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General bounded multiperiodic solutions of linear equation with
differential operator in the direction of the main diagonal

In this article we determine the structure of the general solution of a n-th order linear equation with
differential operator in the direction of the main diagonal in a space of independent variables, and with
coefficients being constant on the characteristic of this operator under some condition on its eigenvalues. It is
assumed that the coefficients and a given vector-function have the properties of periodicity and smoothness,
where periods are rationally incommensurable positive constants. First, we study the homogeneous equation
that reduces to a homogeneous linear system. Moreover, on this base, in terms of eigenvalues we establish
conditions of existence of solutions being periodic with respect to all independent variables (so-called
multiperiodic solutions). We give an integral representation of the multiperiodic solution of nonhomogeneous
equation. The conditions for existence and uniqueness of the bounded and multiperiodic solutions of the
n-th order linear nonhomogeneous equation are established. It is shown that the bounded solution of the
nonhomogeneous equation is periodic in all variable solutions with a variable bounded period. This is one
of the specific features of the equations with differential operator in the direction of the main diagonal.
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Introduction

Let z(7,t) be a function of variables 7 € (—00,+00) = R and ¢ = (t1,...,tm) € Rx - x R = R™,
D.=2+ <e, %> the operator determined by the scalar product (-,-) of m-dimensional vectors e = (1,...,1)

or
and 5 = (362 a1, ): T o .
The operator D, is called the differential operator in the direction of the main diagonal or of vector field
g—i = e with characteristic ¢t = e(7 — s) + o, where (s,0) € RxR™, 0 = (01,...,0,). Obviously, 0 =t —e(7 — s)

is a base integral of the vector field, consequently, D k(o) = 0 for any differentiable function h(c). In particular,
we have D.o = 0. A function of the type h(o) is called a function constant on characteristic.

The study of oscillation solutions of systems of first order partial differential equations are importance in
mathematics as in theoretical and applied aspect. For example, (6, w)-periodic systems in (7,¢) of the form

Dex = f(T,t,!E)

with differential operator D, are closely connected with the theory of multifrequency oscillations [1-3|, where
w=(Wi,...,wWm), wo =0, wi,...,wy, are positive incommensurable constants. (6, w,w)-periodicity in (7,t,0)
of solutions of systems has been studied in [4-6].

In [7] a method of studying (¢, w)-periodic solutions of such systems has been offered. A further study of
these problems has brought forth the systems with characteristic ¢ = ¢t — e(7 — s), of the form

Dex :g(T7t’07x)7

see [8]. After substitution 7 — s — 7 we have 0 =t — er, with w-periodicity in ¢ of the systems being still valid.
Consequently, g(7,t, 0, ) is w-periodic as well in . Let us remark that, generally speaking, with any fixed value
of ¢, this system is quasi-periodic in 7.

A system of such form can be obtained from n-order linear equations

Dz 4+ ay (o)D" o + ... +a,(0)x = b(1,t,0), (1)

with operators Diz = D.(Di7'z), j = 1,n, where a;(c), j = 1,m, and given vector-functions b(r,t, o) have
the properties:

a;(0 + qw) = a;(o) € C’C(,l)(Rm), j=1m, qeZ™; (2)
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b(r+ 0.t + qw,0 + qw) = b(r,t,0) € CH V(R x R™ x R™), g€ Z™ (3)
with multiple vector-period qw = (qiw1, ..., ¢mwm), ¢ = (¢1,---,qm), ¢ € Z, where Z is the set of integers,

j=1m,o=1t—er.
Our basic objects of study here are the structure of the general solution to the equation (1) and, on this
base, of its (#,w,w)-periodic solutions.

Linear homogeneous equation

If b =0, (1) becomes a homogeneous equation
Dz +ay(o)D" e+ ... +a,(0)z =0 (4)
with corresponding characteristic polynomial equation in A
H,(0,A) = A" + a1 ()N + ...+ an(0) = 0. (5)

Suppose that all roots A = A(o) of (5) are in R™ and have the following properties.

1°. Roots are either zero everywhere in R™, or roots are different from zero in R™: \(¢) = 0, 0 € R™ or
Ao) #0,0 € R™.

20. Roots are separated: inf|\ (0) — X”(0)| > § = const > 0 for any pair of roots \'(c) and \”(0).

3%. Roots are periodic with period w: A(o + qw) = A(0), o € R™.

