Then there is a unique solution u € Lo(0,T; WZ(Q)) N W3 (2), uy € La(0,T; W(Q)) N WH(Q), uy € La(Qy) of
the boundary value problem I.
Proof. For the proof, we use the regularization method. Let € be a positive number. Let L. denote the
differential operator whose action on a given function w (z,t) is determined by the equality

L.w = eAwy + Lw.
Consider a boundary value problem: Find a function w (z,t) that is a solution of the equation
L.w= f(x,t) (10)
in the Qr = Q x (0,T) and with conditions (5) and
u(z,0) = u(x, T) =0, z € Q. (11)
Note that the first priori estimate is valid
2 2 2 p
ellVurllz g, + llullz g + IVullz g, + llull, o < e (12)

To prove this estimate, it suffices to analyze the equality

/ L.uudxdt = fudxdt
T Qr

using the conditions of the theorem (6), (7), (8), (9), and Young’s inequality.

Consider the following equation:

—/ L.uAudzdt = —/ fAudzxdt.
Q Q

Let us write this equation by integrating by parts:

el Aulls o, + 3 foo(T) [Vu(z, ) do—

=5 Jo, @) |Vl dzdt + % [y |Au(z, T)|* dt

+v o |Buf® dedt + (p— 1) [ |ulP ™ [VulPdadt + [, c(z,t)|Vuldedt =
—fQT Ve(z, t)uVudzdt — fQT fAudzdt.

(13)

Let us estimate right-hand side of the equation (13):

2 C4 2
‘— ; Vc(:c,t)uVudxdt‘ <ca||Vully g, lully o, < IVullz o, + 1 lullop -
T

14 2 1 2
‘/QfAudxdt‘ < 5 lAullz g + 50 I l20r -

Substituting the obtained inequalities into equation (13) and taking into account the conditions of the theorem
(6)—(9), we obtain the second priori estimate

ellAul3 g, + Jo, 1Aul dedt + [, ul’~* |Vu|*dzdt < Cs. (14)
0
Now, let us show that at conditions (9), the solutions u € Lo (0,T; W2(2))NW3(Q), u; € La2(0,T; W(Q))N

0
NW3(Q), uy € La(Q;) of the boundary value problem (10), (5), (11) will satisfy the estimates uniform by &.
In the next step, consider equality

/LguAuttdmdt: —/ fAuydzdt.
Q Q
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This equality is easily transformed to form

€ ||AuttHL2(QT) + 2 3 Jo 9(0) [Vuy(z, 0)| dz+

+X [, |Aut z,0)|? dedt +v [, |Awg|? dadt + 1 3 Jo, 2c(z,t) + ¢' (1)) (Vg |? dadt =
= —fQ ct(z, t)VuVuy + Ve(z, t)us Vug + Vct(x tyuVuyg)dxdt—

—(p—1) fQ lulP~? utAutdxdt—i—fQ V f: Vudzdt.

Let us estimate to [, [ulP~? uy Augdadt

‘fQ Juf?” utAutd:vdt’ e
< 5l Al g, + % IVuel3 g, + Co.

2o lullf,E mor <

Using the conditions of the theorem (6)—(9), we obtain from this that solution w (z,t) of the boundary value
problem (10), (5), (11) satisfies the estimate

5||Autt|\2Lg(QT) +/Q \Aut|2dxdt+/ V| dadt < C. (15)
T T

Estimates (12), (14) and (15) are already enough for choosing a sequence converging to the solution of
boundary value problem I.

Let {&;},=, be a sequence of positive numbers converging to 0. We denote by w; (x, t) the solution to boundary
value problem (10), (5), (11) for & = ¢;. For the sequence {u; (z,t)},=, for € = &, the priori estimates (12), (14)
and (15) hold. It follows from these estimates and the reflexive property of the Hilbert space that there exists
a subsequence {u, (z,t)},-, and a function u (z,t) such that

€l — 0,

(x,t) = u(x,t) in La (Qr) weakly,
x,t) = Vug (z,t) in Ly (Qr) weakly,
)
) = Auyg (x,t) in Lo (Qr) weakly,
ElkAulktt (z,t) = 0in Ly (Qr) weakly,

converges for k — oo. Obviously, the limit function u (, t) will belong to the space u € Lo (0,T; W3 (2))NW3 (Q),
0
up € Lo(0,T; WZ(2)) N W), us € La(Qy), and that it is a solution to the problem 1. O