49, Roots are continuously differentiable: A(c) € C},U(Rm).

It is not difficult to notice that the property 2° implies there exist exactly n roots of the equation (5) counted
with multiplicity.

Assuming (2) and 1° — 4%, we aim to describe the structure of the set of solutions of the equation (4).

For this purpose, having put @ = y1, Dey1 = Y2, Delyo = Y3, .., DeYn—1 = Yn, we obtain the equation (4) in
the form of a linear system

Dey = A(o)y, (6)
where y = (y1,...,yn) a vector, A(o) an (n x n)-matrix of the form
0 1 0 .. 0 0
0 0 1 e 0 0
Ao) =
0 0 0 .. 0 1
—an(0) —an—1(0) —apn—2(o) ... —az(o) —ai(o)

Obviously, the characteristic polynomials of the equation (4) and system (6) coincide det[AE — A(c)] =
= H, (o, ). Consequently, the roots A = A(0) of equation (5) are eigenvalues of the matrix A(c).

We shall describe the structure of the set solutions of the system (6) and, consequently, of equations (4) in
dependence on multiplicity of eigenvalues.

The case of simple eigenvalues. A;(o) # \j(0), © # j, 4,7 = 1,n and A\;(0) are real-valued functions. It is
easy to check that the Vandermonde matrix T'(0), formed with eigenvalues \; = \;(0), j = 1,n, 0 € R™, and
the diagonal matrix J(o) = diag[A1(0),..., A, (0)] satisfy the identity

A(o)T (o) =T(0)J(0).
Moreover, det T'(c) =[] [Ai(o) — \j(0)] #0, o € R™, thanks to 19 and 2°. Consequently, the matrix

1<j<i<n
T(o0) is reversible for o € R™ and with substitution y = T'(¢)z the system (6) boils down to the system

D.z = J(0)z, (7
which in scalar form can be written in the form D.z, = Ao (0)2a, @ = 1,n, where z = (21,...,2,). From this
system we get

Za = Co(0) exp [TAa(0)] (8)

with arbitrary differentiable function C, (o). Taking into account (8), the general solution z = z(7,0) of the
system (7) is of the form
z(r,0) = Z(1,0)C(0), (9)
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where Z(7,0) = diag [e“l("), . .,e”‘”(”)] is a matrix, C(o) = (C1(0),...,Cr(0)) an arbitrary differentiable
vector-function.
Then, substituting (9) into y = T'(c)z we obtain the general solution of the system (6) in the form

y(r,0) =T(0)Z(1,0)C(0). (10)

Further, from the relation (10) we determine the structure of the solution of the equation (4):
n
l‘(T, U) =Y (Ta g) = Z e)\j (G)ch (0)7 (11)
j=1

where it is taken into account that ¢;;, the entries in the first row of the matrix T'(c), are equal 1, C;(o) are
components of arbitrary differentiable vector-function C(o).
We remark that, in view of 3° and 4%, the matrix T'(c) is w-periodic and continuously differentiable.
Theorem 1. Assume the conditions (2) and 1° — 4% hold. Then in the case of simple eigenvalues, the solution
x of equation (4) satisfying the initial condition

Z|r=0 = u1(0), Dexlr=o =uz(o), ..., D271I|7—:0 = up (o) (12)

can be presented in the form (11), where u;(o), j = 1,n, are given differentiable w-periodic functions.
Proof. Indeed, to determine the solution of the problem (4), (12) we act step by step with the operator D,
on the solution (11) and use the condition (12). Then we shall obtain a linear system of algebraic equations of

the form »_ A} (0)Cj(0) = uz(0), (a = 1,n — 1) with coefficients matrix being the Vandermonde matrix 7'(o).
j=1

Consequently, C(c) = T~ (o)u(o), where u(c) = (u1(0),. .., u,(c)).

Therefore, the initial problem (4), (12) is uniquely solvable and its solution can be presented in the form
(11). Consequently, the relation (11) is itself the general solution of equation (4).

The case of multiple eigenvalues. In view of 19 — 2° X\;(¢), i = 1,7 have multiplicity k; independent of
o € R™ (we shall assume the eigenvalues are real-valued), where k1 + -+ + k,, = n.

A) We start with the particular case when A(o) is a unique, with multiplicity n, root of the equation (4). We
introduce Jordan block J(¢), corresponding to the eigenvalue A(0): J(o) = A(0)E + I, where E is the identity
matrix of order n, I is the matrix with units on the superdiagonal and the rest of entries being zero.

Let T'(0) be the matrix with entries ¢;;(0), ,7 = 1,n, of the form

J )

> CEFINTR (o), j<i
tij(o) = ¢ ¥ N
Z Cz:l )\Zik(U) = tiiv j > i,
k=1

where C’;’ = w, j < is a binomial coefficient.

It is not difficult to check that A(c)T(c) = T'(0)J (o), moreover det T'(c) = 1. Consequently, a transformation
of system (6) of the form (7) produces the system D.z = (A(c)E + I)z. Then general solution z(7, o) of this
system can be presented as

2(r,0) = eI Z(1)C (o), (13)
where Z(7) is an (n x n)-matrix of the form

2 n—1

A
zn=| 0 bW e
o 0 0 ... 1

C(o) = (Ci(0),...,Cx(0)) an arbitrary differentiable vector-function.
Therefore, by (7) and (13), we have a general solution z(7, o) of equation (4) in the form

#(r,0) = 3 Cilo) e (14)
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with arbitrary differentiable functions C;(o), j = 1,n. Obviously, with initial problem (4), (12) we have
Cy(0) = u;(0), j = Ln.

Consequently, one can formulate the result on the structure of the general solution (14) of the equation (4)
in the case A).

Theorem 2. Assume (2) and 1° — 4°. Then in the case of one eigenvalue \(o) of multiplicity n, the solution
x(r,0) of (4), (12) has the form (14).

Proof. Indeed, acting with operator D, on relation (14), then using condition (12) we get an equation
(E+ AM1)C(0) =u(o), where E is the identity matrix, I; is the matrix with units on the subdiagonal.

Obviously, det(E + AI;) = 1. Consequently, C'(o) is uniquely defined by w(o). Theorem 2 is proved.

Before we pass to the general case, under the conditions as in Theorem 2 we first by study nonhomogeneous
equation corresponding to equation (4) with quasilinear polynomial in 7 of the form

D%z 4 a1 (0)D2 tr + ...+ an(o x—ZC’* yriemhe (15)

where coefficients C7 (o), j = 0, k, and index p(o) are differentiable w-periodic functions with u(o) # (o).
Since A(o) is an n-multiple root of the characteristic equation (5), using the symbolic operator D, — A(o)
the equation (15) can be given in the following form:

[D. "y = Z Ci(o)re (o) (16)
In order to solve the equation (16), first we make the substitution z = e™(?)y, and bring it to the form
Zm UW@_Zﬁ ‘ a7

where CJ is, as before, the binomial coefficient.
We set a particular solution y*(7,0) of (17) with undetermined coefficients v;(o), j =0, k, as

k
y'(ro) =) vi(o)r. (18)

=0

Then these coefficients are defined by recurrence relations and, as u(o) # A(o), they have unique presentation
through coefficients C7 (o), j = 0, k:

]- * —7 * *
vj(o) = 5jvj(0) = o) = Me)] 7m0, g 0), -, (o)), (19)
where 7;(0, C5(0),...,C} (o)) are linear with respect to Cg(0),...,C7 (o) and w-periodic in o, differentiable

functions. Having substituted (19) into (18) we get a particular solution y*(7, o) of equation (17):
(20)

while in view of z = e™(?)y we have a particular solution z*(7,0) of equation (16), consequently, equations
(15) in the form of
*(1,0) = y* (1, 0)e™) (21)

with multipliers (20).
Since equation (15) is linear, its general solution x(7, o) is the sum of general solution (14) of the homogeneous
equation (4) and a particular solution (21) of nonhomogeneous equation (15):

7= Ci0)

with arbitrary differentiable coefficients C;(o), j = 1, n.

+ZU .w@ (22)
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As it was shown in the proof Theorem 2, analogously one can prove uniquely the initial problem for equation
(15) with condition (12). Consequently, the relation (22) describes the structure of the general solution of the
equation (15).

Corollary. Under the same conditions as in Theorem 2, the general solution x(7, o) of (15) is of the form (22).