0
The study of the solvability of boundary value problem II in classes u € Lo(0,T; W2(Q2)) N W3 (Q),

0
ug € Lo(0,T; WE(2)) N W3 (2), us € La(Qy) is carried out in the whole similarly to the study of the solvability
of boundary value problem I. The regularization method is used again, the operator L. is again used as a
regularizing operator. The difference is that in the regularizing problem at ¢ = 0 and ¢ = T there are conditions

u(z,0) =u(z,T) =0,z € Q.
Theorem 2. Let conditions (6), (7) and (9), and conditions

©(0) >0, (T) <0

0 0
also hold. Then there is a unique solution u € Lo(0,T; WZ(2)) N W3 (Q), uy € L2(0,T; WZ(Q)) N W3(Q),
ug € Lo(Qy) of the boundary value problem II.
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The uniqueness of a solution

Theorem 3. Let conditions (6)—(9) be satisfied. Then u(z,t) the solution of the boundary value problem I is
a unique.

Proof. To prove the uniqueness of the equation suppose that problem has two solutions: u; (z,t) and us (, t).
Then their difference ¢ (z,t) = uy (x,t) — uz (z,t) satisfies condition

I, 0) = 9¢(z,T) =0, x € Q.
Then, (10) is written in a form
eAVy + p(t)dy + \ul\p_g up — |U2|p_2 ug — vAY — YAV + ez, t)9 = 0.

Consider the following equation:

fQT (EA’LSI“ + tp(t)ﬁt + ‘ul‘p_2 Uy — |U2|p_2 Ug — vA9—
—xAY; + c(z,t)9) Idzdt = 0.
For any p > 0, the inequality holds
[(Jun [P ur =zl uz) (u1 = u2)| > ¢ fuy — uaf”*2.

Let us write this equation by integrating by parts

eIVIl3 0, + S fo, VPdudt+
+5 Jo, VO dadt + ¢ [, 9" <0

In this case, we come to an equality
Y=0=u —uy =0= u; = us.
So, we proved the uniqueness of a solution.

Statement of the second problem

Let Q@ € R™, n > 3 is a bounded domain with the smooth border 9, Qr is a cylinder © x (0,7) with
a finite height T, S = 9Q ® (0,T) is a side boundary. Further, let v > 0, x, ¢ be constants, ¢ (t),c(z,t) and
f (z,t) be the given functions defined at ¢ € [0,7], x € Q, L is a differential operator whose action on a given
w (x,t) is determined by the equality

Lw = p(t)w; — vAw — xAw; — [Vw|? + c(z, t)w

where 0 < ¢ < 1, A is the Laplace operator in the variables x1, zo, ..., z,.
Boundary problem III. Find a function u (z,t) that is a solution of the equation

Lu= f(x,t) (16)
in the Qr = Q x (0,T) and with the conditions
ulg =0, (17)

u(z,0) =0,z € Q.

Boundary problem IV. Find a function u (z,t) that is a solution of the equation (16) in the Q7 = Q x (0,T)
and with condition (17), and condition

w(z,0) =u(z,T)=0,z €.
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Solvability of boundary value problems I-11

Theorem 4. Let conditions (6), (7) and (9), and conditions

©(0) <0, o(T) >0
0 0
also hold. Then there is a unique solution u € Lo(0,T; WZ(2)) N W3 (Q), uy € L2(0,T; W2(Q)) N W1 (Q),
ut € La(Qy) of the boundary value problem III.
Theorem 5. Let conditions (6), (7) and (9), and conditions

(0) >0, p(T) <0
0 0
also hold. Then there is a unique solution u € Lo(0,7; WZ(Q)) N W1(S2), us € L2(0,T; WZ(Q2)) N W3(€),
us € Lo(Q4) of the boundary value problem III.
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C.E. Aitrskanos!?, 7K. Tiney6epail, I'. Canar!