B) We pass with our considerations to the general case, when roots A1(0),...,\-(c) have multiplicities
k1,...,k, respectively, k; + - -- + k,, = n, and satisfy conditions 1° — 4°,

In this case we will determine the structure of the general solution (7, o) of equation (4) provided condition
(2) holds. Using the symbolic operator

L(De) = D +a1(0) D¢ ™" + oo+ an(0) = [De = M ()] .. [De = Ar(0)]™
we shall present (4) in the form

[De — M ()] ... [De = Ar_1(0)]**[De — Ap(0)]r 2 = 0. (23)
We shall prove that the general solution z(7, o) of (4), and so of (23), has the form

Fi=1gmA (o) 7172 (0)

kr
ZCO— R +...+ch,kr+j(o—)w. (24)

Jj=1

For the proof we will use the induction method. For r = 1 the formula (24) holds due to Theorem 2. We shall
assume that it true for 7 — 1 and prove it for r. For this purpose, in equation (24) we put [D, — \.(0)]*rz = 2

and get an equation
[De — M (a)]* ... [De = A1 (0)]Fr=12 = 0. (25)

Since the formula (24) holds for r» — 1 eigenvalues, the equation (25) has a general solution z(7, o) of the
form
7_] 1 7')\1(0) kr—1 7_j—le‘r)\r_l(a)

Zc R +ot > cn_kr_k,._w(a)w. (26)

j=1
Further, having put the expression (26) into [D. — \,.(¢)]*"z = 2z we get a nonhomogeneous equation

k1 ; kr—1

Tj_l TA1(0) Tj_l TAr—1(0)
i 1)!e +...+ Z Cr—teyp—kr—1+5(0) = 1)!6 . (27)
j=1

Now, in order to solve the equation (27) it is necessary to apply the corollary of Theorem 2 to solution of
each of the equations

i
Do~ M(o)z=Y Cio M)
kr—l Tj
[De — )\T(U)]Tx = Zl C’I’L*krfk'f‘*l*‘rj(o-) (] — 1)!67—A7‘—1(0')
j=

and use by the superposition principle. Obviously, as coefficients of quasipolynomial solutions of these equations
depend linearly on the arbitrary coefficients of their righthand parts, they are also arbitrary. The formula (24) is
proved. Consequently, the solution of (4), (12) is of the form (24). This result will be formulated as the theorem.

Theorem 3. Assume the conditions (2) and 1 — 4° hold. Then the general solution z(7, o) of equation (4)
has the form (24), with arbitrary differentiable coefficients C; (o), j = 1, n.

The case of complex eigenvalues. Let the roots of equation (4) )\]i(a) = aj(0) £iB(0), j = 1,p have
multiplicity kj, j = 1,p, 2k1 + - - - + 2k, = n1 < n and its have sets of real parts {a;(c)} and imaginary parts
{B;(o)} both of which possess the properties 1° — 4°.

Since the complex solution x(7,0) = v(7,0) + iw(7, o) has real and imaginary parts, Rex(7,0) = v(7,0)
and Imz(7,0) = w(7, o), being solutions of (4), to any pair of complex coupled roots )\;-t (0) = aj(0) £iB;i(o)
there corresponds the solution

2l (r,0) = [Pj(r,0) cos(B;(0)T) + Q;(1,0) sin(B; (o) 7)] ™ (7, (28)
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where Pj(7,0) = Z (o )(k 1)! and Q;(7,0) = Z a (o )(k 1), with arbitrary coefficients p{’’ () and ¢’ (o),
k=1

k= ]-v kja J = ﬁ
Consequently, the general solution z(7, o) of equation (4) in the case of complex roots has the form

p n
w(r,0) = 2V (r0)+ Y 29(r0), (29)
Jj=1 j=n1+1

where Cll‘(j)(T, o), j > nq are solutions corresponding to real roots and for j = 1,p .Z‘(j)(T, o) are defined by the
relation (28).

Therefore, the following theorem is proved.

Theorem 4. Suppose that, under condition (2), the equation (4) has complex eigenvalues
Aj(0) = aj(0) £iB;(0), j = 1,p of multiplicity k; and real eigenvalues satisfying the properties 1° — 4°. Then
the general solution z(7,c) of equation (4) is defined by relations (28) and (29).

Notice that in the case of Theorem 3 and Theorem 4, endowed with initial conditions (12), it is possible to
show the unique solubility of the initial problem (4), (12).

Let 9 (7,0), j = T, n be solutions of the equation (4) satisfying the initial conditions

30
1, k=j-1, (30)

Dfx(j) (1,0) |T:m: {

where £ =0,n — 1.
Such a system of solutions we shall call a normalized fundamental system of solutions of (4).
Theorem 5. Under conditions as in Theorem 4 the unique solution z(7, o) of problem (4), (12) is defined by

Zu (1, 0), (31)

where 20 )(T, o), j = 1,n is a normalized fundamental system of the solutions.

Indeed, it is not difficult to check that (31) fulfills (4) and in the view (30) the initial condition (12). Linear
combinations of solutions from normalized fundamental system satisfying condition (12) are uniquely described
the relation (31).

Linear nonhomogeneous equation

Assume the conditions (2), (3) and 1° — 4% hold. On the base of Theorem 5 we introduce the solution
X(7,t,0,8,0 + es) of equation (4) satisfying the initial condition

D¥X(s,0+es,0,5,0 +es) =0, (k=0,n—2), D' 'X(s,0+es,0,50+es)=1 (32)

-
and function 2°(7,t,0) = [ X(7,t,0,s,0+es)b(s, 0 +es,0)ds. It is easy to check that 2°(7, ¢, o) in view of (32)
0
satisfy the equation (1) with zero initial condition D¥2%(s,o +es,0) =0, k=0,n— 1.
Therefore, unique solution z(7,t, o) of equation (1) with initial condition (12) is defined by

n

x(7,t,0) = Zuj (0)z9) (1,0) + 2°(1, 1, 0). (33)

j=1

This result will be formulated as Theorem.
Theorem 6. Assume the conditions (2) and (3) hold, sets of real eigenvalues and complex eigenvalues possess
the properties 1° — 4°. Then initial problem for equation (1) with condition (12) has unique solution (33).
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The bounded and periodic solutions

When is known structures of the general solution to the equations (1) and (4) then can present conditions
of existence of bounded and periodic solutions in terms of eigenvalues.

Let’s start to consider homogeneous equation (4) with condition (2). It is limited solutions of problem of
the form (4), (12).

Theorem 7. The solution (7, o) of problem (4), (12) under condition (2) is w-periodic in ¢ € R™.

Proof of the Theorem 7 follows from w-periodic of initial functions w;(o), j = 1,n and eigenvalues \; (o),
7 =1n.

Theorem 8. Under the conditions (2), 1° — 4% and when real parts of eigenvalues are different from zero
Re \j(0) # 0, j = 1,n then equation (4) hasn’t bounded therefore periodic solutions except zero.

It is not difficult to show that under the conditions of Theorem 8 will be found constant v > 0, I' > 0 and
any solution 27 (7, o) of equation (4) entering into the fundamental system is satisfied by estimation

|27 (1,0)| < e 7l (34)

Then as in Theorem 5 in view of (34) follows unbounded of all solutions z(7, o) of problem (4), (12) except
7€ero.

Further allow that equation (4) has only imaginary eigenvalues A; 2(0) = £if(0) # 0 which by the conditions
on Theorem 4 satisfied bounded solution of the form z*(7,0) = Ci(0) cos(B;(o)7) + Ca(0) sin(B;(o)7) with
arbitrary w-periodic in o coefficients C1(o) and C3(o). Obviously that this solution (,w)-periodic in (7,0),
where 6 = % = 0(0) is w-periodic differentiable function.

Therefore in this case the bounded solution z* (7, c) of equation being periodic in 7 with variable bounded
period 6(o) = wo(o). We note that it is one of specific particularities of equation with operator D..

In this case (wp,w)-periodic solutions consist double-parameter family where parameters are w-periodic in o
functions C; = C1(0) and Cy = Cs(0). If equation (4) has zero eigenvalue A = 0 then it is in view of Theorem 3
satisfied one-parameter family w-periodic in o of solutions z = C(0).