LOa-Dapabu amwindaes. Kasar yammows yrusepcumemi, Aamamo, Kaszaxeman;
2 X anvisapanotk;, aKNApGMMBLE, METHOA0ZUALGD YrUusepcumemi, Armamot, Kasaxcman

A3BFrpIHIAJIFaH CBIBBIKTHI €MeC IICEBI0NapaboJIaJabIK TeHAeYy YIMiH
OacTanKpI-IIETTIK eCcenTiH MIeTiJIiM/I1Iiri

MakaJta 1iceBIoTIapabOIAIBIK, THIITErl a3FbIHAJJIFaH CBI3BIKTHI €MeC TeHJIEYJIEep/IiH IIeliIiMIairine ap-
nasgraH. MyHmait mpobiemanap GU3MKAHBIH KoHE OWOJIOTUSHBIH 9p TYPJI MOJEIbIEPIHIE TYbIHIANIHL.
Makasnanbig, MakcaTbl — jguddepennuanipk, Teggeynep yuin mekti ecenrepaiy (C.J1.Cobones marbiHa-
CBIHJIa ZKAJIIIbLJIAHFaH GaPJIbIK, TyBIHIBLIAP/BI KOCA AJFAH/) PEryJIsipJbl IeniMAep KIACHIHIAFbI HIeliM-
JimikTi 3eprTey. KapacThIphLIbIl OTBIDFAH €CEITiH, MIEMTiTyiHe KenIIiK O6epeTin, mapaMeTpiiepre mapTTap
TaOBLIFAH YKOHE KAPACTBIPBIIFAH €CelITep YIIiH IIEeMIiMHIH 6ap >KoHe »KAJIFbI3/bIK, TeOPEeMAJIaphl J19JIEJIIeH-
ren. IIlekTik ecenrep/in meniMIINNH Ao/ Aey/IiH HeTi3ri 9/1ici perynaspusaius d9ici 60/1a/bl.

Kiam ce3dep: iceBmonapabOSIbIK, TEHIEYIED, a3FbIHIAFAH TEH/IEYJIED, METTIK €CENTep, ChI3BIKTHI €MEC TEH-
Jeysep, MENMIIIK, KaJFbI3/IbIK.

C.E. A#rrskanos!?, K. Tuney6bepau!, I'. Canat!

! Kazaxcxud nayuonasvront yrnusepcumem umeny aro-Dapabu, Armamo, Kazazcman;
2 Meoicoynapodnuiti yrueepcumem un@opmayuonisis mexnorozut, Aimamol, Kazaxcman

PaBpeI_HI/IMOCTb Ha‘{aJII)HO—Kpa.eBOﬁ 3adad1 AJIA HEeJIMHEMHOI O
HCGB,D;OHapaﬁO.TII/I‘IeCKOI‘O YpPpaBHE€HNA C BbBIPO2K/JI€HNEM

Crarbsl MOCBSINEHA PA3PEIIMMOCTU BBIPOXKIEHHBIX HEJMHEHHBIX YPaBHEHUH IICEBIONAapabOInIecKOro TH-
na. Takue 3a/1a4M €CTECTBEHHO BO3HUKAIOT B pu3myecknx u buosiormdeckux mozessx. llenpio crarbu siB-
JIETCST MCCJIEIOBAHNE PA3PEIIUMOCTH B KJIACCAX PETYJISIPHBIX PEIeHnil (BKJIOYAONNX B yPABHEHUE BCE
npoussozuble, 06o6mennbie mo C.JI.CoboseBy) KpaeBbix 3a1a4 it quddepeHnuanbubix ypasaennit. s
paccMaTpUBaEeMbIX 3aj@d aBTOPAMM HalJIeHbl YCJIOBUs HA [1apaMeTpbl, TapaHTUPYIOIINe, YTO 3a/a49a MMe-
er perterrie. Kpome TOro, J0Ka3aHBI TEOPEMBI CYIIIECTBOBAHUS W €IMHCTBEHHOCTH. B KadyecTBe OCHOBHOTO
MeTO/Ia JIOKA3aTeIbCTBA PA3PEIINMOCTH KPAEBBIX 3329 BbIOPAH METOJ| PEryJIspU3aliin.

Karoueswie caosa: nceBnonapabonviecKue ypaBHEHUsI, BBIPOXKIEHHBIE YPABHEHUsI, KPAeBble 3a/a4u, HeJl-
HelHbIe ypaBHEHNs, PA3PEIIUMOCTD, €INHCTBEHHOCTb.
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