Theorem 9. If under the conditions as in Theorem 4 the equation (4) has zero A\; = 0 and only imaginary

eigenvalues \;(0) = +if3j(0), j = 2, p then it is allowed bounded solutions
P
x(r,0) = Cy(0) + Z C1j(o) cos(B;(0)T) 4+ Caj(0) sin(B; (o)1),
=2

where p < n, C1(0), C1;(0), Cyj(0) are differentiable arbitrary w-periodic functions.
From Theorem 9 we see that presented solution here z(7, o) consists of line combinations 0;(c) = 6-2(7;)'
J

periodic in 7 of functions j = 1, p.
Further we consider the case of Theorem 8. Let 27 (7 — s,0), j = 1,n — fundamental system of solutions of
homogeneous equation (4) are satisfied by the conditions

E=1..)( _J 0, k#y;
De T (7_ S,U)|T_S{ 1’ k:j

Then solution X (7 — s, 0) of equation (4) is satisfied by the condition
DEFIX(1 —8,0)|r=s =0, (k=T,n—2), D' 'X(T—5,0)|=s=1 (35)
according to Theorem 5 is presented in the form X (7 —s,0) = Zn: uj(o)z (T — s,0). This solution fall into sum
of solutions X (7 — s,0) = X_(7 — s,0) + X4 (7 — s,0), which zir:elsatisﬁed by estimations:
IX_(r—s5,0)<T_e "9 7>s |X\(r—s5,0) <D’ <5 (36)
with several positive constants I'_ and 'y moreover in view of (35) have
DFYX (17— 8,0)|r=s + DX 1X (1 — 5,0) ;= =0, (k=T,n—2);

Dgle_ (T —5,0)|r=s + D271X+(T —8,0)|r=s = 1. (37)
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Further we introduce function

T +oo
x*(r,t,0) = / X_(1—s,0)f(s,0+es,o)ds— / Xi(r—s,0)f(s,0+es,o)ds. (38)

— 00

Obviously that integrals in correlation (38) in view of (36) are converged evenly, allowed under the integral
n-time differentiality and in view of (37) is satisfied equation (1). It is easy to check that in view of (3) z*(7,¢,0)
has property (#,w,w)-periodicity in (7,¢,0). Condition (36) is provided unique bounded solution (38).

Therefore, the following Theorem is proved.

Theorem 10. Under the conditions (2), (3) and 1° — 4% equation (1) has unique (#, w,w)-periodic in (7,t, )
solution of the form (38).

This study is adjacent to the studies [9-11].

In conclusion we shall notice that in this work at research of basic object we used properties 1° — 4% of
eigenvalues and structures of general solutions are satisfied to being considered equations.
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Herizsri auaronaJjsb 6oiibiHIIa JuddepeHnnasgay
OIepaTopJibl ChI3BIKTBHI T€HAEY/IiH »KAJIIIbI, III€eHEJIreH
2KoHe KOIIIepHOATHI MIelTiMIaepi

MakaJtazia Toyesicis aifHbIMAJIBLIIAP KEeHICTITiHIH Heri3ri quaroHasiHig 6arbIThl 60UbIHINA AruddepeHIuaIIay
OIepaTOpPbIMEH YKoHEe MEHIITIKTI MOHIepre KOWBLIATHIH KeHOIp MmapTTap Ke3iHIe OChl OIePATOPIbIH, CUIIATTA~
MaJIapbIHAA TYPAKTHI OOJATHIH KOI(MDMUIIMEHTTEPMEH M-Il PETTi CHI3BIKTHI TEHJIEY/IiH, YKAJIIBI TIEMMiHIH
KYPBUIBIMBI aHBIKTAJIAbI. Koadduimentrepmern 6epiiren BeKTOP-QYHKIUSA ITEPUOATHIIBIK KOHE TericTik
KacueTTepiHe me Jen yirapblLIajbl, MYHJIAFbI IIEPUOJITAD — PAIMOHAJILI OJIIIEMIEC €MeC, OH TYPaKThI-
Jap. Oyesti GIpTEKTI CBIBBIKTHI YKYyitere aybICTHIPY KOMEriMeH KeaTipiserin, 6ipTekTi TeHmaey 3eprresmi. Opi
Kapail oCbl Heri3je MeHIIKTI MOHJEp TEePMUHIHJIE, CHI3BIKTBI TEHJEYIiH OapJIbIK, TOYeJICI3 aifHbIMAJIbLIAD
OOMBIHINIA TTEPUOATHLIBIFBIHBIH 6ap OOJIy IMapTTapbl OPHATBHLIALI. BipTeKci3 TeHey IiH KONMepUoAThHI IIIe-
mriMiHiH, THTErpaJsabl KopiHici 6epiiren. n-mi perTi GIPTEKCI3 CHI3BIKTHI TEHJIEY/IiH, IIEHEJTEH YKOHE KO-
MePUO/ITHI MIENM/IEPIHIH 6ap »KoHe >KaJIFbI3 O0JIy IMIapTTapbl OPHATHLIILI. BipTeKci3 TeH/ey/1iH, IeHereH
mrermiMi IeHeIreH affHbIMAaJ bl TIEPUOIBIMEH OAPJIBIK, AHBIMAIBLIAD OONBIHINA TEPUOATHI IIeNTiM GOJIaThIH-
IBIFBI KOpceTiiireH. Bys merisri muaronass 6arbiTel OoftbiHINa AuddepeHnraiaay OnepaTopIbl TEHIEY/IIH,
crieruUKAJBIK, epelie/iKTepiHiy 6ipi.

Kiam ce3dep: CbIBBIKTHI TeHIEY, TuddepeHnnaiay onepaTop, KOINIEePHOIThI IIelliM, HHTerpaJsIIbl KOpiHic.

AA. Kynbxymuesa, 2K.A. Caprabanos

Ob1ne, orpaHUYeHHbIe 1 MHOTONEPUOANYECKHE
penieHns JUHeITHOro ypaBHeHus ¢ auddepeHnabHbIM
oIepaTopoOM IIO IVIABHOW JMAaroHaJiu

B crarpe ompenenena cTpykTypa OOIIEro pelieHust JUHEHHOTO YpPaBHEHUS N-TO MOpsiaka ¢ auddepeHim-
aJIbHBIM OIEPATOPOM I10 HAIIPABJIEHWIO IJIABHOW JUATOHAJIM MPOCTPAHCTBA HE3ABUCUMBIX MEPEMEHHBIX U
KO3 pUImeHTaMu, MOCTOSHHBIMU Ha, XapaKTEPUCTUKE ITOIO OIePaTOpa MPU HEKOTOPBIX YCJIOBHUSX Ha COO-
cTBeHHbIe 3HadYeHus. lIpenmnosokeno, 9To K03 PUIMEHTH U 3aJaHHAsT BEKTOP-MYHKITHsT 00/IaIal0T CBOM-
CTBaAMH IEPUOJMIHOCTH U TJIAJIKOCTH, TJI€ IMEPUOJIbI — PAIMOHAJIBHO HECOU3MEPUMBbIE TOJIOKHUTE/IbHBIE T10-
crostaable. CHaYaJIa UCCIIE0BAHO OJHOPOIHOE yPABHEHNE, KOTOPOE C MOMOIIBIO 3aMEHBI CBOIUTCS K OJHO-
pomHoit uHeitHOM cucTeme. /lasee, Ha 9TON OCHOBE, B TEPMUHAX COOCTBEHHBIX 3HAUEHUN YCTAHABIUBAIOTCS
YCJIOBHs CYIIECTBOBAHUS IIEPUOUIECKUX 110 BCEM HE3aBUCHMBIM IIEPEMEHHBIM (MHOTONEPUOANIECKAM) pe-
mieHuit JnHeiiHoro ypasHenus. JlaHo uHTerpaJibHOE IIPEJICTaBICHEe MHOTIOIIEPUOIUIECKOTO PEIIeHUsT HEeO I
HOPOJTHOTO YPABHEHUsI. YCTAHOBJIEHBI YCIOBUS CYIIECTBOBAHNS M €IUHCTBEHHOCTH OTPAHUIEHHOTO W MHOTO-
IEPUOIMIECKOTO PEIIeHHs] JTUHEHHOTO HEOHOPOIHOIO YpaBHEHMsI N-ro mnopsijka. [lokazaHo, 9T0 orpaHmu-
YeHHOE PEeIIeHNe HEOHOPOJIHOTO YPABHEHUS SIBJISIETCS HNEPUOIUUECKUM I10 BCEM IIEPEMEHHBLIM pelleHueM
C TIepEeMEHHBIM OIPAHWYEHHBIM MTEPUOJOM. DTO €CTh OJIHA U3 CIENUMUIECKAX OCOOEHHOCTEH ypaBHEHUN C
orepaTopoM uddpepeHIMpOBaHus 110 HAIIPABIEHUIO TVIABHON JUArOHAJIN.

Karoueswie caosa: smHeiiHoe ypaBHeHUe, MuddepeHINaIbHBIN OEepaTop, MHOTOIEPHOANIECKOE peIIeHNe,
WHTErPAJILHOE TTPE/ICTABIICHIUE.
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